s3c2410_wdt watchdog driver: Locking and coding style
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit. This method will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct platform_device *pdev);
122 static int gfar_remove(struct platform_device *pdev);
123 static void free_skb_resources(struct gfar_private *priv);
124 static void gfar_set_multi(struct net_device *dev);
125 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
126 static void gfar_configure_serdes(struct net_device *dev);
127 static int gfar_poll(struct napi_struct *napi, int budget);
128 #ifdef CONFIG_NET_POLL_CONTROLLER
129 static void gfar_netpoll(struct net_device *dev);
130 #endif
131 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
132 static int gfar_clean_tx_ring(struct net_device *dev);
133 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
134 static void gfar_vlan_rx_register(struct net_device *netdev,
135                                 struct vlan_group *grp);
136 void gfar_halt(struct net_device *dev);
137 #ifdef CONFIG_PM
138 static void gfar_halt_nodisable(struct net_device *dev);
139 #endif
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 extern const struct ethtool_ops gfar_ethtool_ops;
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153         return (priv->vlan_enable || priv->rx_csum_enable);
154 }
155
156 /* Set up the ethernet device structure, private data,
157  * and anything else we need before we start */
158 static int gfar_probe(struct platform_device *pdev)
159 {
160         u32 tempval;
161         struct net_device *dev = NULL;
162         struct gfar_private *priv = NULL;
163         struct gianfar_platform_data *einfo;
164         struct resource *r;
165         int err = 0;
166         DECLARE_MAC_BUF(mac);
167
168         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
169
170         if (NULL == einfo) {
171                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
172                        pdev->id);
173
174                 return -ENODEV;
175         }
176
177         /* Create an ethernet device instance */
178         dev = alloc_etherdev(sizeof (*priv));
179
180         if (NULL == dev)
181                 return -ENOMEM;
182
183         priv = netdev_priv(dev);
184         priv->dev = dev;
185
186         /* Set the info in the priv to the current info */
187         priv->einfo = einfo;
188
189         /* fill out IRQ fields */
190         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
191                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
192                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
193                 priv->interruptError = platform_get_irq_byname(pdev, "error");
194                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
195                         goto regs_fail;
196         } else {
197                 priv->interruptTransmit = platform_get_irq(pdev, 0);
198                 if (priv->interruptTransmit < 0)
199                         goto regs_fail;
200         }
201
202         /* get a pointer to the register memory */
203         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
204         priv->regs = ioremap(r->start, sizeof (struct gfar));
205
206         if (NULL == priv->regs) {
207                 err = -ENOMEM;
208                 goto regs_fail;
209         }
210
211         spin_lock_init(&priv->txlock);
212         spin_lock_init(&priv->rxlock);
213         spin_lock_init(&priv->bflock);
214
215         platform_set_drvdata(pdev, dev);
216
217         /* Stop the DMA engine now, in case it was running before */
218         /* (The firmware could have used it, and left it running). */
219         /* To do this, we write Graceful Receive Stop and Graceful */
220         /* Transmit Stop, and then wait until the corresponding bits */
221         /* in IEVENT indicate the stops have completed. */
222         tempval = gfar_read(&priv->regs->dmactrl);
223         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224         gfar_write(&priv->regs->dmactrl, tempval);
225
226         tempval = gfar_read(&priv->regs->dmactrl);
227         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228         gfar_write(&priv->regs->dmactrl, tempval);
229
230         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231                 cpu_relax();
232
233         /* Reset MAC layer */
234         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237         gfar_write(&priv->regs->maccfg1, tempval);
238
239         /* Initialize MACCFG2. */
240         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242         /* Initialize ECNTRL */
243         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245         /* Copy the station address into the dev structure, */
246         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248         /* Set the dev->base_addr to the gfar reg region */
249         dev->base_addr = (unsigned long) (priv->regs);
250
251         SET_NETDEV_DEV(dev, &pdev->dev);
252
253         /* Fill in the dev structure */
254         dev->open = gfar_enet_open;
255         dev->hard_start_xmit = gfar_start_xmit;
256         dev->tx_timeout = gfar_timeout;
257         dev->watchdog_timeo = TX_TIMEOUT;
258         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
259 #ifdef CONFIG_NET_POLL_CONTROLLER
260         dev->poll_controller = gfar_netpoll;
261 #endif
262         dev->stop = gfar_close;
263         dev->change_mtu = gfar_change_mtu;
264         dev->mtu = 1500;
265         dev->set_multicast_list = gfar_set_multi;
266
267         dev->ethtool_ops = &gfar_ethtool_ops;
268
269         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
270                 priv->rx_csum_enable = 1;
271                 dev->features |= NETIF_F_IP_CSUM;
272         } else
273                 priv->rx_csum_enable = 0;
274
275         priv->vlgrp = NULL;
276
277         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
278                 dev->vlan_rx_register = gfar_vlan_rx_register;
279
280                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281
282                 priv->vlan_enable = 1;
283         }
284
285         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286                 priv->extended_hash = 1;
287                 priv->hash_width = 9;
288
289                 priv->hash_regs[0] = &priv->regs->igaddr0;
290                 priv->hash_regs[1] = &priv->regs->igaddr1;
291                 priv->hash_regs[2] = &priv->regs->igaddr2;
292                 priv->hash_regs[3] = &priv->regs->igaddr3;
293                 priv->hash_regs[4] = &priv->regs->igaddr4;
294                 priv->hash_regs[5] = &priv->regs->igaddr5;
295                 priv->hash_regs[6] = &priv->regs->igaddr6;
296                 priv->hash_regs[7] = &priv->regs->igaddr7;
297                 priv->hash_regs[8] = &priv->regs->gaddr0;
298                 priv->hash_regs[9] = &priv->regs->gaddr1;
299                 priv->hash_regs[10] = &priv->regs->gaddr2;
300                 priv->hash_regs[11] = &priv->regs->gaddr3;
301                 priv->hash_regs[12] = &priv->regs->gaddr4;
302                 priv->hash_regs[13] = &priv->regs->gaddr5;
303                 priv->hash_regs[14] = &priv->regs->gaddr6;
304                 priv->hash_regs[15] = &priv->regs->gaddr7;
305
306         } else {
307                 priv->extended_hash = 0;
308                 priv->hash_width = 8;
309
310                 priv->hash_regs[0] = &priv->regs->gaddr0;
311                 priv->hash_regs[1] = &priv->regs->gaddr1;
312                 priv->hash_regs[2] = &priv->regs->gaddr2;
313                 priv->hash_regs[3] = &priv->regs->gaddr3;
314                 priv->hash_regs[4] = &priv->regs->gaddr4;
315                 priv->hash_regs[5] = &priv->regs->gaddr5;
316                 priv->hash_regs[6] = &priv->regs->gaddr6;
317                 priv->hash_regs[7] = &priv->regs->gaddr7;
318         }
319
320         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321                 priv->padding = DEFAULT_PADDING;
322         else
323                 priv->padding = 0;
324
325         if (dev->features & NETIF_F_IP_CSUM)
326                 dev->hard_header_len += GMAC_FCB_LEN;
327
