PCI Hotplug: cpqphp: fix comment style
[linux-2.6] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44                         u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46                         u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48
49
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending;        /* = 0 */
52
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56         /*
57          * XXX(hch): if someone is bored please convert all callers
58          * to call msleep_interruptible directly.  They really want
59          * to specify timeouts in natural units and spend a lot of
60          * effort converting them to jiffies..
61          */
62         msleep_interruptible(jiffies_to_msecs(delay));
63 }
64
65
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70         int hp_slot;
71         u8 rc = 0;
72         u16 temp_word;
73         struct pci_func *func;
74         struct event_info *taskInfo;
75
76         if (!change)
77                 return 0;
78
79         /* Switch Change */
80         dbg("cpqsbd:  Switch interrupt received.\n");
81
82         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83                 if (change & (0x1L << hp_slot)) {
84                         /*
85                          * this one changed.
86                          */
87                         func = cpqhp_slot_find(ctrl->bus,
88                                 (hp_slot + ctrl->slot_device_offset), 0);
89
90                         /* this is the structure that tells the worker thread
91                          * what to do
92                          */
93                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
94                         ctrl->next_event = (ctrl->next_event + 1) % 10;
95                         taskInfo->hp_slot = hp_slot;
96
97                         rc++;
98
99                         temp_word = ctrl->ctrl_int_comp >> 16;
100                         func->presence_save = (temp_word >> hp_slot) & 0x01;
101                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
102
103                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
104                                 /*
105                                  * Switch opened
106                                  */
107
108                                 func->switch_save = 0;
109
110                                 taskInfo->event_type = INT_SWITCH_OPEN;
111                         } else {
112                                 /*
113                                  * Switch closed
114                                  */
115
116                                 func->switch_save = 0x10;
117
118                                 taskInfo->event_type = INT_SWITCH_CLOSE;
119                         }
120                 }
121         }
122
123         return rc;
124 }
125
126 /**
127  * cpqhp_find_slot - find the struct slot of given device
128  * @ctrl: scan lots of this controller
129  * @device: the device id to find
130  */
131 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
132 {
133         struct slot *slot = ctrl->slot;
134
135         while (slot && (slot->device != device)) {
136                 slot = slot->next;
137         }
138
139         return slot;
140 }
141
142
143 static u8 handle_presence_change(u16 change, struct controller * ctrl)
144 {
145         int hp_slot;
146         u8 rc = 0;
147         u8 temp_byte;
148         u16 temp_word;
149         struct pci_func *func;
150         struct event_info *taskInfo;
151         struct slot *p_slot;
152
153         if (!change)
154                 return 0;
155
156         /*
157          * Presence Change
158          */
159         dbg("cpqsbd:  Presence/Notify input change.\n");
160         dbg("         Changed bits are 0x%4.4x\n", change );
161
162         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
163                 if (change & (0x0101 << hp_slot)) {
164                         /*
165                          * this one changed.
166                          */
167                         func = cpqhp_slot_find(ctrl->bus,
168                                 (hp_slot + ctrl->slot_device_offset), 0);
169
170                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
171                         ctrl->next_event = (ctrl->next_event + 1) % 10;
172                         taskInfo->hp_slot = hp_slot;
173
174                         rc++;
175
176                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
177                         if (!p_slot)
178                                 return 0;
179
180                         /* If the switch closed, must be a button
181                          * If not in button mode, nevermind
182                          */
183                         if (func->switch_save && (ctrl->push_button == 1)) {
184                                 temp_word = ctrl->ctrl_int_comp >> 16;
185                                 temp_byte = (temp_word >> hp_slot) & 0x01;
186                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
187
188                                 if (temp_byte != func->presence_save) {
189                                         /*
190                                          * button Pressed (doesn't do anything)
191                                          */
192                                         dbg("hp_slot %d button pressed\n", hp_slot);
193                                         taskInfo->event_type = INT_BUTTON_PRESS;
194                                 } else {
195                                         /*
196                                          * button Released - TAKE ACTION!!!!
197                                          */
198                                         dbg("hp_slot %d button released\n", hp_slot);
199                                         taskInfo->event_type = INT_BUTTON_RELEASE;
200
201                                         /* Cancel if we are still blinking */
202                                         if ((p_slot->state == BLINKINGON_STATE)
203                                             || (p_slot->state == BLINKINGOFF_STATE)) {
204                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
205                                                 dbg("hp_slot %d button cancel\n", hp_slot);
206                                         } else if ((p_slot->state == POWERON_STATE)
207                                                    || (p_slot->state == POWEROFF_STATE)) {
208                                                 /* info(msg_button_ignore, p_slot->number); */
209                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
210                                                 dbg("hp_slot %d button ignore\n", hp_slot);
211                                         }
212                                 }
213                         } else {
214                                 /* Switch is open, assume a presence change
215                                  * Save the presence state
216                                  */
217                                 temp_word = ctrl->ctrl_int_comp >> 16;
218                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
219                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
220
221                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
222                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
223                                         /* Present */
224                                         taskInfo->event_type = INT_PRESENCE_ON;
225                                 } else {
226                                         /* Not Present */
227                                         taskInfo->event_type = INT_PRESENCE_OFF;
228                                 }
229                         }
230                 }
231         }
232
233         return rc;
234 }
235
236
237 static u8 handle_power_fault(u8 change, struct controller * ctrl)
238 {
239         int hp_slot;
240         u8 rc = 0;
241         struct pci_func *func;
242         struct event_info *taskInfo;
243
244         if (!change)
245                 return 0;
246
247         /*
248          * power fault
249          */
250
251         info("power fault interrupt\n");
252
253         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
254                 if (change & (0x01 << hp_slot)) {
255                         /*
256                          * this one changed.
257                          */
258                         func = cpqhp_slot_find(ctrl->bus,
259                                 (hp_slot + ctrl->slot_device_offset), 0);
260
261                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
262                         ctrl->next_event = (ctrl->next_event + 1) % 10;
263                         taskInfo->hp_slot = hp_slot;
264
265                         rc++;
266
267                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
268                                 /*
269                                  * power fault Cleared
270                                  */
271                                 func->status = 0x00;
272
273                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
274                         } else {
275                                 /*
276                                  * power fault
277                                  */
278                                 taskInfo->event_type = INT_POWER_FAULT;
279
280                                 if (ctrl->rev < 4) {
281                                         amber_LED_on (ctrl, hp_slot);
282                                         green_LED_off (ctrl, hp_slot);
283                                         set_SOGO (ctrl);
284
285                                         /* this is a fatal condition, we want
286                                          * to crash the machine to protect from
287                                          * data corruption. simulated_NMI
288                                          * shouldn't ever return */
289                                         /* FIXME
290                                         simulated_NMI(hp_slot, ctrl); */
291
292                                         /* The following code causes a software
293                                          * crash just in case simulated_NMI did
294                                          * return */
295                                         /*FIXME
296                                         panic(msg_power_fault); */
297                                 } else {
298                                         /* set power fault status for this board */
299                                         func->status = 0xFF;
300                                         info("power fault bit %x set\n", hp_slot);
301                                 }
302                         }
303                 }
304         }
305
306         return rc;
307 }
308
309
310 /**
311  * sort_by_size - sort nodes on the list by their length, smallest first.
312  * @head: list to sort
313  */
314 static int sort_by_size(struct pci_resource **head)
315 {
316         struct pci_resource *current_res;
317         struct pci_resource *next_res;
318         int out_of_order = 1;
319
320         if (!(*head))
321                 return 1;
322
323         if (!((*head)->next))
324                 return 0;
325
326         while (out_of_order) {
327                 out_of_order = 0;
328
329                 /* Special case for swapping list head */
330                 if (((*head)->next) &&
331                     ((*head)->length > (*head)->next->length)) {
332                         out_of_order++;
333                         current_res = *head;
334                         *head = (*head)->next;
335                         current_res->next = (*head)->next;
336                         (*head)->next = current_res;
337                 }
338
339                 current_res = *head;
340
341                 while (current_res->next && current_res->next->next) {
342                         if (current_res->next->length > current_res->next->next->length) {
343                                 out_of_order++;
344                                 next_res = current_res->next;
345                                 current_res->next = current_res->next->next;
346                                 current_res = current_res->next;
347                                 next_res->next = current_res->next;
348                                 current_res->next = next_res;
349                         } else
350                                 current_res = current_res->next;
351                 }
352         }  /* End of out_of_order loop */
353
354         return 0;
355 }
356
357
358 /**
359  * sort_by_max_size - sort nodes on the list by their length, largest first.
360  * @head: list to sort
361  */
362 static int sort_by_max_size(struct pci_resource **head)
363 {
364         struct pci_resource *current_res;
365         struct pci_resource *next_res;
366         int out_of_order = 1;
367
368         if (!(*head))
369                 return 1;
370
371         if (!((*head)->next))
372                 return 0;
373
374         while (out_of_order) {
375                 out_of_order = 0;
376
377                 /* Special case for swapping list head */
378                 if (((*head)->next) &&
379                     ((*head)->length < (*head)->next->length)) {
380                         out_of_order++;
381                         current_res = *head;
382                         *head = (*head)->next;
383                         current_res->next = (*head)->next;
384                         (*head)->next = current_res;
385                 }
386
387                 current_res = *head;
388
389                 while (current_res->next && current_res->next->next) {
390                         if (current_res->next->length < current_res->next->next->length) {
391                                 out_of_order++;
392                                 next_res = current_res->next;
393                                 current_res->next = current_res->next->next;
394                                 current_res = current_res->next;
395                                 next_res->next = current_res->next;
396                                 current_res->next = next_res;
397                         } else
398                                 current_res = current_res->next;
399                 }
400         }  /* End of out_of_order loop */
401
402         return 0;
403 }
404
405
406 /**
407  * do_pre_bridge_resource_split - find node of resources that are unused
408  * @head: new list head
409  * @orig_head: original list head
410  * @alignment: max node size (?)
411  */
412 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
413                                 struct pci_resource **orig_head, u32 alignment)
414 {
415         struct pci_resource *prevnode = NULL;
416         struct pci_resource *node;
417         struct pci_resource *split_node;
418         u32 rc;
419         u32 temp_dword;
420         dbg("do_pre_bridge_resource_split\n");
421
422         if (!(*head) || !(*orig_head))
423                 return NULL;
424
425         rc = cpqhp_resource_sort_and_combine(head);
426
427         if (rc)
428                 return NULL;
429
430         if ((*head)->base != (*orig_head)->base)
431                 return NULL;
432
433         if ((*head)->length == (*orig_head)->length)
434                 return NULL;
435
436
437         /* If we got here, there the bridge requires some of the resource, but
438          * we may be able to split some off of the front
439          */
440
441         node = *head;
442
443         if (node->length & (alignment -1)) {
444                 /* this one isn't an aligned length, so we'll make a new entry
445                  * and split it up.
