4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
87 * Implementing inode permission operations in /proc is almost
88 * certainly an error. Permission checks need to happen during
89 * each system call not at open time. The reason is that most of
90 * what we wish to check for permissions in /proc varies at runtime.
92 * The classic example of a problem is opening file descriptors
93 * in /proc for a task before it execs a suid executable.
100 const struct inode_operations *iop;
101 const struct file_operations *fop;
105 #define NOD(NAME, MODE, IOP, FOP, OP) { \
107 .len = sizeof(NAME) - 1, \
114 #define DIR(NAME, MODE, iops, fops) \
115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = read } )
126 #define ONE(NAME, MODE, show) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = show } )
132 * Count the number of hardlinks for the pid_entry table, excluding the .
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 struct fs_struct *fs;
153 int result = -ENOENT;
158 read_lock(&fs->lock);
159 *path = root ? fs->root : fs->pwd;
161 read_unlock(&fs->lock);
168 static int get_nr_threads(struct task_struct *tsk)
173 if (lock_task_sighand(tsk, &flags)) {
174 count = atomic_read(&tsk->signal->count);
175 unlock_task_sighand(tsk, &flags);
180 static int proc_cwd_link(struct inode *inode, struct path *path)
182 struct task_struct *task = get_proc_task(inode);
183 int result = -ENOENT;
186 result = get_fs_path(task, path, 0);
187 put_task_struct(task);
192 static int proc_root_link(struct inode *inode, struct path *path)
194 struct task_struct *task = get_proc_task(inode);
195 int result = -ENOENT;
198 result = get_fs_path(task, path, 1);
199 put_task_struct(task);
205 * Return zero if current may access user memory in @task, -error if not.
207 static int check_mem_permission(struct task_struct *task)
210 * A task can always look at itself, in case it chooses
211 * to use system calls instead of load instructions.
217 * If current is actively ptrace'ing, and would also be
218 * permitted to freshly attach with ptrace now, permit it.
220 if (task_is_stopped_or_traced(task)) {
223 match = (tracehook_tracer_task(task) == current);
225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
230 * Noone else is allowed.
235 struct mm_struct *mm_for_maps(struct task_struct *task)
237 struct mm_struct *mm = get_task_mm(task);
240 down_read(&mm->mmap_sem);
244 if (task->mm != current->mm &&
245 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
251 up_read(&mm->mmap_sem);
256 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
260 struct mm_struct *mm = get_task_mm(task);
264 goto out_mm; /* Shh! No looking before we're done */
266 len = mm->arg_end - mm->arg_start;
271 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
273 // If the nul at the end of args has been overwritten, then
274 // assume application is using setproctitle(3).
275 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
276 len = strnlen(buffer, res);
280 len = mm->env_end - mm->env_start;
281 if (len > PAGE_SIZE - res)
282 len = PAGE_SIZE - res;
283 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
284 res = strnlen(buffer, res);
293 static int proc_pid_auxv(struct task_struct *task, char *buffer)
296 struct mm_struct *mm = get_task_mm(task);
298 unsigned int nwords = 0;
301 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
302 res = nwords * sizeof(mm->saved_auxv[0]);
305 memcpy(buffer, mm->saved_auxv, res);
312 #ifdef CONFIG_KALLSYMS
314 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
315 * Returns the resolved symbol. If that fails, simply return the address.
317 static int proc_pid_wchan(struct task_struct *task, char *buffer)
320 char symname[KSYM_NAME_LEN];
322 wchan = get_wchan(task);
324 if (lookup_symbol_name(wchan, symname) < 0)
325 return sprintf(buffer, "%lu", wchan);
327 return sprintf(buffer, "%s", symname);
329 #endif /* CONFIG_KALLSYMS */
331 #ifdef CONFIG_STACKTRACE
333 #define MAX_STACK_TRACE_DEPTH 64
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 struct pid *pid, struct task_struct *task)
338 struct stack_trace trace;
339 unsigned long *entries;
342 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
346 trace.nr_entries = 0;
347 trace.max_entries = MAX_STACK_TRACE_DEPTH;
348 trace.entries = entries;
350 save_stack_trace_tsk(task, &trace);
352 for (i = 0; i < trace.nr_entries; i++) {
353 seq_printf(m, "[<%p>] %pS\n",
354 (void *)entries[i], (void *)entries[i]);
362 #ifdef CONFIG_SCHEDSTATS
364 * Provides /proc/PID/schedstat
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
368 return sprintf(buffer, "%llu %llu %lu\n",
369 (unsigned long long)task->se.sum_exec_runtime,
370 (unsigned long long)task->sched_info.run_delay,
371 task->sched_info.pcount);
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
379 struct inode *inode = m->private;
380 struct task_struct *task = get_proc_task(inode);
384 seq_puts(m, "Latency Top version : v0.1\n");
385 for (i = 0; i < 32; i++) {
386 if (task->latency_record[i].backtrace[0]) {
388 seq_printf(m, "%i %li %li ",
389 task->latency_record[i].count,
390 task->latency_record[i].time,
391 task->latency_record[i].max);
392 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 char sym[KSYM_SYMBOL_LEN];
395 if (!task->latency_record[i].backtrace[q])
397 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
399 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 c = strchr(sym, '+');
403 seq_printf(m, "%s ", sym);
409 put_task_struct(task);
413 static int lstats_open(struct inode *inode, struct file *file)
415 return single_open(file, lstats_show_proc, inode);
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 size_t count, loff_t *offs)
421 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
425 clear_all_latency_tracing(task);
426 put_task_struct(task);
431 static const struct file_operations proc_lstats_operations = {
434 .write = lstats_write,
436 .release = single_release,
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
445 unsigned long points;
446 struct timespec uptime;
448 do_posix_clock_monotonic_gettime(&uptime);
449 read_lock(&tasklist_lock);
450 points = badness(task, uptime.tv_sec);
451 read_unlock(&tasklist_lock);
452 return sprintf(buffer, "%lu\n", points);
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 [RLIMIT_CPU] = {"Max cpu time", "ms"},
462 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 [RLIMIT_DATA] = {"Max data size", "bytes"},
464 [RLIMIT_STACK] = {"Max stack size", "bytes"},
465 [RLIMIT_CORE] = {"Max core file size", "bytes"},
466 [RLIMIT_RSS] = {"Max resident set", "bytes"},
467 [RLIMIT_NPROC] = {"Max processes", "processes"},
468 [RLIMIT_NOFILE] = {"Max open files", "files"},
469 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 [RLIMIT_AS] = {"Max address space", "bytes"},
471 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 [RLIMIT_NICE] = {"Max nice priority", NULL},
475 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
485 char *bufptr = buffer;
487 struct rlimit rlim[RLIM_NLIMITS];
489 if (!lock_task_sighand(task, &flags))
491 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 unlock_task_sighand(task, &flags);
495 * print the file header
497 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 "Limit", "Soft Limit", "Hard Limit", "Units");
500 for (i = 0; i < RLIM_NLIMITS; i++) {
501 if (rlim[i].rlim_cur == RLIM_INFINITY)
502 count += sprintf(&bufptr[count], "%-25s %-20s ",
503 lnames[i].name, "unlimited");
505 count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 lnames[i].name, rlim[i].rlim_cur);
