2 via686a.c - Part of lm_sensors, Linux kernel modules
3 for hardware monitoring
5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
6 Kyösti Mälkki <kmalkki@cc.hut.fi>,
7 Mark Studebaker <mdsxyz123@yahoo.com>,
8 and Bob Dougherty <bobd@stanford.edu>
9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 Supports the Via VT82C686A, VT82C686B south bridges.
29 Reports all as a 686A.
30 Warning - only supports a single device.
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/jiffies.h>
37 #include <linux/platform_device.h>
38 #include <linux/hwmon.h>
39 #include <linux/hwmon-sysfs.h>
40 #include <linux/err.h>
41 #include <linux/init.h>
42 #include <linux/mutex.h>
43 #include <linux/sysfs.h>
47 /* If force_addr is set to anything different from 0, we forcibly enable
48 the device at the given address. */
49 static unsigned short force_addr;
50 module_param(force_addr, ushort, 0);
51 MODULE_PARM_DESC(force_addr,
52 "Initialize the base address of the sensors");
54 static struct platform_device *pdev;
57 The Via 686a southbridge has a LM78-like chip integrated on the same IC.
58 This driver is a customized copy of lm78.c
61 /* Many VIA686A constants specified below */
63 /* Length of ISA address segment */
64 #define VIA686A_EXTENT 0x80
65 #define VIA686A_BASE_REG 0x70
66 #define VIA686A_ENABLE_REG 0x74
68 /* The VIA686A registers */
69 /* ins numbered 0-4 */
70 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
71 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
72 #define VIA686A_REG_IN(nr) (0x22 + (nr))
74 /* fans numbered 1-2 */
75 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
76 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
78 /* temps numbered 1-3 */
79 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
80 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
81 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
83 #define VIA686A_REG_TEMP_LOW1 0x4b
84 /* 2 = bits 5-4, 3 = bits 7-6 */
85 #define VIA686A_REG_TEMP_LOW23 0x49
87 #define VIA686A_REG_ALARM1 0x41
88 #define VIA686A_REG_ALARM2 0x42
89 #define VIA686A_REG_FANDIV 0x47
90 #define VIA686A_REG_CONFIG 0x40
91 /* The following register sets temp interrupt mode (bits 1-0 for temp1,
92 3-2 for temp2, 5-4 for temp3). Modes are:
93 00 interrupt stays as long as value is out-of-range
94 01 interrupt is cleared once register is read (default)
95 10 comparator mode- like 00, but ignores hysteresis
97 #define VIA686A_REG_TEMP_MODE 0x4b
98 /* We'll just assume that you want to set all 3 simultaneously: */
99 #define VIA686A_TEMP_MODE_MASK 0x3F
100 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
102 /* Conversions. Limit checking is only done on the TO_REG
105 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
106 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
107 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
108 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
109 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
110 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
111 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
112 in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
114 volts = (25*regVal+133)*factor
115 regVal = (volts/factor-133)/25
116 (These conversions were contributed by Jonathan Teh Soon Yew
117 <j.teh@iname.com>) */
118 static inline u8 IN_TO_REG(long val, int inNum)
120 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
121 Rounding is done (120500 is actually 133000 - 12500).
122 Remember that val is expressed in 0.001V/bit, which is why we divide
123 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
124 for the constants. */
127 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
130 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255);
133 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255);
136 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255);
139 static inline long IN_FROM_REG(u8 val, int inNum)
141 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
142 We also multiply them by 1000 because we want 0.001V/bit for the
143 output value. Rounding is done. */
145 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
147 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
149 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
151 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
154 /********* FAN RPM CONVERSIONS ********/
155 /* Higher register values = slower fans (the fan's strobe gates a counter).
156 But this chip saturates back at 0, not at 255 like all the other chips.
158 static inline u8 FAN_TO_REG(long rpm, int div)
162 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
163 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
166 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
168 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
169 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
171 return double(temp)*0.427-32.08;
172 else if(temp>=169 && temp<=202)
173 return double(temp)*0.582-58.16;
175 return double(temp)*0.924-127.33;
177 A fifth-order polynomial fits the unofficial data (provided by Alex van
178 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
179 numbers on my machine (ie. they agree with what my BIOS tells me).
180 Here's the fifth-order fit to the 8-bit data:
181 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
182 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
184 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
185 finding my typos in this formula!)
