3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
30 #include <asm/eeh_event.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 2100000
79 /* Time to wait for a PCI slot to report status, in milliseconds */
80 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
88 static int ibm_get_config_addr_info;
89 static int ibm_get_config_addr_info2;
90 static int ibm_configure_bridge;
92 int eeh_subsystem_enabled;
93 EXPORT_SYMBOL(eeh_subsystem_enabled);
95 /* Lock to avoid races due to multiple reports of an error */
96 static DEFINE_SPINLOCK(confirm_error_lock);
98 /* Buffer for reporting slot-error-detail rtas calls. Its here
99 * in BSS, and not dynamically alloced, so that it ends up in
100 * RMO where RTAS can access it.
102 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
103 static DEFINE_SPINLOCK(slot_errbuf_lock);
104 static int eeh_error_buf_size;
106 /* Buffer for reporting pci register dumps. Its here in BSS, and
107 * not dynamically alloced, so that it ends up in RMO where RTAS
110 #define EEH_PCI_REGS_LOG_LEN 4096
111 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
113 /* System monitoring statistics */
114 static unsigned long no_device;
115 static unsigned long no_dn;
116 static unsigned long no_cfg_addr;
117 static unsigned long ignored_check;
118 static unsigned long total_mmio_ffs;
119 static unsigned long false_positives;
120 static unsigned long slot_resets;
122 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
124 /* --------------------------------------------------------------- */
125 /* Below lies the EEH event infrastructure */
127 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
128 char *driver_log, size_t loglen)
134 /* Log the error with the rtas logger */
135 spin_lock_irqsave(&slot_errbuf_lock, flags);
136 memset(slot_errbuf, 0, eeh_error_buf_size);
138 /* Use PE configuration address, if present */
139 config_addr = pdn->eeh_config_addr;
140 if (pdn->eeh_pe_config_addr)
141 config_addr = pdn->eeh_pe_config_addr;
143 rc = rtas_call(ibm_slot_error_detail,
144 8, 1, NULL, config_addr,
145 BUID_HI(pdn->phb->buid),
146 BUID_LO(pdn->phb->buid),
147 virt_to_phys(driver_log), loglen,
148 virt_to_phys(slot_errbuf),
153 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
154 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
158 * gather_pci_data - copy assorted PCI config space registers to buff
159 * @pdn: device to report data for
160 * @buf: point to buffer in which to log
161 * @len: amount of room in buffer
163 * This routine captures assorted PCI configuration space data,
164 * and puts them into a buffer for RTAS error logging.
166 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
172 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
173 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
175 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
176 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
177 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
179 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
181 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
183 /* Dump out the PCI-X command and status regs */
184 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_PCIX);
186 rtas_read_config(pdn, cap, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
188 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
190 rtas_read_config(pdn, cap+4, 4, &cfg);
191 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
192 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
195 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
196 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_EXP);
198 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
200 "EEH: PCI-E capabilities and status follow:\n");
202 for (i=0; i<=8; i++) {
203 rtas_read_config(pdn, cap+4*i, 4, &cfg);
204 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
205 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
208 cap = pci_find_ext_capability(pdn->pcidev,PCI_EXT_CAP_ID_ERR);
210 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
212 "EEH: PCI-E AER capability register set follows:\n");
214 for (i=0; i<14; i++) {
215 rtas_read_config(pdn, cap+4*i, 4, &cfg);
216 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
217 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
224 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
229 rtas_pci_enable(pdn, EEH_THAW_MMIO);
230 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
232 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
236 * read_slot_reset_state - Read the reset state of a device node's slot
237 * @dn: device node to read
238 * @rets: array to return results in
240 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
245 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
246 token = ibm_read_slot_reset_state2;
249 token = ibm_read_slot_reset_state;
250 rets[2] = 0; /* fake PE Unavailable info */
254 /* Use PE configuration address, if present */
255 config_addr = pdn->eeh_config_addr;
256 if (pdn->eeh_pe_config_addr)
257 config_addr = pdn->eeh_pe_config_addr;
259 return rtas_call(token, 3, outputs, rets, config_addr,
260 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
264 * eeh_wait_for_slot_status - returns error status of slot
265 * @pdn pci device node
266 * @max_wait_msecs maximum number to millisecs to wait
268 * Return negative value if a permanent error, else return
269 * Partition Endpoint (PE) status value.