508 if (rlim[i].rlim_max == RLIM_INFINITY)
509 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
511 count += sprintf(&bufptr[count], "%-20lu ",
515 count += sprintf(&bufptr[count], "%-10s\n",
518 count += sprintf(&bufptr[count], "\n");
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
528 unsigned long args[6], sp, pc;
530 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 return sprintf(buffer, "running\n");
534 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
536 return sprintf(buffer,
537 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
539 args[0], args[1], args[2], args[3], args[4], args[5],
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
544 /************************************************************************/
545 /* Here the fs part begins */
546 /************************************************************************/
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
551 struct task_struct *task;
553 /* Allow access to a task's file descriptors if it is us or we
554 * may use ptrace attach to the process and find out that
557 task = get_proc_task(inode);
559 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 put_task_struct(task);
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
568 struct inode *inode = dentry->d_inode;
570 if (attr->ia_valid & ATTR_MODE)
573 error = inode_change_ok(inode, attr);
575 error = inode_setattr(inode, attr);
579 static const struct inode_operations proc_def_inode_operations = {
580 .setattr = proc_setattr,
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 const struct seq_operations *op)
586 struct task_struct *task = get_proc_task(inode);
588 struct mnt_namespace *ns = NULL;
590 struct proc_mounts *p;
595 nsp = task_nsproxy(task);
602 if (ns && get_fs_path(task, &root, 1) == 0)
604 put_task_struct(task);
613 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
617 file->private_data = &p->m;
618 ret = seq_open(file, op);
625 p->event = ns->event;
639 static int mounts_release(struct inode *inode, struct file *file)
641 struct proc_mounts *p = file->private_data;
644 return seq_release(inode, file);
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
649 struct proc_mounts *p = file->private_data;
650 struct mnt_namespace *ns = p->ns;
653 poll_wait(file, &ns->poll, wait);
655 spin_lock(&vfsmount_lock);
656 if (p->event != ns->event) {
657 p->event = ns->event;
660 spin_unlock(&vfsmount_lock);
665 static int mounts_open(struct inode *inode, struct file *file)
667 return mounts_open_common(inode, file, &mounts_op);
670 static const struct file_operations proc_mounts_operations = {
674 .release = mounts_release,
678 static int mountinfo_open(struct inode *inode, struct file *file)
680 return mounts_open_common(inode, file, &mountinfo_op);
683 static const struct file_operations proc_mountinfo_operations = {
684 .open = mountinfo_open,
687 .release = mounts_release,
691 static int mountstats_open(struct inode *inode, struct file *file)
693 return mounts_open_common(inode, file, &mountstats_op);
696 static const struct file_operations proc_mountstats_operations = {
697 .open = mountstats_open,
700 .release = mounts_release,
703 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
705 static ssize_t proc_info_read(struct file * file, char __user * buf,
706 size_t count, loff_t *ppos)
708 struct inode * inode = file->f_path.dentry->d_inode;
711 struct task_struct *task = get_proc_task(inode);
717 if (count > PROC_BLOCK_SIZE)
718 count = PROC_BLOCK_SIZE;
721 if (!(page = __get_free_page(GFP_TEMPORARY)))
724 length = PROC_I(inode)->op.proc_read(task, (char*)page);
727 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
730 put_task_struct(task);
735 static const struct file_operations proc_info_file_operations = {
736 .read = proc_info_read,
739 static int proc_single_show(struct seq_file *m, void *v)
741 struct inode *inode = m->private;
742 struct pid_namespace *ns;
744 struct task_struct *task;
747 ns = inode->i_sb->s_fs_info;
748 pid = proc_pid(inode);
749 task = get_pid_task(pid, PIDTYPE_PID);
753 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
755 put_task_struct(task);
759 static int proc_single_open(struct inode *inode, struct file *filp)
762 ret = single_open(filp, proc_single_show, NULL);
764 struct seq_file *m = filp->private_data;
771 static const struct file_operations proc_single_file_operations = {
772 .open = proc_single_open,
775 .release = single_release,
778 static int mem_open(struct inode* inode, struct file* file)
780 file->private_data = (void*)((long)current->self_exec_id);
784 static ssize_t mem_read(struct file * file, char __user * buf,
785 size_t count, loff_t *ppos)
787 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
789 unsigned long src = *ppos;
791 struct mm_struct *mm;
796 if (check_mem_permission(task))
800 page = (char *)__get_free_page(GFP_TEMPORARY);
806 mm = get_task_mm(task);
812 if (file->private_data != (void*)((long)current->self_exec_id))
818 int this_len, retval;
820 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
821 retval = access_process_vm(task, src, page, this_len, 0);
822 if (!retval || check_mem_permission(task)) {
828 if (copy_to_user(buf, page, retval)) {
843 free_page((unsigned long) page);
845 put_task_struct(task);
850 #define mem_write NULL
853 /* This is a security hazard */
854 static ssize_t mem_write(struct file * file, const char __user *buf,
855 size_t count, loff_t *ppos)
859 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
860 unsigned long dst = *ppos;
866 if (check_mem_permission(task))
870 page = (char *)__get_free_page(GFP_TEMPORARY);
876 int this_len, retval;
878 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
879 if (copy_from_user(page, buf, this_len)) {
883 retval = access_process_vm(task, dst, page, this_len, 1);
895 free_page((unsigned long) page);
897 put_task_struct(task);
903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 file->f_pos = offset;
910 file->f_pos += offset;
915 force_successful_syscall_return();
919 static const struct file_operations proc_mem_operations = {
926 static ssize_t environ_read(struct file *file, char __user *buf,
927 size_t count, loff_t *ppos)
929 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
931 unsigned long src = *ppos;
933 struct mm_struct *mm;
938 if (!ptrace_may_access(task, PTRACE_MODE_READ))
942 page = (char *)__get_free_page(GFP_TEMPORARY);
948 mm = get_task_mm(task);
953 int this_len, retval, max_len;
955 this_len = mm->env_end - (mm->env_start + src);
960 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
961 this_len = (this_len > max_len) ? max_len : this_len;
963 retval = access_process_vm(task, (mm->env_start + src),
971 if (copy_to_user(buf, page, retval)) {
985 free_page((unsigned long) page);
987 put_task_struct(task);
992 static const struct file_operations proc_environ_operations = {
993 .read = environ_read,
996 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
997 size_t count, loff_t *ppos)
999 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000 char buffer[PROC_NUMBUF];
1006 oom_adjust = task->oomkilladj;
1007 put_task_struct(task);
1009 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1011 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 size_t count, loff_t *ppos)
1017 struct task_struct *task;
1018 char buffer[PROC_NUMBUF], *end;
1021 memset(buffer, 0, sizeof(buffer));
1022 if (count > sizeof(buffer) - 1)
1023 count = sizeof(buffer) - 1;
1024 if (copy_from_user(buffer, buf, count))