446                  */
447                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
448
449                 if (!split_node)
450                         return NULL;
451
452                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
453
454                 split_node->base = node->base;
455                 split_node->length = temp_dword;
456
457                 node->length -= temp_dword;
458                 node->base += split_node->length;
459
460                 /* Put it in the list */
461                 *head = split_node;
462                 split_node->next = node;
463         }
464
465         if (node->length < alignment)
466                 return NULL;
467
468         /* Now unlink it */
469         if (*head == node) {
470                 *head = node->next;
471         } else {
472                 prevnode = *head;
473                 while (prevnode->next != node)
474                         prevnode = prevnode->next;
475
476                 prevnode->next = node->next;
477         }
478         node->next = NULL;
479
480         return node;
481 }
482
483
484 /**
485  * do_bridge_resource_split - find one node of resources that aren't in use
486  * @head: list head
487  * @alignment: max node size (?)
488  */
489 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
490 {
491         struct pci_resource *prevnode = NULL;
492         struct pci_resource *node;
493         u32 rc;
494         u32 temp_dword;
495
496         rc = cpqhp_resource_sort_and_combine(head);
497
498         if (rc)
499                 return NULL;
500
501         node = *head;
502
503         while (node->next) {
504                 prevnode = node;
505                 node = node->next;
506                 kfree(prevnode);
507         }
508
509         if (node->length < alignment)
510                 goto error;
511
512         if (node->base & (alignment - 1)) {
513                 /* Short circuit if adjusted size is too small */
514                 temp_dword = (node->base | (alignment-1)) + 1;
515                 if ((node->length - (temp_dword - node->base)) < alignment)
516                         goto error;
517
518                 node->length -= (temp_dword - node->base);
519                 node->base = temp_dword;
520         }
521
522         if (node->length & (alignment - 1))
523                 /* There's stuff in use after this node */
524                 goto error;
525
526         return node;
527 error:
528         kfree(node);
529         return NULL;
530 }
531
532
533 /**
534  * get_io_resource - find first node of given size not in ISA aliasing window.
535  * @head: list to search
536  * @size: size of node to find, must be a power of two.
537  *
538  * Description: This function sorts the resource list by size and then returns
539  * returns the first node of "size" length that is not in the ISA aliasing
540  * window.  If it finds a node larger than "size" it will split it up.
541  */
542 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
543 {
544         struct pci_resource *prevnode;
545         struct pci_resource *node;
546         struct pci_resource *split_node;
547         u32 temp_dword;
548
549         if (!(*head))
550                 return NULL;
551
552         if ( cpqhp_resource_sort_and_combine(head) )
553                 return NULL;
554
555         if ( sort_by_size(head) )
556                 return NULL;
557
558         for (node = *head; node; node = node->next) {
559                 if (node->length < size)
560                         continue;
561
562                 if (node->base & (size - 1)) {
563                         /* this one isn't base aligned properly
564                          * so we'll make a new entry and split it up
565                          */
566                         temp_dword = (node->base | (size-1)) + 1;
567
568                         /* Short circuit if adjusted size is too small */
569                         if ((node->length - (temp_dword - node->base)) < size)
570                                 continue;
571
572                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
573
574                         if (!split_node)
575                                 return NULL;
576
577                         split_node->base = node->base;
578                         split_node->length = temp_dword - node->base;
579                         node->base = temp_dword;
580                         node->length -= split_node->length;
581
582                         /* Put it in the list */
583                         split_node->next = node->next;
584                         node->next = split_node;
585                 } /* End of non-aligned base */
586
587                 /* Don't need to check if too small since we already did */
588                 if (node->length > size) {
589                         /* this one is longer than we need
590                          * so we'll make a new entry and split it up
591                          */
592                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
593
594                         if (!split_node)
595                                 return NULL;
596
597                         split_node->base = node->base + size;
598                         split_node->length = node->length - size;
599                         node->length = size;
600
601                         /* Put it in the list */
602                         split_node->next = node->next;
603                         node->next = split_node;
604                 }  /* End of too big on top end */
605
606                 /* For IO make sure it's not in the ISA aliasing space */
607                 if (node->base & 0x300L)
608                         continue;
609
610                 /* If we got here, then it is the right size
611                  * Now take it out of the list and break
612                  */
613                 if (*head == node) {
614                         *head = node->next;
615                 } else {
616                         prevnode = *head;
617                         while (prevnode->next != node)
618                                 prevnode = prevnode->next;
619
620                         prevnode->next = node->next;
621                 }
622                 node->next = NULL;
623                 break;
624         }
625
626         return node;
627 }
628
629
630 /**
631  * get_max_resource - get largest node which has at least the given size.
632  * @head: the list to search the node in
633  * @size: the minimum size of the node to find
634  *
635  * Description: Gets the largest node that is at least "size" big from the
636  * list pointed to by head.  It aligns the node on top and bottom
637  * to "size" alignment before returning it.
638  */
639 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
640 {
641         struct pci_resource *max;
642         struct pci_resource *temp;
643         struct pci_resource *split_node;
644         u32 temp_dword;
645
646         if (cpqhp_resource_sort_and_combine(head))
647                 return NULL;
648
649         if (sort_by_max_size(head))
650                 return NULL;
651
652         for (max = *head; max; max = max->next) {
653                 /* If not big enough we could probably just bail,
654                  * instead we'll continue to the next.
655                  */
656                 if (max->length < size)
657                         continue;
658
659                 if (max->base & (size - 1)) {
660                         /* this one isn't base aligned properly
661                          * so we'll make a new entry and split it up
662                          */
663                         temp_dword = (max->base | (size-1)) + 1;
664
665                         /* Short circuit if adjusted size is too small */
666                         if ((max->length - (temp_dword - max->base)) < size)
667                                 continue;
668
669                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
670
671                         if (!split_node)
672                                 return NULL;
673
674                         split_node->base = max->base;
675                         split_node->length = temp_dword - max->base;
676                         max->base = temp_dword;
677                         max->length -= split_node->length;
678
679                         split_node->next = max->next;
680                         max->next = split_node;
681                 }
682
683                 if ((max->base + max->length) & (size - 1)) {
684                         /* this one isn't end aligned properly at the top
685                          * so we'll make a new entry and split it up
686                          */
687                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
688
689                         if (!split_node)
690                                 return NULL;
691                         temp_dword = ((max->base + max->length) & ~(size - 1));
692                         split_node->base = temp_dword;
693                         split_node->length = max->length + max->base
694                                              - split_node->base;
695                         max->length -= split_node->length;
696
697                         split_node->next = max->next;
698                         max->next = split_node;
699                 }
700
701                 /* Make sure it didn't shrink too much when we aligned it */
702                 if (max->length < size)
703                         continue;
704
705                 /* Now take it out of the list */
706                 temp = *head;
707                 if (temp == max) {
708                         *head = max->next;
709                 } else {
710                         while (temp && temp->next != max) {
711                                 temp = temp->next;
712                         }
713
714                         temp->next = max->next;
715                 }
716
717                 max->next = NULL;
718                 break;
719         }
720
721         return max;
722 }
723
724
725 /**
726  * get_resource - find resource of given size and split up larger ones.
727  * @head: the list to search for resources
728  * @size: the size limit to use
729  *
730  * Description: This function sorts the resource list by size and then
731  * returns the first node of "size" length.  If it finds a node
732  * larger than "size" it will split it up.
733  *
734  * size must be a power of two.
735  */
736 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
737 {
738         struct pci_resource *prevnode;
739         struct pci_resource *node;
740         struct pci_resource *split_node;
741         u32 temp_dword;
742
743         if (cpqhp_resource_sort_and_combine(head))
744                 return NULL;
745
746         if (sort_by_size(head))
747                 return NULL;
748
749         for (node = *head; node; node = node->next) {
750                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
751                     __func__, size, node, node->base, node->length);
752                 if (node->length < size)
753                         continue;
754
755                 if (node->base & (size - 1)) {
756                         dbg("%s: not aligned\n", __func__);
757                         /* this one isn't base aligned properly
758                          * so we'll make a new entry and split it up
759                          */
760                         temp_dword = (node->base | (size-1)) + 1;
761
762                         /* Short circuit if adjusted size is too small */
763                         if ((node->length - (temp_dword - node->base)) < size)
764                                 continue;
765
766                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
767
768                         if (!split_node)
769                                 return NULL;
770
771                         split_node->base = node->base;
772                         split_node->length = temp_dword - node->base;
773                         node->base = temp_dword;
774                         node->length -= split_node->length;
775
776                         split_node->next = node->next;
777                         node->next = split_node;
778                 } /* End of non-aligned base */
779
780                 /* Don't need to check if too small since we already did */
781                 if (node->length > size) {
782                         dbg("%s: too big\n", __func__);
783                         /* this one is longer than we need
784                          * so we'll make a new entry and split it up
785                          */
786                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787
788                         if (!split_node)
789                                 return NULL;
790
791                         split_node->base = node->base + size;
792                         split_node->length = node->length - size;
793                         node->length = size;
794
795                         /* Put it in the list */
796                         split_node->next = node->next;
797                         node->next = split_node;
798                 }  /* End of too big on top end */
799
800                 dbg("%s: got one!!!\n", __func__);
801                 /* If we got here, then it is the right size
802                  * Now take it out of the list */
803                 if (*head == node) {
804                         *head = node->next;
805                 } else {
806                         prevnode = *head;
807                         while (prevnode->next != node)
808                                 prevnode = prevnode->next;
809
810                         prevnode->next = node->next;
811                 }
812                 node->next = NULL;
813                 break;
814         }
815         return node;
816 }
817
818
819 /**
820  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
821  * @head: the list to sort and clean up
822  *
823  * Description: Sorts all of the nodes in the list in ascending order by
824  * their base addresses.  Also does garbage collection by
825  * combining adjacent nodes.
826  *
827  * Returns %0 if success.