328         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331
332         priv->txcoalescing = DEFAULT_TX_COALESCE;
333         priv->txcount = DEFAULT_TXCOUNT;
334         priv->txtime = DEFAULT_TXTIME;
335         priv->rxcoalescing = DEFAULT_RX_COALESCE;
336         priv->rxcount = DEFAULT_RXCOUNT;
337         priv->rxtime = DEFAULT_RXTIME;
338
339         /* Enable most messages by default */
340         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341
342         err = register_netdev(dev);
343
344         if (err) {
345                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
346                                 dev->name);
347                 goto register_fail;
348         }
349
350         /* Create all the sysfs files */
351         gfar_init_sysfs(dev);
352
353         /* Print out the device info */
354         printk(KERN_INFO DEVICE_NAME "%s\n",
355                dev->name, print_mac(mac, dev->dev_addr));
356
357         /* Even more device info helps when determining which kernel */
358         /* provided which set of benchmarks. */
359         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
360         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
361                dev->name, priv->rx_ring_size, priv->tx_ring_size);
362
363         return 0;
364
365 register_fail:
366         iounmap(priv->regs);
367 regs_fail:
368         free_netdev(dev);
369         return err;
370 }
371
372 static int gfar_remove(struct platform_device *pdev)
373 {
374         struct net_device *dev = platform_get_drvdata(pdev);
375         struct gfar_private *priv = netdev_priv(dev);
376
377         platform_set_drvdata(pdev, NULL);
378
379         iounmap(priv->regs);
380         free_netdev(dev);
381
382         return 0;
383 }
384
385 #ifdef CONFIG_PM
386 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
387 {
388         struct net_device *dev = platform_get_drvdata(pdev);
389         struct gfar_private *priv = netdev_priv(dev);
390         unsigned long flags;
391         u32 tempval;
392
393         int magic_packet = priv->wol_en &&
394                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
395
396         netif_device_detach(dev);
397
398         if (netif_running(dev)) {
399                 spin_lock_irqsave(&priv->txlock, flags);
400                 spin_lock(&priv->rxlock);
401
402                 gfar_halt_nodisable(dev);
403
404                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
405                 tempval = gfar_read(&priv->regs->maccfg1);
406
407                 tempval &= ~MACCFG1_TX_EN;
408
409                 if (!magic_packet)
410                         tempval &= ~MACCFG1_RX_EN;
411
412                 gfar_write(&priv->regs->maccfg1, tempval);
413
414                 spin_unlock(&priv->rxlock);
415                 spin_unlock_irqrestore(&priv->txlock, flags);
416
417 #ifdef CONFIG_GFAR_NAPI
418                 napi_disable(&priv->napi);
419 #endif
420
421                 if (magic_packet) {
422                         /* Enable interrupt on Magic Packet */
423                         gfar_write(&priv->regs->imask, IMASK_MAG);
424
425                         /* Enable Magic Packet mode */
426                         tempval = gfar_read(&priv->regs->maccfg2);
427                         tempval |= MACCFG2_MPEN;
428                         gfar_write(&priv->regs->maccfg2, tempval);
429                 } else {
430                         phy_stop(priv->phydev);
431                 }
432         }
433
434         return 0;
435 }
436
437 static int gfar_resume(struct platform_device *pdev)
438 {
439         struct net_device *dev = platform_get_drvdata(pdev);
440         struct gfar_private *priv = netdev_priv(dev);
441         unsigned long flags;
442         u32 tempval;
443         int magic_packet = priv->wol_en &&
444                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
445
446         if (!netif_running(dev)) {
447                 netif_device_attach(dev);
448                 return 0;
449         }
450
451         if (!magic_packet && priv->phydev)
452                 phy_start(priv->phydev);
453
454         /* Disable Magic Packet mode, in case something
455          * else woke us up.
456          */
457
458         spin_lock_irqsave(&priv->txlock, flags);
459         spin_lock(&priv->rxlock);
460
461         tempval = gfar_read(&priv->regs->maccfg2);
462         tempval &= ~MACCFG2_MPEN;
463         gfar_write(&priv->regs->maccfg2, tempval);
464
465         gfar_start(dev);
466
467         spin_unlock(&priv->rxlock);
468         spin_unlock_irqrestore(&priv->txlock, flags);
469
470         netif_device_attach(dev);
471
472 #ifdef CONFIG_GFAR_NAPI
473         napi_enable(&priv->napi);
474 #endif
475
476         return 0;
477 }
478 #else
479 #define gfar_suspend NULL
480 #define gfar_resume NULL
481 #endif
482
483 /* Reads the controller's registers to determine what interface
484  * connects it to the PHY.
485  */
486 static phy_interface_t gfar_get_interface(struct net_device *dev)
487 {
488         struct gfar_private *priv = netdev_priv(dev);
489         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
490
491         if (ecntrl & ECNTRL_SGMII_MODE)
492                 return PHY_INTERFACE_MODE_SGMII;
493
494         if (ecntrl & ECNTRL_TBI_MODE) {
495                 if (ecntrl & ECNTRL_REDUCED_MODE)
496                         return PHY_INTERFACE_MODE_RTBI;
497                 else
498                         return PHY_INTERFACE_MODE_TBI;
499         }
500
501         if (ecntrl & ECNTRL_REDUCED_MODE) {
502                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
503                         return PHY_INTERFACE_MODE_RMII;
504                 else {
505                         phy_interface_t interface = priv->einfo->interface;
506
507                         /*
508                          * This isn't autodetected right now, so it must
509                          * be set by the device tree or platform code.
510                          */
511                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
512                                 return PHY_INTERFACE_MODE_RGMII_ID;
513
514                         return PHY_INTERFACE_MODE_RGMII;
515                 }
516         }
517
518         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
519                 return PHY_INTERFACE_MODE_GMII;
520
521         return PHY_INTERFACE_MODE_MII;
522 }
523
524
525 /* Initializes driver's PHY state, and attaches to the PHY.
526  * Returns 0 on success.
527  */
528 static int init_phy(struct net_device *dev)
529 {
530         struct gfar_private *priv = netdev_priv(dev);
531         uint gigabit_support =
532                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
533                 SUPPORTED_1000baseT_Full : 0;
534         struct phy_device *phydev;
535         char phy_id[BUS_ID_SIZE];
536         phy_interface_t interface;
537
538         priv->oldlink = 0;
539         priv->oldspeed = 0;
540         priv->oldduplex = -1;
541
542         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
543
544         interface = gfar_get_interface(dev);
545
546         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
547
548         if (interface == PHY_INTERFACE_MODE_SGMII)
549                 gfar_configure_serdes(dev);
550
551         if (IS_ERR(phydev)) {
552                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
553                 return PTR_ERR(phydev);
554         }
555
556         /* Remove any features not supported by the controller */
557         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
558         phydev->advertising = phydev->supported;
559
560         priv->phydev = phydev;
561
562         return 0;
563 }
564
565 /*
566  * Initialize TBI PHY interface for communicating with the
567  * SERDES lynx PHY on the chip.  We communicate with this PHY
568  * through the MDIO bus on each controller, treating it as a
569  * "normal" PHY at the address found in the TBIPA register.  We assume
570  * that the TBIPA register is valid.  Either the MDIO bus code will set
571  * it to a value that doesn't conflict with other PHYs on the bus, or the
572  * value doesn't matter, as there are no other PHYs on the bus.