1026 oom_adjust = simple_strtol(buffer, &end, 0);
1027 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1028 oom_adjust != OOM_DISABLE)
1032 task = get_proc_task(file->f_path.dentry->d_inode);
1035 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1036 put_task_struct(task);
1039 task->oomkilladj = oom_adjust;
1040 put_task_struct(task);
1041 if (end - buffer == 0)
1043 return end - buffer;
1046 static const struct file_operations proc_oom_adjust_operations = {
1047 .read = oom_adjust_read,
1048 .write = oom_adjust_write,
1051 #ifdef CONFIG_AUDITSYSCALL
1052 #define TMPBUFLEN 21
1053 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1054 size_t count, loff_t *ppos)
1056 struct inode * inode = file->f_path.dentry->d_inode;
1057 struct task_struct *task = get_proc_task(inode);
1059 char tmpbuf[TMPBUFLEN];
1063 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1064 audit_get_loginuid(task));
1065 put_task_struct(task);
1066 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1069 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1070 size_t count, loff_t *ppos)
1072 struct inode * inode = file->f_path.dentry->d_inode;
1077 if (!capable(CAP_AUDIT_CONTROL))
1080 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1083 if (count >= PAGE_SIZE)
1084 count = PAGE_SIZE - 1;
1087 /* No partial writes. */
1090 page = (char*)__get_free_page(GFP_TEMPORARY);
1094 if (copy_from_user(page, buf, count))
1098 loginuid = simple_strtoul(page, &tmp, 10);
1104 length = audit_set_loginuid(current, loginuid);
1105 if (likely(length == 0))
1109 free_page((unsigned long) page);
1113 static const struct file_operations proc_loginuid_operations = {
1114 .read = proc_loginuid_read,
1115 .write = proc_loginuid_write,
1118 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1119 size_t count, loff_t *ppos)
1121 struct inode * inode = file->f_path.dentry->d_inode;
1122 struct task_struct *task = get_proc_task(inode);
1124 char tmpbuf[TMPBUFLEN];
1128 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1129 audit_get_sessionid(task));
1130 put_task_struct(task);
1131 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1134 static const struct file_operations proc_sessionid_operations = {
1135 .read = proc_sessionid_read,
1139 #ifdef CONFIG_FAULT_INJECTION
1140 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1141 size_t count, loff_t *ppos)
1143 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1144 char buffer[PROC_NUMBUF];
1150 make_it_fail = task->make_it_fail;
1151 put_task_struct(task);
1153 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1155 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1158 static ssize_t proc_fault_inject_write(struct file * file,
1159 const char __user * buf, size_t count, loff_t *ppos)
1161 struct task_struct *task;
1162 char buffer[PROC_NUMBUF], *end;
1165 if (!capable(CAP_SYS_RESOURCE))
1167 memset(buffer, 0, sizeof(buffer));
1168 if (count > sizeof(buffer) - 1)
1169 count = sizeof(buffer) - 1;
1170 if (copy_from_user(buffer, buf, count))
1172 make_it_fail = simple_strtol(buffer, &end, 0);
1175 task = get_proc_task(file->f_dentry->d_inode);
1178 task->make_it_fail = make_it_fail;
1179 put_task_struct(task);
1180 if (end - buffer == 0)
1182 return end - buffer;
1185 static const struct file_operations proc_fault_inject_operations = {
1186 .read = proc_fault_inject_read,
1187 .write = proc_fault_inject_write,
1192 #ifdef CONFIG_SCHED_DEBUG
1194 * Print out various scheduling related per-task fields:
1196 static int sched_show(struct seq_file *m, void *v)
1198 struct inode *inode = m->private;
1199 struct task_struct *p;
1201 p = get_proc_task(inode);
1204 proc_sched_show_task(p, m);
1212 sched_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *offset)
1215 struct inode *inode = file->f_path.dentry->d_inode;
1216 struct task_struct *p;
1218 p = get_proc_task(inode);
1221 proc_sched_set_task(p);
1228 static int sched_open(struct inode *inode, struct file *filp)
1232 ret = single_open(filp, sched_show, NULL);
1234 struct seq_file *m = filp->private_data;
1241 static const struct file_operations proc_pid_sched_operations = {
1244 .write = sched_write,
1245 .llseek = seq_lseek,
1246 .release = single_release,
1252 * We added or removed a vma mapping the executable. The vmas are only mapped
1253 * during exec and are not mapped with the mmap system call.
1254 * Callers must hold down_write() on the mm's mmap_sem for these
1256 void added_exe_file_vma(struct mm_struct *mm)
1258 mm->num_exe_file_vmas++;
1261 void removed_exe_file_vma(struct mm_struct *mm)
1263 mm->num_exe_file_vmas--;
1264 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1266 mm->exe_file = NULL;
1271 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1274 get_file(new_exe_file);
1277 mm->exe_file = new_exe_file;
1278 mm->num_exe_file_vmas = 0;
1281 struct file *get_mm_exe_file(struct mm_struct *mm)
1283 struct file *exe_file;
1285 /* We need mmap_sem to protect against races with removal of
1286 * VM_EXECUTABLE vmas */
1287 down_read(&mm->mmap_sem);
1288 exe_file = mm->exe_file;
1291 up_read(&mm->mmap_sem);
1295 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1297 /* It's safe to write the exe_file pointer without exe_file_lock because
1298 * this is called during fork when the task is not yet in /proc */
1299 newmm->exe_file = get_mm_exe_file(oldmm);
1302 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1304 struct task_struct *task;
1305 struct mm_struct *mm;
1306 struct file *exe_file;
1308 task = get_proc_task(inode);
1311 mm = get_task_mm(task);
1312 put_task_struct(task);
1315 exe_file = get_mm_exe_file(mm);
1318 *exe_path = exe_file->f_path;
1319 path_get(&exe_file->f_path);
1326 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1328 struct inode *inode = dentry->d_inode;
1329 int error = -EACCES;
1331 /* We don't need a base pointer in the /proc filesystem */
1332 path_put(&nd->path);
1334 /* Are we allowed to snoop on the tasks file descriptors? */
1335 if (!proc_fd_access_allowed(inode))
1338 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1339 nd->last_type = LAST_BIND;
1341 return ERR_PTR(error);
1344 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1346 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1353 pathname = d_path(path, tmp, PAGE_SIZE);
1354 len = PTR_ERR(pathname);
1355 if (IS_ERR(pathname))
1357 len = tmp + PAGE_SIZE - 1 - pathname;
1361 if (copy_to_user(buffer, pathname, len))
1364 free_page((unsigned long)tmp);
1368 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1370 int error = -EACCES;
1371 struct inode *inode = dentry->d_inode;
1374 /* Are we allowed to snoop on the tasks file descriptors? */
1375 if (!proc_fd_access_allowed(inode))
1378 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1382 error = do_proc_readlink(&path, buffer, buflen);
1388 static const struct inode_operations proc_pid_link_inode_operations = {
1389 .readlink = proc_pid_readlink,
1390 .follow_link = proc_pid_follow_link,
1391 .setattr = proc_setattr,
1395 /* building an inode */
1397 static int task_dumpable(struct task_struct *task)
1400 struct mm_struct *mm;
1405 dumpable = get_dumpable(mm);
1413 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1415 struct inode * inode;
1416 struct proc_inode *ei;
1417 const struct cred *cred;
1419 /* We need a new inode */
1421 inode = new_inode(sb);
1427 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1428 inode->i_op = &proc_def_inode_operations;
1431 * grab the reference to task.
