[CPUFREQ] Do not set policy for offline cpus
[linux-2.6] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33                                                 "cpufreq-core", msg)
34
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu)                                    \
69 int lock_policy_rwsem_##mode                                            \
70 (int cpu)                                                               \
71 {                                                                       \
72         int policy_cpu = per_cpu(policy_cpu, cpu);                      \
73         BUG_ON(policy_cpu == -1);                                       \
74         down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));            \
75         if (unlikely(!cpu_online(cpu))) {                               \
76                 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));      \
77                 return -1;                                              \
78         }                                                               \
79                                                                         \
80         return 0;                                                       \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91         int policy_cpu = per_cpu(policy_cpu, cpu);
92         BUG_ON(policy_cpu == -1);
93         up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99         int policy_cpu = per_cpu(policy_cpu, cpu);
100         BUG_ON(policy_cpu == -1);
101         up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108                 unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111
112 /**
113  * Two notifier lists: the "policy" list is involved in the
114  * validation process for a new CPU frequency policy; the
115  * "transition" list for kernel code that needs to handle
116  * changes to devices when the CPU clock speed changes.
117  * The mutex locks both lists.
118  */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126         init_cpufreq_transition_notifier_list_called = true;
127         return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
135 {
136         struct cpufreq_policy *data;
137         unsigned long flags;
138
139         if (cpu >= nr_cpu_ids)
140                 goto err_out;
141
142         /* get the cpufreq driver */
143         spin_lock_irqsave(&cpufreq_driver_lock, flags);
144
145         if (!cpufreq_driver)
146                 goto err_out_unlock;
147
148         if (!try_module_get(cpufreq_driver->owner))
149                 goto err_out_unlock;
150
151
152         /* get the CPU */
153         data = per_cpu(cpufreq_cpu_data, cpu);
154
155         if (!data)
156                 goto err_out_put_module;
157
158         if (!kobject_get(&data->kobj))
159                 goto err_out_put_module;
160
161         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
162         return data;
163
164 err_out_put_module:
165         module_put(cpufreq_driver->owner);
166 err_out_unlock:
167         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
168 err_out:
169         return NULL;
170 }
171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172
173
174 void cpufreq_cpu_put(struct cpufreq_policy *data)
175 {
176         kobject_put(&data->kobj);
177         module_put(cpufreq_driver->owner);
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180
181
182 /*********************************************************************
183  *                     UNIFIED DEBUG HELPERS                         *
184  *********************************************************************/
185 #ifdef CONFIG_CPU_FREQ_DEBUG
186
187 /* what part(s) of the CPUfreq subsystem are debugged? */
188 static unsigned int debug;
189
190 /* is the debug output ratelimit'ed using printk_ratelimit? User can
191  * set or modify this value.
192  */
193 static unsigned int debug_ratelimit = 1;
194
195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
196  * loading of a cpufreq driver, temporarily disabled when a new policy
197  * is set, and disabled upon cpufreq driver removal
198  */
199 static unsigned int disable_ratelimit = 1;
200 static DEFINE_SPINLOCK(disable_ratelimit_lock);
201
202 static void cpufreq_debug_enable_ratelimit(void)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(&disable_ratelimit_lock, flags);
207         if (disable_ratelimit)
208                 disable_ratelimit--;
209         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
210 }
211
212 static void cpufreq_debug_disable_ratelimit(void)
213 {
214         unsigned long flags;
215
216         spin_lock_irqsave(&disable_ratelimit_lock, flags);
217         disable_ratelimit++;
218         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
219 }
220
221 void cpufreq_debug_printk(unsigned int type, const char *prefix,
222                         const char *fmt, ...)
223 {
224         char s[256];
225         va_list args;
226         unsigned int len;
227         unsigned long flags;
228
229         WARN_ON(!prefix);
230         if (type & debug) {
231                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
232                 if (!disable_ratelimit && debug_ratelimit
233                                         && !printk_ratelimit()) {
234                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235                         return;
236                 }
237                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
238
239                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
240
241                 va_start(args, fmt);
242                 len += vsnprintf(&s[len], (256 - len), fmt, args);
243                 va_end(args);
244
245                 printk(s);
246
247                 WARN_ON(len < 5);
248         }
249 }
250 EXPORT_SYMBOL(cpufreq_debug_printk);
251
252
253 module_param(debug, uint, 0644);
254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
255                         " 2 to debug drivers, and 4 to debug governors.");
256
257 module_param(debug_ratelimit, uint, 0644);
258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
259                                         " set to 0 to disable ratelimiting.");
260
261 #else /* !CONFIG_CPU_FREQ_DEBUG */
262
263 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
264 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
265
266 #endif /* CONFIG_CPU_FREQ_DEBUG */
267
268
269 /*********************************************************************
270  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
271  *********************************************************************/
272
273 /**
274  * adjust_jiffies - adjust the system "loops_per_jiffy"
275  *
276  * This function alters the system "loops_per_jiffy" for the clock
277  * speed change. Note that loops_per_jiffy cannot be updated on SMP
278  * systems as each CPU might be scaled differently. So, use the arch
279  * per-CPU loops_per_jiffy value wherever possible.
280  */
281 #ifndef CONFIG_SMP
282 static unsigned long l_p_j_ref;
283 static unsigned int  l_p_j_ref_freq;
284
285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
286 {
287         if (ci->flags & CPUFREQ_CONST_LOOPS)
288                 return;
289
290         if (!l_p_j_ref_freq) {
291                 l_p_j_ref = loops_per_jiffy;
292                 l_p_j_ref_freq = ci->old;
293                 dprintk("saving %lu as reference value for loops_per_jiffy; "
294                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
295         }
296         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
297             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
298             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
299                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
300                                                                 ci->new);
301                 dprintk("scaling loops_per_jiffy to %lu "
302                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
303         }
304 }
305 #else
306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308         return;
309 }
310 #endif
311
312
313 /**
314  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
315  * on frequency transition.
316  *
317  * This function calls the transition notifiers and the "adjust_jiffies"
318  * function. It is called twice on all CPU frequency changes that have
319  * external effects.