573  */
574 static void gfar_configure_serdes(struct net_device *dev)
575 {
576         struct gfar_private *priv = netdev_priv(dev);
577         struct gfar_mii __iomem *regs =
578                         (void __iomem *)&priv->regs->gfar_mii_regs;
579         int tbipa = gfar_read(&priv->regs->tbipa);
580
581         /* Single clk mode, mii mode off(for serdes communication) */
582         gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
583
584         gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
585                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
586                         ADVERTISE_1000XPSE_ASYM);
587
588         gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
589                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
590 }
591
592 static void init_registers(struct net_device *dev)
593 {
594         struct gfar_private *priv = netdev_priv(dev);
595
596         /* Clear IEVENT */
597         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
598
599         /* Initialize IMASK */
600         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
601
602         /* Init hash registers to zero */
603         gfar_write(&priv->regs->igaddr0, 0);
604         gfar_write(&priv->regs->igaddr1, 0);
605         gfar_write(&priv->regs->igaddr2, 0);
606         gfar_write(&priv->regs->igaddr3, 0);
607         gfar_write(&priv->regs->igaddr4, 0);
608         gfar_write(&priv->regs->igaddr5, 0);
609         gfar_write(&priv->regs->igaddr6, 0);
610         gfar_write(&priv->regs->igaddr7, 0);
611
612         gfar_write(&priv->regs->gaddr0, 0);
613         gfar_write(&priv->regs->gaddr1, 0);
614         gfar_write(&priv->regs->gaddr2, 0);
615         gfar_write(&priv->regs->gaddr3, 0);
616         gfar_write(&priv->regs->gaddr4, 0);
617         gfar_write(&priv->regs->gaddr5, 0);
618         gfar_write(&priv->regs->gaddr6, 0);
619         gfar_write(&priv->regs->gaddr7, 0);
620
621         /* Zero out the rmon mib registers if it has them */
622         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
623                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
624
625                 /* Mask off the CAM interrupts */
626                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
627                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
628         }
629
630         /* Initialize the max receive buffer length */
631         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
632
633         /* Initialize the Minimum Frame Length Register */
634         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
635 }
636
637
638 #ifdef CONFIG_PM
639 /* Halt the receive and transmit queues */
640 static void gfar_halt_nodisable(struct net_device *dev)
641 {
642         struct gfar_private *priv = netdev_priv(dev);
643         struct gfar __iomem *regs = priv->regs;
644         u32 tempval;
645
646         /* Mask all interrupts */
647         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
648
649         /* Clear all interrupts */
650         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
651
652         /* Stop the DMA, and wait for it to stop */
653         tempval = gfar_read(&priv->regs->dmactrl);
654         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
655             != (DMACTRL_GRS | DMACTRL_GTS)) {
656                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
657                 gfar_write(&priv->regs->dmactrl, tempval);
658
659                 while (!(gfar_read(&priv->regs->ievent) &
660                          (IEVENT_GRSC | IEVENT_GTSC)))
661                         cpu_relax();
662         }
663 }
664 #endif
665
666 /* Halt the receive and transmit queues */
667 void gfar_halt(struct net_device *dev)
668 {
669         struct gfar_private *priv = netdev_priv(dev);
670         struct gfar __iomem *regs = priv->regs;
671         u32 tempval;
672
673         /* Disable Rx and Tx */
674         tempval = gfar_read(&regs->maccfg1);
675         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
676         gfar_write(&regs->maccfg1, tempval);
677 }
678
679 void stop_gfar(struct net_device *dev)
680 {
681         struct gfar_private *priv = netdev_priv(dev);
682         struct gfar __iomem *regs = priv->regs;
683         unsigned long flags;
684
685         phy_stop(priv->phydev);
686
687         /* Lock it down */
688         spin_lock_irqsave(&priv->txlock, flags);
689         spin_lock(&priv->rxlock);
690
691         gfar_halt(dev);
692
693         spin_unlock(&priv->rxlock);
694         spin_unlock_irqrestore(&priv->txlock, flags);
695
696         /* Free the IRQs */
697         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
698                 free_irq(priv->interruptError, dev);
699                 free_irq(priv->interruptTransmit, dev);
700                 free_irq(priv->interruptReceive, dev);
701         } else {
702                 free_irq(priv->interruptTransmit, dev);
703         }
704
705         free_skb_resources(priv);
706
707         dma_free_coherent(&dev->dev,
708                         sizeof(struct txbd8)*priv->tx_ring_size
709                         + sizeof(struct rxbd8)*priv->rx_ring_size,
710                         priv->tx_bd_base,
711                         gfar_read(&regs->tbase0));
712 }
713
714 /* If there are any tx skbs or rx skbs still around, free them.
715  * Then free tx_skbuff and rx_skbuff */
716 static void free_skb_resources(struct gfar_private *priv)
717 {
718         struct rxbd8 *rxbdp;
719         struct txbd8 *txbdp;
720         int i;
721
722         /* Go through all the buffer descriptors and free their data buffers */
723         txbdp = priv->tx_bd_base;
724
725         for (i = 0; i < priv->tx_ring_size; i++) {
726
727                 if (priv->tx_skbuff[i]) {
728                         dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
729                                         txbdp->length,
730                                         DMA_TO_DEVICE);
731                         dev_kfree_skb_any(priv->tx_skbuff[i]);
732                         priv->tx_skbuff[i] = NULL;
733                 }
734
735                 txbdp++;
736         }
737
738         kfree(priv->tx_skbuff);
739
740         rxbdp = priv->rx_bd_base;
741
742         /* rx_skbuff is not guaranteed to be allocated, so only
743          * free it and its contents if it is allocated */
744         if(priv->rx_skbuff != NULL) {
745                 for (i = 0; i < priv->rx_ring_size; i++) {
746                         if (priv->rx_skbuff[i]) {
747                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
748                                                 priv->rx_buffer_size,
749                                                 DMA_FROM_DEVICE);
750
751                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
752                                 priv->rx_skbuff[i] = NULL;
753                         }
754
755                         rxbdp->status = 0;
756                         rxbdp->length = 0;
757                         rxbdp->bufPtr = 0;
758
759                         rxbdp++;
760                 }
761
762                 kfree(priv->rx_skbuff);
763         }
764 }
765
766 void gfar_start(struct net_device *dev)
767 {
768         struct gfar_private *priv = netdev_priv(dev);
769         struct gfar __iomem *regs = priv->regs;
770         u32 tempval;
771
772         /* Enable Rx and Tx in MACCFG1 */
773         tempval = gfar_read(&regs->maccfg1);
774         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
775         gfar_write(&regs->maccfg1, tempval);
776
777         /* Initialize DMACTRL to have WWR and WOP */
778         tempval = gfar_read(&priv->regs->dmactrl);
779         tempval |= DMACTRL_INIT_SETTINGS;
780         gfar_write(&priv->regs->dmactrl, tempval);
781
782         /* Make sure we aren't stopped */
783         tempval = gfar_read(&priv->regs->dmactrl);
784         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
785         gfar_write(&priv->regs->dmactrl, tempval);
786
787         /* Clear THLT/RHLT, so that the DMA starts polling now */
788         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
789         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
790
791         /* Unmask the interrupts we look for */
792         gfar_write(&regs->imask, IMASK_DEFAULT);
793 }
794
795 /* Bring the controller up and running */
796 int startup_gfar(struct net_device *dev)
797 {
798         struct txbd8 *txbdp;
799         struct rxbd8 *rxbdp;
800         dma_addr_t addr = 0;
801         unsigned long vaddr;
802         int i;
803         struct gfar_private *priv = netdev_priv(dev);
804         struct gfar __iomem *regs = priv->regs;
805         int err = 0;
806         u32 rctrl = 0;
807         u32 attrs = 0;
808
809         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
810
811         /* Allocate memory for the buffer descriptors */
812         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
813                         sizeof (struct txbd8) * priv->tx_ring_size +
814                         sizeof (struct rxbd8) * priv->rx_ring_size,
815                         &addr, GFP_KERNEL);
816
817         if (vaddr == 0) {
818                 if (netif_msg_ifup(priv))
819                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
820                                         dev->name);
821                 return -ENOMEM;
822         }
823
824         priv->tx_bd_base = (struct txbd8 *) vaddr;
825
826         /* enet DMA only understands physical addresses */
827         gfar_write(&regs->tbase0, addr);
828
829         /* Start the rx descriptor ring where the tx ring leaves off */
830         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
831         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
832         priv->rx_bd_base = (struct rxbd8 *) vaddr;
833         gfar_write(&regs->rbase0, addr);
834
835         /* Setup the skbuff rings */
836         priv->tx_skbuff =
837             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
838                                         priv->tx_ring_size, GFP_KERNEL);
839
840         if (NULL == priv->tx_skbuff) {
841                 if (netif_msg_ifup(priv))
842                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
843                                         dev->name);
844                 err = -ENOMEM;
845                 goto tx_skb_fail;
846         }
847
848         for (i = 0; i < priv->tx_ring_size; i++)
849                 priv->tx_skbuff[i] = NULL;
850
851         priv->rx_skbuff =
852             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
853                                         priv->rx_ring_size, GFP_KERNEL);
854
855         if (NULL == priv->rx_skbuff) {
856                 if (netif_msg_ifup(priv))
857                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
858                                         dev->name);
859                 err = -ENOMEM;
860                 goto rx_skb_fail;
861         }
862
863         for (i = 0; i < priv->rx_ring_size; i++)
864                 priv->rx_skbuff[i] = NULL;
865
866         /* Initialize some variables in our dev structure */
867         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