1433 ei->pid = get_task_pid(task, PIDTYPE_PID);
1437 if (task_dumpable(task)) {
1439 cred = __task_cred(task);
1440 inode->i_uid = cred->euid;
1441 inode->i_gid = cred->egid;
1444 security_task_to_inode(task, inode);
1454 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1456 struct inode *inode = dentry->d_inode;
1457 struct task_struct *task;
1458 const struct cred *cred;
1460 generic_fillattr(inode, stat);
1465 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1467 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1468 task_dumpable(task)) {
1469 cred = __task_cred(task);
1470 stat->uid = cred->euid;
1471 stat->gid = cred->egid;
1481 * Exceptional case: normally we are not allowed to unhash a busy
1482 * directory. In this case, however, we can do it - no aliasing problems
1483 * due to the way we treat inodes.
1485 * Rewrite the inode's ownerships here because the owning task may have
1486 * performed a setuid(), etc.
1488 * Before the /proc/pid/status file was created the only way to read
1489 * the effective uid of a /process was to stat /proc/pid. Reading
1490 * /proc/pid/status is slow enough that procps and other packages
1491 * kept stating /proc/pid. To keep the rules in /proc simple I have
1492 * made this apply to all per process world readable and executable
1495 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1497 struct inode *inode = dentry->d_inode;
1498 struct task_struct *task = get_proc_task(inode);
1499 const struct cred *cred;
1502 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1503 task_dumpable(task)) {
1505 cred = __task_cred(task);
1506 inode->i_uid = cred->euid;
1507 inode->i_gid = cred->egid;
1513 inode->i_mode &= ~(S_ISUID | S_ISGID);
1514 security_task_to_inode(task, inode);
1515 put_task_struct(task);
1522 static int pid_delete_dentry(struct dentry * dentry)
1524 /* Is the task we represent dead?
1525 * If so, then don't put the dentry on the lru list,
1526 * kill it immediately.
1528 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1531 static const struct dentry_operations pid_dentry_operations =
1533 .d_revalidate = pid_revalidate,
1534 .d_delete = pid_delete_dentry,
1539 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1540 struct task_struct *, const void *);
1543 * Fill a directory entry.
1545 * If possible create the dcache entry and derive our inode number and
1546 * file type from dcache entry.
1548 * Since all of the proc inode numbers are dynamically generated, the inode
1549 * numbers do not exist until the inode is cache. This means creating the
1550 * the dcache entry in readdir is necessary to keep the inode numbers
1551 * reported by readdir in sync with the inode numbers reported
1554 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1555 char *name, int len,
1556 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1558 struct dentry *child, *dir = filp->f_path.dentry;
1559 struct inode *inode;
1562 unsigned type = DT_UNKNOWN;
1566 qname.hash = full_name_hash(name, len);
1568 child = d_lookup(dir, &qname);
1571 new = d_alloc(dir, &qname);
1573 child = instantiate(dir->d_inode, new, task, ptr);
1580 if (!child || IS_ERR(child) || !child->d_inode)
1581 goto end_instantiate;
1582 inode = child->d_inode;
1585 type = inode->i_mode >> 12;
1590 ino = find_inode_number(dir, &qname);
1593 return filldir(dirent, name, len, filp->f_pos, ino, type);
1596 static unsigned name_to_int(struct dentry *dentry)
1598 const char *name = dentry->d_name.name;
1599 int len = dentry->d_name.len;
1602 if (len > 1 && *name == '0')
1605 unsigned c = *name++ - '0';
1608 if (n >= (~0U-9)/10)
1618 #define PROC_FDINFO_MAX 64
1620 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1622 struct task_struct *task = get_proc_task(inode);
1623 struct files_struct *files = NULL;
1625 int fd = proc_fd(inode);
1628 files = get_files_struct(task);
1629 put_task_struct(task);
1633 * We are not taking a ref to the file structure, so we must
1636 spin_lock(&files->file_lock);
1637 file = fcheck_files(files, fd);
1640 *path = file->f_path;
1641 path_get(&file->f_path);
1644 snprintf(info, PROC_FDINFO_MAX,
1647 (long long) file->f_pos,
1649 spin_unlock(&files->file_lock);
1650 put_files_struct(files);
1653 spin_unlock(&files->file_lock);
1654 put_files_struct(files);
1659 static int proc_fd_link(struct inode *inode, struct path *path)
1661 return proc_fd_info(inode, path, NULL);
1664 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1666 struct inode *inode = dentry->d_inode;
1667 struct task_struct *task = get_proc_task(inode);
1668 int fd = proc_fd(inode);
1669 struct files_struct *files;
1670 const struct cred *cred;
1673 files = get_files_struct(task);
1676 if (fcheck_files(files, fd)) {
1678 put_files_struct(files);
1679 if (task_dumpable(task)) {
1681 cred = __task_cred(task);
1682 inode->i_uid = cred->euid;
1683 inode->i_gid = cred->egid;
1689 inode->i_mode &= ~(S_ISUID | S_ISGID);
1690 security_task_to_inode(task, inode);
1691 put_task_struct(task);
1695 put_files_struct(files);
1697 put_task_struct(task);
1703 static const struct dentry_operations tid_fd_dentry_operations =
1705 .d_revalidate = tid_fd_revalidate,
1706 .d_delete = pid_delete_dentry,
1709 static struct dentry *proc_fd_instantiate(struct inode *dir,
1710 struct dentry *dentry, struct task_struct *task, const void *ptr)
1712 unsigned fd = *(const unsigned *)ptr;
1714 struct files_struct *files;
1715 struct inode *inode;
1716 struct proc_inode *ei;
1717 struct dentry *error = ERR_PTR(-ENOENT);
1719 inode = proc_pid_make_inode(dir->i_sb, task);
1724 files = get_files_struct(task);
1727 inode->i_mode = S_IFLNK;
1730 * We are not taking a ref to the file structure, so we must
1733 spin_lock(&files->file_lock);
1734 file = fcheck_files(files, fd);
1737 if (file->f_mode & FMODE_READ)
1738 inode->i_mode |= S_IRUSR | S_IXUSR;
1739 if (file->f_mode & FMODE_WRITE)
1740 inode->i_mode |= S_IWUSR | S_IXUSR;
1741 spin_unlock(&files->file_lock);
1742 put_files_struct(files);
1744 inode->i_op = &proc_pid_link_inode_operations;
1746 ei->op.proc_get_link = proc_fd_link;
1747 dentry->d_op = &tid_fd_dentry_operations;
1748 d_add(dentry, inode);
1749 /* Close the race of the process dying before we return the dentry */
1750 if (tid_fd_revalidate(dentry, NULL))
1756 spin_unlock(&files->file_lock);
1757 put_files_struct(files);
1763 static struct dentry *proc_lookupfd_common(struct inode *dir,
1764 struct dentry *dentry,
1765 instantiate_t instantiate)
1767 struct task_struct *task = get_proc_task(dir);
1768 unsigned fd = name_to_int(dentry);
1769 struct dentry *result = ERR_PTR(-ENOENT);
1776 result = instantiate(dir, dentry, task, &fd);
1778 put_task_struct(task);
1783 static int proc_readfd_common(struct file * filp, void * dirent,
1784 filldir_t filldir, instantiate_t instantiate)
1786 struct dentry *dentry = filp->f_path.dentry;
1787 struct inode *inode = dentry->d_inode;
1788 struct task_struct *p = get_proc_task(inode);
1789 unsigned int fd, ino;
1791 struct files_struct * files;
1801 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1805 ino = parent_ino(dentry);
1806 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1810 files = get_files_struct(p);
1814 for (fd = filp->f_pos-2;
1815 fd < files_fdtable(files)->max_fds;
1816 fd++, filp->f_pos++) {
1817 char name[PROC_NUMBUF];
1820 if (!fcheck_files(files, fd))
1824 len = snprintf(name, sizeof(name), "%d", fd);
1825 if (proc_fill_cache(filp, dirent, filldir,
1826 name, len, instantiate,
1834 put_files_struct(files);
1842 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1843 struct nameidata *nd)
1845 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1848 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1850 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1853 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1854 size_t len, loff_t *ppos)
1856 char tmp[PROC_FDINFO_MAX];
1857 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1859 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1863 static const struct file_operations proc_fdinfo_file_operations = {
1864 .open = nonseekable_open,
1865 .read = proc_fdinfo_read,
1868 static const struct file_operations proc_fd_operations = {
1869 .read = generic_read_dir,
1870 .readdir = proc_readfd,
1874 * /proc/pid/fd needs a special permission handler so that a process can still
1875 * access /proc/self/fd after it has executed a setuid().
