Pull sgi-drivers-makefile-cleanup into release branch
[linux-2.6] / arch / arm26 / kernel / irq.c
1 /*
2  *  linux/arch/arm/kernel/irq.c
3  *
4  *  Copyright (C) 1992 Linus Torvalds
5  *  Modifications for ARM processor Copyright (C) 1995-2000 Russell King.
6  *  'Borrowed' for ARM26 and (C) 2003 Ian Molton.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  *  This file contains the code used by various IRQ handling routines:
13  *  asking for different IRQ's should be done through these routines
14  *  instead of just grabbing them. Thus setups with different IRQ numbers
15  *  shouldn't result in any weird surprises, and installing new handlers
16  *  should be easier.
17  *
18  *  IRQ's are in fact implemented a bit like signal handlers for the kernel.
19  *  Naturally it's not a 1:1 relation, but there are similarities.
20  */
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/signal.h>
26 #include <linux/sched.h>
27 #include <linux/ioport.h>
28 #include <linux/interrupt.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include <linux/smp.h>
32 #include <linux/init.h>
33 #include <linux/seq_file.h>
34 #include <linux/errno.h>
35
36 #include <asm/irq.h>
37 #include <asm/system.h>
38 #include <asm/irqchip.h>
39
40 //FIXME - this ought to be in a header IMO
41 void __init arc_init_irq(void);
42
43 /*
44  * Maximum IRQ count.  Currently, this is arbitary.  However, it should
45  * not be set too low to prevent false triggering.  Conversely, if it
46  * is set too high, then you could miss a stuck IRQ.
47  *
48  * FIXME Maybe we ought to set a timer and re-enable the IRQ at a later time?
49  */
50 #define MAX_IRQ_CNT     100000
51
52 static volatile unsigned long irq_err_count;
53 static DEFINE_SPINLOCK(irq_controller_lock);
54
55 struct irqdesc irq_desc[NR_IRQS];
56
57 /*
58  * Dummy mask/unmask handler
59  */
60 void dummy_mask_unmask_irq(unsigned int irq)
61 {
62 }
63
64 void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
65 {
66         irq_err_count += 1;
67         printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
68 }
69
70 static struct irqchip bad_chip = {
71         .ack    = dummy_mask_unmask_irq,
72         .mask   = dummy_mask_unmask_irq,
73         .unmask = dummy_mask_unmask_irq,
74 };
75
76 static struct irqdesc bad_irq_desc = {
77         .chip   = &bad_chip,
78         .handle = do_bad_IRQ,
79         .depth  = 1,
80 };
81
82 /**
83  *      disable_irq - disable an irq and wait for completion
84  *      @irq: Interrupt to disable
85  *
86  *      Disable the selected interrupt line.  We do this lazily.
87  *
88  *      This function may be called from IRQ context.
89  */
90 void disable_irq(unsigned int irq)
91 {
92         struct irqdesc *desc = irq_desc + irq;
93         unsigned long flags;
94         spin_lock_irqsave(&irq_controller_lock, flags);
95         if (!desc->depth++)
96                 desc->enabled = 0;
97         spin_unlock_irqrestore(&irq_controller_lock, flags);
98 }
99
100 /**
101  *      enable_irq - enable interrupt handling on an irq
102  *      @irq: Interrupt to enable
103  *
104  *      Re-enables the processing of interrupts on this IRQ line.
105  *      Note that this may call the interrupt handler, so you may
106  *      get unexpected results if you hold IRQs disabled.
107  *
108  *      This function may be called from IRQ context.
109  */
110 void enable_irq(unsigned int irq)
111 {
112         struct irqdesc *desc = irq_desc + irq;
113         unsigned long flags;
114         int pending = 0;
115
116         spin_lock_irqsave(&irq_controller_lock, flags);
117         if (unlikely(!desc->depth)) {
118                 printk("enable_irq(%u) unbalanced from %p\n", irq,
119                         __builtin_return_address(0)); //FIXME bum addresses reported - why?
120         } else if (!--desc->depth) {
121                 desc->probing = 0;
122                 desc->enabled = 1;
123                 desc->chip->unmask(irq);
124                 pending = desc->pending;
125                 desc->pending = 0;
126                 /*
127                  * If the interrupt was waiting to be processed,
128                  * retrigger it.