320  */
321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
322 {
323         struct cpufreq_policy *policy;
324
325         BUG_ON(irqs_disabled());
326
327         freqs->flags = cpufreq_driver->flags;
328         dprintk("notification %u of frequency transition to %u kHz\n",
329                 state, freqs->new);
330
331         policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
332         switch (state) {
333
334         case CPUFREQ_PRECHANGE:
335                 /* detect if the driver reported a value as "old frequency"
336                  * which is not equal to what the cpufreq core thinks is
337                  * "old frequency".
338                  */
339                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340                         if ((policy) && (policy->cpu == freqs->cpu) &&
341                             (policy->cur) && (policy->cur != freqs->old)) {
342                                 dprintk("Warning: CPU frequency is"
343                                         " %u, cpufreq assumed %u kHz.\n",
344                                         freqs->old, policy->cur);
345                                 freqs->old = policy->cur;
346                         }
347                 }
348                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349                                 CPUFREQ_PRECHANGE, freqs);
350                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
351                 break;
352
353         case CPUFREQ_POSTCHANGE:
354                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
355                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
356                                 CPUFREQ_POSTCHANGE, freqs);
357                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
358                         policy->cur = freqs->new;
359                 break;
360         }
361 }
362 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
363
364
365
366 /*********************************************************************
367  *                          SYSFS INTERFACE                          *
368  *********************************************************************/
369
370 static struct cpufreq_governor *__find_governor(const char *str_governor)
371 {
372         struct cpufreq_governor *t;
373
374         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
375                 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
376                         return t;
377
378         return NULL;
379 }
380
381 /**
382  * cpufreq_parse_governor - parse a governor string
383  */
384 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
385                                 struct cpufreq_governor **governor)
386 {
387         int err = -EINVAL;
388
389         if (!cpufreq_driver)
390                 goto out;
391
392         if (cpufreq_driver->setpolicy) {
393                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
394                         *policy = CPUFREQ_POLICY_PERFORMANCE;
395                         err = 0;
396                 } else if (!strnicmp(str_governor, "powersave",
397                                                 CPUFREQ_NAME_LEN)) {
398                         *policy = CPUFREQ_POLICY_POWERSAVE;
399                         err = 0;
400                 }
401         } else if (cpufreq_driver->target) {
402                 struct cpufreq_governor *t;
403
404                 mutex_lock(&cpufreq_governor_mutex);
405
406                 t = __find_governor(str_governor);
407
408                 if (t == NULL) {
409                         char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
410                                                                 str_governor);
411
412                         if (name) {
413                                 int ret;
414
415                                 mutex_unlock(&cpufreq_governor_mutex);
416                                 ret = request_module("%s", name);
417                                 mutex_lock(&cpufreq_governor_mutex);
418
419                                 if (ret == 0)
420                                         t = __find_governor(str_governor);
421                         }
422
423                         kfree(name);
424                 }
425
426                 if (t != NULL) {
427                         *governor = t;
428                         err = 0;
429                 }
430
431                 mutex_unlock(&cpufreq_governor_mutex);
432         }
433 out:
434         return err;
435 }
436
437
438 /**
439  * cpufreq_per_cpu_attr_read() / show_##file_name() -
440  * print out cpufreq information
441  *
442  * Write out information from cpufreq_driver->policy[cpu]; object must be
443  * "unsigned int".
444  */
445
446 #define show_one(file_name, object)                     \
447 static ssize_t show_##file_name                         \
448 (struct cpufreq_policy *policy, char *buf)              \
449 {                                                       \
450         return sprintf(buf, "%u\n", policy->object);    \
451 }
452
453 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
454 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
455 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461                                 struct cpufreq_policy *policy);
462
463 /**
464  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465  */
466 #define store_one(file_name, object)                    \
467 static ssize_t store_##file_name                                        \
468 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
469 {                                                                       \
470         unsigned int ret = -EINVAL;                                     \
471         struct cpufreq_policy new_policy;                               \
472                                                                         \
473         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
474         if (ret)                                                        \
475                 return -EINVAL;                                         \
476                                                                         \
477         ret = sscanf(buf, "%u", &new_policy.object);                    \
478         if (ret != 1)                                                   \
479                 return -EINVAL;                                         \
480                                                                         \
481         ret = __cpufreq_set_policy(policy, &new_policy);                \
482         policy->user_policy.object = policy->object;                    \
483                                                                         \
484         return ret ? ret : count;                                       \
485 }
486
487 store_one(scaling_min_freq, min);
488 store_one(scaling_max_freq, max);
489
490 /**
491  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492  */
493 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
494                                         char *buf)
495 {
496         unsigned int cur_freq = __cpufreq_get(policy->cpu);
497         if (!cur_freq)
498                 return sprintf(buf, "<unknown>");
499         return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504  * show_scaling_governor - show the current policy for the specified CPU
505  */
506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
507 {
508         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
509                 return sprintf(buf, "powersave\n");
510         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
511                 return sprintf(buf, "performance\n");
512         else if (policy->governor)