828  */
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830 {
831         struct pci_resource *node1;
832         struct pci_resource *node2;
833         int out_of_order = 1;
834
835         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
836
837         if (!(*head))
838                 return 1;
839
840         dbg("*head->next = %p\n",(*head)->next);
841
842         if (!(*head)->next)
843                 return 0;       /* only one item on the list, already sorted! */
844
845         dbg("*head->base = 0x%x\n",(*head)->base);
846         dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847         while (out_of_order) {
848                 out_of_order = 0;
849
850                 /* Special case for swapping list head */
851                 if (((*head)->next) &&
852                     ((*head)->base > (*head)->next->base)) {
853                         node1 = *head;
854                         (*head) = (*head)->next;
855                         node1->next = (*head)->next;
856                         (*head)->next = node1;
857                         out_of_order++;
858                 }
859
860                 node1 = (*head);
861
862                 while (node1->next && node1->next->next) {
863                         if (node1->next->base > node1->next->next->base) {
864                                 out_of_order++;
865                                 node2 = node1->next;
866                                 node1->next = node1->next->next;
867                                 node1 = node1->next;
868                                 node2->next = node1->next;
869                                 node1->next = node2;
870                         } else
871                                 node1 = node1->next;
872                 }
873         }  /* End of out_of_order loop */
874
875         node1 = *head;
876
877         while (node1 && node1->next) {
878                 if ((node1->base + node1->length) == node1->next->base) {
879                         /* Combine */
880                         dbg("8..\n");
881                         node1->length += node1->next->length;
882                         node2 = node1->next;
883                         node1->next = node1->next->next;
884                         kfree(node2);
885                 } else
886                         node1 = node1->next;
887         }
888
889         return 0;
890 }
891
892
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
894 {
895         struct controller *ctrl = data;
896         u8 schedule_flag = 0;
897         u8 reset;
898         u16 misc;
899         u32 Diff;
900         u32 temp_dword;
901
902
903         misc = readw(ctrl->hpc_reg + MISC);
904         /*
905          * Check to see if it was our interrupt
906          */
907         if (!(misc & 0x000C)) {
908                 return IRQ_NONE;
909         }
910
911         if (misc & 0x0004) {
912                 /*
913                  * Serial Output interrupt Pending
914                  */
915
916                 /* Clear the interrupt */
917                 misc |= 0x0004;
918                 writew(misc, ctrl->hpc_reg + MISC);
919
920                 /* Read to clear posted writes */
921                 misc = readw(ctrl->hpc_reg + MISC);
922
923                 dbg ("%s - waking up\n", __func__);
924                 wake_up_interruptible(&ctrl->queue);
925         }
926
927         if (misc & 0x0008) {
928                 /* General-interrupt-input interrupt Pending */
929                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930
931                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933                 /* Clear the interrupt */
934                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936                 /* Read it back to clear any posted writes */
937                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938
939                 if (!Diff)
940                         /* Clear all interrupts */
941                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942
943                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946         }
947
948         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949         if (reset & 0x40) {
950                 /* Bus reset has completed */
951                 reset &= 0xCF;
952                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954                 wake_up_interruptible(&ctrl->queue);
955         }
956
957         if (schedule_flag) {
958                 wake_up_process(cpqhp_event_thread);
959                 dbg("Waking even thread");
960         }
961         return IRQ_HANDLED;
962 }
963
964
965 /**
966  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967  * @busnumber: bus where new node is to be located
968  *
969  * Returns pointer to the new node or %NULL if unsuccessful.
970  */
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
972 {
973         struct pci_func *new_slot;
974         struct pci_func *next;
975
976         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
977         if (new_slot == NULL) {
978                 /* I'm not dead yet!
979                  * You will be.
980                  */
981                 return new_slot;
982         }
983
984         new_slot->next = NULL;
985         new_slot->configured = 1;
986
987         if (cpqhp_slot_list[busnumber] == NULL) {
988                 cpqhp_slot_list[busnumber] = new_slot;
989         } else {
990                 next = cpqhp_slot_list[busnumber];
991                 while (next->next != NULL)
992                         next = next->next;
993                 next->next = new_slot;
994         }
995         return new_slot;
996 }
997
998
999 /**
1000  * slot_remove - Removes a node from the linked list of slots.
1001  * @old_slot: slot to remove
1002  *
1003  * Returns %0 if successful, !0 otherwise.
1004  */
1005 static int slot_remove(struct pci_func * old_slot)
1006 {
1007         struct pci_func *next;
1008
1009         if (old_slot == NULL)
1010                 return 1;
1011
1012         next = cpqhp_slot_list[old_slot->bus];
1013
1014         if (next == NULL) {
1015                 return 1;
1016         }
1017
1018         if (next == old_slot) {
1019                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1020                 cpqhp_destroy_board_resources(old_slot);
1021                 kfree(old_slot);
1022                 return 0;
1023         }
1024
1025         while ((next->next != old_slot) && (next->next != NULL)) {
1026                 next = next->next;
1027         }
1028
1029         if (next->next == old_slot) {
1030                 next->next = old_slot->next;
1031                 cpqhp_destroy_board_resources(old_slot);
1032                 kfree(old_slot);
1033                 return 0;
1034         } else
1035                 return 2;
1036 }
1037
1038
1039 /**
1040  * bridge_slot_remove - Removes a node from the linked list of slots.
1041  * @bridge: bridge to remove
1042  *
1043  * Returns %0 if successful, !0 otherwise.
1044  */
1045 static int bridge_slot_remove(struct pci_func *bridge)
1046 {
1047         u8 subordinateBus, secondaryBus;
1048         u8 tempBus;
1049         struct pci_func *next;
1050
1051         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1052         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1053
1054         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1055                 next = cpqhp_slot_list[tempBus];
1056
1057                 while (!slot_remove(next)) {
1058                         next = cpqhp_slot_list[tempBus];
1059                 }
1060         }
1061
1062         next = cpqhp_slot_list[bridge->bus];
1063
1064         if (next == NULL)
1065                 return 1;
1066
1067         if (next == bridge) {
1068                 cpqhp_slot_list[bridge->bus] = bridge->next;
1069                 goto out;
1070         }
1071
1072         while ((next->next != bridge) && (next->next != NULL))
1073                 next = next->next;
1074
1075         if (next->next != bridge)
1076                 return 2;
1077         next->next = bridge->next;
1078 out:
1079         kfree(bridge);
1080         return 0;
1081 }
1082
1083
1084 /**
1085  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1086  * @bus: bus to find
1087  * @device: device to find
1088  * @index: is %0 for first function found, %1 for the second...
1089  *
1090  * Returns pointer to the node if successful, %NULL otherwise.
1091  */
1092 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1093 {
1094         int found = -1;
1095         struct pci_func *func;
1096
1097         func = cpqhp_slot_list[bus];
1098
1099         if ((func == NULL) || ((func->device == device) && (index == 0)))
1100                 return func;
1101
1102         if (func->device == device)
1103                 found++;
1104
1105         while (func->next != NULL) {
1106                 func = func->next;
1107
1108                 if (func->device == device)
1109                         found++;
1110
1111                 if (found == index)
1112                         return func;
1113         }
1114
1115         return NULL;
1116 }
1117
1118
1119 /* DJZ: I don't think is_bridge will work as is.
1120  * FIXME */
1121 static int is_bridge(struct pci_func * func)
1122 {
1123         /* Check the header type */
1124         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1125                 return 1;
1126         else
1127                 return 0;
1128 }
1129
1130
1131 /**
1132  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1133  * @ctrl: controller to change frequency/mode for.
1134  * @adapter_speed: the speed of the adapter we want to match.
1135  * @hp_slot: the slot number where the adapter is installed.
1136  *
1137  * Returns %0 if we successfully change frequency and/or mode to match the
1138  * adapter speed.
1139  */
1140 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1141 {
1142         struct slot *slot;
1143         u8 reg;
1144         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1145         u16 reg16;
1146         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1147
1148         if (ctrl->speed == adapter_speed)
1149                 return 0;
1150
1151         /* We don't allow freq/mode changes if we find another adapter running
1152          * in another slot on this controller
1153          */
1154         for(slot = ctrl->slot; slot; slot = slot->next) {
1155                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1156                         continue;
1157                 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1158                         continue;
1159                 if (slot->hotplug_slot->info->adapter_status == 0)
1160                         continue;
1161                 /* If another adapter is running on the same segment but at a
1162                  * lower speed/mode, we allow the new adapter to function at
1163                  * this rate if supported
1164                  */
1165                 if (ctrl->speed < adapter_speed)
1166                         return 0;
1167
1168                 return 1;
1169         }
1170
1171         /* If the controller doesn't support freq/mode changes and the
1172          * controller is running at a higher mode, we bail
1173          */
1174         if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1175                 return 1;
1176
1177         /* But we allow the adapter to run at a lower rate if possible */
1178         if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1179                 return 0;
1180
1181         /* We try to set the max speed supported by both the adapter and
1182          * controller
1183          */
1184         if (ctrl->speed_capability < adapter_speed) {
1185                 if (ctrl->speed == ctrl->speed_capability)
1186                         return 0;
1187                 adapter_speed = ctrl->speed_capability;
1188         }
1189
1190         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1191         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1192
1193         set_SOGO(ctrl);
1194         wait_for_ctrl_irq(ctrl);
1195
1196         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1197                 reg = 0xF5;
1198         else
1199                 reg = 0xF4;
1200         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1201
1202         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1203         reg16 &= ~0x000F;
1204         switch(adapter_speed) {
1205                 case(PCI_SPEED_133MHz_PCIX):
1206                         reg = 0x75;
1207                         reg16 |= 0xB;
1208                         break;
1209                 case(PCI_SPEED_100MHz_PCIX):
1210                         reg = 0x74;
1211                         reg16 |= 0xA;
1212                         break;
1213                 case(PCI_SPEED_66MHz_PCIX):
1214                         reg = 0x73;
1215                         reg16 |= 0x9;
1216                         break;
1217                 case(PCI_SPEED_66MHz):
1218                         reg = 0x73;
1219                         reg16 |= 0x1;
1220                         break;
1221                 default: /* 33MHz PCI 2.2 */
1222                         reg = 0x71;
1223                         break;
1224
1225         }
1226         reg16 |= 0xB << 12;
1227         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1228
1229         mdelay(5);
1230
1231         /* Reenable interrupts */
1232         writel(0, ctrl->hpc_reg + INT_MASK);
1233
1234         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1235
1236         /* Restart state machine */
1237         reg = ~0xF;
1238         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1239         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1240
1241         /* Only if mode change...*/
1242         if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1243                 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1244                         set_SOGO(ctrl);
1245
1246         wait_for_ctrl_irq(ctrl);
1247         mdelay(1100);
1248
1249         /* Restore LED/Slot state */
1250         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1251         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1252
1253         set_SOGO(ctrl);
1254         wait_for_ctrl_irq(ctrl);
1255
1256         ctrl->speed = adapter_speed;
1257         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1258
1259         info("Successfully changed frequency/mode for adapter in slot %d\n",
1260                         slot->number);
1261         return 0;
1262 }
1263
1264 /* the following routines constitute the bulk of the
1265  * hotplug controller logic
1266  */
1267
1268
1269 /**
1270  * board_replaced - Called after a board has been replaced in the system.
1271  * @func: PCI device/function information
1272  * @ctrl: hotplug controller
1273  *
1274  * This is only used if we don't have resources for hot add.
1275  * Turns power on for the board.
1276  * Checks to see if board is the same.
1277  * If board is same, reconfigures it.
1278  * If board isn't same, turns it back off.
1279  */
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1281 {
1282         u8 hp_slot;
1283         u8 temp_byte;
1284         u8 adapter_speed;
1285         u32 rc = 0;
1286
1287         hp_slot = func->device - ctrl->slot_device_offset;
1288
1289         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1290                 /*
1291                  * The switch is open.