1877 static int proc_fd_permission(struct inode *inode, int mask)
1881 rv = generic_permission(inode, mask, NULL);
1884 if (task_pid(current) == proc_pid(inode))
1890 * proc directories can do almost nothing..
1892 static const struct inode_operations proc_fd_inode_operations = {
1893 .lookup = proc_lookupfd,
1894 .permission = proc_fd_permission,
1895 .setattr = proc_setattr,
1898 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1899 struct dentry *dentry, struct task_struct *task, const void *ptr)
1901 unsigned fd = *(unsigned *)ptr;
1902 struct inode *inode;
1903 struct proc_inode *ei;
1904 struct dentry *error = ERR_PTR(-ENOENT);
1906 inode = proc_pid_make_inode(dir->i_sb, task);
1911 inode->i_mode = S_IFREG | S_IRUSR;
1912 inode->i_fop = &proc_fdinfo_file_operations;
1913 dentry->d_op = &tid_fd_dentry_operations;
1914 d_add(dentry, inode);
1915 /* Close the race of the process dying before we return the dentry */
1916 if (tid_fd_revalidate(dentry, NULL))
1923 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1924 struct dentry *dentry,
1925 struct nameidata *nd)
1927 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1930 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1932 return proc_readfd_common(filp, dirent, filldir,
1933 proc_fdinfo_instantiate);
1936 static const struct file_operations proc_fdinfo_operations = {
1937 .read = generic_read_dir,
1938 .readdir = proc_readfdinfo,
1942 * proc directories can do almost nothing..
1944 static const struct inode_operations proc_fdinfo_inode_operations = {
1945 .lookup = proc_lookupfdinfo,
1946 .setattr = proc_setattr,
1950 static struct dentry *proc_pident_instantiate(struct inode *dir,
1951 struct dentry *dentry, struct task_struct *task, const void *ptr)
1953 const struct pid_entry *p = ptr;
1954 struct inode *inode;
1955 struct proc_inode *ei;
1956 struct dentry *error = ERR_PTR(-EINVAL);
1958 inode = proc_pid_make_inode(dir->i_sb, task);
1963 inode->i_mode = p->mode;
1964 if (S_ISDIR(inode->i_mode))
1965 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1967 inode->i_op = p->iop;
1969 inode->i_fop = p->fop;
1971 dentry->d_op = &pid_dentry_operations;
1972 d_add(dentry, inode);
1973 /* Close the race of the process dying before we return the dentry */
1974 if (pid_revalidate(dentry, NULL))
1980 static struct dentry *proc_pident_lookup(struct inode *dir,
1981 struct dentry *dentry,
1982 const struct pid_entry *ents,
1985 struct dentry *error;
1986 struct task_struct *task = get_proc_task(dir);
1987 const struct pid_entry *p, *last;
1989 error = ERR_PTR(-ENOENT);
1995 * Yes, it does not scale. And it should not. Don't add
1996 * new entries into /proc/<tgid>/ without very good reasons.
1998 last = &ents[nents - 1];
1999 for (p = ents; p <= last; p++) {
2000 if (p->len != dentry->d_name.len)
2002 if (!memcmp(dentry->d_name.name, p->name, p->len))
2008 error = proc_pident_instantiate(dir, dentry, task, p);
2010 put_task_struct(task);
2015 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2016 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2018 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2019 proc_pident_instantiate, task, p);
2022 static int proc_pident_readdir(struct file *filp,
2023 void *dirent, filldir_t filldir,
2024 const struct pid_entry *ents, unsigned int nents)
2027 struct dentry *dentry = filp->f_path.dentry;
2028 struct inode *inode = dentry->d_inode;
2029 struct task_struct *task = get_proc_task(inode);
2030 const struct pid_entry *p, *last;
2043 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2049 ino = parent_ino(dentry);
2050 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2062 last = &ents[nents - 1];
2064 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2073 put_task_struct(task);
2078 #ifdef CONFIG_SECURITY
2079 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2080 size_t count, loff_t *ppos)
2082 struct inode * inode = file->f_path.dentry->d_inode;
2085 struct task_struct *task = get_proc_task(inode);
2090 length = security_getprocattr(task,
2091 (char*)file->f_path.dentry->d_name.name,
2093 put_task_struct(task);
2095 length = simple_read_from_buffer(buf, count, ppos, p, length);
2100 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2101 size_t count, loff_t *ppos)
2103 struct inode * inode = file->f_path.dentry->d_inode;
2106 struct task_struct *task = get_proc_task(inode);
2111 if (count > PAGE_SIZE)
2114 /* No partial writes. */
2120 page = (char*)__get_free_page(GFP_TEMPORARY);
2125 if (copy_from_user(page, buf, count))
2128 length = security_setprocattr(task,
2129 (char*)file->f_path.dentry->d_name.name,
2130 (void*)page, count);
2132 free_page((unsigned long) page);
2134 put_task_struct(task);
2139 static const struct file_operations proc_pid_attr_operations = {
2140 .read = proc_pid_attr_read,
2141 .write = proc_pid_attr_write,
2144 static const struct pid_entry attr_dir_stuff[] = {
2145 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2146 REG("prev", S_IRUGO, proc_pid_attr_operations),
2147 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2148 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2149 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2150 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2153 static int proc_attr_dir_readdir(struct file * filp,
2154 void * dirent, filldir_t filldir)
2156 return proc_pident_readdir(filp,dirent,filldir,
2157 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2160 static const struct file_operations proc_attr_dir_operations = {
2161 .read = generic_read_dir,
2162 .readdir = proc_attr_dir_readdir,
2165 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2166 struct dentry *dentry, struct nameidata *nd)
2168 return proc_pident_lookup(dir, dentry,
2169 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2172 static const struct inode_operations proc_attr_dir_inode_operations = {
2173 .lookup = proc_attr_dir_lookup,
2174 .getattr = pid_getattr,
2175 .setattr = proc_setattr,
2180 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2181 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2182 size_t count, loff_t *ppos)
2184 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2185 struct mm_struct *mm;
2186 char buffer[PROC_NUMBUF];
2194 mm = get_task_mm(task);
2196 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2197 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2198 MMF_DUMP_FILTER_SHIFT));