513                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
514                                 policy->governor->name);
515         return -EINVAL;
516 }
517
518
519 /**
520  * store_scaling_governor - store policy for the specified CPU
521  */
522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
523                                         const char *buf, size_t count)
524 {
525         unsigned int ret = -EINVAL;
526         char    str_governor[16];
527         struct cpufreq_policy new_policy;
528
529         ret = cpufreq_get_policy(&new_policy, policy->cpu);
530         if (ret)
531                 return ret;
532
533         ret = sscanf(buf, "%15s", str_governor);
534         if (ret != 1)
535                 return -EINVAL;
536
537         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538                                                 &new_policy.governor))
539                 return -EINVAL;
540
541         /* Do not use cpufreq_set_policy here or the user_policy.max
542            will be wrongly overridden */
543         ret = __cpufreq_set_policy(policy, &new_policy);
544
545         policy->user_policy.policy = policy->policy;
546         policy->user_policy.governor = policy->governor;
547
548         if (ret)
549                 return ret;
550         else
551                 return count;
552 }
553
554 /**
555  * show_scaling_driver - show the cpufreq driver currently loaded
556  */
557 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
558 {
559         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563  * show_scaling_available_governors - show the available CPUfreq governors
564  */
565 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
566                                                 char *buf)
567 {
568         ssize_t i = 0;
569         struct cpufreq_governor *t;
570
571         if (!cpufreq_driver->target) {
572                 i += sprintf(buf, "performance powersave");
573                 goto out;
574         }
575
576         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
578                     - (CPUFREQ_NAME_LEN + 2)))
579                         goto out;
580                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
581         }
582 out:
583         i += sprintf(&buf[i], "\n");
584         return i;
585 }
586
587 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
588 {
589         ssize_t i = 0;
590         unsigned int cpu;
591
592         for_each_cpu(cpu, mask) {
593                 if (i)
594                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596                 if (i >= (PAGE_SIZE - 5))
597                         break;
598         }
599         i += sprintf(&buf[i], "\n");
600         return i;
601 }
602
603 /**
604  * show_related_cpus - show the CPUs affected by each transition even if
605  * hw coordination is in use
606  */
607 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
608 {
609         if (cpumask_empty(policy->related_cpus))
610                 return show_cpus(policy->cpus, buf);
611         return show_cpus(policy->related_cpus, buf);
612 }
613
614 /**
615  * show_affected_cpus - show the CPUs affected by each transition
616  */
617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
618 {
619         return show_cpus(policy->cpus, buf);
620 }
621
622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
623                                         const char *buf, size_t count)
624 {
625         unsigned int freq = 0;
626         unsigned int ret;
627
628         if (!policy->governor || !policy->governor->store_setspeed)
629                 return -EINVAL;
630
631         ret = sscanf(buf, "%u", &freq);
632         if (ret != 1)
633                 return -EINVAL;
634
635         policy->governor->store_setspeed(policy, freq);
636
637         return count;
638 }
639
640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
641 {
642         if (!policy->governor || !policy->governor->show_setspeed)
643                 return sprintf(buf, "<unsupported>\n");
644
645         return policy->governor->show_setspeed(policy, buf);
646 }
647
648 #define define_one_ro(_name) \
649 static struct freq_attr _name = \
650 __ATTR(_name, 0444, show_##_name, NULL)
651
652 #define define_one_ro0400(_name) \
653 static struct freq_attr _name = \
654 __ATTR(_name, 0400, show_##_name, NULL)
655
656 #define define_one_rw(_name) \
657 static struct freq_attr _name = \
658 __ATTR(_name, 0644, show_##_name, store_##_name)
659
660 define_one_ro0400(cpuinfo_cur_freq);
661 define_one_ro(cpuinfo_min_freq);
662 define_one_ro(cpuinfo_max_freq);
663 define_one_ro(cpuinfo_transition_latency);
664 define_one_ro(scaling_available_governors);
665 define_one_ro(scaling_driver);
666 define_one_ro(scaling_cur_freq);
667 define_one_ro(related_cpus);
668 define_one_ro(affected_cpus);
669 define_one_rw(scaling_min_freq);
670 define_one_rw(scaling_max_freq);
671 define_one_rw(scaling_governor);
672 define_one_rw(scaling_setspeed);
673
674 static struct attribute *default_attrs[] = {
675         &cpuinfo_min_freq.attr,
676         &cpuinfo_max_freq.attr,
677         &cpuinfo_transition_latency.attr,
678         &scaling_min_freq.attr,
679         &scaling_max_freq.attr,
680         &affected_cpus.attr,
681         &related_cpus.attr,
682         &scaling_governor.attr,
683         &scaling_driver.attr,
684         &scaling_available_governors.attr,
685         &scaling_setspeed.attr,
686         NULL
687 };
688
689 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
690 #define to_attr(a) container_of(a, struct freq_attr, attr)
691
692 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
693 {
694         struct cpufreq_policy *policy = to_policy(kobj);
695         struct freq_attr *fattr = to_attr(attr);
696         ssize_t ret = -EINVAL;
697         policy = cpufreq_cpu_get(policy->cpu);
698         if (!policy)
699                 goto no_policy;
700
701         if (lock_policy_rwsem_read(policy->cpu) < 0)
702                 goto fail;
703
704         if (fattr->show)
705                 ret = fattr->show(policy, buf);
706         else
707                 ret = -EIO;
708
709         unlock_policy_rwsem_read(policy->cpu);
710 fail:
711         cpufreq_cpu_put(policy);
712 no_policy:
713         return ret;
714 }
715
716 static ssize_t store(struct kobject *kobj, struct attribute *attr,
717                      const char *buf, size_t count)
718 {
719         struct cpufreq_policy *policy = to_policy(kobj);
720         struct freq_attr *fattr = to_attr(attr);
721         ssize_t ret = -EINVAL;
722         policy = cpufreq_cpu_get(policy->cpu);
723         if (!policy)
724                 goto no_policy;
725
726         if (lock_policy_rwsem_write(policy->cpu) < 0)
727                 goto fail;
728
729         if (fattr->store)
730                 ret = fattr->store(policy, buf, count);
731         else
732                 ret = -EIO;
733
734         unlock_policy_rwsem_write(policy->cpu);
735 fail:
736         cpufreq_cpu_put(policy);
737 no_policy:
738         return ret;
739 }
740
741 static void cpufreq_sysfs_release(struct kobject *kobj)
742 {
743         struct cpufreq_policy *policy = to_policy(kobj);
744         dprintk("last reference is dropped\n");
745         complete(&policy->kobj_unregister);
746 }
747
748 static struct sysfs_ops sysfs_ops = {
749         .show   = show,
750         .store  = store,
751 };
752
753 static struct kobj_type ktype_cpufreq = {
754         .sysfs_ops      = &sysfs_ops,
755         .default_attrs  = default_attrs,
756         .release        = cpufreq_sysfs_release,
757 };
758
759
760 /**
761  * cpufreq_add_dev - add a CPU device
762  *
763  * Adds the cpufreq interface for a CPU device.