1292                  */
1293                 rc = INTERLOCK_OPEN;
1294         } else if (is_slot_enabled (ctrl, hp_slot)) {
1295                 /*
1296                  * The board is already on
1297                  */
1298                 rc = CARD_FUNCTIONING;
1299         } else {
1300                 mutex_lock(&ctrl->crit_sect);
1301
1302                 /* turn on board without attaching to the bus */
1303                 enable_slot_power (ctrl, hp_slot);
1304
1305                 set_SOGO(ctrl);
1306
1307                 /* Wait for SOBS to be unset */
1308                 wait_for_ctrl_irq (ctrl);
1309
1310                 /* Change bits in slot power register to force another shift out
1311                  * NOTE: this is to work around the timer bug */
1312                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1313                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1314                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1315
1316                 set_SOGO(ctrl);
1317
1318                 /* Wait for SOBS to be unset */
1319                 wait_for_ctrl_irq (ctrl);
1320
1321                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1322                 if (ctrl->speed != adapter_speed)
1323                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1324                                 rc = WRONG_BUS_FREQUENCY;
1325
1326                 /* turn off board without attaching to the bus */
1327                 disable_slot_power (ctrl, hp_slot);
1328
1329                 set_SOGO(ctrl);
1330
1331                 /* Wait for SOBS to be unset */
1332                 wait_for_ctrl_irq (ctrl);
1333
1334                 mutex_unlock(&ctrl->crit_sect);
1335
1336                 if (rc)
1337                         return rc;
1338
1339                 mutex_lock(&ctrl->crit_sect);
1340
1341                 slot_enable (ctrl, hp_slot);
1342                 green_LED_blink (ctrl, hp_slot);
1343
1344                 amber_LED_off (ctrl, hp_slot);
1345
1346                 set_SOGO(ctrl);
1347
1348                 /* Wait for SOBS to be unset */
1349                 wait_for_ctrl_irq (ctrl);
1350
1351                 mutex_unlock(&ctrl->crit_sect);
1352
1353                 /* Wait for ~1 second because of hot plug spec */
1354                 long_delay(1*HZ);
1355
1356                 /* Check for a power fault */
1357                 if (func->status == 0xFF) {
1358                         /* power fault occurred, but it was benign */
1359                         rc = POWER_FAILURE;
1360                         func->status = 0;
1361                 } else
1362                         rc = cpqhp_valid_replace(ctrl, func);
1363
1364                 if (!rc) {
1365                         /* It must be the same board */
1366
1367                         rc = cpqhp_configure_board(ctrl, func);
1368
1369                         /* If configuration fails, turn it off
1370                          * Get slot won't work for devices behind
1371                          * bridges, but in this case it will always be
1372                          * called for the "base" bus/dev/func of an
1373                          * adapter.
1374                          */
1375
1376                         mutex_lock(&ctrl->crit_sect);
1377
1378                         amber_LED_on (ctrl, hp_slot);
1379                         green_LED_off (ctrl, hp_slot);
1380                         slot_disable (ctrl, hp_slot);
1381
1382                         set_SOGO(ctrl);
1383
1384                         /* Wait for SOBS to be unset */
1385                         wait_for_ctrl_irq (ctrl);
1386
1387                         mutex_unlock(&ctrl->crit_sect);
1388
1389                         if (rc)
1390                                 return rc;
1391                         else
1392                                 return 1;
1393
1394                 } else {
1395                         /* Something is wrong
1396
1397                          * Get slot won't work for devices behind bridges, but
1398                          * in this case it will always be called for the "base"
1399                          * bus/dev/func of an adapter.
1400                          */
1401
1402                         mutex_lock(&ctrl->crit_sect);
1403
1404                         amber_LED_on (ctrl, hp_slot);
1405                         green_LED_off (ctrl, hp_slot);
1406                         slot_disable (ctrl, hp_slot);
1407
1408                         set_SOGO(ctrl);
1409
1410                         /* Wait for SOBS to be unset */
1411                         wait_for_ctrl_irq (ctrl);
1412
1413                         mutex_unlock(&ctrl->crit_sect);
1414                 }
1415
1416         }
1417         return rc;
1418
1419 }
1420
1421
1422 /**
1423  * board_added - Called after a board has been added to the system.
1424  * @func: PCI device/function info
1425  * @ctrl: hotplug controller
1426  *
1427  * Turns power on for the board.
1428  * Configures board.
1429  */
1430 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1431 {
1432         u8 hp_slot;
1433         u8 temp_byte;
1434         u8 adapter_speed;
1435         int index;
1436         u32 temp_register = 0xFFFFFFFF;
1437         u32 rc = 0;
1438         struct pci_func *new_slot = NULL;
1439         struct slot *p_slot;
1440         struct resource_lists res_lists;
1441
1442         hp_slot = func->device - ctrl->slot_device_offset;
1443         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1444             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1445
1446         mutex_lock(&ctrl->crit_sect);
1447
1448         /* turn on board without attaching to the bus */
1449         enable_slot_power(ctrl, hp_slot);
1450
1451         set_SOGO(ctrl);
1452
1453         /* Wait for SOBS to be unset */
1454         wait_for_ctrl_irq (ctrl);
1455
1456         /* Change bits in slot power register to force another shift out
1457          * NOTE: this is to work around the timer bug
1458          */
1459         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1460         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1461         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1462
1463         set_SOGO(ctrl);
1464
1465         /* Wait for SOBS to be unset */
1466         wait_for_ctrl_irq (ctrl);
1467
1468         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1469         if (ctrl->speed != adapter_speed)
1470                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1471                         rc = WRONG_BUS_FREQUENCY;
1472
1473         /* turn off board without attaching to the bus */
1474         disable_slot_power (ctrl, hp_slot);
1475
1476         set_SOGO(ctrl);
1477
1478         /* Wait for SOBS to be unset */
1479         wait_for_ctrl_irq(ctrl);
1480
1481         mutex_unlock(&ctrl->crit_sect);
1482
1483         if (rc)
1484                 return rc;
1485
1486         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1487
1488         /* turn on board and blink green LED */
1489
1490         dbg("%s: before down\n", __func__);
1491         mutex_lock(&ctrl->crit_sect);
1492         dbg("%s: after down\n", __func__);
1493
1494         dbg("%s: before slot_enable\n", __func__);
1495         slot_enable (ctrl, hp_slot);
1496
1497         dbg("%s: before green_LED_blink\n", __func__);
1498         green_LED_blink (ctrl, hp_slot);
1499
1500         dbg("%s: before amber_LED_blink\n", __func__);
1501         amber_LED_off (ctrl, hp_slot);
1502
1503         dbg("%s: before set_SOGO\n", __func__);
1504         set_SOGO(ctrl);
1505
1506         /* Wait for SOBS to be unset */
1507         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1508         wait_for_ctrl_irq (ctrl);
1509         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1510
1511         dbg("%s: before up\n", __func__);
1512         mutex_unlock(&ctrl->crit_sect);
1513         dbg("%s: after up\n", __func__);
1514
1515         /* Wait for ~1 second because of hot plug spec */
1516         dbg("%s: before long_delay\n", __func__);
1517         long_delay(1*HZ);
1518         dbg("%s: after long_delay\n", __func__);
1519
1520         dbg("%s: func status = %x\n", __func__, func->status);
1521         /* Check for a power fault */
1522         if (func->status == 0xFF) {
1523                 /* power fault occurred, but it was benign */
1524                 temp_register = 0xFFFFFFFF;
1525                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1526                 rc = POWER_FAILURE;
1527                 func->status = 0;
1528         } else {
1529                 /* Get vendor/device ID u32 */
1530                 ctrl->pci_bus->number = func->bus;
1531                 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1532                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1533                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1534
1535                 if (rc != 0) {
1536                         /* Something's wrong here */
1537                         temp_register = 0xFFFFFFFF;
1538                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1539                 }
1540                 /* Preset return code.  It will be changed later if things go okay. */
1541                 rc = NO_ADAPTER_PRESENT;
1542         }
1543
1544         /* All F's is an empty slot or an invalid board */
1545         if (temp_register != 0xFFFFFFFF) {        /* Check for a board in the slot */
1546                 res_lists.io_head = ctrl->io_head;
1547                 res_lists.mem_head = ctrl->mem_head;
1548                 res_lists.p_mem_head = ctrl->p_mem_head;
1549                 res_lists.bus_head = ctrl->bus_head;
1550                 res_lists.irqs = NULL;
1551
1552                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1553
1554                 dbg("%s: back from configure_new_device\n", __func__);
1555                 ctrl->io_head = res_lists.io_head;
1556                 ctrl->mem_head = res_lists.mem_head;
1557                 ctrl->p_mem_head = res_lists.p_mem_head;
1558                 ctrl->bus_head = res_lists.bus_head;
1559
1560                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1561                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1562                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1563                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1564
1565                 if (rc) {
1566                         mutex_lock(&ctrl->crit_sect);
1567
1568                         amber_LED_on (ctrl, hp_slot);
1569                         green_LED_off (ctrl, hp_slot);
1570                         slot_disable (ctrl, hp_slot);
1571
1572                         set_SOGO(ctrl);
1573
1574                         /* Wait for SOBS to be unset */
1575                         wait_for_ctrl_irq (ctrl);
1576
1577                         mutex_unlock(&ctrl->crit_sect);
1578                         return rc;
1579                 } else {
1580                         cpqhp_save_slot_config(ctrl, func);
1581                 }
1582
1583
1584                 func->status = 0;
1585                 func->switch_save = 0x10;
1586                 func->is_a_board = 0x01;
1587
1588                 /* next, we will instantiate the linux pci_dev structures (with
1589                  * appropriate driver notification, if already present) */
1590                 dbg("%s: configure linux pci_dev structure\n", __func__);
1591                 index = 0;
1592                 do {
1593                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1594                         if (new_slot && !new_slot->pci_dev) {
1595                                 cpqhp_configure_device(ctrl, new_slot);
1596                         }
1597                 } while (new_slot);
1598
1599                 mutex_lock(&ctrl->crit_sect);
1600
1601                 green_LED_on (ctrl, hp_slot);
1602
1603                 set_SOGO(ctrl);
1604
1605                 /* Wait for SOBS to be unset */
1606                 wait_for_ctrl_irq (ctrl);
1607
1608                 mutex_unlock(&ctrl->crit_sect);
1609         } else {
1610                 mutex_lock(&ctrl->crit_sect);
1611
1612                 amber_LED_on (ctrl, hp_slot);
1613                 green_LED_off (ctrl, hp_slot);
1614                 slot_disable (ctrl, hp_slot);
1615
1616                 set_SOGO(ctrl);
1617
1618                 /* Wait for SOBS to be unset */
1619                 wait_for_ctrl_irq (ctrl);
1620
1621                 mutex_unlock(&ctrl->crit_sect);
1622
1623                 return rc;
1624         }
1625         return 0;
1626 }
1627
1628
1629 /**
1630  * remove_board - Turns off slot and LEDs
1631  * @func: PCI device/function info
1632  * @replace_flag: whether replacing or adding a new device
1633  * @ctrl: target controller
1634  */
1635 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1636 {
1637         int index;
1638         u8 skip = 0;
1639         u8 device;
1640         u8 hp_slot;
1641         u8 temp_byte;
1642         u32 rc;
1643         struct resource_lists res_lists;
1644         struct pci_func *temp_func;
1645
1646         if (cpqhp_unconfigure_device(func))
1647                 return 1;
1648
1649         device = func->device;
1650
1651         hp_slot = func->device - ctrl->slot_device_offset;
1652         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1653
1654         /* When we get here, it is safe to change base address registers.