868         priv->cur_rx = priv->rx_bd_base;
869         priv->skb_curtx = priv->skb_dirtytx = 0;
870         priv->skb_currx = 0;
871
872         /* Initialize Transmit Descriptor Ring */
873         txbdp = priv->tx_bd_base;
874         for (i = 0; i < priv->tx_ring_size; i++) {
875                 txbdp->status = 0;
876                 txbdp->length = 0;
877                 txbdp->bufPtr = 0;
878                 txbdp++;
879         }
880
881         /* Set the last descriptor in the ring to indicate wrap */
882         txbdp--;
883         txbdp->status |= TXBD_WRAP;
884
885         rxbdp = priv->rx_bd_base;
886         for (i = 0; i < priv->rx_ring_size; i++) {
887                 struct sk_buff *skb;
888
889                 skb = gfar_new_skb(dev);
890
891                 if (!skb) {
892                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
893                                         dev->name);
894
895                         goto err_rxalloc_fail;
896                 }
897
898                 priv->rx_skbuff[i] = skb;
899
900                 gfar_new_rxbdp(dev, rxbdp, skb);
901
902                 rxbdp++;
903         }
904
905         /* Set the last descriptor in the ring to wrap */
906         rxbdp--;
907         rxbdp->status |= RXBD_WRAP;
908
909         /* If the device has multiple interrupts, register for
910          * them.  Otherwise, only register for the one */
911         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
912                 /* Install our interrupt handlers for Error,
913                  * Transmit, and Receive */
914                 if (request_irq(priv->interruptError, gfar_error,
915                                 0, "enet_error", dev) < 0) {
916                         if (netif_msg_intr(priv))
917                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
918                                         dev->name, priv->interruptError);
919
920                         err = -1;
921                         goto err_irq_fail;
922                 }
923
924                 if (request_irq(priv->interruptTransmit, gfar_transmit,
925                                 0, "enet_tx", dev) < 0) {
926                         if (netif_msg_intr(priv))
927                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
928                                         dev->name, priv->interruptTransmit);
929
930                         err = -1;
931
932                         goto tx_irq_fail;
933                 }
934
935                 if (request_irq(priv->interruptReceive, gfar_receive,
936                                 0, "enet_rx", dev) < 0) {
937                         if (netif_msg_intr(priv))
938                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
939                                                 dev->name, priv->interruptReceive);
940
941                         err = -1;
942                         goto rx_irq_fail;
943                 }
944         } else {
945                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
946                                 0, "gfar_interrupt", dev) < 0) {
947                         if (netif_msg_intr(priv))
948                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
949                                         dev->name, priv->interruptError);
950
951                         err = -1;
952                         goto err_irq_fail;
953                 }
954         }
955
956         phy_start(priv->phydev);
957
958         /* Configure the coalescing support */
959         if (priv->txcoalescing)
960                 gfar_write(&regs->txic,
961                            mk_ic_value(priv->txcount, priv->txtime));
962         else
963                 gfar_write(&regs->txic, 0);
964
965         if (priv->rxcoalescing)
966                 gfar_write(&regs->rxic,
967                            mk_ic_value(priv->rxcount, priv->rxtime));
968         else
969                 gfar_write(&regs->rxic, 0);
970
971         if (priv->rx_csum_enable)
972                 rctrl |= RCTRL_CHECKSUMMING;
973
974         if (priv->extended_hash) {
975                 rctrl |= RCTRL_EXTHASH;
976
977                 gfar_clear_exact_match(dev);
978                 rctrl |= RCTRL_EMEN;
979         }
980
981         if (priv->vlan_enable)
982                 rctrl |= RCTRL_VLAN;
983
984         if (priv->padding) {
985                 rctrl &= ~RCTRL_PAL_MASK;
986                 rctrl |= RCTRL_PADDING(priv->padding);
987         }
988
989         /* Init rctrl based on our settings */
990         gfar_write(&priv->regs->rctrl, rctrl);
991
992         if (dev->features & NETIF_F_IP_CSUM)
993                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
994
995         /* Set the extraction length and index */
996         attrs = ATTRELI_EL(priv->rx_stash_size) |
997                 ATTRELI_EI(priv->rx_stash_index);
998
999         gfar_write(&priv->regs->attreli, attrs);
1000
1001         /* Start with defaults, and add stashing or locking
1002          * depending on the approprate variables */
1003         attrs = ATTR_INIT_SETTINGS;
1004
1005         if (priv->bd_stash_en)
1006                 attrs |= ATTR_BDSTASH;
1007
1008         if (priv->rx_stash_size != 0)
1009                 attrs |= ATTR_BUFSTASH;
1010
1011         gfar_write(&priv->regs->attr, attrs);
1012
1013         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1014         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1015         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1016
1017         /* Start the controller */
1018         gfar_start(dev);
1019
1020         return 0;
1021
1022 rx_irq_fail:
1023         free_irq(priv->interruptTransmit, dev);
1024 tx_irq_fail:
1025         free_irq(priv->interruptError, dev);
1026 err_irq_fail:
1027 err_rxalloc_fail:
1028 rx_skb_fail:
1029         free_skb_resources(priv);
1030 tx_skb_fail:
1031         dma_free_coherent(&dev->dev,
1032                         sizeof(struct txbd8)*priv->tx_ring_size
1033                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1034                         priv->tx_bd_base,
1035                         gfar_read(&regs->tbase0));
1036
1037         return err;
1038 }
1039
1040 /* Called when something needs to use the ethernet device */
1041 /* Returns 0 for success. */
1042 static int gfar_enet_open(struct net_device *dev)
1043 {
1044         struct gfar_private *priv = netdev_priv(dev);
1045         int err;
1046
1047         napi_enable(&priv->napi);
1048
1049         /* Initialize a bunch of registers */
1050         init_registers(dev);
1051
1052         gfar_set_mac_address(dev);
1053
1054         err = init_phy(dev);
1055
1056         if(err) {
1057                 napi_disable(&priv->napi);
1058                 return err;
1059         }
1060
1061         err = startup_gfar(dev);
1062         if (err) {
1063                 napi_disable(&priv->napi);
1064                 return err;
1065         }
1066
1067         netif_start_queue(dev);
1068
1069         return err;
1070 }
1071
1072 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1073 {
1074         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1075
1076         memset(fcb, 0, GMAC_FCB_LEN);
1077
1078         return fcb;
1079 }
1080
1081 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1082 {
1083         u8 flags = 0;
1084
1085         /* If we're here, it's a IP packet with a TCP or UDP
1086          * payload.  We set it to checksum, using a pseudo-header
1087          * we provide
1088          */
1089         flags = TXFCB_DEFAULT;
1090
1091         /* Tell the controller what the protocol is */
1092         /* And provide the already calculated phcs */
1093         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1094                 flags |= TXFCB_UDP;
1095                 fcb->phcs = udp_hdr(skb)->check;
1096         } else
1097                 fcb->phcs = tcp_hdr(skb)->check;
1098
1099         /* l3os is the distance between the start of the
1100          * frame (skb->data) and the start of the IP hdr.
1101          * l4os is the distance between the start of the
1102          * l3 hdr and the l4 hdr */
1103         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1104         fcb->l4os = skb_network_header_len(skb);
1105
1106         fcb->flags = flags;
1107 }
1108
1109 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1110 {
1111         fcb->flags |= TXFCB_VLN;
1112         fcb->vlctl = vlan_tx_tag_get(skb);
1113 }
1114
1115 /* This is called by the kernel when a frame is ready for transmission. */
1116 /* It is pointed to by the dev->hard_start_xmit function pointer */
1117 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1118 {
1119         struct gfar_private *priv = netdev_priv(dev);
1120         struct txfcb *fcb = NULL;
1121         struct txbd8 *txbdp;
1122         u16 status;
1123         unsigned long flags;
1124
1125         /* Update transmit stats */
1126         dev->stats.tx_bytes += skb->len;
1127
1128         /* Lock priv now */
1129         spin_lock_irqsave(&priv->txlock, flags);
1130
1131         /* Point at the first free tx descriptor */
1132         txbdp = priv->cur_tx;
1133
1134         /* Clear all but the WRAP status flags */
1135         status = txbdp->status & TXBD_WRAP;
1136
1137         /* Set up checksumming */
1138         if (likely((dev->features & NETIF_F_IP_CSUM)
1139                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1140                 fcb = gfar_add_fcb(skb, txbdp);
1141                 status |= TXBD_TOE;
1142                 gfar_tx_checksum(skb, fcb);
1143         }
1144
1145         if (priv->vlan_enable &&
1146                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1147                 if (unlikely(NULL == fcb)) {
1148                         fcb = gfar_add_fcb(skb, txbdp);
1149                         status |= TXBD_TOE;
1150                 }
1151
1152                 gfar_tx_vlan(skb, fcb);
1153         }
1154
1155         /* Set buffer length and pointer */
1156         txbdp->length = skb->len;
1157         txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1158                         skb->len, DMA_TO_DEVICE);
1159
1160         /* Save the skb pointer so we can free it later */
1161         priv->tx_skbuff[priv->skb_curtx] = skb;
1162
1163         /* Update the current skb pointer (wrapping if this was the last) */
1164         priv->skb_curtx =
1165             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1166
1167         /* Flag the BD as interrupt-causing */
1168         status |= TXBD_INTERRUPT;
1169
1170         /* Flag the BD as ready to go, last in frame, and  */
1171         /* in need of CRC */
1172         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1173
1174         dev->trans_start = jiffies;
1175
1176         /* The powerpc-specific eieio() is used, as wmb() has too strong
1177          * semantics (it requires synchronization between cacheable and
1178          * uncacheable mappings, which eieio doesn't provide and which we
1179          * don't need), thus requiring a more expensive sync instruction.  At
1180          * some point, the set of architecture-independent barrier functions
1181          * should be expanded to include weaker barriers.