2200 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2203 put_task_struct(task);
2208 static ssize_t proc_coredump_filter_write(struct file *file,
2209 const char __user *buf,
2213 struct task_struct *task;
2214 struct mm_struct *mm;
2215 char buffer[PROC_NUMBUF], *end;
2222 memset(buffer, 0, sizeof(buffer));
2223 if (count > sizeof(buffer) - 1)
2224 count = sizeof(buffer) - 1;
2225 if (copy_from_user(buffer, buf, count))
2229 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2232 if (end - buffer == 0)
2236 task = get_proc_task(file->f_dentry->d_inode);
2241 mm = get_task_mm(task);
2245 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2247 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2249 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2254 put_task_struct(task);
2259 static const struct file_operations proc_coredump_filter_operations = {
2260 .read = proc_coredump_filter_read,
2261 .write = proc_coredump_filter_write,
2268 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2271 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2272 pid_t tgid = task_tgid_nr_ns(current, ns);
2273 char tmp[PROC_NUMBUF];
2276 sprintf(tmp, "%d", tgid);
2277 return vfs_readlink(dentry,buffer,buflen,tmp);
2280 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2282 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2283 pid_t tgid = task_tgid_nr_ns(current, ns);
2284 char tmp[PROC_NUMBUF];
2286 return ERR_PTR(-ENOENT);
2287 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2288 return ERR_PTR(vfs_follow_link(nd,tmp));
2291 static const struct inode_operations proc_self_inode_operations = {
2292 .readlink = proc_self_readlink,
2293 .follow_link = proc_self_follow_link,
2299 * These are the directory entries in the root directory of /proc
2300 * that properly belong to the /proc filesystem, as they describe
2301 * describe something that is process related.
2303 static const struct pid_entry proc_base_stuff[] = {
2304 NOD("self", S_IFLNK|S_IRWXUGO,
2305 &proc_self_inode_operations, NULL, {}),
2309 * Exceptional case: normally we are not allowed to unhash a busy
2310 * directory. In this case, however, we can do it - no aliasing problems
2311 * due to the way we treat inodes.
2313 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2315 struct inode *inode = dentry->d_inode;
2316 struct task_struct *task = get_proc_task(inode);
2318 put_task_struct(task);
2325 static const struct dentry_operations proc_base_dentry_operations =
2327 .d_revalidate = proc_base_revalidate,
2328 .d_delete = pid_delete_dentry,
2331 static struct dentry *proc_base_instantiate(struct inode *dir,
2332 struct dentry *dentry, struct task_struct *task, const void *ptr)
2334 const struct pid_entry *p = ptr;
2335 struct inode *inode;
2336 struct proc_inode *ei;
2337 struct dentry *error = ERR_PTR(-EINVAL);
2339 /* Allocate the inode */
2340 error = ERR_PTR(-ENOMEM);
2341 inode = new_inode(dir->i_sb);
2345 /* Initialize the inode */
2347 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2350 * grab the reference to the task.
2352 ei->pid = get_task_pid(task, PIDTYPE_PID);
2356 inode->i_mode = p->mode;
2357 if (S_ISDIR(inode->i_mode))
2359 if (S_ISLNK(inode->i_mode))
2362 inode->i_op = p->iop;
2364 inode->i_fop = p->fop;
2366 dentry->d_op = &proc_base_dentry_operations;
2367 d_add(dentry, inode);
2376 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2378 struct dentry *error;
2379 struct task_struct *task = get_proc_task(dir);
2380 const struct pid_entry *p, *last;
2382 error = ERR_PTR(-ENOENT);
2387 /* Lookup the directory entry */
2388 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2389 for (p = proc_base_stuff; p <= last; p++) {
2390 if (p->len != dentry->d_name.len)
2392 if (!memcmp(dentry->d_name.name, p->name, p->len))
2398 error = proc_base_instantiate(dir, dentry, task, p);
2401 put_task_struct(task);
2406 static int proc_base_fill_cache(struct file *filp, void *dirent,
2407 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2409 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2410 proc_base_instantiate, task, p);
2413 #ifdef CONFIG_TASK_IO_ACCOUNTING
2414 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2416 struct task_io_accounting acct = task->ioac;
2417 unsigned long flags;
2419 if (whole && lock_task_sighand(task, &flags)) {
2420 struct task_struct *t = task;
2422 task_io_accounting_add(&acct, &task->signal->ioac);
2423 while_each_thread(task, t)
2424 task_io_accounting_add(&acct, &t->ioac);
2426 unlock_task_sighand(task, &flags);
2428 return sprintf(buffer,
2433 "read_bytes: %llu\n"
2434 "write_bytes: %llu\n"
2435 "cancelled_write_bytes: %llu\n",
2436 (unsigned long long)acct.rchar,
2437 (unsigned long long)acct.wchar,
2438 (unsigned long long)acct.syscr,
2439 (unsigned long long)acct.syscw,
2440 (unsigned long long)acct.read_bytes,
2441 (unsigned long long)acct.write_bytes,
2442 (unsigned long long)acct.cancelled_write_bytes);
2445 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2447 return do_io_accounting(task, buffer, 0);
2450 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2452 return do_io_accounting(task, buffer, 1);
2454 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2456 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2457 struct pid *pid, struct task_struct *task)
2459 seq_printf(m, "%08x\n", task->personality);
2466 static const struct file_operations proc_task_operations;
2467 static const struct inode_operations proc_task_inode_operations;
2469 static const struct pid_entry tgid_base_stuff[] = {
2470 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2471 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2472 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2474 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2476 REG("environ", S_IRUSR, proc_environ_operations),
2477 INF("auxv", S_IRUSR, proc_pid_auxv),
2478 ONE("status", S_IRUGO, proc_pid_status),
2479 ONE("personality", S_IRUSR, proc_pid_personality),
2480 INF("limits", S_IRUSR, proc_pid_limits),
2481 #ifdef CONFIG_SCHED_DEBUG
2482 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2484 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2485 INF("syscall", S_IRUSR, proc_pid_syscall),
2487 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2488 ONE("stat", S_IRUGO, proc_tgid_stat),
2489 ONE("statm", S_IRUGO, proc_pid_statm),
2490 REG("maps", S_IRUGO, proc_maps_operations),