271 * If @max_wait_msecs is positive, then this routine will
272 * sleep until a valid status can be obtained, or until
273 * the max allowed wait time is exceeded, in which case
277 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
284 rc = read_slot_reset_state(pdn, rets);
286 if (rets[1] == 0) return -1; /* EEH is not supported */
288 if (rets[0] != 5) return rets[0]; /* return actual status */
290 if (rets[2] == 0) return -1; /* permanently unavailable */
292 if (max_wait_msecs <= 0) return -1;
297 "EEH: Firmware returned bad wait value=%d\n", mwait);
299 } else if (mwait > 300*1000) {
301 "EEH: Firmware is taking too long, time=%d\n", mwait);
304 max_wait_msecs -= mwait;
308 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
313 * eeh_token_to_phys - convert EEH address token to phys address
314 * @token i/o token, should be address in the form 0xA....
316 static inline unsigned long eeh_token_to_phys(unsigned long token)
321 ptep = find_linux_pte(init_mm.pgd, token);
324 pa = pte_pfn(*ptep) << PAGE_SHIFT;
326 return pa | (token & (PAGE_SIZE-1));
330 * Return the "partitionable endpoint" (pe) under which this device lies
332 struct device_node * find_device_pe(struct device_node *dn)
334 while ((dn->parent) && PCI_DN(dn->parent) &&
335 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
341 /** Mark all devices that are peers of this device as failed.
342 * Mark the device driver too, so that it can see the failure
343 * immediately; this is critical, since some drivers poll
344 * status registers in interrupts ... If a driver is polling,
345 * and the slot is frozen, then the driver can deadlock in
346 * an interrupt context, which is bad.
349 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
353 /* Mark the pci device driver too */
354 struct pci_dev *dev = PCI_DN(dn)->pcidev;
356 PCI_DN(dn)->eeh_mode |= mode_flag;
358 if (dev && dev->driver)
359 dev->error_state = pci_channel_io_frozen;
362 __eeh_mark_slot (dn->child, mode_flag);
368 void eeh_mark_slot (struct device_node *dn, int mode_flag)
371 dn = find_device_pe (dn);
373 /* Back up one, since config addrs might be shared */
374 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
377 PCI_DN(dn)->eeh_mode |= mode_flag;
379 /* Mark the pci device too */
380 dev = PCI_DN(dn)->pcidev;
382 dev->error_state = pci_channel_io_frozen;
384 __eeh_mark_slot (dn->child, mode_flag);
387 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
391 PCI_DN(dn)->eeh_mode &= ~mode_flag;
392 PCI_DN(dn)->eeh_check_count = 0;
394 __eeh_clear_slot (dn->child, mode_flag);
400 void eeh_clear_slot (struct device_node *dn, int mode_flag)
403 spin_lock_irqsave(&confirm_error_lock, flags);
405 dn = find_device_pe (dn);
407 /* Back up one, since config addrs might be shared */
408 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
411 PCI_DN(dn)->eeh_mode &= ~mode_flag;
412 PCI_DN(dn)->eeh_check_count = 0;
413 __eeh_clear_slot (dn->child, mode_flag);
414 spin_unlock_irqrestore(&confirm_error_lock, flags);
418 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
420 * @dev pci device, if known
422 * Check for an EEH failure for the given device node. Call this
423 * routine if the result of a read was all 0xff's and you want to
424 * find out if this is due to an EEH slot freeze. This routine
425 * will query firmware for the EEH status.
427 * Returns 0 if there has not been an EEH error; otherwise returns
428 * a non-zero value and queues up a slot isolation event notification.
430 * It is safe to call this routine in an interrupt context.
432 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
442 if (!eeh_subsystem_enabled)
451 /* Access to IO BARs might get this far and still not want checking. */
452 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
453 pdn->eeh_mode & EEH_MODE_NOCHECK) {
456 printk ("EEH:ignored check (%x) for %s %s\n",
457 pdn->eeh_mode, pci_name (dev), dn->full_name);
462 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
467 /* If we already have a pending isolation event for this
468 * slot, we know it's bad already, we don't need to check.
469 * Do this checking under a lock; as multiple PCI devices
470 * in one slot might report errors simultaneously, and we
471 * only want one error recovery routine running.