129                  */
130                 if (pending)
131                         desc->chip->rerun(irq);
132         }
133         spin_unlock_irqrestore(&irq_controller_lock, flags);
134 }
135
136 int show_interrupts(struct seq_file *p, void *v)
137 {
138         int i = *(loff_t *) v;
139         struct irqaction * action;
140
141         if (i < NR_IRQS) {
142                 action = irq_desc[i].action;
143                 if (!action)
144                         goto out;
145                 seq_printf(p, "%3d: %10u ", i, kstat_irqs(i));
146                 seq_printf(p, "  %s", action->name);
147                 for (action = action->next; action; action = action->next) {
148                         seq_printf(p, ", %s", action->name);
149                 }
150                 seq_putc(p, '\n');
151         } else if (i == NR_IRQS) {
152                 show_fiq_list(p, v);
153                 seq_printf(p, "Err: %10lu\n", irq_err_count);
154         }
155 out:
156         return 0;
157 }
158
159 /*
160  * IRQ lock detection.
161  *
162  * Hopefully, this should get us out of a few locked situations.
163  * However, it may take a while for this to happen, since we need
164  * a large number if IRQs to appear in the same jiffie with the
165  * same instruction pointer (or within 2 instructions).
166  */
167 static int check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs)
168 {
169         unsigned long instr_ptr = instruction_pointer(regs);
170
171         if (desc->lck_jif == jiffies &&
172             desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) {
173                 desc->lck_cnt += 1;
174
175                 if (desc->lck_cnt > MAX_IRQ_CNT) {
176                         printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq);
177                         return 1;
178                 }
179         } else {
180                 desc->lck_cnt = 0;
181                 desc->lck_pc  = instruction_pointer(regs);
182                 desc->lck_jif = jiffies;
183         }
184         return 0;
185 }
186
187 static void
188 __do_irq(unsigned int irq, struct irqaction *action, struct pt_regs *regs)
189 {
190         unsigned int status;
191         int ret;
192
193         spin_unlock(&irq_controller_lock);
194         if (!(action->flags & SA_INTERRUPT))
195                 local_irq_enable();
196
197         status = 0;
198         do {
199                 ret = action->handler(irq, action->dev_id, regs);
200                 if (ret == IRQ_HANDLED)
201                         status |= action->flags;
202                 action = action->next;
203         } while (action);
204
205         if (status & SA_SAMPLE_RANDOM)
206                 add_interrupt_randomness(irq);
207
208         spin_lock_irq(&irq_controller_lock);
209 }
210
211 /*
212  * This is for software-decoded IRQs.  The caller is expected to
213  * handle the ack, clear, mask and unmask issues.
214  */
215 void
216 do_simple_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
217 {
218         struct irqaction *action;
219         const int cpu = smp_processor_id();
220
221         desc->triggered = 1;
222
223         kstat_cpu(cpu).irqs[irq]++;
224
225         action = desc->action;
226         if (action)
227                 __do_irq(irq, desc->action, regs);
228 }
229
230 /*
231  * Most edge-triggered IRQ implementations seem to take a broken
232  * approach to this.  Hence the complexity.
233  */
234 void
235 do_edge_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
236 {
237         const int cpu = smp_processor_id();
238
239         desc->triggered = 1;
240
241         /*
242          * If we're currently running this IRQ, or its disabled,
243          * we shouldn't process the IRQ.  Instead, turn on the
244          * hardware masks.
245          */
246         if (unlikely(desc->running || !desc->enabled))
247                 goto running;
248
249         /*
250          * Acknowledge and clear the IRQ, but don't mask it.
251          */
252         desc->chip->ack(irq);
253
254         /*
255          * Mark the IRQ currently in progress.
256          */
257         desc->running = 1;
258
259         kstat_cpu(cpu).irqs[irq]++;
260
261         do {
262                 struct irqaction *action;
263
264                 action = desc->action;
265                 if (!action)
266                         break;
267
268                 if (desc->pending && desc->enabled) {
269                         desc->pending = 0;
270                         desc->chip->unmask(irq);
271                 }
272
273                 __do_irq(irq, action, regs);
274         } while (desc->pending);
275
276         desc->running = 0;
277
278         /*
279          * If we were disabled or freed, shut down the handler.
280          */
281         if (likely(desc->action && !check_irq_lock(desc, irq, regs)))
282                 return;
283
284  running:
285         /*
286          * We got another IRQ while this one was masked or
287          * currently running.  Delay it.
288          */
289         desc->pending = 1;
290         desc->chip->mask(irq);
291         desc->chip->ack(irq);
292 }
293
294 /*
295  * Level-based IRQ handler.  Nice and simple.