187 Alas, none of the elegant function-fit solutions will work because we
188 aren't allowed to use floating point in the kernel and doing it with
189 integers doesn't provide enough precision. So we'll do boring old
190 look-up table stuff. The unofficial data (see below) have effectively
191 7-bit resolution (they are rounded to the nearest degree). I'm assuming
192 that the transfer function of the device is monotonic and smooth, so a
193 smooth function fit to the data will allow us to get better precision.
194 I used the 5th-order poly fit described above and solved for
195 VIA register values 0-255. I *10 before rounding, so we get tenth-degree
196 precision. (I could have done all 1024 values for our 10-bit readings,
197 but the function is very linear in the useful range (0-80 deg C), so
198 we'll just use linear interpolation for 10-bit readings.) So, tempLUT
199 is the temp at via register values 0-255: */
200 static const s16 tempLUT[] =
201 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
202 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
203 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
204 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
205 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
206 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
207 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
208 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
209 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
210 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
211 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
212 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
213 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
214 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
215 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
216 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
217 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
218 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
219 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
220 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
221 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
222 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
225 /* the original LUT values from Alex van Kaam <darkside@chello.nl>
226 (for via register values 12-240):
227 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
228 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
229 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
230 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
231 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
232 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
233 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
234 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
235 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
236 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
239 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
240 an extra term for a good fit to these inverse data!) and then
241 solving for each temp value from -50 to 110 (the useable range for
242 this chip). Here's the fit:
243 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
244 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
246 static const u8 viaLUT[] =
247 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
248 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
249 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
250 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
251 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
252 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
253 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
254 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
255 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
256 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
257 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
258 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
262 /* Converting temps to (8-bit) hyst and over registers
263 No interpolation here.
264 The +50 is because the temps start at -50 */
265 static inline u8 TEMP_TO_REG(long val)
267 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
268 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
271 /* for 8-bit temperature hyst and over registers */
272 #define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100)
274 /* for 10-bit temperature readings */
275 static inline long TEMP_FROM_REG10(u16 val)
277 u16 eightBits = val >> 2;
278 u16 twoBits = val & 3;
280 /* no interpolation for these */
281 if (twoBits == 0 || eightBits == 255)
282 return TEMP_FROM_REG(eightBits);
284 /* do some linear interpolation */
285 return (tempLUT[eightBits] * (4 - twoBits) +
286 tempLUT[eightBits + 1] * twoBits) * 25;
289 #define DIV_FROM_REG(val) (1 << (val))
290 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
292 /* For each registered chip, we need to keep some data in memory.
293 The structure is dynamically allocated. */
294 struct via686a_data {
297 struct device *hwmon_dev;
298 struct mutex update_lock;
299 char valid; /* !=0 if following fields are valid */
300 unsigned long last_updated; /* In jiffies */
302 u8 in[5]; /* Register value */