764  *
765  * The Oracle says: try running cpufreq registration/unregistration concurrently
766  * with with cpu hotplugging and all hell will break loose. Tried to clean this
767  * mess up, but more thorough testing is needed. - Mathieu
768  */
769 static int cpufreq_add_dev(struct sys_device *sys_dev)
770 {
771         unsigned int cpu = sys_dev->id;
772         int ret = 0;
773         struct cpufreq_policy new_policy;
774         struct cpufreq_policy *policy;
775         struct freq_attr **drv_attr;
776         struct sys_device *cpu_sys_dev;
777         unsigned long flags;
778         unsigned int j;
779
780         if (cpu_is_offline(cpu))
781                 return 0;
782
783         cpufreq_debug_disable_ratelimit();
784         dprintk("adding CPU %u\n", cpu);
785
786 #ifdef CONFIG_SMP
787         /* check whether a different CPU already registered this
788          * CPU because it is in the same boat. */
789         policy = cpufreq_cpu_get(cpu);
790         if (unlikely(policy)) {
791                 cpufreq_cpu_put(policy);
792                 cpufreq_debug_enable_ratelimit();
793                 return 0;
794         }
795 #endif
796
797         if (!try_module_get(cpufreq_driver->owner)) {
798                 ret = -EINVAL;
799                 goto module_out;
800         }
801
802         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
803         if (!policy) {
804                 ret = -ENOMEM;
805                 goto nomem_out;
806         }
807         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) {
808                 ret = -ENOMEM;
809                 goto err_free_policy;
810         }
811         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) {
812                 ret = -ENOMEM;
813                 goto err_free_cpumask;
814         }
815
816         policy->cpu = cpu;
817         cpumask_copy(policy->cpus, cpumask_of(cpu));
818
819         /* Initially set CPU itself as the policy_cpu */
820         per_cpu(policy_cpu, cpu) = cpu;
821         ret = (lock_policy_rwsem_write(cpu) < 0);
822         WARN_ON(ret);
823
824         init_completion(&policy->kobj_unregister);
825         INIT_WORK(&policy->update, handle_update);
826
827         /* Set governor before ->init, so that driver could check it */
828         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
829         /* call driver. From then on the cpufreq must be able
830          * to accept all calls to ->verify and ->setpolicy for this CPU
831          */
832         ret = cpufreq_driver->init(policy);
833         if (ret) {
834                 dprintk("initialization failed\n");
835                 goto err_unlock_policy;
836         }
837         policy->user_policy.min = policy->min;
838         policy->user_policy.max = policy->max;
839
840         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
841                                      CPUFREQ_START, policy);
842
843 #ifdef CONFIG_SMP
844
845 #ifdef CONFIG_HOTPLUG_CPU
846         if (per_cpu(cpufreq_cpu_governor, cpu)) {
847                 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
848                 dprintk("Restoring governor %s for cpu %d\n",
849                        policy->governor->name, cpu);
850         }
851 #endif
852
853         for_each_cpu(j, policy->cpus) {
854                 struct cpufreq_policy *managed_policy;
855
856                 if (cpu == j)
857                         continue;
858
859                 /* Check for existing affected CPUs.
860                  * They may not be aware of it due to CPU Hotplug.
861                  */
862                 managed_policy = cpufreq_cpu_get(j);
863                 if (unlikely(managed_policy)) {
864
865                         /* Set proper policy_cpu */
866                         unlock_policy_rwsem_write(cpu);
867                         per_cpu(policy_cpu, cpu) = managed_policy->cpu;
868
869                         if (lock_policy_rwsem_write(cpu) < 0) {
870                                 /* Should not go through policy unlock path */
871                                 if (cpufreq_driver->exit)
872                                         cpufreq_driver->exit(policy);
873                                 ret = -EBUSY;
874                                 cpufreq_cpu_put(managed_policy);
875                                 goto err_free_cpumask;
876                         }
877
878                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
879                         cpumask_copy(managed_policy->cpus, policy->cpus);
880                         per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
881                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
882
883                         dprintk("CPU already managed, adding link\n");
884                         ret = sysfs_create_link(&sys_dev->kobj,
885                                                 &managed_policy->kobj,
886                                                 "cpufreq");
887                         if (!ret)
888                                 cpufreq_cpu_put(managed_policy);
889                         /*
890                          * Success. We only needed to be added to the mask.
891                          * Call driver->exit() because only the cpu parent of
892                          * the kobj needed to call init().
893                          */
894                         goto out_driver_exit; /* call driver->exit() */
895                 }
896         }
897 #endif
898         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
899
900         /* prepare interface data */
901         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
902                                    "cpufreq");
903         if (ret)
904                 goto out_driver_exit;
905
906         /* set up files for this cpu device */
907         drv_attr = cpufreq_driver->attr;
908         while ((drv_attr) && (*drv_attr)) {
909                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
910                 if (ret)
911                         goto err_out_kobj_put;
912                 drv_attr++;
913         }
914         if (cpufreq_driver->get) {
915                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
916                 if (ret)
917                         goto err_out_kobj_put;
918         }
919         if (cpufreq_driver->target) {
920                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
921                 if (ret)
922                         goto err_out_kobj_put;
923         }
924
925         spin_lock_irqsave(&cpufreq_driver_lock, flags);
926         for_each_cpu(j, policy->cpus) {
927                 if (!cpu_online(j))
928                         continue;
929                 per_cpu(cpufreq_cpu_data, j) = policy;
930                 per_cpu(policy_cpu, j) = policy->cpu;
931         }
932         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
933
934         /* symlink affected CPUs */
935         for_each_cpu(j, policy->cpus) {
936                 struct cpufreq_policy *managed_policy;
937
938                 if (j == cpu)
939                         continue;
940                 if (!cpu_online(j))
941                         continue;
942
943                 dprintk("CPU %u already managed, adding link\n", j);
944                 managed_policy = cpufreq_cpu_get(cpu);
945                 cpu_sys_dev = get_cpu_sysdev(j);
946                 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
947                                         "cpufreq");
948                 if (ret) {
949                         cpufreq_cpu_put(managed_policy);
950                         goto err_out_unregister;
951                 }
952         }
953
954         policy->governor = NULL; /* to assure that the starting sequence is
955                                   * run in cpufreq_set_policy */
956
957         /* set default policy */
958         ret = __cpufreq_set_policy(policy, &new_policy);
959         policy->user_policy.policy = policy->policy;
960         policy->user_policy.governor = policy->governor;
961
962         if (ret) {
963                 dprintk("setting policy failed\n");
964                 goto err_out_unregister;
965         }
966
967         unlock_policy_rwsem_write(cpu);
968
969         kobject_uevent(&policy->kobj, KOBJ_ADD);
970         module_put(cpufreq_driver->owner);
971         dprintk("initialization complete\n");
972         cpufreq_debug_enable_ratelimit();
973
974         return 0;
975
976
977 err_out_unregister:
978         spin_lock_irqsave(&cpufreq_driver_lock, flags);
979         for_each_cpu(j, policy->cpus)
980                 per_cpu(cpufreq_cpu_data, j) = NULL;
981         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
982
983 err_out_kobj_put:
984         kobject_put(&policy->kobj);
985         wait_for_completion(&policy->kobj_unregister);
986
987 out_driver_exit:
988         if (cpufreq_driver->exit)
989                 cpufreq_driver->exit(policy);
990
991 err_unlock_policy:
992         unlock_policy_rwsem_write(cpu);
993 err_free_cpumask:
994         free_cpumask_var(policy->cpus);
995 err_free_policy:
996         kfree(policy);
997 nomem_out:
998         module_put(cpufreq_driver->owner);
999 module_out:
1000         cpufreq_debug_enable_ratelimit();
1001         return ret;
1002 }
1003
1004
1005 /**
1006  * __cpufreq_remove_dev - remove a CPU device
1007  *
1008  * Removes the cpufreq interface for a CPU device.