296  */
297 void
298 do_level_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
299 {
300         struct irqaction *action;
301         const int cpu = smp_processor_id();
302
303         desc->triggered = 1;
304
305         /*
306          * Acknowledge, clear _AND_ disable the interrupt.
307          */
308         desc->chip->ack(irq);
309
310         if (likely(desc->enabled)) {
311                 kstat_cpu(cpu).irqs[irq]++;
312
313                 /*
314                  * Return with this interrupt masked if no action
315                  */
316                 action = desc->action;
317                 if (action) {
318                         __do_irq(irq, desc->action, regs);
319
320                         if (likely(desc->enabled &&
321                                    !check_irq_lock(desc, irq, regs)))
322                                 desc->chip->unmask(irq);
323                 }
324         }
325 }
326
327 /*
328  * do_IRQ handles all hardware IRQ's.  Decoded IRQs should not
329  * come via this function.  Instead, they should provide their
330  * own 'handler'
331  */
332 asmlinkage void asm_do_IRQ(int irq, struct pt_regs *regs)
333 {
334         struct irqdesc *desc = irq_desc + irq;
335
336         /*
337          * Some hardware gives randomly wrong interrupts.  Rather
338          * than crashing, do something sensible.
339          */
340         if (irq >= NR_IRQS)
341                 desc = &bad_irq_desc;
342
343         irq_enter();
344         spin_lock(&irq_controller_lock);
345         desc->handle(irq, desc, regs);
346         spin_unlock(&irq_controller_lock);
347         irq_exit();
348 }
349
350 void __set_irq_handler(unsigned int irq, irq_handler_t handle, int is_chained)
351 {
352         struct irqdesc *desc;
353         unsigned long flags;
354
355         if (irq >= NR_IRQS) {
356                 printk(KERN_ERR "Trying to install handler for IRQ%d\n", irq);
357                 return;
358         }
359
360         if (handle == NULL)
361                 handle = do_bad_IRQ;
362
363         desc = irq_desc + irq;
364
365         if (is_chained && desc->chip == &bad_chip)
366                 printk(KERN_WARNING "Trying to install chained handler for IRQ%d\n", irq);
367
368         spin_lock_irqsave(&irq_controller_lock, flags);
369         if (handle == do_bad_IRQ) {
370                 desc->chip->mask(irq);
371                 desc->chip->ack(irq);
372                 desc->depth = 1;
373                 desc->enabled = 0;
374         }
375         desc->handle = handle;
376         if (handle != do_bad_IRQ && is_chained) {
377                 desc->valid = 0;
378                 desc->probe_ok = 0;
379                 desc->depth = 0;
380                 desc->chip->unmask(irq);
381         }
382         spin_unlock_irqrestore(&irq_controller_lock, flags);
383 }
384
385 void set_irq_chip(unsigned int irq, struct irqchip *chip)
386 {
387         struct irqdesc *desc;
388         unsigned long flags;
389
390         if (irq >= NR_IRQS) {
391                 printk(KERN_ERR "Trying to install chip for IRQ%d\n", irq);
392                 return;
393         }
394
395         if (chip == NULL)
396                 chip = &bad_chip;
397
398         desc = irq_desc + irq;
399         spin_lock_irqsave(&irq_controller_lock, flags);
400         desc->chip = chip;
401         spin_unlock_irqrestore(&irq_controller_lock, flags);
402 }
403
404 int set_irq_type(unsigned int irq, unsigned int type)
405 {
406         struct irqdesc *desc;
407         unsigned long flags;
408         int ret = -ENXIO;
409
410         if (irq >= NR_IRQS) {
411                 printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq);
412                 return -ENODEV;
413         }
414
415         desc = irq_desc + irq;
416         if (desc->chip->type) {
417                 spin_lock_irqsave(&irq_controller_lock, flags);
418                 ret = desc->chip->type(irq, type);
419                 spin_unlock_irqrestore(&irq_controller_lock, flags);
420         }
421
422         return ret;
423 }
424
425 void set_irq_flags(unsigned int irq, unsigned int iflags)
426 {
427         struct irqdesc *desc;
428         unsigned long flags;
429
430         if (irq >= NR_IRQS) {
431                 printk(KERN_ERR "Trying to set irq flags for IRQ%d\n", irq);
432                 return;
433         }
434
435         desc = irq_desc + irq;
436         spin_lock_irqsave(&irq_controller_lock, flags);
437         desc->valid = (iflags & IRQF_VALID) != 0;
438         desc->probe_ok = (iflags & IRQF_PROBE) != 0;
439         desc->noautoenable = (iflags & IRQF_NOAUTOEN) != 0;
440         spin_unlock_irqrestore(&irq_controller_lock, flags);
441 }
442
443 int setup_irq(unsigned int irq, struct irqaction *new)
444 {
445         int shared = 0;
446         struct irqaction *old, **p;
447         unsigned long flags;
448         struct irqdesc *desc;
449
450         /*
451          * Some drivers like serial.c use request_irq() heavily,
452          * so we have to be careful not to interfere with a
453          * running system.