303 u8 in_max[5]; /* Register value */
304 u8 in_min[5]; /* Register value */
305 u8 fan[2]; /* Register value */
306 u8 fan_min[2]; /* Register value */
307 u16 temp[3]; /* Register value 10 bit */
308 u8 temp_over[3]; /* Register value */
309 u8 temp_hyst[3]; /* Register value */
310 u8 fan_div[2]; /* Register encoding, shifted right */
311 u16 alarms; /* Register encoding, combined */
314 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
316 static int via686a_probe(struct platform_device *pdev);
317 static int __devexit via686a_remove(struct platform_device *pdev);
319 static inline int via686a_read_value(struct via686a_data *data, u8 reg)
321 return inb_p(data->addr + reg);
324 static inline void via686a_write_value(struct via686a_data *data, u8 reg,
327 outb_p(value, data->addr + reg);
330 static struct via686a_data *via686a_update_device(struct device *dev);
331 static void via686a_init_device(struct via686a_data *data);
333 /* following are the sysfs callback functions */
335 /* 7 voltage sensors */
336 static ssize_t show_in(struct device *dev, struct device_attribute *da,
338 struct via686a_data *data = via686a_update_device(dev);
339 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
340 int nr = attr->index;
341 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
344 static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
346 struct via686a_data *data = via686a_update_device(dev);
347 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348 int nr = attr->index;
349 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
352 static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
354 struct via686a_data *data = via686a_update_device(dev);
355 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
356 int nr = attr->index;
357 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
360 static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
361 const char *buf, size_t count) {
362 struct via686a_data *data = dev_get_drvdata(dev);
363 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364 int nr = attr->index;
365 unsigned long val = simple_strtoul(buf, NULL, 10);
367 mutex_lock(&data->update_lock);
368 data->in_min[nr] = IN_TO_REG(val, nr);
369 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
371 mutex_unlock(&data->update_lock);
374 static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
375 const char *buf, size_t count) {
376 struct via686a_data *data = dev_get_drvdata(dev);
377 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
378 int nr = attr->index;
379 unsigned long val = simple_strtoul(buf, NULL, 10);
381 mutex_lock(&data->update_lock);
382 data->in_max[nr] = IN_TO_REG(val, nr);
383 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
385 mutex_unlock(&data->update_lock);
388 #define show_in_offset(offset) \
389 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
390 show_in, NULL, offset); \
391 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
392 show_in_min, set_in_min, offset); \
393 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
394 show_in_max, set_in_max, offset);
403 static ssize_t show_temp(struct device *dev, struct device_attribute *da,
405 struct via686a_data *data = via686a_update_device(dev);
406 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
407 int nr = attr->index;
408 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
410 static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
412 struct via686a_data *data = via686a_update_device(dev);
413 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
414 int nr = attr->index;
415 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
417 static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
419 struct via686a_data *data = via686a_update_device(dev);
420 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
421 int nr = attr->index;
422 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
424 static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
425 const char *buf, size_t count) {
426 struct via686a_data *data = dev_get_drvdata(dev);
427 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
428 int nr = attr->index;
429 int val = simple_strtol(buf, NULL, 10);
431 mutex_lock(&data->update_lock);
432 data->temp_over[nr] = TEMP_TO_REG(val);
433 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
434 data->temp_over[nr]);
435 mutex_unlock(&data->update_lock);
438 static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
439 const char *buf, size_t count) {
440 struct via686a_data *data = dev_get_drvdata(dev);
441 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
442 int nr = attr->index;
443 int val = simple_strtol(buf, NULL, 10);
445 mutex_lock(&data->update_lock);
446 data->temp_hyst[nr] = TEMP_TO_REG(val);
447 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
448 data->temp_hyst[nr]);
449 mutex_unlock(&data->update_lock);
452 #define show_temp_offset(offset) \
453 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
454 show_temp, NULL, offset - 1); \
455 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
456 show_temp_over, set_temp_over, offset - 1); \
457 static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
458 show_temp_hyst, set_temp_hyst, offset - 1);
465 static ssize_t show_fan(struct device *dev, struct device_attribute *da,