473 spin_lock_irqsave(&confirm_error_lock, flags);
475 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
476 pdn->eeh_check_count ++;
477 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
478 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
479 pdn->eeh_check_count);
483 /* re-read the slot reset state */
484 if (read_slot_reset_state(pdn, rets) != 0)
485 rets[0] = -1; /* reset state unknown */
487 /* If we are here, then we hit an infinite loop. Stop. */
488 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
494 * Now test for an EEH failure. This is VERY expensive.
495 * Note that the eeh_config_addr may be a parent device
496 * in the case of a device behind a bridge, or it may be
497 * function zero of a multi-function device.
498 * In any case they must share a common PHB.
500 ret = read_slot_reset_state(pdn, rets);
502 /* If the call to firmware failed, punt */
504 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
507 pdn->eeh_false_positives ++;
512 /* Note that config-io to empty slots may fail;
513 * they are empty when they don't have children. */
514 if ((rets[0] == 5) && (dn->child == NULL)) {
516 pdn->eeh_false_positives ++;
521 /* If EEH is not supported on this device, punt. */
523 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
526 pdn->eeh_false_positives ++;
531 /* If not the kind of error we know about, punt. */
532 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
534 pdn->eeh_false_positives ++;
541 /* Avoid repeated reports of this failure, including problems
542 * with other functions on this device, and functions under
544 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
545 spin_unlock_irqrestore(&confirm_error_lock, flags);
547 eeh_send_failure_event (dn, dev);
549 /* Most EEH events are due to device driver bugs. Having
550 * a stack trace will help the device-driver authors figure
551 * out what happened. So print that out. */
556 spin_unlock_irqrestore(&confirm_error_lock, flags);
560 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
563 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
564 * @token i/o token, should be address in the form 0xA....
565 * @val value, should be all 1's (XXX why do we need this arg??)
567 * Check for an EEH failure at the given token address. Call this
568 * routine if the result of a read was all 0xff's and you want to
569 * find out if this is due to an EEH slot freeze event. This routine
570 * will query firmware for the EEH status.
572 * Note this routine is safe to call in an interrupt context.
574 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
578 struct device_node *dn;
580 /* Finding the phys addr + pci device; this is pretty quick. */
581 addr = eeh_token_to_phys((unsigned long __force) token);
582 dev = pci_get_device_by_addr(addr);
588 dn = pci_device_to_OF_node(dev);
589 eeh_dn_check_failure (dn, dev);
595 EXPORT_SYMBOL(eeh_check_failure);
597 /* ------------------------------------------------------------- */
598 /* The code below deals with error recovery */
601 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
602 * @pdn pci device node
606 rtas_pci_enable(struct pci_dn *pdn, int function)
611 /* Use PE configuration address, if present */
612 config_addr = pdn->eeh_config_addr;
613 if (pdn->eeh_pe_config_addr)
614 config_addr = pdn->eeh_pe_config_addr;
616 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
618 BUID_HI(pdn->phb->buid),
619 BUID_LO(pdn->phb->buid),
623 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
624 function, rc, pdn->node->full_name);
626 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
627 if ((rc == 4) && (function == EEH_THAW_MMIO))
634 * rtas_pci_slot_reset - raises/lowers the pci #RST line
635 * @pdn pci device node
636 * @state: 1/0 to raise/lower the #RST
638 * Clear the EEH-frozen condition on a slot. This routine
639 * asserts the PCI #RST line if the 'state' argument is '1',
640 * and drops the #RST line if 'state is '0'. This routine is
641 * safe to call in an interrupt context.
646 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
654 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
655 pdn->node->full_name);
659 /* Use PE configuration address, if present */
660 config_addr = pdn->eeh_config_addr;
661 if (pdn->eeh_pe_config_addr)
662 config_addr = pdn->eeh_pe_config_addr;
664 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
666 BUID_HI(pdn->phb->buid),
667 BUID_LO(pdn->phb->buid),
670 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
671 " (%d) #RST=%d dn=%s\n",
672 rc, state, pdn->node->full_name);
676 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
677 * @dev: pci device struct
678 * @state: reset state to enter
683 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
685 struct device_node *dn = pci_device_to_OF_node(dev);
686 struct pci_dn *pdn = PCI_DN(dn);
689 case pcie_deassert_reset:
690 rtas_pci_slot_reset(pdn, 0);
693 rtas_pci_slot_reset(pdn, 1);
695 case pcie_warm_reset:
696 rtas_pci_slot_reset(pdn, 3);
706 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
707 * @pdn: pci device node to be reset.
709 * Return 0 if success, else a non-zero value.
