2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
45 #include <linux/cpufreq.h>
48 #include <asm/machvec.h>
50 #include <asm/meminit.h>
52 #include <asm/patch.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
56 #include <asm/sections.h>
57 #include <asm/setup.h>
59 #include <asm/system.h>
60 #include <asm/unistd.h>
61 #include <asm/system.h>
63 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
64 # error "struct cpuinfo_ia64 too big!"
68 unsigned long __per_cpu_offset[NR_CPUS];
69 EXPORT_SYMBOL(__per_cpu_offset);
72 extern void ia64_setup_printk_clock(void);
74 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
75 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
76 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
77 unsigned long ia64_cycles_per_usec;
78 struct ia64_boot_param *ia64_boot_param;
79 struct screen_info screen_info;
80 unsigned long vga_console_iobase;
81 unsigned long vga_console_membase;
83 static struct resource data_resource = {
84 .name = "Kernel data",
85 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
88 static struct resource code_resource = {
89 .name = "Kernel code",
90 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 extern void efi_initialize_iomem_resources(struct resource *,
94 extern char _text[], _end[], _etext[];
96 unsigned long ia64_max_cacheline_size;
98 int dma_get_cache_alignment(void)
100 return ia64_max_cacheline_size;
102 EXPORT_SYMBOL(dma_get_cache_alignment);
104 unsigned long ia64_iobase; /* virtual address for I/O accesses */
105 EXPORT_SYMBOL(ia64_iobase);
106 struct io_space io_space[MAX_IO_SPACES];
107 EXPORT_SYMBOL(io_space);
108 unsigned int num_io_spaces;
111 * "flush_icache_range()" needs to know what processor dependent stride size to use
112 * when it makes i-cache(s) coherent with d-caches.
114 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
115 unsigned long ia64_i_cache_stride_shift = ~0;
118 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
119 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
120 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
121 * address of the second buffer must be aligned to (merge_mask+1) in order to be
122 * mergeable). By default, we assume there is no I/O MMU which can merge physically
123 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126 unsigned long ia64_max_iommu_merge_mask = ~0UL;
127 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130 * We use a special marker for the end of memory and it uses the extra (+1) slot
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133 int num_rsvd_regions __initdata;
137 * Filter incoming memory segments based on the primitive map created from the boot
138 * parameters. Segments contained in the map are removed from the memory ranges. A
139 * caller-specified function is called with the memory ranges that remain after filtering.
140 * This routine does not assume the incoming segments are sorted.
143 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 unsigned long range_start, range_end, prev_start;
146 void (*func)(unsigned long, unsigned long, int);
150 if (start == PAGE_OFFSET) {
151 printk(KERN_WARNING "warning: skipping physical page 0\n");
153 if (start >= end) return 0;
157 * lowest possible address(walker uses virtual)
159 prev_start = PAGE_OFFSET;
162 for (i = 0; i < num_rsvd_regions; ++i) {
163 range_start = max(start, prev_start);
164 range_end = min(end, rsvd_region[i].start);
166 if (range_start < range_end)
167 call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 /* nothing more available in this segment */
170 if (range_end == end) return 0;
172 prev_start = rsvd_region[i].end;
174 /* end of memory marker allows full processing inside loop body */
179 sort_regions (struct rsvd_region *rsvd_region, int max)
183 /* simple bubble sorting */
185 for (j = 0; j < max; ++j) {
186 if (rsvd_region[j].start > rsvd_region[j+1].start) {
187 struct rsvd_region tmp;
188 tmp = rsvd_region[j];
189 rsvd_region[j] = rsvd_region[j + 1];
190 rsvd_region[j + 1] = tmp;
197 * Request address space for all standard resources
199 static int __init register_memory(void)
201 code_resource.start = ia64_tpa(_text);
202 code_resource.end = ia64_tpa(_etext) - 1;
203 data_resource.start = ia64_tpa(_etext);
204 data_resource.end = ia64_tpa(_end) - 1;
205 efi_initialize_iomem_resources(&code_resource, &data_resource);
210 __initcall(register_memory);
213 * reserve_memory - setup reserved memory areas
215 * Setup the reserved memory areas set aside for the boot parameters,
216 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
217 * see include/asm-ia64/meminit.h if you need to define more.