1009  * Caller should already have policy_rwsem in write mode for this CPU.
1010  * This routine frees the rwsem before returning.
1011  */
1012 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1013 {
1014         unsigned int cpu = sys_dev->id;
1015         unsigned long flags;
1016         struct cpufreq_policy *data;
1017 #ifdef CONFIG_SMP
1018         struct sys_device *cpu_sys_dev;
1019         unsigned int j;
1020 #endif
1021
1022         cpufreq_debug_disable_ratelimit();
1023         dprintk("unregistering CPU %u\n", cpu);
1024
1025         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1026         data = per_cpu(cpufreq_cpu_data, cpu);
1027
1028         if (!data) {
1029                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1030                 cpufreq_debug_enable_ratelimit();
1031                 unlock_policy_rwsem_write(cpu);
1032                 return -EINVAL;
1033         }
1034         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1035
1036
1037 #ifdef CONFIG_SMP
1038         /* if this isn't the CPU which is the parent of the kobj, we
1039          * only need to unlink, put and exit
1040          */
1041         if (unlikely(cpu != data->cpu)) {
1042                 dprintk("removing link\n");
1043                 cpumask_clear_cpu(cpu, data->cpus);
1044                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1045                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1046                 cpufreq_cpu_put(data);
1047                 cpufreq_debug_enable_ratelimit();
1048                 unlock_policy_rwsem_write(cpu);
1049                 return 0;
1050         }
1051 #endif
1052
1053 #ifdef CONFIG_SMP
1054
1055 #ifdef CONFIG_HOTPLUG_CPU
1056         per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1057 #endif
1058
1059         /* if we have other CPUs still registered, we need to unlink them,
1060          * or else wait_for_completion below will lock up. Clean the
1061          * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1062          * the sysfs links afterwards.
1063          */
1064         if (unlikely(cpumask_weight(data->cpus) > 1)) {
1065                 for_each_cpu(j, data->cpus) {
1066                         if (j == cpu)
1067                                 continue;
1068                         per_cpu(cpufreq_cpu_data, j) = NULL;
1069                 }
1070         }
1071
1072         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1073
1074         if (unlikely(cpumask_weight(data->cpus) > 1)) {
1075                 for_each_cpu(j, data->cpus) {
1076                         if (j == cpu)
1077                                 continue;
1078                         dprintk("removing link for cpu %u\n", j);
1079 #ifdef CONFIG_HOTPLUG_CPU
1080                         per_cpu(cpufreq_cpu_governor, j) = data->governor;
1081 #endif
1082                         cpu_sys_dev = get_cpu_sysdev(j);
1083                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1084                         cpufreq_cpu_put(data);
1085                 }
1086         }
1087 #else
1088         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1089 #endif
1090
1091         if (cpufreq_driver->target)
1092                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1093
1094         kobject_put(&data->kobj);
1095
1096         /* we need to make sure that the underlying kobj is actually
1097          * not referenced anymore by anybody before we proceed with
1098          * unloading.
1099          */
1100         dprintk("waiting for dropping of refcount\n");
1101         wait_for_completion(&data->kobj_unregister);
1102         dprintk("wait complete\n");
1103
1104         if (cpufreq_driver->exit)
1105                 cpufreq_driver->exit(data);
1106
1107         unlock_policy_rwsem_write(cpu);
1108
1109         free_cpumask_var(data->related_cpus);
1110         free_cpumask_var(data->cpus);
1111         kfree(data);
1112         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1113
1114         cpufreq_debug_enable_ratelimit();
1115         return 0;
1116 }
1117
1118
1119 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1120 {
1121         unsigned int cpu = sys_dev->id;
1122         int retval;
1123
1124         if (cpu_is_offline(cpu))
1125                 return 0;
1126
1127         if (unlikely(lock_policy_rwsem_write(cpu)))
1128                 BUG();
1129
1130         retval = __cpufreq_remove_dev(sys_dev);
1131         return retval;
1132 }
1133
1134
1135 static void handle_update(struct work_struct *work)
1136 {
1137         struct cpufreq_policy *policy =
1138                 container_of(work, struct cpufreq_policy, update);
1139         unsigned int cpu = policy->cpu;
1140         dprintk("handle_update for cpu %u called\n", cpu);
1141         cpufreq_update_policy(cpu);
1142 }
1143
1144 /**
1145  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1146  *      @cpu: cpu number
1147  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1148  *      @new_freq: CPU frequency the CPU actually runs at
1149  *
1150  *      We adjust to current frequency first, and need to clean up later.