712 static void __rtas_set_slot_reset(struct pci_dn *pdn)
714 rtas_pci_slot_reset (pdn, 1);
716 /* The PCI bus requires that the reset be held high for at least
717 * a 100 milliseconds. We wait a bit longer 'just in case'. */
719 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
720 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
722 /* We might get hit with another EEH freeze as soon as the
723 * pci slot reset line is dropped. Make sure we don't miss
724 * these, and clear the flag now. */
725 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
727 rtas_pci_slot_reset (pdn, 0);
729 /* After a PCI slot has been reset, the PCI Express spec requires
730 * a 1.5 second idle time for the bus to stabilize, before starting
732 #define PCI_BUS_SETTLE_TIME_MSEC 1800
733 msleep (PCI_BUS_SETTLE_TIME_MSEC);
736 int rtas_set_slot_reset(struct pci_dn *pdn)
740 /* Take three shots at resetting the bus */
741 for (i=0; i<3; i++) {
742 __rtas_set_slot_reset(pdn);
744 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
749 printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
750 pdn->node->full_name);
753 printk (KERN_ERR "EEH: bus reset %d failed on slot %s\n",
754 i+1, pdn->node->full_name);
760 /* ------------------------------------------------------- */
761 /** Save and restore of PCI BARs
763 * Although firmware will set up BARs during boot, it doesn't
764 * set up device BAR's after a device reset, although it will,
765 * if requested, set up bridge configuration. Thus, we need to
766 * configure the PCI devices ourselves.
770 * __restore_bars - Restore the Base Address Registers
771 * @pdn: pci device node
773 * Loads the PCI configuration space base address registers,
774 * the expansion ROM base address, the latency timer, and etc.
775 * from the saved values in the device node.
777 static inline void __restore_bars (struct pci_dn *pdn)
781 if (NULL==pdn->phb) return;
782 for (i=4; i<10; i++) {
783 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
786 /* 12 == Expansion ROM Address */
787 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
789 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
790 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
792 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
793 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
795 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
796 SAVED_BYTE(PCI_LATENCY_TIMER));
798 /* max latency, min grant, interrupt pin and line */
799 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
803 * eeh_restore_bars - restore the PCI config space info
805 * This routine performs a recursive walk to the children
806 * of this device as well.
808 void eeh_restore_bars(struct pci_dn *pdn)
810 struct device_node *dn;
814 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
815 __restore_bars (pdn);
817 dn = pdn->node->child;
819 eeh_restore_bars (PCI_DN(dn));
825 * eeh_save_bars - save device bars
827 * Save the values of the device bars. Unlike the restore
828 * routine, this routine is *not* recursive. This is because
829 * PCI devices are added individuallly; but, for the restore,
830 * an entire slot is reset at a time.
832 static void eeh_save_bars(struct pci_dn *pdn)
839 for (i = 0; i < 16; i++)
840 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
844 rtas_configure_bridge(struct pci_dn *pdn)
849 /* Use PE configuration address, if present */
850 config_addr = pdn->eeh_config_addr;
851 if (pdn->eeh_pe_config_addr)
852 config_addr = pdn->eeh_pe_config_addr;
854 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
856 BUID_HI(pdn->phb->buid),
857 BUID_LO(pdn->phb->buid));
859 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
860 rc, pdn->node->full_name);
864 /* ------------------------------------------------------------- */
865 /* The code below deals with enabling EEH for devices during the
866 * early boot sequence. EEH must be enabled before any PCI probing
872 struct eeh_early_enable_info {
873 unsigned int buid_hi;
874 unsigned int buid_lo;
877 static int get_pe_addr (int config_addr,
878 struct eeh_early_enable_info *info)
880 unsigned int rets[3];
883 /* Use latest config-addr token on power6 */
884 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
885 /* Make sure we have a PE in hand */
886 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
887 config_addr, info->buid_hi, info->buid_lo, 1);
888 if (ret || (rets[0]==0))
891 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
892 config_addr, info->buid_hi, info->buid_lo, 0);
898 /* Use older config-addr token on power5 */
899 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
900 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
901 config_addr, info->buid_hi, info->buid_lo, 0);
909 /* Enable eeh for the given device node. */
910 static void *early_enable_eeh(struct device_node *dn, void *data)
912 unsigned int rets[3];
913 struct eeh_early_enable_info *info = data;
915 const char *status = of_get_property(dn, "status", NULL);
916 const u32 *class_code = of_get_property(dn, "class-code", NULL);
917 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
918 const u32 *device_id = of_get_property(dn, "device-id", NULL);
921 struct pci_dn *pdn = PCI_DN(dn);
925 pdn->eeh_check_count = 0;
926 pdn->eeh_freeze_count = 0;
927 pdn->eeh_false_positives = 0;
929 if (status && strcmp(status, "ok") != 0)
930 return NULL; /* ignore devices with bad status */
932 /* Ignore bad nodes. */
933 if (!class_code || !vendor_id || !device_id)
936 /* There is nothing to check on PCI to ISA bridges */
937 if (dn->type && !strcmp(dn->type, "isa")) {
938 pdn->eeh_mode |= EEH_MODE_NOCHECK;
941 pdn->class_code = *class_code;
944 * Now decide if we are going to "Disable" EEH checking
945 * for this device. We still run with the EEH hardware active,
946 * but we won't be checking for ff's. This means a driver
947 * could return bad data (very bad!), an interrupt handler could
948 * hang waiting on status bits that won't change, etc.