1655          * We will attempt to save the base address register lengths */
1656         if (replace_flag || !ctrl->add_support)
1657                 rc = cpqhp_save_base_addr_length(ctrl, func);
1658         else if (!func->bus_head && !func->mem_head &&
1659                  !func->p_mem_head && !func->io_head) {
1660                 /* Here we check to see if we've saved any of the board's
1661                  * resources already.  If so, we'll skip the attempt to
1662                  * determine what's being used. */
1663                 index = 0;
1664                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1665                 while (temp_func) {
1666                         if (temp_func->bus_head || temp_func->mem_head
1667                             || temp_func->p_mem_head || temp_func->io_head) {
1668                                 skip = 1;
1669                                 break;
1670                         }
1671                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1672                 }
1673
1674                 if (!skip)
1675                         rc = cpqhp_save_used_resources(ctrl, func);
1676         }
1677         /* Change status to shutdown */
1678         if (func->is_a_board)
1679                 func->status = 0x01;
1680         func->configured = 0;
1681
1682         mutex_lock(&ctrl->crit_sect);
1683
1684         green_LED_off (ctrl, hp_slot);
1685         slot_disable (ctrl, hp_slot);
1686
1687         set_SOGO(ctrl);
1688
1689         /* turn off SERR for slot */
1690         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1691         temp_byte &= ~(0x01 << hp_slot);
1692         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1693
1694         /* Wait for SOBS to be unset */
1695         wait_for_ctrl_irq (ctrl);
1696
1697         mutex_unlock(&ctrl->crit_sect);
1698
1699         if (!replace_flag && ctrl->add_support) {
1700                 while (func) {
1701                         res_lists.io_head = ctrl->io_head;
1702                         res_lists.mem_head = ctrl->mem_head;
1703                         res_lists.p_mem_head = ctrl->p_mem_head;
1704                         res_lists.bus_head = ctrl->bus_head;
1705
1706                         cpqhp_return_board_resources(func, &res_lists);
1707
1708                         ctrl->io_head = res_lists.io_head;
1709                         ctrl->mem_head = res_lists.mem_head;
1710                         ctrl->p_mem_head = res_lists.p_mem_head;
1711                         ctrl->bus_head = res_lists.bus_head;
1712
1713                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1714                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1715                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1716                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1717
1718                         if (is_bridge(func)) {
1719                                 bridge_slot_remove(func);
1720                         } else
1721                                 slot_remove(func);
1722
1723                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1724                 }
1725
1726                 /* Setup slot structure with entry for empty slot */
1727                 func = cpqhp_slot_create(ctrl->bus);
1728
1729                 if (func == NULL)
1730                         return 1;
1731
1732                 func->bus = ctrl->bus;
1733                 func->device = device;
1734                 func->function = 0;
1735                 func->configured = 0;
1736                 func->switch_save = 0x10;
1737                 func->is_a_board = 0;
1738                 func->p_task_event = NULL;
1739         }
1740
1741         return 0;
1742 }
1743
1744 static void pushbutton_helper_thread(unsigned long data)
1745 {
1746         pushbutton_pending = data;
1747         wake_up_process(cpqhp_event_thread);
1748 }
1749
1750
1751 /* this is the main worker thread */
1752 static int event_thread(void* data)
1753 {
1754         struct controller *ctrl;
1755
1756         while (1) {
1757                 dbg("!!!!event_thread sleeping\n");
1758                 set_current_state(TASK_INTERRUPTIBLE);
1759                 schedule();
1760
1761                 if (kthread_should_stop())
1762                         break;
1763                 /* Do stuff here */
1764                 if (pushbutton_pending)
1765                         cpqhp_pushbutton_thread(pushbutton_pending);
1766                 else
1767                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1768                                 interrupt_event_handler(ctrl);
1769         }
1770         dbg("event_thread signals exit\n");
1771         return 0;
1772 }
1773
1774 int cpqhp_event_start_thread(void)
1775 {
1776         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1777         if (IS_ERR(cpqhp_event_thread)) {
1778                 err ("Can't start up our event thread\n");
1779                 return PTR_ERR(cpqhp_event_thread);
1780         }
1781
1782         return 0;
1783 }
1784
1785
1786 void cpqhp_event_stop_thread(void)
1787 {
1788         kthread_stop(cpqhp_event_thread);
1789 }
1790
1791
1792 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1793 {
1794         struct hotplug_slot_info *info;
1795         int result;
1796
1797         info = kmalloc(sizeof(*info), GFP_KERNEL);
1798         if (!info)
1799                 return -ENOMEM;
1800
1801         info->power_status = get_slot_enabled(ctrl, slot);
1802         info->attention_status = cpq_get_attention_status(ctrl, slot);
1803         info->latch_status = cpq_get_latch_status(ctrl, slot);
1804         info->adapter_status = get_presence_status(ctrl, slot);
1805         result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1806         kfree (info);
1807         return result;
1808 }
1809
1810 static void interrupt_event_handler(struct controller *ctrl)
1811 {
1812         int loop = 0;
1813         int change = 1;
1814         struct pci_func *func;
1815         u8 hp_slot;
1816         struct slot *p_slot;
1817
1818         while (change) {
1819                 change = 0;
1820
1821                 for (loop = 0; loop < 10; loop++) {
1822                         /* dbg("loop %d\n", loop); */
1823                         if (ctrl->event_queue[loop].event_type != 0) {
1824                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1825
1826                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1827                                 if (!func)
1828                                         return;
1829
1830                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1831                                 if (!p_slot)
1832                                         return;
1833
1834                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1835                                     hp_slot, func, p_slot);
1836
1837                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1838                                         dbg("button pressed\n");
1839                                 } else if (ctrl->event_queue[loop].event_type == 
1840                                            INT_BUTTON_CANCEL) {
1841                                         dbg("button cancel\n");
1842                                         del_timer(&p_slot->task_event);
1843
1844                                         mutex_lock(&ctrl->crit_sect);
1845
1846                                         if (p_slot->state == BLINKINGOFF_STATE) {
1847                                                 /* slot is on */
1848                                                 dbg("turn on green LED\n");
1849                                                 green_LED_on (ctrl, hp_slot);
1850                                         } else if (p_slot->state == BLINKINGON_STATE) {
1851                                                 /* slot is off */
1852                                                 dbg("turn off green LED\n");
1853                                                 green_LED_off (ctrl, hp_slot);
1854                                         }
1855
1856                                         info(msg_button_cancel, p_slot->number);
1857
1858                                         p_slot->state = STATIC_STATE;
1859
1860                                         amber_LED_off (ctrl, hp_slot);
1861
1862                                         set_SOGO(ctrl);
1863
1864                                         /* Wait for SOBS to be unset */
1865                                         wait_for_ctrl_irq (ctrl);
1866
1867                                         mutex_unlock(&ctrl->crit_sect);
1868                                 }
1869                                 /*** button Released (No action on press...) */
1870                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1871                                         dbg("button release\n");
1872
1873                                         if (is_slot_enabled (ctrl, hp_slot)) {
1874                                                 dbg("slot is on\n");
1875                                                 p_slot->state = BLINKINGOFF_STATE;
1876                                                 info(msg_button_off, p_slot->number);
1877                                         } else {
1878                                                 dbg("slot is off\n");
1879                                                 p_slot->state = BLINKINGON_STATE;
1880                                                 info(msg_button_on, p_slot->number);
1881                                         }
1882                                         mutex_lock(&ctrl->crit_sect);
1883
1884                                         dbg("blink green LED and turn off amber\n");
1885
1886                                         amber_LED_off (ctrl, hp_slot);
1887                                         green_LED_blink (ctrl, hp_slot);
1888
1889                                         set_SOGO(ctrl);
1890
1891                                         /* Wait for SOBS to be unset */
1892                                         wait_for_ctrl_irq (ctrl);
1893
1894                                         mutex_unlock(&ctrl->crit_sect);
1895                                         init_timer(&p_slot->task_event);
1896                                         p_slot->hp_slot = hp_slot;
1897                                         p_slot->ctrl = ctrl;
1898 /*                                      p_slot->physical_slot = physical_slot; */
1899                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1900                                         p_slot->task_event.function = pushbutton_helper_thread;
1901                                         p_slot->task_event.data = (u32) p_slot;
1902
1903                                         dbg("add_timer p_slot = %p\n", p_slot);
1904                                         add_timer(&p_slot->task_event);
1905                                 }
1906                                 /***********POWER FAULT */
1907                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1908                                         dbg("power fault\n");
1909                                 } else {
1910                                         /* refresh notification */
1911                                         if (p_slot)
1912                                                 update_slot_info(ctrl, p_slot);
1913                                 }
1914
1915                                 ctrl->event_queue[loop].event_type = 0;
1916
1917                                 change = 1;
1918                         }
1919                 }               /* End of FOR loop */
1920         }
1921
1922         return;
1923 }
1924
1925
1926 /**
1927  * cpqhp_pushbutton_thread - handle pushbutton events
1928  * @slot: target slot (struct)
1929  *
1930  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1931  * Handles all pending events and exits.