1151  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1152  */
1153 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1154                                 unsigned int new_freq)
1155 {
1156         struct cpufreq_freqs freqs;
1157
1158         dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1159                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1160
1161         freqs.cpu = cpu;
1162         freqs.old = old_freq;
1163         freqs.new = new_freq;
1164         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1165         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1166 }
1167
1168
1169 /**
1170  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1171  * @cpu: CPU number
1172  *
1173  * This is the last known freq, without actually getting it from the driver.
1174  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1175  */
1176 unsigned int cpufreq_quick_get(unsigned int cpu)
1177 {
1178         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1179         unsigned int ret_freq = 0;
1180
1181         if (policy) {
1182                 ret_freq = policy->cur;
1183                 cpufreq_cpu_put(policy);
1184         }
1185
1186         return ret_freq;
1187 }
1188 EXPORT_SYMBOL(cpufreq_quick_get);
1189
1190
1191 static unsigned int __cpufreq_get(unsigned int cpu)
1192 {
1193         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1194         unsigned int ret_freq = 0;
1195
1196         if (!cpufreq_driver->get)
1197                 return ret_freq;
1198
1199         ret_freq = cpufreq_driver->get(cpu);
1200
1201         if (ret_freq && policy->cur &&
1202                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1203                 /* verify no discrepancy between actual and
1204                                         saved value exists */
1205                 if (unlikely(ret_freq != policy->cur)) {
1206                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1207                         schedule_work(&policy->update);
1208                 }
1209         }
1210
1211         return ret_freq;
1212 }
1213
1214 /**
1215  * cpufreq_get - get the current CPU frequency (in kHz)
1216  * @cpu: CPU number
1217  *
1218  * Get the CPU current (static) CPU frequency
1219  */
1220 unsigned int cpufreq_get(unsigned int cpu)
1221 {
1222         unsigned int ret_freq = 0;
1223         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1224
1225         if (!policy)
1226                 goto out;
1227
1228         if (unlikely(lock_policy_rwsem_read(cpu)))
1229                 goto out_policy;
1230
1231         ret_freq = __cpufreq_get(cpu);
1232
1233         unlock_policy_rwsem_read(cpu);
1234
1235 out_policy:
1236         cpufreq_cpu_put(policy);
1237 out:
1238         return ret_freq;
1239 }
1240 EXPORT_SYMBOL(cpufreq_get);
1241
1242
1243 /**
1244  *      cpufreq_suspend - let the low level driver prepare for suspend
1245  */
1246
1247 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1248 {
1249         int cpu = sysdev->id;
1250         int ret = 0;
1251         unsigned int cur_freq = 0;
1252         struct cpufreq_policy *cpu_policy;
1253
1254         dprintk("suspending cpu %u\n", cpu);
1255
1256         if (!cpu_online(cpu))
1257                 return 0;
1258
1259         /* we may be lax here as interrupts are off. Nonetheless
1260          * we need to grab the correct cpu policy, as to check
1261          * whether we really run on this CPU.
1262          */
1263
1264         cpu_policy = cpufreq_cpu_get(cpu);
1265         if (!cpu_policy)
1266                 return -EINVAL;
1267
1268         /* only handle each CPU group once */
1269         if (unlikely(cpu_policy->cpu != cpu))
1270                 goto out;
1271
1272         if (cpufreq_driver->suspend) {
1273                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1274                 if (ret) {
1275                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1276                                         "step on CPU %u\n", cpu_policy->cpu);
1277                         goto out;
1278                 }
1279         }
1280
1281         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1282                 goto out;
1283
1284         if (cpufreq_driver->get)
1285                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1286
1287         if (!cur_freq || !cpu_policy->cur) {
1288                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1289                        "frequency is what timing core thinks it is.\n");
1290                 goto out;
1291         }
1292
1293         if (unlikely(cur_freq != cpu_policy->cur)) {
1294                 struct cpufreq_freqs freqs;
1295
1296                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1297                         dprintk("Warning: CPU frequency is %u, "
1298                                "cpufreq assumed %u kHz.\n",
1299                                cur_freq, cpu_policy->cur);
1300
1301                 freqs.cpu = cpu;
1302                 freqs.old = cpu_policy->cur;
1303                 freqs.new = cur_freq;
1304
1305                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1306                                     CPUFREQ_SUSPENDCHANGE, &freqs);
1307                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1308
1309                 cpu_policy->cur = cur_freq;
1310         }
1311
1312 out:
1313         cpufreq_cpu_put(cpu_policy);
1314         return ret;
1315 }
1316
1317 /**
1318  *      cpufreq_resume -  restore proper CPU frequency handling after resume
1319  *
1320  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1321  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1322  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1323  *          restored.
1324  */
1325 static int cpufreq_resume(struct sys_device *sysdev)
1326 {
1327         int cpu = sysdev->id;
1328         int ret = 0;
1329         struct cpufreq_policy *cpu_policy;
1330
1331         dprintk("resuming cpu %u\n", cpu);
1332
1333         if (!cpu_online(cpu))
1334                 return 0;
1335
1336         /* we may be lax here as interrupts are off. Nonetheless
1337          * we need to grab the correct cpu policy, as to check
1338          * whether we really run on this CPU.