1182          */
1183
1184         eieio();
1185         txbdp->status = status;
1186
1187         /* If this was the last BD in the ring, the next one */
1188         /* is at the beginning of the ring */
1189         if (txbdp->status & TXBD_WRAP)
1190                 txbdp = priv->tx_bd_base;
1191         else
1192                 txbdp++;
1193
1194         /* If the next BD still needs to be cleaned up, then the bds
1195            are full.  We need to tell the kernel to stop sending us stuff. */
1196         if (txbdp == priv->dirty_tx) {
1197                 netif_stop_queue(dev);
1198
1199                 dev->stats.tx_fifo_errors++;
1200         }
1201
1202         /* Update the current txbd to the next one */
1203         priv->cur_tx = txbdp;
1204
1205         /* Tell the DMA to go go go */
1206         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1207
1208         /* Unlock priv */
1209         spin_unlock_irqrestore(&priv->txlock, flags);
1210
1211         return 0;
1212 }
1213
1214 /* Stops the kernel queue, and halts the controller */
1215 static int gfar_close(struct net_device *dev)
1216 {
1217         struct gfar_private *priv = netdev_priv(dev);
1218
1219         napi_disable(&priv->napi);
1220
1221         stop_gfar(dev);
1222
1223         /* Disconnect from the PHY */
1224         phy_disconnect(priv->phydev);
1225         priv->phydev = NULL;
1226
1227         netif_stop_queue(dev);
1228
1229         return 0;
1230 }
1231
1232 /* Changes the mac address if the controller is not running. */
1233 static int gfar_set_mac_address(struct net_device *dev)
1234 {
1235         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1236
1237         return 0;
1238 }
1239
1240
1241 /* Enables and disables VLAN insertion/extraction */
1242 static void gfar_vlan_rx_register(struct net_device *dev,
1243                 struct vlan_group *grp)
1244 {
1245         struct gfar_private *priv = netdev_priv(dev);
1246         unsigned long flags;
1247         u32 tempval;
1248
1249         spin_lock_irqsave(&priv->rxlock, flags);
1250
1251         priv->vlgrp = grp;
1252
1253         if (grp) {
1254                 /* Enable VLAN tag insertion */
1255                 tempval = gfar_read(&priv->regs->tctrl);
1256                 tempval |= TCTRL_VLINS;
1257
1258                 gfar_write(&priv->regs->tctrl, tempval);
1259
1260                 /* Enable VLAN tag extraction */
1261                 tempval = gfar_read(&priv->regs->rctrl);
1262                 tempval |= RCTRL_VLEX;
1263                 gfar_write(&priv->regs->rctrl, tempval);
1264         } else {
1265                 /* Disable VLAN tag insertion */
1266                 tempval = gfar_read(&priv->regs->tctrl);
1267                 tempval &= ~TCTRL_VLINS;
1268                 gfar_write(&priv->regs->tctrl, tempval);
1269
1270                 /* Disable VLAN tag extraction */
1271                 tempval = gfar_read(&priv->regs->rctrl);
1272                 tempval &= ~RCTRL_VLEX;
1273                 gfar_write(&priv->regs->rctrl, tempval);
1274         }
1275
1276         spin_unlock_irqrestore(&priv->rxlock, flags);
1277 }
1278
1279 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1280 {
1281         int tempsize, tempval;
1282         struct gfar_private *priv = netdev_priv(dev);
1283         int oldsize = priv->rx_buffer_size;
1284         int frame_size = new_mtu + ETH_HLEN;
1285
1286         if (priv->vlan_enable)
1287                 frame_size += VLAN_HLEN;
1288
1289         if (gfar_uses_fcb(priv))
1290                 frame_size += GMAC_FCB_LEN;
1291
1292         frame_size += priv->padding;
1293
1294         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1295                 if (netif_msg_drv(priv))
1296                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1297                                         dev->name);
1298                 return -EINVAL;
1299         }
1300
1301         tempsize =
1302             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1303             INCREMENTAL_BUFFER_SIZE;
1304
1305         /* Only stop and start the controller if it isn't already
1306          * stopped, and we changed something */
1307         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1308                 stop_gfar(dev);
1309
1310         priv->rx_buffer_size = tempsize;
1311
1312         dev->mtu = new_mtu;
1313
1314         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1315         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1316
1317         /* If the mtu is larger than the max size for standard
1318          * ethernet frames (ie, a jumbo frame), then set maccfg2
1319          * to allow huge frames, and to check the length */
1320         tempval = gfar_read(&priv->regs->maccfg2);
1321
1322         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1323                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1324         else
1325                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1326
1327         gfar_write(&priv->regs->maccfg2, tempval);
1328
1329         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1330                 startup_gfar(dev);
1331
1332         return 0;
1333 }
1334
1335 /* gfar_timeout gets called when a packet has not been
1336  * transmitted after a set amount of time.