220 reserve_memory (void)
225 * none of the entries in this table overlap
227 rsvd_region[n].start = (unsigned long) ia64_boot_param;
228 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
232 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
236 rsvd_region[n].end = (rsvd_region[n].start
237 + strlen(__va(ia64_boot_param->command_line)) + 1);
240 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
241 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
244 #ifdef CONFIG_BLK_DEV_INITRD
245 if (ia64_boot_param->initrd_start) {
246 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
247 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
252 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
255 /* end of memory marker */
256 rsvd_region[n].start = ~0UL;
257 rsvd_region[n].end = ~0UL;
260 num_rsvd_regions = n;
261 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
263 sort_regions(rsvd_region, num_rsvd_regions);
267 * find_initrd - get initrd parameters from the boot parameter structure
269 * Grab the initrd start and end from the boot parameter struct given us by
275 #ifdef CONFIG_BLK_DEV_INITRD
276 if (ia64_boot_param->initrd_start) {
277 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
278 initrd_end = initrd_start+ia64_boot_param->initrd_size;
280 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
281 initrd_start, ia64_boot_param->initrd_size);
289 unsigned long phys_iobase;
292 * Set `iobase' based on the EFI memory map or, failing that, the
293 * value firmware left in ar.k0.
295 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
296 * the port's virtual address, so ia32_load_state() loads it with a
297 * user virtual address. But in ia64 mode, glibc uses the
298 * *physical* address in ar.k0 to mmap the appropriate area from
299 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
300 * cases, user-mode can only use the legacy 0-64K I/O port space.
302 * ar.k0 is not involved in kernel I/O port accesses, which can use
303 * any of the I/O port spaces and are done via MMIO using the
304 * virtual mmio_base from the appropriate io_space[].
306 phys_iobase = efi_get_iobase();
308 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
309 printk(KERN_INFO "No I/O port range found in EFI memory map, "
310 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
312 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
313 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
315 /* setup legacy IO port space */
316 io_space[0].mmio_base = ia64_iobase;
317 io_space[0].sparse = 1;
322 * early_console_setup - setup debugging console
324 * Consoles started here require little enough setup that we can start using
325 * them very early in the boot process, either right after the machine
326 * vector initialization, or even before if the drivers can detect their hw.
328 * Returns non-zero if a console couldn't be setup.
330 static inline int __init
331 early_console_setup (char *cmdline)
335 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
337 extern int sn_serial_console_early_setup(void);
338 if (!sn_serial_console_early_setup())
342 #ifdef CONFIG_EFI_PCDP
343 if (!efi_setup_pcdp_console(cmdline))
346 #ifdef CONFIG_SERIAL_8250_CONSOLE
347 if (!early_serial_console_init(cmdline))
351 return (earlycons) ? 0 : -1;
355 mark_bsp_online (void)
358 /* If we register an early console, allow CPU 0 to printk */
359 cpu_set(smp_processor_id(), cpu_online_map);
365 check_for_logical_procs (void)
367 pal_logical_to_physical_t info;
370 status = ia64_pal_logical_to_phys(0, &info);
372 printk(KERN_INFO "No logical to physical processor mapping "
377 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
382 * Total number of siblings that BSP has. Though not all of them
383 * may have booted successfully. The correct number of siblings
384 * booted is in info.overview_num_log.
386 smp_num_siblings = info.overview_tpc;
387 smp_num_cpucores = info.overview_cpp;
391 static __initdata int nomca;
392 static __init int setup_nomca(char *s)
397 early_param("nomca", setup_nomca);
400 setup_arch (char **cmdline_p)
404 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
406 *cmdline_p = __va(ia64_boot_param->command_line);
407 strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
414 #ifdef CONFIG_IA64_GENERIC
418 if (early_console_setup(*cmdline_p) == 0)
422 /* Initialize the ACPI boot-time table parser */
424 # ifdef CONFIG_ACPI_NUMA
429 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
431 #endif /* CONFIG_APCI_BOOT */
435 /* process SAL system table: */
436 ia64_sal_init(__va(efi.sal_systab));
438 ia64_setup_printk_clock();
441 cpu_physical_id(0) = hard_smp_processor_id();
443 cpu_set(0, cpu_sibling_map[0]);
444 cpu_set(0, cpu_core_map[0]);
446 check_for_logical_procs();
447 if (smp_num_cpucores > 1)
449 "cpu package is Multi-Core capable: number of cores=%d\n",
451 if (smp_num_siblings > 1)
453 "cpu package is Multi-Threading capable: number of siblings=%d\n",
457 cpu_init(); /* initialize the bootstrap CPU */
458 mmu_context_init(); /* initialize context_id bitmap */
466 # if defined(CONFIG_DUMMY_CONSOLE)
467 conswitchp = &dummy_con;
469 # if defined(CONFIG_VGA_CONSOLE)
471 * Non-legacy systems may route legacy VGA MMIO range to system
472 * memory. vga_con probes the MMIO hole, so memory looks like
473 * a VGA device to it. The EFI memory map can tell us if it's
474 * memory so we can avoid this problem.