1932  */
1933 void cpqhp_pushbutton_thread(unsigned long slot)
1934 {
1935         u8 hp_slot;
1936         u8 device;
1937         struct pci_func *func;
1938         struct slot *p_slot = (struct slot *) slot;
1939         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1940
1941         pushbutton_pending = 0;
1942         hp_slot = p_slot->hp_slot;
1943
1944         device = p_slot->device;
1945
1946         if (is_slot_enabled(ctrl, hp_slot)) {
1947                 p_slot->state = POWEROFF_STATE;
1948                 /* power Down board */
1949                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1950                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1951                 if (!func) {
1952                         dbg("Error! func NULL in %s\n", __func__);
1953                         return ;
1954                 }
1955
1956                 if (cpqhp_process_SS(ctrl, func) != 0) {
1957                         amber_LED_on(ctrl, hp_slot);
1958                         green_LED_on(ctrl, hp_slot);
1959
1960                         set_SOGO(ctrl);
1961
1962                         /* Wait for SOBS to be unset */
1963                         wait_for_ctrl_irq(ctrl);
1964                 }
1965
1966                 p_slot->state = STATIC_STATE;
1967         } else {
1968                 p_slot->state = POWERON_STATE;
1969                 /* slot is off */
1970
1971                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1972                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1973                 if (!func) {
1974                         dbg("Error! func NULL in %s\n", __func__);
1975                         return ;
1976                 }
1977
1978                 if (ctrl != NULL) {
1979                         if (cpqhp_process_SI(ctrl, func) != 0) {
1980                                 amber_LED_on(ctrl, hp_slot);
1981                                 green_LED_off(ctrl, hp_slot);
1982
1983                                 set_SOGO(ctrl);
1984
1985                                 /* Wait for SOBS to be unset */
1986                                 wait_for_ctrl_irq (ctrl);
1987                         }
1988                 }
1989
1990                 p_slot->state = STATIC_STATE;
1991         }
1992
1993         return;
1994 }
1995
1996
1997 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1998 {
1999         u8 device, hp_slot;
2000         u16 temp_word;
2001         u32 tempdword;
2002         int rc;
2003         struct slot* p_slot;
2004         int physical_slot = 0;
2005
2006         tempdword = 0;
2007
2008         device = func->device;
2009         hp_slot = device - ctrl->slot_device_offset;
2010         p_slot = cpqhp_find_slot(ctrl, device);
2011         if (p_slot)
2012                 physical_slot = p_slot->number;
2013
2014         /* Check to see if the interlock is closed */
2015         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2016
2017         if (tempdword & (0x01 << hp_slot)) {
2018                 return 1;
2019         }
2020
2021         if (func->is_a_board) {
2022                 rc = board_replaced(func, ctrl);
2023         } else {
2024                 /* add board */
2025                 slot_remove(func);
2026
2027                 func = cpqhp_slot_create(ctrl->bus);
2028                 if (func == NULL)
2029                         return 1;
2030
2031                 func->bus = ctrl->bus;
2032                 func->device = device;
2033                 func->function = 0;
2034                 func->configured = 0;
2035                 func->is_a_board = 1;
2036
2037                 /* We have to save the presence info for these slots */
2038                 temp_word = ctrl->ctrl_int_comp >> 16;
2039                 func->presence_save = (temp_word >> hp_slot) & 0x01;
2040                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2041
2042                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2043                         func->switch_save = 0;
2044                 } else {
2045                         func->switch_save = 0x10;
2046                 }
2047
2048                 rc = board_added(func, ctrl);
2049                 if (rc) {
2050                         if (is_bridge(func)) {
2051                                 bridge_slot_remove(func);
2052                         } else
2053                                 slot_remove(func);
2054
2055                         /* Setup slot structure with entry for empty slot */
2056                         func = cpqhp_slot_create(ctrl->bus);
2057
2058                         if (func == NULL)
2059                                 return 1;
2060
2061                         func->bus = ctrl->bus;
2062                         func->device = device;
2063                         func->function = 0;
2064                         func->configured = 0;
2065                         func->is_a_board = 0;
2066
2067                         /* We have to save the presence info for these slots */
2068                         temp_word = ctrl->ctrl_int_comp >> 16;
2069                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2070                         func->presence_save |=
2071                         (temp_word >> (hp_slot + 7)) & 0x02;
2072
2073                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2074                                 func->switch_save = 0;
2075                         } else {
2076                                 func->switch_save = 0x10;
2077                         }
2078                 }
2079         }
2080
2081         if (rc) {
2082                 dbg("%s: rc = %d\n", __func__, rc);
2083         }
2084
2085         if (p_slot)
2086                 update_slot_info(ctrl, p_slot);
2087
2088         return rc;
2089 }
2090
2091
2092 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2093 {
2094         u8 device, class_code, header_type, BCR;
2095         u8 index = 0;
2096         u8 replace_flag;
2097         u32 rc = 0;
2098         unsigned int devfn;
2099         struct slot* p_slot;
2100         struct pci_bus *pci_bus = ctrl->pci_bus;
2101         int physical_slot=0;
2102
2103         device = func->device;
2104         func = cpqhp_slot_find(ctrl->bus, device, index++);
2105         p_slot = cpqhp_find_slot(ctrl, device);
2106         if (p_slot) {
2107                 physical_slot = p_slot->number;
2108         }
2109
2110         /* Make sure there are no video controllers here */
2111         while (func && !rc) {
2112                 pci_bus->number = func->bus;
2113                 devfn = PCI_DEVFN(func->device, func->function);
2114
2115                 /* Check the Class Code */
2116                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2117                 if (rc)
2118                         return rc;
2119
2120                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2121                         /* Display/Video adapter (not supported) */
2122                         rc = REMOVE_NOT_SUPPORTED;
2123                 } else {
2124                         /* See if it's a bridge */
2125                         rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2126                         if (rc)
2127                                 return rc;
2128
2129                         /* If it's a bridge, check the VGA Enable bit */
2130                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2131                                 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2132                                 if (rc)
2133                                         return rc;
2134
2135                                 /* If the VGA Enable bit is set, remove isn't
2136                                  * supported */
2137                                 if (BCR & PCI_BRIDGE_CTL_VGA) {
2138                                         rc = REMOVE_NOT_SUPPORTED;
2139                                 }
2140                         }
2141                 }
2142
2143                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2144         }
2145
2146         func = cpqhp_slot_find(ctrl->bus, device, 0);
2147         if ((func != NULL) && !rc) {
2148                 /* FIXME: Replace flag should be passed into process_SS */
2149                 replace_flag = !(ctrl->add_support);
2150                 rc = remove_board(func, replace_flag, ctrl);
2151         } else if (!rc) {
2152                 rc = 1;
2153         }
2154
2155         if (p_slot)
2156                 update_slot_info(ctrl, p_slot);
2157
2158         return rc;
2159 }
2160
2161 /**
2162  * switch_leds - switch the leds, go from one site to the other.
2163  * @ctrl: controller to use
2164  * @num_of_slots: number of slots to use
2165  * @work_LED: LED control value
2166  * @direction: 1 to start from the left side, 0 to start right.
2167  */
2168 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2169                         u32 *work_LED, const int direction)
2170 {
2171         int loop;
2172
2173         for (loop = 0; loop < num_of_slots; loop++) {
2174                 if (direction)
2175                         *work_LED = *work_LED >> 1;
2176                 else
2177                         *work_LED = *work_LED << 1;
2178                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2179
2180                 set_SOGO(ctrl);
2181
2182                 /* Wait for SOGO interrupt */
2183                 wait_for_ctrl_irq(ctrl);
2184
2185                 /* Get ready for next iteration */
2186                 long_delay((2*HZ)/10);
2187         }
2188 }
2189
2190 /**
2191  * cpqhp_hardware_test - runs hardware tests
2192  * @ctrl: target controller
2193  * @test_num: the number written to the "test" file in sysfs.
2194  *
2195  * For hot plug ctrl folks to play with.
2196  */
2197 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2198 {
2199         u32 save_LED;
2200         u32 work_LED;
2201         int loop;
2202         int num_of_slots;
2203
2204         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2205
2206         switch (test_num) {
2207                 case 1:
2208                         /* Do stuff here! */
2209
2210                         /* Do that funky LED thing */
2211                         /* so we can restore them later */
2212                         save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2213                         work_LED = 0x01010101;
2214                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2215                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2216                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2218
2219                         work_LED = 0x01010000;
2220                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2222                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2223                         work_LED = 0x00000101;
2224                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2225                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2226                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2227
2228                         work_LED = 0x01010000;
2229                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2230                         for (loop = 0; loop < num_of_slots; loop++) {
2231                                 set_SOGO(ctrl);
2232
2233                                 /* Wait for SOGO interrupt */
2234                                 wait_for_ctrl_irq (ctrl);
2235
2236                                 /* Get ready for next iteration */
2237                                 long_delay((3*HZ)/10);
2238                                 work_LED = work_LED >> 16;
2239                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240
2241                                 set_SOGO(ctrl);
2242
2243                                 /* Wait for SOGO interrupt */
2244                                 wait_for_ctrl_irq (ctrl);
2245
2246                                 /* Get ready for next iteration */
2247                                 long_delay((3*HZ)/10);
2248                                 work_LED = work_LED << 16;
2249                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2250                                 work_LED = work_LED << 1;
2251                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2252                         }
2253
2254                         /* put it back the way it was */
2255                         writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2256
2257                         set_SOGO(ctrl);
2258
2259                         /* Wait for SOBS to be unset */
2260                         wait_for_ctrl_irq (ctrl);
2261                         break;
2262                 case 2:
2263                         /* Do other stuff here! */
2264                         break;
2265                 case 3:
2266                         /* and more... */
2267                         break;
2268         }
2269         return 0;
2270 }
2271
2272
2273 /**
2274  * configure_new_device - Configures the PCI header information of one board.
2275  * @ctrl: pointer to controller structure
2276  * @func: pointer to function structure
2277  * @behind_bridge: 1 if this is a recursive call, 0 if not
2278  * @resources: pointer to set of resource lists
2279  *
2280  * Returns 0 if success.
2281  */
2282 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2283                                  u8 behind_bridge, struct resource_lists * resources)
2284 {
2285         u8 temp_byte, function, max_functions, stop_it;
2286         int rc;
2287         u32 ID;
2288         struct pci_func *new_slot;
2289         int index;
2290
2291         new_slot = func;
2292
2293         dbg("%s\n", __func__);
2294         /* Check for Multi-function device */
2295         ctrl->pci_bus->number = func->bus;
2296         rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2297         if (rc) {
2298                 dbg("%s: rc = %d\n", __func__, rc);
2299                 return rc;
2300         }
2301
2302         if (temp_byte & 0x80)   /* Multi-function device */
2303                 max_functions = 8;
2304         else
2305                 max_functions = 1;
2306
2307         function = 0;
2308
2309         do {
2310                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2311
2312                 if (rc) {
2313                         dbg("configure_new_function failed %d\n",rc);
2314                         index = 0;
2315
2316                         while (new_slot) {
2317                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2318
2319                                 if (new_slot)
2320                                         cpqhp_return_board_resources(new_slot, resources);
2321                         }
2322
2323                         return rc;
2324                 }
2325
2326                 function++;
2327
2328                 stop_it = 0;
2329
2330                 /* The following loop skips to the next present function
2331                  * and creates a board structure */
2332
2333                 while ((function < max_functions) && (!stop_it)) {
2334                         pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2335
2336                         if (ID == 0xFFFFFFFF) {   /* There's nothing there. */
2337                                 function++;
2338                         } else {  /* There's something there */
2339                                 /* Setup slot structure. */
2340                                 new_slot = cpqhp_slot_create(func->bus);
2341
2342                                 if (new_slot == NULL)
2343                                         return 1;
2344
2345                                 new_slot->bus = func->bus;
2346                                 new_slot->device = func->device;
2347                                 new_slot->function = function;
2348                                 new_slot->is_a_board = 1;
2349                                 new_slot->status = 0;
2350
2351                                 stop_it++;
2352                         }
2353                 }
2354
2355         } while (function < max_functions);
2356         dbg("returning from configure_new_device\n");
2357
2358         return 0;
2359 }
2360
2361
2362 /*
2363   Configuration logic that involves the hotplug data structures and
2364   their bookkeeping
2365  */
2366
2367
2368 /**
2369  * configure_new_function - Configures the PCI header information of one device
2370  * @ctrl: pointer to controller structure
2371  * @func: pointer to function structure
2372  * @behind_bridge: 1 if this is a recursive call, 0 if not
2373  * @resources: pointer to set of resource lists
2374  *
2375  * Calls itself recursively for bridged devices.