1337  * For now, assume that clearing out all the structures, and
1338  * starting over will fix the problem. */
1339 static void gfar_timeout(struct net_device *dev)
1340 {
1341         dev->stats.tx_errors++;
1342
1343         if (dev->flags & IFF_UP) {
1344                 stop_gfar(dev);
1345                 startup_gfar(dev);
1346         }
1347
1348         netif_tx_schedule_all(dev);
1349 }
1350
1351 /* Interrupt Handler for Transmit complete */
1352 static int gfar_clean_tx_ring(struct net_device *dev)
1353 {
1354         struct txbd8 *bdp;
1355         struct gfar_private *priv = netdev_priv(dev);
1356         int howmany = 0;
1357
1358         bdp = priv->dirty_tx;
1359         while ((bdp->status & TXBD_READY) == 0) {
1360                 /* If dirty_tx and cur_tx are the same, then either the */
1361                 /* ring is empty or full now (it could only be full in the beginning, */
1362                 /* obviously).  If it is empty, we are done. */
1363                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1364                         break;
1365
1366                 howmany++;
1367
1368                 /* Deferred means some collisions occurred during transmit, */
1369                 /* but we eventually sent the packet. */
1370                 if (bdp->status & TXBD_DEF)
1371                         dev->stats.collisions++;
1372
1373                 /* Free the sk buffer associated with this TxBD */
1374                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1375
1376                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1377                 priv->skb_dirtytx =
1378                     (priv->skb_dirtytx +
1379                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1380
1381                 /* Clean BD length for empty detection */
1382                 bdp->length = 0;
1383
1384                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1385                 if (bdp->status & TXBD_WRAP)
1386                         bdp = priv->tx_bd_base;
1387                 else
1388                         bdp++;
1389
1390                 /* Move dirty_tx to be the next bd */
1391                 priv->dirty_tx = bdp;
1392
1393                 /* We freed a buffer, so now we can restart transmission */
1394                 if (netif_queue_stopped(dev))
1395                         netif_wake_queue(dev);
1396         } /* while ((bdp->status & TXBD_READY) == 0) */
1397
1398         dev->stats.tx_packets += howmany;
1399
1400         return howmany;
1401 }
1402
1403 /* Interrupt Handler for Transmit complete */
1404 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1405 {
1406         struct net_device *dev = (struct net_device *) dev_id;
1407         struct gfar_private *priv = netdev_priv(dev);
1408
1409         /* Clear IEVENT */
1410         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1411
1412         /* Lock priv */
1413         spin_lock(&priv->txlock);
1414
1415         gfar_clean_tx_ring(dev);
1416
1417         /* If we are coalescing the interrupts, reset the timer */
1418         /* Otherwise, clear it */
1419         if (likely(priv->txcoalescing)) {
1420                 gfar_write(&priv->regs->txic, 0);
1421                 gfar_write(&priv->regs->txic,
1422                            mk_ic_value(priv->txcount, priv->txtime));
1423         }
1424
1425         spin_unlock(&priv->txlock);
1426
1427         return IRQ_HANDLED;
1428 }
1429
1430 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1431                 struct sk_buff *skb)
1432 {
1433         struct gfar_private *priv = netdev_priv(dev);
1434         u32 * status_len = (u32 *)bdp;
1435         u16 flags;
1436
1437         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1438                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1439
1440         flags = RXBD_EMPTY | RXBD_INTERRUPT;
1441
1442         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1443                 flags |= RXBD_WRAP;
1444
1445         eieio();
1446
1447         *status_len = (u32)flags << 16;
1448 }
1449
1450
1451 struct sk_buff * gfar_new_skb(struct net_device *dev)
1452 {
1453         unsigned int alignamount;
1454         struct gfar_private *priv = netdev_priv(dev);
1455         struct sk_buff *skb = NULL;
1456
1457         /* We have to allocate the skb, so keep trying till we succeed */
1458         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1459
1460         if (!skb)
1461                 return NULL;
1462
1463         alignamount = RXBUF_ALIGNMENT -
1464                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1465
1466         /* We need the data buffer to be aligned properly.  We will reserve
1467          * as many bytes as needed to align the data properly
1468          */
1469         skb_reserve(skb, alignamount);
1470
1471         return skb;
1472 }
1473
1474 static inline void count_errors(unsigned short status, struct net_device *dev)
1475 {
1476         struct gfar_private *priv = netdev_priv(dev);
1477         struct net_device_stats *stats = &dev->stats;
1478         struct gfar_extra_stats *estats = &priv->extra_stats;
1479
1480         /* If the packet was truncated, none of the other errors
1481          * matter */
1482         if (status & RXBD_TRUNCATED) {
1483                 stats->rx_length_errors++;
1484
1485                 estats->rx_trunc++;
1486
1487                 return;
1488         }
1489         /* Count the errors, if there were any */
1490         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1491                 stats->rx_length_errors++;
1492
1493                 if (status & RXBD_LARGE)
1494                         estats->rx_large++;
1495                 else
1496                         estats->rx_short++;
1497         }
1498         if (status & RXBD_NONOCTET) {
1499                 stats->rx_frame_errors++;
1500                 estats->rx_nonoctet++;
1501         }
1502         if (status & RXBD_CRCERR) {
1503                 estats->rx_crcerr++;
1504                 stats->rx_crc_errors++;
1505         }
1506         if (status & RXBD_OVERRUN) {
1507                 estats->rx_overrun++;
1508                 stats->rx_crc_errors++;
1509         }
1510 }
1511
1512 irqreturn_t gfar_receive(int irq, void *dev_id)
1513 {
1514         struct net_device *dev = (struct net_device *) dev_id;
1515         struct gfar_private *priv = netdev_priv(dev);
1516         u32 tempval;
1517
1518         /* support NAPI */
1519         /* Clear IEVENT, so interrupts aren't called again
1520          * because of the packets that have already arrived */
1521         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1522
1523         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1524                 tempval = gfar_read(&priv->regs->imask);
1525                 tempval &= IMASK_RTX_DISABLED;
1526                 gfar_write(&priv->regs->imask, tempval);
1527
1528                 __netif_rx_schedule(dev, &priv->napi);
1529         } else {
1530                 if (netif_msg_rx_err(priv))
1531                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1532                                 dev->name, gfar_read(&priv->regs->ievent),
1533                                 gfar_read(&priv->regs->imask));
1534         }
1535
1536         return IRQ_HANDLED;
1537 }
1538
1539 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1540 {
1541         /* If valid headers were found, and valid sums
1542          * were verified, then we tell the kernel that no
1543          * checksumming is necessary.  Otherwise, it is */
1544         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1545                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1546         else
1547                 skb->ip_summed = CHECKSUM_NONE;
1548 }
1549
1550
1551 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1552 {
1553         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1554
1555         /* Remove the FCB from the skb */
1556         skb_pull(skb, GMAC_FCB_LEN);
1557
1558         return fcb;
1559 }
1560
1561 /* gfar_process_frame() -- handle one incoming packet if skb
1562  * isn't NULL.  */
1563 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1564                 int length)
1565 {
1566         struct gfar_private *priv = netdev_priv(dev);
1567         struct rxfcb *fcb = NULL;
1568
1569         if (NULL == skb) {
1570                 if (netif_msg_rx_err(priv))
1571                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1572                 dev->stats.rx_dropped++;
1573                 priv->extra_stats.rx_skbmissing++;
1574         } else {
1575                 int ret;
1576
1577                 /* Prep the skb for the packet */
1578                 skb_put(skb, length);
1579
1580                 /* Grab the FCB if there is one */
1581                 if (gfar_uses_fcb(priv))
1582                         fcb = gfar_get_fcb(skb);
1583
1584                 /* Remove the padded bytes, if there are any */
1585                 if (priv->padding)
1586                         skb_pull(skb, priv->padding);
1587
1588                 if (priv->rx_csum_enable)
1589                         gfar_rx_checksum(skb, fcb);
1590
1591                 /* Tell the skb what kind of packet this is */
1592                 skb->protocol = eth_type_trans(skb, dev);
1593
1594                 /* Send the packet up the stack */
1595                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1596                         ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1597                                                        fcb->vlctl);
1598                 } else
1599                         ret = netif_receive_skb(skb);
1600
1601                 if (NET_RX_DROP == ret)
1602                         priv->extra_stats.kernel_dropped++;
1603         }
1604
1605         return 0;
1606 }
1607
1608 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1609  *   until the budget/quota has been reached. Returns the number
1610  *   of frames handled
1611  */
1612 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1613 {
1614         struct rxbd8 *bdp;
1615         struct sk_buff *skb;
1616         u16 pkt_len;
1617         int howmany = 0;
1618         struct gfar_private *priv = netdev_priv(dev);
1619
1620         /* Get the first full descriptor */
1621         bdp = priv->cur_rx;
1622
1623         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1624                 struct sk_buff *newskb;
1625                 rmb();
1626
1627                 /* Add another skb for the future */
1628                 newskb = gfar_new_skb(dev);
1629
1630                 skb = priv->rx_skbuff[priv->skb_currx];
1631
1632                 /* We drop the frame if we failed to allocate a new buffer */
1633                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1634                                  bdp->status & RXBD_ERR)) {
1635                         count_errors(bdp->status, dev);
1636
1637                         if (unlikely(!newskb))
1638                                 newskb = skb;
1639
1640                         if (skb) {
1641                                 dma_unmap_single(&priv->dev->dev,
1642                                                 bdp->bufPtr,
1643                                                 priv->rx_buffer_size,
1644                                                 DMA_FROM_DEVICE);
1645
1646                                 dev_kfree_skb_any(skb);
1647                         }
1648                 } else {
1649                         /* Increment the number of packets */
1650                         dev->stats.rx_packets++;
1651                         howmany++;
1652
1653                         /* Remove the FCS from the packet length */
1654                         pkt_len = bdp->length - 4;
1655
1656                         gfar_process_frame(dev, skb, pkt_len);
1657
1658                         dev->stats.rx_bytes += pkt_len;
1659                 }
1660
1661                 dev->last_rx = jiffies;
1662
1663                 priv->rx_skbuff[priv->skb_currx] = newskb;
1664
1665                 /* Setup the new bdp */
1666                 gfar_new_rxbdp(dev, bdp, newskb);
1667
1668                 /* Update to the next pointer */
1669                 if (bdp->status & RXBD_WRAP)
1670                         bdp = priv->rx_bd_base;
1671                 else
1672                         bdp++;
1673
1674                 /* update to point at the next skb */
1675                 priv->skb_currx =
1676                     (priv->skb_currx + 1) &
1677                     RX_RING_MOD_MASK(priv->rx_ring_size);
1678         }
1679
1680         /* Update the current rxbd pointer to be the next one */
1681         priv->cur_rx = bdp;
1682
1683         return howmany;
1684 }
1685
1686 static int gfar_poll(struct napi_struct *napi, int budget)
1687 {
1688         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1689         struct net_device *dev = priv->dev;
1690         int howmany;
1691         unsigned long flags;
1692
1693         /* If we fail to get the lock, don't bother with the TX BDs */
1694         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1695                 gfar_clean_tx_ring(dev);
1696                 spin_unlock_irqrestore(&priv->txlock, flags);
1697         }
1698
1699         howmany = gfar_clean_rx_ring(dev, budget);
1700
1701         if (howmany < budget) {
1702                 netif_rx_complete(dev, napi);
1703
1704                 /* Clear the halt bit in RSTAT */
1705                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1706
1707                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1708
1709                 /* If we are coalescing interrupts, update the timer */
1710                 /* Otherwise, clear it */
1711                 if (likely(priv->rxcoalescing)) {
1712                         gfar_write(&priv->regs->rxic, 0);
1713                         gfar_write(&priv->regs->rxic,
1714                                    mk_ic_value(priv->rxcount, priv->rxtime));
1715                 }
1716         }
1717
1718         return howmany;
1719 }
1720
1721 #ifdef CONFIG_NET_POLL_CONTROLLER
1722 /*
1723  * Polling 'interrupt' - used by things like netconsole to send skbs
1724  * without having to re-enable interrupts. It's not called while
1725  * the interrupt routine is executing.