1339          */
1340
1341         cpu_policy = cpufreq_cpu_get(cpu);
1342         if (!cpu_policy)
1343                 return -EINVAL;
1344
1345         /* only handle each CPU group once */
1346         if (unlikely(cpu_policy->cpu != cpu))
1347                 goto fail;
1348
1349         if (cpufreq_driver->resume) {
1350                 ret = cpufreq_driver->resume(cpu_policy);
1351                 if (ret) {
1352                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1353                                         "step on CPU %u\n", cpu_policy->cpu);
1354                         goto fail;
1355                 }
1356         }
1357
1358         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1359                 unsigned int cur_freq = 0;
1360
1361                 if (cpufreq_driver->get)
1362                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1363
1364                 if (!cur_freq || !cpu_policy->cur) {
1365                         printk(KERN_ERR "cpufreq: resume failed to assert "
1366                                         "current frequency is what timing core "
1367                                         "thinks it is.\n");
1368                         goto out;
1369                 }
1370
1371                 if (unlikely(cur_freq != cpu_policy->cur)) {
1372                         struct cpufreq_freqs freqs;
1373
1374                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1375                                 dprintk("Warning: CPU frequency "
1376                                        "is %u, cpufreq assumed %u kHz.\n",
1377                                        cur_freq, cpu_policy->cur);
1378
1379                         freqs.cpu = cpu;
1380                         freqs.old = cpu_policy->cur;
1381                         freqs.new = cur_freq;
1382
1383                         srcu_notifier_call_chain(
1384                                         &cpufreq_transition_notifier_list,
1385                                         CPUFREQ_RESUMECHANGE, &freqs);
1386                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1387
1388                         cpu_policy->cur = cur_freq;
1389                 }
1390         }
1391
1392 out:
1393         schedule_work(&cpu_policy->update);
1394 fail:
1395         cpufreq_cpu_put(cpu_policy);
1396         return ret;
1397 }
1398
1399 static struct sysdev_driver cpufreq_sysdev_driver = {
1400         .add            = cpufreq_add_dev,
1401         .remove         = cpufreq_remove_dev,
1402         .suspend        = cpufreq_suspend,
1403         .resume         = cpufreq_resume,
1404 };
1405
1406
1407 /*********************************************************************
1408  *                     NOTIFIER LISTS INTERFACE                      *
1409  *********************************************************************/
1410
1411 /**
1412  *      cpufreq_register_notifier - register a driver with cpufreq
1413  *      @nb: notifier function to register
1414  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1415  *
1416  *      Add a driver to one of two lists: either a list of drivers that
1417  *      are notified about clock rate changes (once before and once after
1418  *      the transition), or a list of drivers that are notified about
1419  *      changes in cpufreq policy.
1420  *
1421  *      This function may sleep, and has the same return conditions as
1422  *      blocking_notifier_chain_register.
1423  */
1424 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1425 {
1426         int ret;
1427
1428         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1429
1430         switch (list) {
1431         case CPUFREQ_TRANSITION_NOTIFIER:
1432                 ret = srcu_notifier_chain_register(
1433                                 &cpufreq_transition_notifier_list, nb);
1434                 break;
1435         case CPUFREQ_POLICY_NOTIFIER:
1436                 ret = blocking_notifier_chain_register(
1437                                 &cpufreq_policy_notifier_list, nb);
1438                 break;
1439         default:
1440                 ret = -EINVAL;
1441         }
1442
1443         return ret;
1444 }
1445 EXPORT_SYMBOL(cpufreq_register_notifier);
1446
1447
1448 /**
1449  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1450  *      @nb: notifier block to be unregistered
1451  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1452  *
1453  *      Remove a driver from the CPU frequency notifier list.
1454  *
1455  *      This function may sleep, and has the same return conditions as
1456  *      blocking_notifier_chain_unregister.
1457  */
1458 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1459 {
1460         int ret;
1461
1462         switch (list) {
1463         case CPUFREQ_TRANSITION_NOTIFIER:
1464                 ret = srcu_notifier_chain_unregister(
1465                                 &cpufreq_transition_notifier_list, nb);
1466                 break;
1467         case CPUFREQ_POLICY_NOTIFIER:
1468                 ret = blocking_notifier_chain_unregister(
1469                                 &cpufreq_policy_notifier_list, nb);
1470                 break;
1471         default:
1472                 ret = -EINVAL;
1473         }
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1478
1479
1480 /*********************************************************************
1481  *                              GOVERNORS                            *
1482  *********************************************************************/
1483
1484
1485 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1486                             unsigned int target_freq,
1487                             unsigned int relation)
1488 {
1489         int retval = -EINVAL;
1490
1491         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1492                 target_freq, relation);
1493         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1494                 retval = cpufreq_driver->target(policy, target_freq, relation);
1495
1496         return retval;
1497 }
1498 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1499
1500 int cpufreq_driver_target(struct cpufreq_policy *policy,
1501                           unsigned int target_freq,
1502                           unsigned int relation)
1503 {
1504         int ret = -EINVAL;
1505
1506         policy = cpufreq_cpu_get(policy->cpu);
1507         if (!policy)
1508                 goto no_policy;
1509
1510         if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1511                 goto fail;
1512
1513         ret = __cpufreq_driver_target(policy, target_freq, relation);
1514
1515         unlock_policy_rwsem_write(policy->cpu);
1516
1517 fail:
1518         cpufreq_cpu_put(policy);
1519 no_policy:
1520         return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1523
1524 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1525 {
1526         int ret = 0;
1527
1528         policy = cpufreq_cpu_get(policy->cpu);
1529         if (!policy)
1530                 return -EINVAL;
1531
1532         if (cpu_online(cpu) && cpufreq_driver->getavg)
1533                 ret = cpufreq_driver->getavg(policy, cpu);
1534
1535         cpufreq_cpu_put(policy);
1536         return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1539
1540 /*
1541  * when "event" is CPUFREQ_GOV_LIMITS
1542  */
1543
1544 static int __cpufreq_governor(struct cpufreq_policy *policy,
1545                                         unsigned int event)
1546 {
1547         int ret;
1548
1549         /* Only must be defined when default governor is known to have latency
1550            restrictions, like e.g. conservative or ondemand.