2492 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2494 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2495 LNK("cwd", proc_cwd_link),
2496 LNK("root", proc_root_link),
2497 LNK("exe", proc_exe_link),
2498 REG("mounts", S_IRUGO, proc_mounts_operations),
2499 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2500 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2501 #ifdef CONFIG_PROC_PAGE_MONITOR
2502 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2503 REG("smaps", S_IRUGO, proc_smaps_operations),
2504 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2506 #ifdef CONFIG_SECURITY
2507 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2509 #ifdef CONFIG_KALLSYMS
2510 INF("wchan", S_IRUGO, proc_pid_wchan),
2512 #ifdef CONFIG_STACKTRACE
2513 ONE("stack", S_IRUSR, proc_pid_stack),
2515 #ifdef CONFIG_SCHEDSTATS
2516 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2518 #ifdef CONFIG_LATENCYTOP
2519 REG("latency", S_IRUGO, proc_lstats_operations),
2521 #ifdef CONFIG_PROC_PID_CPUSET
2522 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2524 #ifdef CONFIG_CGROUPS
2525 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2527 INF("oom_score", S_IRUGO, proc_oom_score),
2528 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2529 #ifdef CONFIG_AUDITSYSCALL
2530 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2531 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2533 #ifdef CONFIG_FAULT_INJECTION
2534 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2536 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2537 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2539 #ifdef CONFIG_TASK_IO_ACCOUNTING
2540 INF("io", S_IRUGO, proc_tgid_io_accounting),
2544 static int proc_tgid_base_readdir(struct file * filp,
2545 void * dirent, filldir_t filldir)
2547 return proc_pident_readdir(filp,dirent,filldir,
2548 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2551 static const struct file_operations proc_tgid_base_operations = {
2552 .read = generic_read_dir,
2553 .readdir = proc_tgid_base_readdir,
2556 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2557 return proc_pident_lookup(dir, dentry,
2558 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2561 static const struct inode_operations proc_tgid_base_inode_operations = {
2562 .lookup = proc_tgid_base_lookup,
2563 .getattr = pid_getattr,
2564 .setattr = proc_setattr,
2567 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2569 struct dentry *dentry, *leader, *dir;
2570 char buf[PROC_NUMBUF];
2574 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2575 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2577 if (!(current->flags & PF_EXITING))
2578 shrink_dcache_parent(dentry);
2587 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2588 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2593 name.len = strlen(name.name);
2594 dir = d_hash_and_lookup(leader, &name);
2596 goto out_put_leader;
2599 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2600 dentry = d_hash_and_lookup(dir, &name);
2602 shrink_dcache_parent(dentry);
2615 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2616 * @task: task that should be flushed.
2618 * When flushing dentries from proc, one needs to flush them from global
2619 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2620 * in. This call is supposed to do all of this job.
2622 * Looks in the dcache for
2624 * /proc/@tgid/task/@pid
2625 * if either directory is present flushes it and all of it'ts children
2628 * It is safe and reasonable to cache /proc entries for a task until
2629 * that task exits. After that they just clog up the dcache with
2630 * useless entries, possibly causing useful dcache entries to be
2631 * flushed instead. This routine is proved to flush those useless
2632 * dcache entries at process exit time.
2634 * NOTE: This routine is just an optimization so it does not guarantee
2635 * that no dcache entries will exist at process exit time it
2636 * just makes it very unlikely that any will persist.
2639 void proc_flush_task(struct task_struct *task)
2642 struct pid *pid, *tgid = NULL;
2645 pid = task_pid(task);
2646 if (thread_group_leader(task))
2647 tgid = task_tgid(task);
2649 for (i = 0; i <= pid->level; i++) {
2650 upid = &pid->numbers[i];
2651 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2652 tgid ? tgid->numbers[i].nr : 0);
2655 upid = &pid->numbers[pid->level];
2657 pid_ns_release_proc(upid->ns);
2660 static struct dentry *proc_pid_instantiate(struct inode *dir,
2661 struct dentry * dentry,
2662 struct task_struct *task, const void *ptr)
2664 struct dentry *error = ERR_PTR(-ENOENT);
2665 struct inode *inode;
2667 inode = proc_pid_make_inode(dir->i_sb, task);
2671 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2672 inode->i_op = &proc_tgid_base_inode_operations;
2673 inode->i_fop = &proc_tgid_base_operations;
2674 inode->i_flags|=S_IMMUTABLE;
2676 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2677 ARRAY_SIZE(tgid_base_stuff));
2679 dentry->d_op = &pid_dentry_operations;
2681 d_add(dentry, inode);
2682 /* Close the race of the process dying before we return the dentry */
2683 if (pid_revalidate(dentry, NULL))
2689 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2691 struct dentry *result = ERR_PTR(-ENOENT);
2692 struct task_struct *task;
2694 struct pid_namespace *ns;
2696 result = proc_base_lookup(dir, dentry);
2697 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2700 tgid = name_to_int(dentry);
2704 ns = dentry->d_sb->s_fs_info;
2706 task = find_task_by_pid_ns(tgid, ns);
2708 get_task_struct(task);
2713 result = proc_pid_instantiate(dir, dentry, task, NULL);
2714 put_task_struct(task);
2720 * Find the first task with tgid >= tgid
2725 struct task_struct *task;
2727 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2732 put_task_struct(iter.task);
2736 pid = find_ge_pid(iter.tgid, ns);
2738 iter.tgid = pid_nr_ns(pid, ns);
2739 iter.task = pid_task(pid, PIDTYPE_PID);
2740 /* What we to know is if the pid we have find is the
2741 * pid of a thread_group_leader. Testing for task
2742 * being a thread_group_leader is the obvious thing
2743 * todo but there is a window when it fails, due to
2744 * the pid transfer logic in de_thread.
2746 * So we perform the straight forward test of seeing
2747 * if the pid we have found is the pid of a thread
2748 * group leader, and don't worry if the task we have
2749 * found doesn't happen to be a thread group leader.
2750 * As we don't care in the case of readdir.