949 * But there are a few cases like display devices that make sense.
951 enable = 1; /* i.e. we will do checking */
953 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
958 pdn->eeh_mode |= EEH_MODE_NOCHECK;
960 /* Ok... see if this device supports EEH. Some do, some don't,
961 * and the only way to find out is to check each and every one. */
962 regs = of_get_property(dn, "reg", NULL);
964 /* First register entry is addr (00BBSS00) */
965 /* Try to enable eeh */
966 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
967 regs[0], info->buid_hi, info->buid_lo,
972 pdn->eeh_config_addr = regs[0];
974 /* If the newer, better, ibm,get-config-addr-info is supported,
975 * then use that instead. */
976 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
978 /* Some older systems (Power4) allow the
979 * ibm,set-eeh-option call to succeed even on nodes
980 * where EEH is not supported. Verify support
982 ret = read_slot_reset_state(pdn, rets);
983 if ((ret == 0) && (rets[1] == 1))
988 eeh_subsystem_enabled = 1;
989 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
992 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
993 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
997 /* This device doesn't support EEH, but it may have an
998 * EEH parent, in which case we mark it as supported. */
999 if (dn->parent && PCI_DN(dn->parent)
1000 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1001 /* Parent supports EEH. */
1002 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1003 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1008 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1017 * Initialize EEH by trying to enable it for all of the adapters in the system.
1018 * As a side effect we can determine here if eeh is supported at all.
1019 * Note that we leave EEH on so failed config cycles won't cause a machine
1020 * check. If a user turns off EEH for a particular adapter they are really
1021 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1022 * grant access to a slot if EEH isn't enabled, and so we always enable
1023 * EEH for all slots/all devices.
1025 * The eeh-force-off option disables EEH checking globally, for all slots.
1026 * Even if force-off is set, the EEH hardware is still enabled, so that
1027 * newer systems can boot.
1029 void __init eeh_init(void)
1031 struct device_node *phb, *np;
1032 struct eeh_early_enable_info info;
1034 spin_lock_init(&confirm_error_lock);
1035 spin_lock_init(&slot_errbuf_lock);
1037 np = of_find_node_by_path("/rtas");
1041 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1042 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1043 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1044 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1045 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1046 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1047 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1048 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1050 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1053 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1054 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1055 eeh_error_buf_size = 1024;
1057 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1058 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1059 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1060 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1063 /* Enable EEH for all adapters. Note that eeh requires buid's */
1064 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1065 phb = of_find_node_by_name(phb, "pci")) {
1068 buid = get_phb_buid(phb);
1069 if (buid == 0 || PCI_DN(phb) == NULL)
1072 info.buid_lo = BUID_LO(buid);
1073 info.buid_hi = BUID_HI(buid);
1074 traverse_pci_devices(phb, early_enable_eeh, &info);
1077 if (eeh_subsystem_enabled)
1078 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1080 printk(KERN_WARNING "EEH: No capable adapters found\n");
1084 * eeh_add_device_early - enable EEH for the indicated device_node
1085 * @dn: device node for which to set up EEH
1087 * This routine must be used to perform EEH initialization for PCI
1088 * devices that were added after system boot (e.g. hotplug, dlpar).
1089 * This routine must be called before any i/o is performed to the
1090 * adapter (inluding any config-space i/o).