454          */
455         if (new->flags & SA_SAMPLE_RANDOM) {
456                 /*
457                  * This function might sleep, we want to call it first,
458                  * outside of the atomic block.
459                  * Yes, this might clear the entropy pool if the wrong
460                  * driver is attempted to be loaded, without actually
461                  * installing a new handler, but is this really a problem,
462                  * only the sysadmin is able to do this.
463                  */
464                 rand_initialize_irq(irq);
465         }
466
467         /*
468          * The following block of code has to be executed atomically
469          */
470         desc = irq_desc + irq;
471         spin_lock_irqsave(&irq_controller_lock, flags);
472         p = &desc->action;
473         if ((old = *p) != NULL) {
474                 /* Can't share interrupts unless both agree to */
475                 if (!(old->flags & new->flags & SA_SHIRQ)) {
476                         spin_unlock_irqrestore(&irq_controller_lock, flags);
477                         return -EBUSY;
478                 }
479
480                 /* add new interrupt at end of irq queue */
481                 do {
482                         p = &old->next;
483                         old = *p;
484                 } while (old);
485                 shared = 1;
486         }
487
488         *p = new;
489
490         if (!shared) {
491                 desc->probing = 0;
492                 desc->running = 0;
493                 desc->pending = 0;
494                 desc->depth = 1;
495                 if (!desc->noautoenable) {
496                         desc->depth = 0;
497                         desc->enabled = 1;
498                         desc->chip->unmask(irq);
499                 }
500         }
501
502         spin_unlock_irqrestore(&irq_controller_lock, flags);
503         return 0;
504 }
505
506 /**
507  *      request_irq - allocate an interrupt line
508  *      @irq: Interrupt line to allocate
509  *      @handler: Function to be called when the IRQ occurs
510  *      @irqflags: Interrupt type flags
511  *      @devname: An ascii name for the claiming device
512  *      @dev_id: A cookie passed back to the handler function
513  *
514  *      This call allocates interrupt resources and enables the
515  *      interrupt line and IRQ handling. From the point this
516  *      call is made your handler function may be invoked. Since
517  *      your handler function must clear any interrupt the board
518  *      raises, you must take care both to initialise your hardware
519  *      and to set up the interrupt handler in the right order.
520  *
521  *      Dev_id must be globally unique. Normally the address of the
522  *      device data structure is used as the cookie. Since the handler
523  *      receives this value it makes sense to use it.
524  *
525  *      If your interrupt is shared you must pass a non NULL dev_id
526  *      as this is required when freeing the interrupt.
527  *
528  *      Flags:
529  *
530  *      SA_SHIRQ                Interrupt is shared
531  *
532  *      SA_INTERRUPT            Disable local interrupts while processing
533  *
534  *      SA_SAMPLE_RANDOM        The interrupt can be used for entropy
535  *
536  */
537
538 //FIXME - handler used to return void - whats the significance of the change?
539 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
540                  unsigned long irq_flags, const char * devname, void *dev_id)
541 {
542         unsigned long retval;
543         struct irqaction *action;
544
545         if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||
546             (irq_flags & SA_SHIRQ && !dev_id))
547                 return -EINVAL;
548
549         action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
550         if (!action)
551                 return -ENOMEM;
552
553         action->handler = handler;
554         action->flags = irq_flags;
555         cpus_clear(action->mask);
556         action->name = devname;
557         action->next = NULL;
558         action->dev_id = dev_id;
559
560         retval = setup_irq(irq, action);
561
562         if (retval)
563                 kfree(action);
564         return retval;
565 }
566
567 EXPORT_SYMBOL(request_irq);
568
569 /**
570  *      free_irq - free an interrupt
571  *      @irq: Interrupt line to free
572  *      @dev_id: Device identity to free
573  *
574  *      Remove an interrupt handler. The handler is removed and if the
575  *      interrupt line is no longer in use by any driver it is disabled.