2752 if (!iter.task || !has_group_leader_pid(iter.task)) {
2756 get_task_struct(iter.task);
2762 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2764 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2765 struct tgid_iter iter)
2767 char name[PROC_NUMBUF];
2768 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2769 return proc_fill_cache(filp, dirent, filldir, name, len,
2770 proc_pid_instantiate, iter.task, NULL);
2773 /* for the /proc/ directory itself, after non-process stuff has been done */
2774 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2776 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2777 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2778 struct tgid_iter iter;
2779 struct pid_namespace *ns;
2784 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2785 const struct pid_entry *p = &proc_base_stuff[nr];
2786 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2790 ns = filp->f_dentry->d_sb->s_fs_info;
2792 iter.tgid = filp->f_pos - TGID_OFFSET;
2793 for (iter = next_tgid(ns, iter);
2795 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2796 filp->f_pos = iter.tgid + TGID_OFFSET;
2797 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2798 put_task_struct(iter.task);
2802 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2804 put_task_struct(reaper);
2812 static const struct pid_entry tid_base_stuff[] = {
2813 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2814 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2815 REG("environ", S_IRUSR, proc_environ_operations),
2816 INF("auxv", S_IRUSR, proc_pid_auxv),
2817 ONE("status", S_IRUGO, proc_pid_status),
2818 ONE("personality", S_IRUSR, proc_pid_personality),
2819 INF("limits", S_IRUSR, proc_pid_limits),
2820 #ifdef CONFIG_SCHED_DEBUG
2821 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2823 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2824 INF("syscall", S_IRUSR, proc_pid_syscall),
2826 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2827 ONE("stat", S_IRUGO, proc_tid_stat),
2828 ONE("statm", S_IRUGO, proc_pid_statm),
2829 REG("maps", S_IRUGO, proc_maps_operations),
2831 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2833 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2834 LNK("cwd", proc_cwd_link),
2835 LNK("root", proc_root_link),
2836 LNK("exe", proc_exe_link),
2837 REG("mounts", S_IRUGO, proc_mounts_operations),
2838 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2839 #ifdef CONFIG_PROC_PAGE_MONITOR
2840 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2841 REG("smaps", S_IRUGO, proc_smaps_operations),
2842 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2844 #ifdef CONFIG_SECURITY
2845 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2847 #ifdef CONFIG_KALLSYMS
2848 INF("wchan", S_IRUGO, proc_pid_wchan),
2850 #ifdef CONFIG_STACKTRACE
2851 ONE("stack", S_IRUSR, proc_pid_stack),
2853 #ifdef CONFIG_SCHEDSTATS
2854 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2856 #ifdef CONFIG_LATENCYTOP
2857 REG("latency", S_IRUGO, proc_lstats_operations),
2859 #ifdef CONFIG_PROC_PID_CPUSET
2860 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2862 #ifdef CONFIG_CGROUPS
2863 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2865 INF("oom_score", S_IRUGO, proc_oom_score),
2866 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2867 #ifdef CONFIG_AUDITSYSCALL
2868 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2869 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2871 #ifdef CONFIG_FAULT_INJECTION
2872 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2874 #ifdef CONFIG_TASK_IO_ACCOUNTING
2875 INF("io", S_IRUGO, proc_tid_io_accounting),
2879 static int proc_tid_base_readdir(struct file * filp,
2880 void * dirent, filldir_t filldir)
2882 return proc_pident_readdir(filp,dirent,filldir,
2883 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2886 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2887 return proc_pident_lookup(dir, dentry,
2888 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2891 static const struct file_operations proc_tid_base_operations = {
2892 .read = generic_read_dir,
2893 .readdir = proc_tid_base_readdir,
2896 static const struct inode_operations proc_tid_base_inode_operations = {
2897 .lookup = proc_tid_base_lookup,
2898 .getattr = pid_getattr,
2899 .setattr = proc_setattr,
2902 static struct dentry *proc_task_instantiate(struct inode *dir,
2903 struct dentry *dentry, struct task_struct *task, const void *ptr)
2905 struct dentry *error = ERR_PTR(-ENOENT);
2906 struct inode *inode;
2907 inode = proc_pid_make_inode(dir->i_sb, task);
2911 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2912 inode->i_op = &proc_tid_base_inode_operations;
2913 inode->i_fop = &proc_tid_base_operations;
2914 inode->i_flags|=S_IMMUTABLE;
2916 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2917 ARRAY_SIZE(tid_base_stuff));
2919 dentry->d_op = &pid_dentry_operations;
2921 d_add(dentry, inode);
2922 /* Close the race of the process dying before we return the dentry */
2923 if (pid_revalidate(dentry, NULL))
2929 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2931 struct dentry *result = ERR_PTR(-ENOENT);
2932 struct task_struct *task;
2933 struct task_struct *leader = get_proc_task(dir);
2935 struct pid_namespace *ns;
2940 tid = name_to_int(dentry);
2944 ns = dentry->d_sb->s_fs_info;
2946 task = find_task_by_pid_ns(tid, ns);
2948 get_task_struct(task);
2952 if (!same_thread_group(leader, task))
2955 result = proc_task_instantiate(dir, dentry, task, NULL);
2957 put_task_struct(task);
2959 put_task_struct(leader);
2965 * Find the first tid of a thread group to return to user space.
2967 * Usually this is just the thread group leader, but if the users
2968 * buffer was too small or there was a seek into the middle of the
2969 * directory we have more work todo.
2971 * In the case of a short read we start with find_task_by_pid.
2973 * In the case of a seek we start with the leader and walk nr
2976 static struct task_struct *first_tid(struct task_struct *leader,
2977 int tid, int nr, struct pid_namespace *ns)
2979 struct task_struct *pos;
2982 /* Attempt to start with the pid of a thread */
2983 if (tid && (nr > 0)) {
2984 pos = find_task_by_pid_ns(tid, ns);
2985 if (pos && (pos->group_leader == leader))
2989 /* If nr exceeds the number of threads there is nothing todo */
2991 if (nr && nr >= get_nr_threads(leader))
2994 /* If we haven't found our starting place yet start
2995 * with the leader and walk nr threads forward.
2997 for (pos = leader; nr > 0; --nr) {
2998 pos = next_thread(pos);
2999 if (pos == leader) {
3005 get_task_struct(pos);
3012 * Find the next thread in the thread list.
3013 * Return NULL if there is an error or no next thread.
3015 * The reference to the input task_struct is released.
3017 static struct task_struct *next_tid(struct task_struct *start)
3019 struct task_struct *pos = NULL;
3021 if (pid_alive(start)) {
3022 pos = next_thread(start);
3023 if (thread_group_leader(pos))
3026 get_task_struct(pos);
3029 put_task_struct(start);
3033 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3034 struct task_struct *task, int tid)
3036 char name[PROC_NUMBUF];
3037 int len = snprintf(name, sizeof(name), "%d", tid);
3038 return proc_fill_cache(filp, dirent, filldir, name, len,
3039 proc_task_instantiate, task, NULL);
3042 /* for the /proc/TGID/task/ directories */
3043 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3045 struct dentry *dentry = filp->f_path.dentry;
3046 struct inode *inode = dentry->d_inode;
3047 struct task_struct *leader = NULL;
3048 struct task_struct *task;
3049 int retval = -ENOENT;
3052 struct pid_namespace *ns;
3054 task = get_proc_task(inode);
3058 if (pid_alive(task)) {
3059 leader = task->group_leader;
3060 get_task_struct(leader);
3063 put_task_struct(task);
3068 switch ((unsigned long)filp->f_pos) {
3071 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3076 ino = parent_ino(dentry);
3077 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3083 /* f_version caches the tgid value that the last readdir call couldn't
3084 * return. lseek aka telldir automagically resets f_version to 0.
3086 ns = filp->f_dentry->d_sb->s_fs_info;
3087 tid = (int)filp->f_version;
3088 filp->f_version = 0;
3089 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3091 task = next_tid(task), filp->f_pos++) {
3092 tid = task_pid_nr_ns(task, ns);
3093 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3094 /* returning this tgid failed, save it as the first
3095 * pid for the next readir call */
3096 filp->f_version = (u64)tid;
3097 put_task_struct(task);
3102 put_task_struct(leader);
3107 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3109 struct inode *inode = dentry->d_inode;
3110 struct task_struct *p = get_proc_task(inode);
3111 generic_fillattr(inode, stat);
3114 stat->nlink += get_nr_threads(p);
3121 static const struct inode_operations proc_task_inode_operations = {
3122 .lookup = proc_task_lookup,
3123 .getattr = proc_task_getattr,
3124 .setattr = proc_setattr,
3127 static const struct file_operations proc_task_operations = {
3128 .read = generic_read_dir,
3129 .readdir = proc_task_readdir,