1091 * Whether this actually enables EEH or not for this device depends
1092 * on the CEC architecture, type of the device, on earlier boot
1093 * command-line arguments & etc.
1095 static void eeh_add_device_early(struct device_node *dn)
1097 struct pci_controller *phb;
1098 struct eeh_early_enable_info info;
1100 if (!dn || !PCI_DN(dn))
1102 phb = PCI_DN(dn)->phb;
1104 /* USB Bus children of PCI devices will not have BUID's */
1105 if (NULL == phb || 0 == phb->buid)
1108 info.buid_hi = BUID_HI(phb->buid);
1109 info.buid_lo = BUID_LO(phb->buid);
1110 early_enable_eeh(dn, &info);
1113 void eeh_add_device_tree_early(struct device_node *dn)
1115 struct device_node *sib;
1116 for (sib = dn->child; sib; sib = sib->sibling)
1117 eeh_add_device_tree_early(sib);
1118 eeh_add_device_early(dn);
1120 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1123 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1124 * @dev: pci device for which to set up EEH
1126 * This routine must be used to complete EEH initialization for PCI
1127 * devices that were added after system boot (e.g. hotplug, dlpar).
1129 static void eeh_add_device_late(struct pci_dev *dev)
1131 struct device_node *dn;
1134 if (!dev || !eeh_subsystem_enabled)
1138 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1142 dn = pci_device_to_OF_node(dev);
1146 pci_addr_cache_insert_device(dev);
1147 eeh_sysfs_add_device(dev);
1150 void eeh_add_device_tree_late(struct pci_bus *bus)
1152 struct pci_dev *dev;
1154 list_for_each_entry(dev, &bus->devices, bus_list) {
1155 eeh_add_device_late(dev);
1156 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1157 struct pci_bus *subbus = dev->subordinate;
1159 eeh_add_device_tree_late(subbus);
1163 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1166 * eeh_remove_device - undo EEH setup for the indicated pci device
1167 * @dev: pci device to be removed
1169 * This routine should be called when a device is removed from
1170 * a running system (e.g. by hotplug or dlpar). It unregisters
1171 * the PCI device from the EEH subsystem. I/O errors affecting
1172 * this device will no longer be detected after this call; thus,
1173 * i/o errors affecting this slot may leave this device unusable.
1175 static void eeh_remove_device(struct pci_dev *dev)
1177 struct device_node *dn;
1178 if (!dev || !eeh_subsystem_enabled)
1181 /* Unregister the device with the EEH/PCI address search system */
1183 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1185 pci_addr_cache_remove_device(dev);
1186 eeh_sysfs_remove_device(dev);
1188 dn = pci_device_to_OF_node(dev);
1189 if (PCI_DN(dn)->pcidev) {
1190 PCI_DN(dn)->pcidev = NULL;
1195 void eeh_remove_bus_device(struct pci_dev *dev)
1197 struct pci_bus *bus = dev->subordinate;
1198 struct pci_dev *child, *tmp;
1200 eeh_remove_device(dev);
1202 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1203 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1204 eeh_remove_bus_device(child);
1207 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1209 static int proc_eeh_show(struct seq_file *m, void *v)
1211 if (0 == eeh_subsystem_enabled) {
1212 seq_printf(m, "EEH Subsystem is globally disabled\n");
1213 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1215 seq_printf(m, "EEH Subsystem is enabled\n");
1218 "no device node=%ld\n"
1219 "no config address=%ld\n"
1220 "check not wanted=%ld\n"
1221 "eeh_total_mmio_ffs=%ld\n"
1222 "eeh_false_positives=%ld\n"
1223 "eeh_slot_resets=%ld\n",
1224 no_device, no_dn, no_cfg_addr,
1225 ignored_check, total_mmio_ffs,
1233 static int proc_eeh_open(struct inode *inode, struct file *file)
1235 return single_open(file, proc_eeh_show, NULL);
1238 static const struct file_operations proc_eeh_operations = {
1239 .open = proc_eeh_open,
1241 .llseek = seq_lseek,
1242 .release = single_release,
1245 static int __init eeh_init_proc(void)
1247 struct proc_dir_entry *e;
1249 if (machine_is(pseries)) {
1250 e = create_proc_entry("ppc64/eeh", 0, NULL);
1252 e->proc_fops = &proc_eeh_operations;
1257 __initcall(eeh_init_proc);