576  *      On a shared IRQ the caller must ensure the interrupt is disabled
577  *      on the card it drives before calling this function.
578  *
579  *      This function may be called from interrupt context.
580  */
581 void free_irq(unsigned int irq, void *dev_id)
582 {
583         struct irqaction * action, **p;
584         unsigned long flags;
585
586         if (irq >= NR_IRQS || !irq_desc[irq].valid) {
587                 printk(KERN_ERR "Trying to free IRQ%d\n",irq);
588 #ifdef CONFIG_DEBUG_ERRORS
589                 __backtrace();
590 #endif
591                 return;
592         }
593
594         spin_lock_irqsave(&irq_controller_lock, flags);
595         for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
596                 if (action->dev_id != dev_id)
597                         continue;
598
599                 /* Found it - now free it */
600                 *p = action->next;
601                 kfree(action);
602                 goto out;
603         }
604         printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
605 #ifdef CONFIG_DEBUG_ERRORS
606         __backtrace();
607 #endif
608 out:
609         spin_unlock_irqrestore(&irq_controller_lock, flags);
610 }
611
612 EXPORT_SYMBOL(free_irq);
613
614 /* Start the interrupt probing.  Unlike other architectures,
615  * we don't return a mask of interrupts from probe_irq_on,
616  * but return the number of interrupts enabled for the probe.
617  * The interrupts which have been enabled for probing is
618  * instead recorded in the irq_desc structure.
619  */
620 unsigned long probe_irq_on(void)
621 {
622         unsigned int i, irqs = 0;
623         unsigned long delay;
624
625         /*
626          * first snaffle up any unassigned but
627          * probe-able interrupts
628          */
629         spin_lock_irq(&irq_controller_lock);
630         for (i = 0; i < NR_IRQS; i++) {
631                 if (!irq_desc[i].probe_ok || irq_desc[i].action)
632                         continue;
633
634                 irq_desc[i].probing = 1;
635                 irq_desc[i].triggered = 0;
636                 if (irq_desc[i].chip->type)
637                         irq_desc[i].chip->type(i, IRQT_PROBE);
638                 irq_desc[i].chip->unmask(i);
639                 irqs += 1;
640         }
641         spin_unlock_irq(&irq_controller_lock);
642
643         /*
644          * wait for spurious interrupts to mask themselves out again
645          */
646         for (delay = jiffies + HZ/10; time_before(jiffies, delay); )
647                 /* min 100ms delay */;
648
649         /*
650          * now filter out any obviously spurious interrupts
651          */
652         spin_lock_irq(&irq_controller_lock);
653         for (i = 0; i < NR_IRQS; i++) {
654                 if (irq_desc[i].probing && irq_desc[i].triggered) {
655                         irq_desc[i].probing = 0;
656                         irqs -= 1;
657                 }
658         }
659         spin_unlock_irq(&irq_controller_lock);
660
661         return irqs;
662 }
663
664 EXPORT_SYMBOL(probe_irq_on);
665
666 /*
667  * Possible return values:
668  *  >= 0 - interrupt number
669  *    -1 - no interrupt/many interrupts
670  */
671 int probe_irq_off(unsigned long irqs)
672 {
673         unsigned int i;
674         int irq_found = NO_IRQ;
675
676         /*
677          * look at the interrupts, and find exactly one
678          * that we were probing has been triggered
679          */
680         spin_lock_irq(&irq_controller_lock);
681         for (i = 0; i < NR_IRQS; i++) {
682                 if (irq_desc[i].probing &&
683                     irq_desc[i].triggered) {
684                         if (irq_found != NO_IRQ) {
685                                 irq_found = NO_IRQ;
686                                 goto out;
687                         }
688                         irq_found = i;
689                 }
690         }
691
692         if (irq_found == -1)
693                 irq_found = NO_IRQ;
694 out:
695         spin_unlock_irq(&irq_controller_lock);
696
697         return irq_found;
698 }
699
700 EXPORT_SYMBOL(probe_irq_off);
701
702 void __init init_irq_proc(void)
703 {
704 }
705
706 void __init init_IRQ(void)
707 {
708         struct irqdesc *desc;
709         extern void init_dma(void);
710         int irq;
711
712         for (irq = 0, desc = irq_desc; irq < NR_IRQS; irq++, desc++)
713                 *desc = bad_irq_desc;
714
715         arc_init_irq();
716         init_dma();
717 }