467 struct via686a_data *data = via686a_update_device(dev);
468 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
469 int nr = attr->index;
470 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
471 DIV_FROM_REG(data->fan_div[nr])) );
473 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
475 struct via686a_data *data = via686a_update_device(dev);
476 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
477 int nr = attr->index;
478 return sprintf(buf, "%d\n",
479 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
481 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
483 struct via686a_data *data = via686a_update_device(dev);
484 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
485 int nr = attr->index;
486 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
488 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
489 const char *buf, size_t count) {
490 struct via686a_data *data = dev_get_drvdata(dev);
491 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
492 int nr = attr->index;
493 int val = simple_strtol(buf, NULL, 10);
495 mutex_lock(&data->update_lock);
496 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
497 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
498 mutex_unlock(&data->update_lock);
501 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
502 const char *buf, size_t count) {
503 struct via686a_data *data = dev_get_drvdata(dev);
504 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
505 int nr = attr->index;
506 int val = simple_strtol(buf, NULL, 10);
509 mutex_lock(&data->update_lock);
510 old = via686a_read_value(data, VIA686A_REG_FANDIV);
511 data->fan_div[nr] = DIV_TO_REG(val);
512 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
513 via686a_write_value(data, VIA686A_REG_FANDIV, old);
514 mutex_unlock(&data->update_lock);
518 #define show_fan_offset(offset) \
519 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
520 show_fan, NULL, offset - 1); \
521 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
522 show_fan_min, set_fan_min, offset - 1); \
523 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
524 show_fan_div, set_fan_div, offset - 1);
530 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
531 struct via686a_data *data = via686a_update_device(dev);
532 return sprintf(buf, "%u\n", data->alarms);
534 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
536 static ssize_t show_name(struct device *dev, struct device_attribute
539 struct via686a_data *data = dev_get_drvdata(dev);
540 return sprintf(buf, "%s\n", data->name);
542 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
544 static struct attribute *via686a_attributes[] = {
545 &sensor_dev_attr_in0_input.dev_attr.attr,
546 &sensor_dev_attr_in1_input.dev_attr.attr,
547 &sensor_dev_attr_in2_input.dev_attr.attr,
548 &sensor_dev_attr_in3_input.dev_attr.attr,
549 &sensor_dev_attr_in4_input.dev_attr.attr,
550 &sensor_dev_attr_in0_min.dev_attr.attr,
551 &sensor_dev_attr_in1_min.dev_attr.attr,
552 &sensor_dev_attr_in2_min.dev_attr.attr,
553 &sensor_dev_attr_in3_min.dev_attr.attr,
554 &sensor_dev_attr_in4_min.dev_attr.attr,
555 &sensor_dev_attr_in0_max.dev_attr.attr,
556 &sensor_dev_attr_in1_max.dev_attr.attr,
557 &sensor_dev_attr_in2_max.dev_attr.attr,
558 &sensor_dev_attr_in3_max.dev_attr.attr,
559 &sensor_dev_attr_in4_max.dev_attr.attr,
561 &sensor_dev_attr_temp1_input.dev_attr.attr,
562 &sensor_dev_attr_temp2_input.dev_attr.attr,
563 &sensor_dev_attr_temp3_input.dev_attr.attr,
564 &sensor_dev_attr_temp1_max.dev_attr.attr,
565 &sensor_dev_attr_temp2_max.dev_attr.attr,
566 &sensor_dev_attr_temp3_max.dev_attr.attr,
567 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
568 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
569 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
571 &sensor_dev_attr_fan1_input.dev_attr.attr,
572 &sensor_dev_attr_fan2_input.dev_attr.attr,
573 &sensor_dev_attr_fan1_min.dev_attr.attr,
574 &sensor_dev_attr_fan2_min.dev_attr.attr,
575 &sensor_dev_attr_fan1_div.dev_attr.attr,
576 &sensor_dev_attr_fan2_div.dev_attr.attr,
578 &dev_attr_alarms.attr,
583 static const struct attribute_group via686a_group = {
584 .attrs = via686a_attributes,
587 static struct platform_driver via686a_driver = {
589 .owner = THIS_MODULE,
592 .probe = via686a_probe,
593 .remove = __devexit_p(via686a_remove),
597 /* This is called when the module is loaded */
598 static int __devinit via686a_probe(struct platform_device *pdev)
600 struct via686a_data *data;
601 struct resource *res;
604 /* Reserve the ISA region */
605 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
606 if (!request_region(res->start, VIA686A_EXTENT,
607 via686a_driver.driver.name)) {
608 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
609 (unsigned long)res->start, (unsigned long)res->end);
613 if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
618 platform_set_drvdata(pdev, data);
619 data->addr = res->start;
620 data->name = "via686a";
621 mutex_init(&data->update_lock);
623 /* Initialize the VIA686A chip */
624 via686a_init_device(data);
626 /* Register sysfs hooks */
627 if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group)))
630 data->hwmon_dev = hwmon_device_register(&pdev->dev);
631 if (IS_ERR(data->hwmon_dev)) {