476 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
477 conswitchp = &vga_con;
482 /* enable IA-64 Machine Check Abort Handling unless disabled */
486 platform_setup(cmdline_p);
491 * Display cpu info for all cpu's.
494 show_cpuinfo (struct seq_file *m, void *v)
497 # define lpj c->loops_per_jiffy
498 # define cpunum c->cpu
500 # define lpj loops_per_jiffy
505 const char *feature_name;
507 { 1UL << 0, "branchlong" },
508 { 1UL << 1, "spontaneous deferral"},
509 { 1UL << 2, "16-byte atomic ops" }
511 char features[128], *cp, sep;
512 struct cpuinfo_ia64 *c = v;
514 unsigned long proc_freq;
519 /* build the feature string: */
520 memcpy(features, " standard", 10);
523 for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
524 if (mask & feature_bits[i].mask) {
529 strcpy(cp, feature_bits[i].feature_name);
530 cp += strlen(feature_bits[i].feature_name);
531 mask &= ~feature_bits[i].mask;
535 /* print unknown features as a hex value: */
538 sprintf(cp, " 0x%lx", mask);
541 proc_freq = cpufreq_quick_get(cpunum);
543 proc_freq = c->proc_freq / 1000;
554 "features :%s\n" /* don't change this---it _is_ right! */
557 "cpu MHz : %lu.%06lu\n"
558 "itc MHz : %lu.%06lu\n"
559 "BogoMIPS : %lu.%02lu\n",
560 cpunum, c->vendor, c->family, c->model,
561 c->model_name, c->revision, c->archrev,
562 features, c->ppn, c->number,
563 proc_freq / 1000, proc_freq % 1000,
564 c->itc_freq / 1000000, c->itc_freq % 1000000,
565 lpj*HZ/500000, (lpj*HZ/5000) % 100);
567 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
568 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
573 c->socket_id, c->core_id, c->thread_id);
581 c_start (struct seq_file *m, loff_t *pos)
584 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
587 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
591 c_next (struct seq_file *m, void *v, loff_t *pos)
594 return c_start(m, pos);
598 c_stop (struct seq_file *m, void *v)
602 struct seq_operations cpuinfo_op = {
609 static char brandname[128];
611 static char * __cpuinit
612 get_model_name(__u8 family, __u8 model)
616 if (ia64_pal_get_brand_info(brand)) {
618 memcpy(brand, "Merced", 7);
619 else if (family == 0x1f) switch (model) {
620 case 0: memcpy(brand, "McKinley", 9); break;
621 case 1: memcpy(brand, "Madison", 8); break;
622 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
624 memcpy(brand, "Unknown", 8);
626 if (brandname[0] == '\0')
627 return strcpy(brandname, brand);
628 else if (strcmp(brandname, brand) == 0)
631 return kstrdup(brand, GFP_KERNEL);
634 static void __cpuinit
635 identify_cpu (struct cpuinfo_ia64 *c)
638 unsigned long bits[5];
644 u64 ppn; /* processor serial number */
648 unsigned revision : 8;
651 unsigned archrev : 8;
652 unsigned reserved : 24;
658 pal_vm_info_1_u_t vm1;
659 pal_vm_info_2_u_t vm2;
661 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
663 for (i = 0; i < 5; ++i)
664 cpuid.bits[i] = ia64_get_cpuid(i);
666 memcpy(c->vendor, cpuid.field.vendor, 16);
668 c->cpu = smp_processor_id();
670 /* below default values will be overwritten by identify_siblings()
671 * for Multi-Threading/Multi-Core capable cpu's
673 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
676 identify_siblings(c);
678 c->ppn = cpuid.field.ppn;
679 c->number = cpuid.field.number;
680 c->revision = cpuid.field.revision;
681 c->model = cpuid.field.model;
682 c->family = cpuid.field.family;
683 c->archrev = cpuid.field.archrev;
684 c->features = cpuid.field.features;
685 c->model_name = get_model_name(c->family, c->model);
687 status = ia64_pal_vm_summary(&vm1, &vm2);
688 if (status == PAL_STATUS_SUCCESS) {
689 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
690 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
692 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
693 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
697 setup_per_cpu_areas (void)
699 /* start_kernel() requires this... */
700 #ifdef CONFIG_ACPI_HOTPLUG_CPU
701 prefill_possible_map();
706 * Calculate the max. cache line size.
708 * In addition, the minimum of the i-cache stride sizes is calculated for
709 * "flush_icache_range()".