1726  */
1727 static void gfar_netpoll(struct net_device *dev)
1728 {
1729         struct gfar_private *priv = netdev_priv(dev);
1730
1731         /* If the device has multiple interrupts, run tx/rx */
1732         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1733                 disable_irq(priv->interruptTransmit);
1734                 disable_irq(priv->interruptReceive);
1735                 disable_irq(priv->interruptError);
1736                 gfar_interrupt(priv->interruptTransmit, dev);
1737                 enable_irq(priv->interruptError);
1738                 enable_irq(priv->interruptReceive);
1739                 enable_irq(priv->interruptTransmit);
1740         } else {
1741                 disable_irq(priv->interruptTransmit);
1742                 gfar_interrupt(priv->interruptTransmit, dev);
1743                 enable_irq(priv->interruptTransmit);
1744         }
1745 }
1746 #endif
1747
1748 /* The interrupt handler for devices with one interrupt */
1749 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1750 {
1751         struct net_device *dev = dev_id;
1752         struct gfar_private *priv = netdev_priv(dev);
1753
1754         /* Save ievent for future reference */
1755         u32 events = gfar_read(&priv->regs->ievent);
1756
1757         /* Check for reception */
1758         if (events & IEVENT_RX_MASK)
1759                 gfar_receive(irq, dev_id);
1760
1761         /* Check for transmit completion */
1762         if (events & IEVENT_TX_MASK)
1763                 gfar_transmit(irq, dev_id);
1764
1765         /* Check for errors */
1766         if (events & IEVENT_ERR_MASK)
1767                 gfar_error(irq, dev_id);
1768
1769         return IRQ_HANDLED;
1770 }
1771
1772 /* Called every time the controller might need to be made
1773  * aware of new link state.  The PHY code conveys this
1774  * information through variables in the phydev structure, and this
1775  * function converts those variables into the appropriate
1776  * register values, and can bring down the device if needed.
1777  */
1778 static void adjust_link(struct net_device *dev)
1779 {
1780         struct gfar_private *priv = netdev_priv(dev);
1781         struct gfar __iomem *regs = priv->regs;
1782         unsigned long flags;
1783         struct phy_device *phydev = priv->phydev;
1784         int new_state = 0;
1785
1786         spin_lock_irqsave(&priv->txlock, flags);
1787         if (phydev->link) {
1788                 u32 tempval = gfar_read(&regs->maccfg2);
1789                 u32 ecntrl = gfar_read(&regs->ecntrl);
1790
1791                 /* Now we make sure that we can be in full duplex mode.
1792                  * If not, we operate in half-duplex mode. */
1793                 if (phydev->duplex != priv->oldduplex) {
1794                         new_state = 1;
1795                         if (!(phydev->duplex))
1796                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1797                         else
1798                                 tempval |= MACCFG2_FULL_DUPLEX;
1799
1800                         priv->oldduplex = phydev->duplex;
1801                 }
1802
1803                 if (phydev->speed != priv->oldspeed) {
1804                         new_state = 1;
1805                         switch (phydev->speed) {
1806                         case 1000:
1807                                 tempval =
1808                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1809                                 break;
1810                         case 100:
1811                         case 10:
1812                                 tempval =
1813                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1814
1815                                 /* Reduced mode distinguishes
1816                                  * between 10 and 100 */
1817                                 if (phydev->speed == SPEED_100)
1818                                         ecntrl |= ECNTRL_R100;
1819                                 else
1820                                         ecntrl &= ~(ECNTRL_R100);
1821                                 break;
1822                         default:
1823                                 if (netif_msg_link(priv))
1824                                         printk(KERN_WARNING
1825                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1826                                                 dev->name, phydev->speed);
1827                                 break;
1828                         }
1829
1830                         priv->oldspeed = phydev->speed;
1831                 }
1832
1833                 gfar_write(&regs->maccfg2, tempval);
1834                 gfar_write(&regs->ecntrl, ecntrl);
1835
1836                 if (!priv->oldlink) {
1837                         new_state = 1;
1838                         priv->oldlink = 1;
1839                 }
1840         } else if (priv->oldlink) {
1841                 new_state = 1;
1842                 priv->oldlink = 0;
1843                 priv->oldspeed = 0;
1844                 priv->oldduplex = -1;
1845         }
1846
1847         if (new_state && netif_msg_link(priv))
1848                 phy_print_status(phydev);
1849
1850         spin_unlock_irqrestore(&priv->txlock, flags);
1851 }
1852
1853 /* Update the hash table based on the current list of multicast
1854  * addresses we subscribe to.  Also, change the promiscuity of
1855  * the device based on the flags (this function is called
1856  * whenever dev->flags is changed */
1857 static void gfar_set_multi(struct net_device *dev)
1858 {
1859         struct dev_mc_list *mc_ptr;
1860         struct gfar_private *priv = netdev_priv(dev);
1861         struct gfar __iomem *regs = priv->regs;
1862         u32 tempval;
1863
1864         if(dev->flags & IFF_PROMISC) {
1865                 /* Set RCTRL to PROM */
1866                 tempval = gfar_read(&regs->rctrl);
1867                 tempval |= RCTRL_PROM;
1868                 gfar_write(&regs->rctrl, tempval);
1869         } else {
1870                 /* Set RCTRL to not PROM */
1871                 tempval = gfar_read(&regs->rctrl);
1872                 tempval &= ~(RCTRL_PROM);
1873                 gfar_write(&regs->rctrl, tempval);
1874         }
1875
1876         if(dev->flags & IFF_ALLMULTI) {
1877                 /* Set the hash to rx all multicast frames */
1878                 gfar_write(&regs->igaddr0, 0xffffffff);
1879                 gfar_write(&regs->igaddr1, 0xffffffff);
1880                 gfar_write(&regs->igaddr2, 0xffffffff);
1881                 gfar_write(&regs->igaddr3, 0xffffffff);
1882                 gfar_write(&regs->igaddr4, 0xffffffff);
1883                 gfar_write(&regs->igaddr5, 0xffffffff);
1884                 gfar_write(&regs->igaddr6, 0xffffffff);
1885                 gfar_write(&regs->igaddr7, 0xffffffff);
1886                 gfar_write(&regs->gaddr0, 0xffffffff);
1887                 gfar_write(&regs->gaddr1, 0xffffffff);
1888                 gfar_write(&regs->gaddr2, 0xffffffff);
1889                 gfar_write(&regs->gaddr3, 0xffffffff);
1890                 gfar_write(&regs->gaddr4, 0xffffffff);
1891                 gfar_write(&regs->gaddr5, 0xffffffff);
1892                 gfar_write(&regs->gaddr6, 0xffffffff);
1893                 gfar_write(&regs->gaddr7, 0xffffffff);
1894         } else {
1895                 int em_num;
1896                 int idx;
1897
1898                 /* zero out the hash */
1899                 gfar_write(&regs->igaddr0, 0x0);
1900                 gfar_write(&regs->igaddr1, 0x0);
1901                 gfar_write(&regs->igaddr2, 0x0);
1902                 gfar_write(&regs->igaddr3, 0x0);
1903                 gfar_write(&regs->igaddr4, 0x0);
1904                 gfar_write(&regs->igaddr5, 0x0);
1905                 gfar_write(&regs->igaddr6, 0x0);
1906                 gfar_write(&regs->igaddr7, 0x0);
1907                 gfar_write(&regs->gaddr0, 0x0);
1908                 gfar_write(&regs->gaddr1, 0x0);
1909                 gfar_write(&regs->gaddr2, 0x0);
1910                 gfar_write(&regs->gaddr3, 0x0);
1911                 gfar_write(&regs->gaddr4, 0x0);