2376  * Returns 0 if success.
2377  */
2378 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2379                                    u8 behind_bridge,
2380                                    struct resource_lists *resources)
2381 {
2382         int cloop;
2383         u8 IRQ = 0;
2384         u8 temp_byte;
2385         u8 device;
2386         u8 class_code;
2387         u16 command;
2388         u16 temp_word;
2389         u32 temp_dword;
2390         u32 rc;
2391         u32 temp_register;
2392         u32 base;
2393         u32 ID;
2394         unsigned int devfn;
2395         struct pci_resource *mem_node;
2396         struct pci_resource *p_mem_node;
2397         struct pci_resource *io_node;
2398         struct pci_resource *bus_node;
2399         struct pci_resource *hold_mem_node;
2400         struct pci_resource *hold_p_mem_node;
2401         struct pci_resource *hold_IO_node;
2402         struct pci_resource *hold_bus_node;
2403         struct irq_mapping irqs;
2404         struct pci_func *new_slot;
2405         struct pci_bus *pci_bus;
2406         struct resource_lists temp_resources;
2407
2408         pci_bus = ctrl->pci_bus;
2409         pci_bus->number = func->bus;
2410         devfn = PCI_DEVFN(func->device, func->function);
2411
2412         /* Check for Bridge */
2413         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2414         if (rc)
2415                 return rc;
2416
2417         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2418                 /* set Primary bus */
2419                 dbg("set Primary bus = %d\n", func->bus);
2420                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2421                 if (rc)
2422                         return rc;
2423
2424                 /* find range of busses to use */
2425                 dbg("find ranges of buses to use\n");
2426                 bus_node = get_max_resource(&(resources->bus_head), 1);
2427
2428                 /* If we don't have any busses to allocate, we can't continue */
2429                 if (!bus_node)
2430                         return -ENOMEM;
2431
2432                 /* set Secondary bus */
2433                 temp_byte = bus_node->base;
2434                 dbg("set Secondary bus = %d\n", bus_node->base);
2435                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2436                 if (rc)
2437                         return rc;
2438
2439                 /* set subordinate bus */
2440                 temp_byte = bus_node->base + bus_node->length - 1;
2441                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2442                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2443                 if (rc)
2444                         return rc;
2445
2446                 /* set subordinate Latency Timer and base Latency Timer */
2447                 temp_byte = 0x40;
2448                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2449                 if (rc)
2450                         return rc;
2451                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2452                 if (rc)
2453                         return rc;
2454
2455                 /* set Cache Line size */
2456                 temp_byte = 0x08;
2457                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2458                 if (rc)
2459                         return rc;
2460
2461                 /* Setup the IO, memory, and prefetchable windows */
2462                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2463                 if (!io_node)
2464                         return -ENOMEM;
2465                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2466                 if (!mem_node)
2467                         return -ENOMEM;
2468                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2469                 if (!p_mem_node)
2470                         return -ENOMEM;
2471                 dbg("Setup the IO, memory, and prefetchable windows\n");
2472                 dbg("io_node\n");
2473                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2474                                         io_node->length, io_node->next);
2475                 dbg("mem_node\n");
2476                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2477                                         mem_node->length, mem_node->next);
2478                 dbg("p_mem_node\n");
2479                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2480                                         p_mem_node->length, p_mem_node->next);
2481
2482                 /* set up the IRQ info */
2483                 if (!resources->irqs) {
2484                         irqs.barber_pole = 0;
2485                         irqs.interrupt[0] = 0;
2486                         irqs.interrupt[1] = 0;
2487                         irqs.interrupt[2] = 0;
2488                         irqs.interrupt[3] = 0;
2489                         irqs.valid_INT = 0;
2490                 } else {
2491                         irqs.barber_pole = resources->irqs->barber_pole;
2492                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2493                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2494                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2495                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2496                         irqs.valid_INT = resources->irqs->valid_INT;
2497                 }
2498
2499                 /* set up resource lists that are now aligned on top and bottom
2500                  * for anything behind the bridge. */
2501                 temp_resources.bus_head = bus_node;
2502                 temp_resources.io_head = io_node;
2503                 temp_resources.mem_head = mem_node;
2504                 temp_resources.p_mem_head = p_mem_node;
2505                 temp_resources.irqs = &irqs;
2506
2507                 /* Make copies of the nodes we are going to pass down so that
2508                  * if there is a problem,we can just use these to free resources
2509                  */
2510                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2511                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2512                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2513                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2514
2515                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2516                         kfree(hold_bus_node);
2517                         kfree(hold_IO_node);
2518                         kfree(hold_mem_node);
2519                         kfree(hold_p_mem_node);
2520
2521                         return 1;
2522                 }
2523
2524                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2525
2526                 bus_node->base += 1;
2527                 bus_node->length -= 1;
2528                 bus_node->next = NULL;
2529
2530                 /* If we have IO resources copy them and fill in the bridge's
2531                  * IO range registers */
2532                 if (io_node) {
2533                         memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2534                         io_node->next = NULL;
2535
2536                         /* set IO base and Limit registers */
2537                         temp_byte = io_node->base >> 8;
2538                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2539
2540                         temp_byte = (io_node->base + io_node->length - 1) >> 8;
2541                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2542                 } else {
2543                         kfree(hold_IO_node);
2544                         hold_IO_node = NULL;
2545                 }
2546
2547                 /* If we have memory resources copy them and fill in the
2548                  * bridge's memory range registers.  Otherwise, fill in the
2549                  * range registers with values that disable them. */
2550                 if (mem_node) {
2551                         memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2552                         mem_node->next = NULL;
2553
2554                         /* set Mem base and Limit registers */
2555                         temp_word = mem_node->base >> 16;
2556                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2557
2558                         temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2559                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2560                 } else {
2561                         temp_word = 0xFFFF;
2562                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2563
2564                         temp_word = 0x0000;
2565                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2566
2567                         kfree(hold_mem_node);
2568                         hold_mem_node = NULL;
2569                 }
2570
2571                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2572                 p_mem_node->next = NULL;
2573
2574                 /* set Pre Mem base and Limit registers */
2575                 temp_word = p_mem_node->base >> 16;
2576                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2577
2578                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2579                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2580
2581                 /* Adjust this to compensate for extra adjustment in first loop
2582                  */
2583                 irqs.barber_pole--;
2584
2585                 rc = 0;
2586
2587                 /* Here we actually find the devices and configure them */
2588                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2589                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2590
2591                         ID = 0xFFFFFFFF;
2592                         pci_bus->number = hold_bus_node->base;
2593                         pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2594                         pci_bus->number = func->bus;
2595
2596                         if (ID != 0xFFFFFFFF) {   /*  device present */
2597                                 /* Setup slot structure. */
2598                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2599
2600                                 if (new_slot == NULL) {
2601                                         rc = -ENOMEM;
2602                                         continue;
2603                                 }
2604
2605                                 new_slot->bus = hold_bus_node->base;
2606                                 new_slot->device = device;
2607                                 new_slot->function = 0;
2608                                 new_slot->is_a_board = 1;
2609                                 new_slot->status = 0;
2610
2611                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2612                                 dbg("configure_new_device rc=0x%x\n",rc);
2613                         }       /* End of IF (device in slot?) */
2614                 }               /* End of FOR loop */
2615
2616                 if (rc)
2617                         goto free_and_out;
2618                 /* save the interrupt routing information */
2619                 if (resources->irqs) {
2620                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2621                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2622                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2623                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2624                         resources->irqs->valid_INT = irqs.valid_INT;
2625                 } else if (!behind_bridge) {
2626                         /* We need to hook up the interrupts here */
2627                         for (cloop = 0; cloop < 4; cloop++) {
2628                                 if (irqs.valid_INT & (0x01 << cloop)) {
2629                                         rc = cpqhp_set_irq(func->bus, func->device,
2630                                                            cloop + 1, irqs.interrupt[cloop]);
2631                                         if (rc)
2632                                                 goto free_and_out;
2633                                 }
2634                         }       /* end of for loop */
2635                 }
2636                 /* Return unused bus resources
2637                  * First use the temporary node to store information for
2638                  * the board */
2639                 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2640                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2641
2642                         hold_bus_node->next = func->bus_head;
2643                         func->bus_head = hold_bus_node;
2644
2645                         temp_byte = temp_resources.bus_head->base - 1;
2646
2647                         /* set subordinate bus */
2648                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2649
2650                         if (temp_resources.bus_head->length == 0) {
2651                                 kfree(temp_resources.bus_head);
2652                                 temp_resources.bus_head = NULL;
2653                         } else {
2654                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2655                         }
2656                 }
2657
2658                 /* If we have IO space available and there is some left,
2659                  * return the unused portion */
2660                 if (hold_IO_node && temp_resources.io_head) {
2661                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2662                                                                &hold_IO_node, 0x1000);
2663
2664                         /* Check if we were able to split something off */
2665                         if (io_node) {
2666                                 hold_IO_node->base = io_node->base + io_node->length;
2667
2668                                 temp_byte = (hold_IO_node->base) >> 8;
2669                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2670
2671                                 return_resource(&(resources->io_head), io_node);
2672                         }
2673
2674                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2675
2676                         /* Check if we were able to split something off */
2677                         if (io_node) {
2678                                 /* First use the temporary node to store
2679                                  * information for the board */
2680                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2681
2682                                 /* If we used any, add it to the board's list */
2683                                 if (hold_IO_node->length) {
2684                                         hold_IO_node->next = func->io_head;
2685                                         func->io_head = hold_IO_node;
2686
2687                                         temp_byte = (io_node->base - 1) >> 8;
2688                                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2689
2690                                         return_resource(&(resources->io_head), io_node);
2691                                 } else {
2692                                         /* it doesn't need any IO */
2693                                         temp_word = 0x0000;
2694                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2695
2696                                         return_resource(&(resources->io_head), io_node);
2697                                         kfree(hold_IO_node);
2698                                 }
2699                         } else {
2700                                 /* it used most of the range */
2701                                 hold_IO_node->next = func->io_head;
2702                                 func->io_head = hold_IO_node;
2703                         }
2704                 } else if (hold_IO_node) {
2705                         /* it used the whole range */
2706                         hold_IO_node->next = func->io_head;
2707                         func->io_head = hold_IO_node;
2708                 }
2709                 /* If we have memory space available and there is some left,
2710                  * return the unused portion */
2711                 if (hold_mem_node && temp_resources.mem_head) {
2712                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2713                                                                 &hold_mem_node, 0x100000);
2714
2715                         /* Check if we were able to split something off */
2716                         if (mem_node) {
2717                                 hold_mem_node->base = mem_node->base + mem_node->length;
2718
2719                                 temp_word = (hold_mem_node->base) >> 16;
2720                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2721