711 static void __cpuinit
712 get_max_cacheline_size (void)
714 unsigned long line_size, max = 1;
715 unsigned int cache_size = 0;
716 u64 l, levels, unique_caches;
717 pal_cache_config_info_t cci;
720 status = ia64_pal_cache_summary(&levels, &unique_caches);
722 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
723 __FUNCTION__, status);
724 max = SMP_CACHE_BYTES;
725 /* Safest setup for "flush_icache_range()" */
726 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
730 for (l = 0; l < levels; ++l) {
731 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
735 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
736 __FUNCTION__, l, status);
737 max = SMP_CACHE_BYTES;
738 /* The safest setup for "flush_icache_range()" */
739 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
740 cci.pcci_unified = 1;
742 line_size = 1 << cci.pcci_line_size;
745 if (cache_size < cci.pcci_cache_size)
746 cache_size = cci.pcci_cache_size;
747 if (!cci.pcci_unified) {
748 status = ia64_pal_cache_config_info(l,
749 /* cache_type (instruction)= */ 1,
753 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
754 __FUNCTION__, l, status);
755 /* The safest setup for "flush_icache_range()" */
756 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
759 if (cci.pcci_stride < ia64_i_cache_stride_shift)
760 ia64_i_cache_stride_shift = cci.pcci_stride;
764 max_cache_size = max(max_cache_size, cache_size);
766 if (max > ia64_max_cacheline_size)
767 ia64_max_cacheline_size = max;
771 * cpu_init() initializes state that is per-CPU. This function acts
772 * as a 'CPU state barrier', nothing should get across.
777 extern void __cpuinit ia64_mmu_init (void *);
778 unsigned long num_phys_stacked;
779 pal_vm_info_2_u_t vmi;
780 unsigned int max_ctx;
781 struct cpuinfo_ia64 *cpu_info;
784 cpu_data = per_cpu_init();
787 * We set ar.k3 so that assembly code in MCA handler can compute
788 * physical addresses of per cpu variables with a simple:
789 * phys = ar.k3 + &per_cpu_var
791 ia64_set_kr(IA64_KR_PER_CPU_DATA,
792 ia64_tpa(cpu_data) - (long) __per_cpu_start);
794 get_max_cacheline_size();
797 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
798 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
799 * depends on the data returned by identify_cpu(). We break the dependency by
800 * accessing cpu_data() through the canonical per-CPU address.
802 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
803 identify_cpu(cpu_info);
805 #ifdef CONFIG_MCKINLEY
807 # define FEATURE_SET 16
808 struct ia64_pal_retval iprv;
810 if (cpu_info->family == 0x1f) {
811 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
812 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
813 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
814 (iprv.v1 | 0x80), FEATURE_SET, 0);
819 /* Clear the stack memory reserved for pt_regs: */
820 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
822 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
825 * Initialize the page-table base register to a global
826 * directory with all zeroes. This ensure that we can handle
827 * TLB-misses to user address-space even before we created the
828 * first user address-space. This may happen, e.g., due to
829 * aggressive use of lfetch.fault.
831 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
834 * Initialize default control register to defer speculative faults except
835 * for those arising from TLB misses, which are not deferred. The
836 * kernel MUST NOT depend on a particular setting of these bits (in other words,
837 * the kernel must have recovery code for all speculative accesses). Turn on
838 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
839 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
842 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
843 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
844 atomic_inc(&init_mm.mm_count);
845 current->active_mm = &init_mm;
849 ia64_mmu_init(ia64_imva(cpu_data));
850 ia64_mca_cpu_init(ia64_imva(cpu_data));
852 #ifdef CONFIG_IA32_SUPPORT
856 /* Clear ITC to eliminiate sched_clock() overflows in human time. */
859 /* disable all local interrupt sources: */
860 ia64_set_itv(1 << 16);
861 ia64_set_lrr0(1 << 16);
862 ia64_set_lrr1(1 << 16);
863 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
864 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
866 /* clear TPR & XTP to enable all interrupt classes: */
867 ia64_setreg(_IA64_REG_CR_TPR, 0);
872 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
873 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
874 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
876 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
877 max_ctx = (1U << 15) - 1; /* use architected minimum */
879 while (max_ctx < ia64_ctx.max_ctx) {
880 unsigned int old = ia64_ctx.max_ctx;
881 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
885 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
886 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
888 num_phys_stacked = 96;
890 /* size of physical stacked register partition plus 8 bytes: */
891 __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
893 pm_idle = default_idle;
897 * On SMP systems, when the scheduler does migration-cost autodetection,
898 * it needs a way to flush as much of the CPU's caches as possible.
900 void sched_cacheflush(void)
902 ia64_sal_cache_flush(3);
908 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
909 (unsigned long) __end___mckinley_e9_bundles);
912 static int __init run_dmi_scan(void)
917 core_initcall(run_dmi_scan);