1912                 gfar_write(&regs->gaddr5, 0x0);
1913                 gfar_write(&regs->gaddr6, 0x0);
1914                 gfar_write(&regs->gaddr7, 0x0);
1915
1916                 /* If we have extended hash tables, we need to
1917                  * clear the exact match registers to prepare for
1918                  * setting them */
1919                 if (priv->extended_hash) {
1920                         em_num = GFAR_EM_NUM + 1;
1921                         gfar_clear_exact_match(dev);
1922                         idx = 1;
1923                 } else {
1924                         idx = 0;
1925                         em_num = 0;
1926                 }
1927
1928                 if(dev->mc_count == 0)
1929                         return;
1930
1931                 /* Parse the list, and set the appropriate bits */
1932                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1933                         if (idx < em_num) {
1934                                 gfar_set_mac_for_addr(dev, idx,
1935                                                 mc_ptr->dmi_addr);
1936                                 idx++;
1937                         } else
1938                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1939                 }
1940         }
1941
1942         return;
1943 }
1944
1945
1946 /* Clears each of the exact match registers to zero, so they
1947  * don't interfere with normal reception */
1948 static void gfar_clear_exact_match(struct net_device *dev)
1949 {
1950         int idx;
1951         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1952
1953         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1954                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1955 }
1956
1957 /* Set the appropriate hash bit for the given addr */
1958 /* The algorithm works like so:
1959  * 1) Take the Destination Address (ie the multicast address), and
1960  * do a CRC on it (little endian), and reverse the bits of the
1961  * result.
1962  * 2) Use the 8 most significant bits as a hash into a 256-entry
1963  * table.  The table is controlled through 8 32-bit registers:
1964  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1965  * gaddr7.  This means that the 3 most significant bits in the
1966  * hash index which gaddr register to use, and the 5 other bits
1967  * indicate which bit (assuming an IBM numbering scheme, which
1968  * for PowerPC (tm) is usually the case) in the register holds
1969  * the entry. */
1970 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1971 {
1972         u32 tempval;
1973         struct gfar_private *priv = netdev_priv(dev);
1974         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1975         int width = priv->hash_width;
1976         u8 whichbit = (result >> (32 - width)) & 0x1f;
1977         u8 whichreg = result >> (32 - width + 5);
1978         u32 value = (1 << (31-whichbit));
1979
1980         tempval = gfar_read(priv->hash_regs[whichreg]);
1981         tempval |= value;
1982         gfar_write(priv->hash_regs[whichreg], tempval);
1983
1984         return;
1985 }
1986
1987
1988 /* There are multiple MAC Address register pairs on some controllers
1989  * This function sets the numth pair to a given address
1990  */
1991 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1992 {
1993         struct gfar_private *priv = netdev_priv(dev);
1994         int idx;
1995         char tmpbuf[MAC_ADDR_LEN];
1996         u32 tempval;
1997         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1998
1999         macptr += num*2;
2000
2001         /* Now copy it into the mac registers backwards, cuz */
2002         /* little endian is silly */
2003         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2004                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2005
2006         gfar_write(macptr, *((u32 *) (tmpbuf)));
2007
2008         tempval = *((u32 *) (tmpbuf + 4));
2009
2010         gfar_write(macptr+1, tempval);
2011 }
2012
2013 /* GFAR error interrupt handler */
2014 static irqreturn_t gfar_error(int irq, void *dev_id)
2015 {
2016         struct net_device *dev = dev_id;
2017         struct gfar_private *priv = netdev_priv(dev);
2018
2019         /* Save ievent for future reference */
2020         u32 events = gfar_read(&priv->regs->ievent);
2021
2022         /* Clear IEVENT */
2023         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2024
2025         /* Magic Packet is not an error. */
2026         if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2027             (events & IEVENT_MAG))
2028                 events &= ~IEVENT_MAG;
2029
2030         /* Hmm... */
2031         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2032                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2033                        dev->name, events, gfar_read(&priv->regs->imask));
2034
2035         /* Update the error counters */
2036         if (events & IEVENT_TXE) {
2037                 dev->stats.tx_errors++;
2038
2039                 if (events & IEVENT_LC)
2040                         dev->stats.tx_window_errors++;
2041                 if (events & IEVENT_CRL)
2042                         dev->stats.tx_aborted_errors++;
2043                 if (events & IEVENT_XFUN) {
2044                         if (netif_msg_tx_err(priv))
2045                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2046                                        "packet dropped.\n", dev->name);
2047                         dev->stats.tx_dropped++;
2048                         priv->extra_stats.tx_underrun++;
2049
2050                         /* Reactivate the Tx Queues */
2051                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2052                 }
2053                 if (netif_msg_tx_err(priv))
2054                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2055         }
2056         if (events & IEVENT_BSY) {
2057                 dev->stats.rx_errors++;
2058                 priv->extra_stats.rx_bsy++;
2059
2060                 gfar_receive(irq, dev_id);
2061
2062                 if (netif_msg_rx_err(priv))
2063                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2064                                dev->name, gfar_read(&priv->regs->rstat));
2065         }
2066         if (events & IEVENT_BABR) {
2067                 dev->stats.rx_errors++;
2068                 priv->extra_stats.rx_babr++;
2069
2070                 if (netif_msg_rx_err(priv))
2071                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2072         }
2073         if (events & IEVENT_EBERR) {
2074                 priv->extra_stats.eberr++;
2075                 if (netif_msg_rx_err(priv))
2076                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2077         }
2078         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2079                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2080
2081         if (events & IEVENT_BABT) {
2082                 priv->extra_stats.tx_babt++;
2083                 if (netif_msg_tx_err(priv))
2084                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2085         }
2086         return IRQ_HANDLED;
2087 }
2088
2089 /* work with hotplug and coldplug */
2090 MODULE_ALIAS("platform:fsl-gianfar");
2091
2092 /* Structure for a device driver */
2093 static struct platform_driver gfar_driver = {
2094         .probe = gfar_probe,
2095         .remove = gfar_remove,
2096         .suspend = gfar_suspend,
2097         .resume = gfar_resume,
2098         .driver = {
2099                 .name = "fsl-gianfar",
2100                 .owner = THIS_MODULE,
2101         },
2102 };
2103
2104 static int __init gfar_init(void)
2105 {
2106         int err = gfar_mdio_init();
2107
2108         if (err)
2109                 return err;
2110
2111         err = platform_driver_register(&gfar_driver);
2112
2113         if (err)
2114                 gfar_mdio_exit();
2115
2116         return err;
2117 }
2118
2119 static void __exit gfar_exit(void)
2120 {
2121         platform_driver_unregister(&gfar_driver);
2122         gfar_mdio_exit();
2123 }
2124
2125 module_init(gfar_init);
2126 module_exit(gfar_exit);
2127