632 err = PTR_ERR(data->hwmon_dev);
633 goto exit_remove_files;
639 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
643 release_region(res->start, VIA686A_EXTENT);
647 static int __devexit via686a_remove(struct platform_device *pdev)
649 struct via686a_data *data = platform_get_drvdata(pdev);
651 hwmon_device_unregister(data->hwmon_dev);
652 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
654 release_region(data->addr, VIA686A_EXTENT);
655 platform_set_drvdata(pdev, NULL);
661 static void __devinit via686a_init_device(struct via686a_data *data)
665 /* Start monitoring */
666 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
667 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
669 /* Configure temp interrupt mode for continuous-interrupt operation */
670 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
671 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
672 (reg & ~VIA686A_TEMP_MODE_MASK)
673 | VIA686A_TEMP_MODE_CONTINUOUS);
676 static struct via686a_data *via686a_update_device(struct device *dev)
678 struct via686a_data *data = dev_get_drvdata(dev);
681 mutex_lock(&data->update_lock);
683 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
685 for (i = 0; i <= 4; i++) {
687 via686a_read_value(data, VIA686A_REG_IN(i));
688 data->in_min[i] = via686a_read_value(data,
692 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
694 for (i = 1; i <= 2; i++) {
696 via686a_read_value(data, VIA686A_REG_FAN(i));
697 data->fan_min[i - 1] = via686a_read_value(data,
698 VIA686A_REG_FAN_MIN(i));
700 for (i = 0; i <= 2; i++) {
701 data->temp[i] = via686a_read_value(data,
702 VIA686A_REG_TEMP[i]) << 2;
704 via686a_read_value(data,
705 VIA686A_REG_TEMP_OVER[i]);
707 via686a_read_value(data,
708 VIA686A_REG_TEMP_HYST[i]);
710 /* add in lower 2 bits
711 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
712 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
713 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
715 data->temp[0] |= (via686a_read_value(data,
716 VIA686A_REG_TEMP_LOW1)
719 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
722 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
725 i = via686a_read_value(data, VIA686A_REG_FANDIV);
726 data->fan_div[0] = (i >> 4) & 0x03;
727 data->fan_div[1] = i >> 6;
729 via686a_read_value(data,
730 VIA686A_REG_ALARM1) |
731 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
732 data->last_updated = jiffies;
736 mutex_unlock(&data->update_lock);
741 static struct pci_device_id via686a_pci_ids[] = {
742 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
746 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
748 static int __devinit via686a_device_add(unsigned short address)
750 struct resource res = {
752 .end = address + VIA686A_EXTENT - 1,
754 .flags = IORESOURCE_IO,
758 pdev = platform_device_alloc("via686a", address);
761 printk(KERN_ERR "via686a: Device allocation failed\n");
765 err = platform_device_add_resources(pdev, &res, 1);
767 printk(KERN_ERR "via686a: Device resource addition failed "
769 goto exit_device_put;
772 err = platform_device_add(pdev);
774 printk(KERN_ERR "via686a: Device addition failed (%d)\n",
776 goto exit_device_put;
782 platform_device_put(pdev);
787 static int __devinit via686a_pci_probe(struct pci_dev *dev,
788 const struct pci_device_id *id)
793 address = force_addr & ~(VIA686A_EXTENT - 1);
794 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
795 if (PCIBIOS_SUCCESSFUL !=
796 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
799 if (PCIBIOS_SUCCESSFUL !=
800 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
803 address = val & ~(VIA686A_EXTENT - 1);
805 dev_err(&dev->dev, "base address not set - upgrade BIOS "
806 "or use force_addr=0xaddr\n");
810 if (PCIBIOS_SUCCESSFUL !=
811 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
813 if (!(val & 0x0001)) {
815 dev_warn(&dev->dev, "Sensors disabled, enable "
816 "with force_addr=0x%x\n", address);
820 dev_warn(&dev->dev, "Enabling sensors\n");
821 if (PCIBIOS_SUCCESSFUL !=
822 pci_write_config_word(dev, VIA686A_ENABLE_REG,
827 if (platform_driver_register(&via686a_driver))
830 /* Sets global pdev as a side effect */
831 if (via686a_device_add(address))
832 goto exit_unregister;
834 /* Always return failure here. This is to allow other drivers to bind
835 * to this pci device. We don't really want to have control over the
836 * pci device, we only wanted to read as few register values from it.
838 s_bridge = pci_dev_get(dev);
842 platform_driver_unregister(&via686a_driver);
847 static struct pci_driver via686a_pci_driver = {
849 .id_table = via686a_pci_ids,
850 .probe = via686a_pci_probe,
853 static int __init sm_via686a_init(void)
855 return pci_register_driver(&via686a_pci_driver);
858 static void __exit sm_via686a_exit(void)
860 pci_unregister_driver(&via686a_pci_driver);
861 if (s_bridge != NULL) {
862 platform_device_unregister(pdev);
863 platform_driver_unregister(&via686a_driver);
864 pci_dev_put(s_bridge);
869 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
870 "Mark Studebaker <mdsxyz123@yahoo.com> "
871 "and Bob Dougherty <bobd@stanford.edu>");
872 MODULE_DESCRIPTION("VIA 686A Sensor device");
873 MODULE_LICENSE("GPL");
875 module_init(sm_via686a_init);
876 module_exit(sm_via686a_exit);