2722                                 return_resource(&(resources->mem_head), mem_node);
2723                         }
2724
2725                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2726
2727                         /* Check if we were able to split something off */
2728                         if (mem_node) {
2729                                 /* First use the temporary node to store
2730                                  * information for the board */
2731                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2732
2733                                 if (hold_mem_node->length) {
2734                                         hold_mem_node->next = func->mem_head;
2735                                         func->mem_head = hold_mem_node;
2736
2737                                         /* configure end address */
2738                                         temp_word = (mem_node->base - 1) >> 16;
2739                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2740
2741                                         /* Return unused resources to the pool */
2742                                         return_resource(&(resources->mem_head), mem_node);
2743                                 } else {
2744                                         /* it doesn't need any Mem */
2745                                         temp_word = 0x0000;
2746                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2747
2748                                         return_resource(&(resources->mem_head), mem_node);
2749                                         kfree(hold_mem_node);
2750                                 }
2751                         } else {
2752                                 /* it used most of the range */
2753                                 hold_mem_node->next = func->mem_head;
2754                                 func->mem_head = hold_mem_node;
2755                         }
2756                 } else if (hold_mem_node) {
2757                         /* it used the whole range */
2758                         hold_mem_node->next = func->mem_head;
2759                         func->mem_head = hold_mem_node;
2760                 }
2761                 /* If we have prefetchable memory space available and there
2762                  * is some left at the end, return the unused portion */
2763                 if (hold_p_mem_node && temp_resources.p_mem_head) {
2764                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2765                                                                   &hold_p_mem_node, 0x100000);
2766
2767                         /* Check if we were able to split something off */
2768                         if (p_mem_node) {
2769                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2770
2771                                 temp_word = (hold_p_mem_node->base) >> 16;
2772                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2773
2774                                 return_resource(&(resources->p_mem_head), p_mem_node);
2775                         }
2776
2777                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2778
2779                         /* Check if we were able to split something off */
2780                         if (p_mem_node) {
2781                                 /* First use the temporary node to store
2782                                  * information for the board */
2783                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2784
2785                                 /* If we used any, add it to the board's list */
2786                                 if (hold_p_mem_node->length) {
2787                                         hold_p_mem_node->next = func->p_mem_head;
2788                                         func->p_mem_head = hold_p_mem_node;
2789
2790                                         temp_word = (p_mem_node->base - 1) >> 16;
2791                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2792
2793                                         return_resource(&(resources->p_mem_head), p_mem_node);
2794                                 } else {
2795                                         /* it doesn't need any PMem */
2796                                         temp_word = 0x0000;
2797                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2798
2799                                         return_resource(&(resources->p_mem_head), p_mem_node);
2800                                         kfree(hold_p_mem_node);
2801                                 }
2802                         } else {
2803                                 /* it used the most of the range */
2804                                 hold_p_mem_node->next = func->p_mem_head;
2805                                 func->p_mem_head = hold_p_mem_node;
2806                         }
2807                 } else if (hold_p_mem_node) {
2808                         /* it used the whole range */
2809                         hold_p_mem_node->next = func->p_mem_head;
2810                         func->p_mem_head = hold_p_mem_node;
2811                 }
2812                 /* We should be configuring an IRQ and the bridge's base address
2813                  * registers if it needs them.  Although we have never seen such
2814                  * a device */
2815
2816                 /* enable card */
2817                 command = 0x0157;       /* = PCI_COMMAND_IO |
2818                                          *   PCI_COMMAND_MEMORY |
2819                                          *   PCI_COMMAND_MASTER |
2820                                          *   PCI_COMMAND_INVALIDATE |
2821                                          *   PCI_COMMAND_PARITY |
2822                                          *   PCI_COMMAND_SERR */
2823                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2824
2825                 /* set Bridge Control Register */
2826                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2827                                          *   PCI_BRIDGE_CTL_SERR |
2828                                          *   PCI_BRIDGE_CTL_NO_ISA */
2829                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2830         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2831                 /* Standard device */
2832                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2833
2834                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2835                         /* Display (video) adapter (not supported) */
2836                         return DEVICE_TYPE_NOT_SUPPORTED;
2837                 }
2838                 /* Figure out IO and memory needs */
2839                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2840                         temp_register = 0xFFFFFFFF;
2841
2842                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2843                         rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2844
2845                         rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2846                         dbg("CND: base = 0x%x\n", temp_register);
2847
2848                         if (temp_register) {      /* If this register is implemented */
2849                                 if ((temp_register & 0x03L) == 0x01) {
2850                                         /* Map IO */
2851
2852                                         /* set base = amount of IO space */
2853                                         base = temp_register & 0xFFFFFFFC;
2854                                         base = ~base + 1;
2855
2856                                         dbg("CND:      length = 0x%x\n", base);
2857                                         io_node = get_io_resource(&(resources->io_head), base);
2858                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2859                                             io_node->base, io_node->length, io_node->next);
2860                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2861
2862                                         /* allocate the resource to the board */
2863                                         if (io_node) {
2864                                                 base = io_node->base;
2865
2866                                                 io_node->next = func->io_head;
2867                                                 func->io_head = io_node;
2868                                         } else
2869                                                 return -ENOMEM;
2870                                 } else if ((temp_register & 0x0BL) == 0x08) {
2871                                         /* Map prefetchable memory */
2872                                         base = temp_register & 0xFFFFFFF0;
2873                                         base = ~base + 1;
2874
2875                                         dbg("CND:      length = 0x%x\n", base);
2876                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2877
2878                                         /* allocate the resource to the board */
2879                                         if (p_mem_node) {
2880                                                 base = p_mem_node->base;
2881
2882                                                 p_mem_node->next = func->p_mem_head;
2883                                                 func->p_mem_head = p_mem_node;
2884                                         } else
2885                                                 return -ENOMEM;
2886                                 } else if ((temp_register & 0x0BL) == 0x00) {
2887                                         /* Map memory */
2888                                         base = temp_register & 0xFFFFFFF0;
2889                                         base = ~base + 1;
2890
2891                                         dbg("CND:      length = 0x%x\n", base);
2892                                         mem_node = get_resource(&(resources->mem_head), base);
2893
2894                                         /* allocate the resource to the board */
2895                                         if (mem_node) {
2896                                                 base = mem_node->base;
2897
2898                                                 mem_node->next = func->mem_head;
2899                                                 func->mem_head = mem_node;
2900                                         } else
2901                                                 return -ENOMEM;
2902                                 } else if ((temp_register & 0x0BL) == 0x04) {
2903                                         /* Map memory */
2904                                         base = temp_register & 0xFFFFFFF0;
2905                                         base = ~base + 1;
2906
2907                                         dbg("CND:      length = 0x%x\n", base);
2908                                         mem_node = get_resource(&(resources->mem_head), base);
2909
2910                                         /* allocate the resource to the board */
2911                                         if (mem_node) {
2912                                                 base = mem_node->base;
2913
2914                                                 mem_node->next = func->mem_head;
2915                                                 func->mem_head = mem_node;
2916                                         } else
2917                                                 return -ENOMEM;
2918                                 } else if ((temp_register & 0x0BL) == 0x06) {
2919                                         /* Those bits are reserved, we can't handle this */
2920                                         return 1;
2921                                 } else {
2922                                         /* Requesting space below 1M */
2923                                         return NOT_ENOUGH_RESOURCES;
2924                                 }
2925
2926                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2927
2928                                 /* Check for 64-bit base */
2929                                 if ((temp_register & 0x07L) == 0x04) {
2930                                         cloop += 4;
2931
2932                                         /* Upper 32 bits of address always zero
2933                                          * on today's systems */
2934                                         /* FIXME this is probably not true on
2935                                          * Alpha and ia64??? */
2936                                         base = 0;
2937                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2938                                 }
2939                         }
2940                 }               /* End of base register loop */
2941                 if (cpqhp_legacy_mode) {
2942                         /* Figure out which interrupt pin this function uses */
2943                         rc = pci_bus_read_config_byte (pci_bus, devfn,
2944                                 PCI_INTERRUPT_PIN, &temp_byte);
2945
2946                         /* If this function needs an interrupt and we are behind
2947                          * a bridge and the pin is tied to something that's
2948                          * alread mapped, set this one the same */
2949                         if (temp_byte && resources->irqs &&
2950                             (resources->irqs->valid_INT &
2951                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2952                                 /* We have to share with something already set up */
2953                                 IRQ = resources->irqs->interrupt[(temp_byte +
2954                                         resources->irqs->barber_pole - 1) & 0x03];
2955                         } else {
2956                                 /* Program IRQ based on card type */
2957                                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2958
2959                                 if (class_code == PCI_BASE_CLASS_STORAGE) {
2960                                         IRQ = cpqhp_disk_irq;
2961                                 } else {
2962                                         IRQ = cpqhp_nic_irq;
2963                                 }
2964                         }
2965
2966                         /* IRQ Line */
2967                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2968                 }
2969
2970                 if (!behind_bridge) {
2971                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2972                         if (rc)
2973                                 return 1;
2974                 } else {
2975                         /* TBD - this code may also belong in the other clause
2976                          * of this If statement */
2977                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2978                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2979                 }
2980
2981                 /* Latency Timer */
2982                 temp_byte = 0x40;
2983                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2984                                         PCI_LATENCY_TIMER, temp_byte);
2985
2986                 /* Cache Line size */
2987                 temp_byte = 0x08;
2988                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2989                                         PCI_CACHE_LINE_SIZE, temp_byte);
2990
2991                 /* disable ROM base Address */
2992                 temp_dword = 0x00L;
2993                 rc = pci_bus_write_config_word(pci_bus, devfn,
2994                                         PCI_ROM_ADDRESS, temp_dword);
2995
2996                 /* enable card */
2997                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2998                                          *   PCI_COMMAND_MEMORY |
2999                                          *   PCI_COMMAND_MASTER |
3000                                          *   PCI_COMMAND_INVALIDATE |
3001                                          *   PCI_COMMAND_PARITY |
3002                                          *   PCI_COMMAND_SERR */
3003                 rc = pci_bus_write_config_word (pci_bus, devfn,
3004                                         PCI_COMMAND, temp_word);
3005         } else {                /* End of Not-A-Bridge else */
3006                 /* It's some strange type of PCI adapter (Cardbus?) */
3007                 return DEVICE_TYPE_NOT_SUPPORTED;
3008         }
3009
3010         func->configured = 1;
3011
3012         return 0;
3013 free_and_out:
3014         cpqhp_destroy_resource_list (&temp_resources);
3015
3016         return_resource(&(resources-> bus_head), hold_bus_node);
3017         return_resource(&(resources-> io_head), hold_IO_node);
3018         return_resource(&(resources-> mem_head), hold_mem_node);
3019         return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3020         return rc;
3021 }