1551            That this is the case is already ensured in Kconfig
1552         */
1553 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1554         struct cpufreq_governor *gov = &cpufreq_gov_performance;
1555 #else
1556         struct cpufreq_governor *gov = NULL;
1557 #endif
1558
1559         if (policy->governor->max_transition_latency &&
1560             policy->cpuinfo.transition_latency >
1561             policy->governor->max_transition_latency) {
1562                 if (!gov)
1563                         return -EINVAL;
1564                 else {
1565                         printk(KERN_WARNING "%s governor failed, too long"
1566                                " transition latency of HW, fallback"
1567                                " to %s governor\n",
1568                                policy->governor->name,
1569                                gov->name);
1570                         policy->governor = gov;
1571                 }
1572         }
1573
1574         if (!try_module_get(policy->governor->owner))
1575                 return -EINVAL;
1576
1577         dprintk("__cpufreq_governor for CPU %u, event %u\n",
1578                                                 policy->cpu, event);
1579         ret = policy->governor->governor(policy, event);
1580
1581         /* we keep one module reference alive for
1582                         each CPU governed by this CPU */
1583         if ((event != CPUFREQ_GOV_START) || ret)
1584                 module_put(policy->governor->owner);
1585         if ((event == CPUFREQ_GOV_STOP) && !ret)
1586                 module_put(policy->governor->owner);
1587
1588         return ret;
1589 }
1590
1591
1592 int cpufreq_register_governor(struct cpufreq_governor *governor)
1593 {
1594         int err;
1595
1596         if (!governor)
1597                 return -EINVAL;
1598
1599         mutex_lock(&cpufreq_governor_mutex);
1600
1601         err = -EBUSY;
1602         if (__find_governor(governor->name) == NULL) {
1603                 err = 0;
1604                 list_add(&governor->governor_list, &cpufreq_governor_list);
1605         }
1606
1607         mutex_unlock(&cpufreq_governor_mutex);
1608         return err;
1609 }
1610 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1611
1612
1613 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1614 {
1615         if (!governor)
1616                 return;
1617
1618         mutex_lock(&cpufreq_governor_mutex);
1619         list_del(&governor->governor_list);
1620         mutex_unlock(&cpufreq_governor_mutex);
1621         return;
1622 }
1623 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1624
1625
1626
1627 /*********************************************************************
1628  *                          POLICY INTERFACE                         *
1629  *********************************************************************/
1630
1631 /**
1632  * cpufreq_get_policy - get the current cpufreq_policy
1633  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1634  *      is written
1635  *
1636  * Reads the current cpufreq policy.
1637  */
1638 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1639 {
1640         struct cpufreq_policy *cpu_policy;
1641         if (!policy)
1642                 return -EINVAL;
1643
1644         cpu_policy = cpufreq_cpu_get(cpu);
1645         if (!cpu_policy)
1646                 return -EINVAL;
1647
1648         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1649
1650         cpufreq_cpu_put(cpu_policy);
1651         return 0;
1652 }
1653 EXPORT_SYMBOL(cpufreq_get_policy);
1654
1655
1656 /*
1657  * data   : current policy.
1658  * policy : policy to be set.
1659  */
1660 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1661                                 struct cpufreq_policy *policy)
1662 {
1663         int ret = 0;
1664
1665         cpufreq_debug_disable_ratelimit();
1666         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1667                 policy->min, policy->max);
1668
1669         memcpy(&policy->cpuinfo, &data->cpuinfo,
1670                                 sizeof(struct cpufreq_cpuinfo));
1671
1672         if (policy->min > data->max || policy->max < data->min) {
1673                 ret = -EINVAL;
1674                 goto error_out;
1675         }
1676
1677         /* verify the cpu speed can be set within this limit */
1678         ret = cpufreq_driver->verify(policy);
1679         if (ret)
1680                 goto error_out;
1681
1682         /* adjust if necessary - all reasons */
1683         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1684                         CPUFREQ_ADJUST, policy);
1685
1686         /* adjust if necessary - hardware incompatibility*/
1687         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1688                         CPUFREQ_INCOMPATIBLE, policy);
1689
1690         /* verify the cpu speed can be set within this limit,
1691            which might be different to the first one */
1692         ret = cpufreq_driver->verify(policy);
1693         if (ret)
1694                 goto error_out;
1695
1696         /* notification of the new policy */
1697         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1698                         CPUFREQ_NOTIFY, policy);
1699
1700         data->min = policy->min;
1701         data->max = policy->max;
1702
1703         dprintk("new min and max freqs are %u - %u kHz\n",
1704                                         data->min, data->max);
1705
1706         if (cpufreq_driver->setpolicy) {
1707                 data->policy = policy->policy;
1708                 dprintk("setting range\n");
1709                 ret = cpufreq_driver->setpolicy(policy);
1710         } else {
1711                 if (policy->governor != data->governor) {
1712                         /* save old, working values */
1713                         struct cpufreq_governor *old_gov = data->governor;
1714
1715                         dprintk("governor switch\n");
1716
1717                         /* end old governor */
1718                         if (data->governor)
1719                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1720
1721                         /* start new governor */
1722                         data->governor = policy->governor;
1723                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1724                                 /* new governor failed, so re-start old one */
1725                                 dprintk("starting governor %s failed\n",
1726                                                         data->governor->name);
1727                                 if (old_gov) {
1728                                         data->governor = old_gov;
1729                                         __cpufreq_governor(data,
1730                                                            CPUFREQ_GOV_START);
1731                                 }
1732                                 ret = -EINVAL;
1733                                 goto error_out;
1734                         }
1735                         /* might be a policy change, too, so fall through */
1736                 }
1737                 dprintk("governor: change or update limits\n");
1738                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1739         }
1740
1741 error_out:
1742         cpufreq_debug_enable_ratelimit();
1743         return ret;
1744 }
1745
1746 /**
1747  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1748  *      @cpu: CPU which shall be re-evaluated
1749  *
1750  *      Usefull for policy notifiers which have different necessities
1751  *      at different times.
1752  */
1753 int cpufreq_update_policy(unsigned int cpu)
1754 {
1755         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1756         struct cpufreq_policy policy;
1757         int ret;
1758
1759         if (!data) {
1760                 ret = -ENODEV;
1761                 goto no_policy;
1762         }
1763
1764         if (unlikely(lock_policy_rwsem_write(cpu))) {
1765                 ret = -EINVAL;
1766                 goto fail;
1767         }
1768
1769         dprintk("updating policy for CPU %u\n", cpu);
1770         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1771         policy.min = data->user_policy.min;
1772         policy.max = data->user_policy.max;
1773         policy.policy = data->user_policy.policy;
1774         policy.governor = data->user_policy.governor;
1775
1776         /* BIOS might change freq behind our back
1777           -> ask driver for current freq and notify governors about a change */
1778         if (cpufreq_driver->get) {
1779                 policy.cur = cpufreq_driver->get(cpu);
1780                 if (!data->cur) {
1781                         dprintk("Driver did not initialize current freq");
1782                         data->cur = policy.cur;
1783                 } else {
1784                         if (data->cur != policy.cur)
1785                                 cpufreq_out_of_sync(cpu, data->cur,
1786                                                                 policy.cur);
1787                 }
1788         }
1789
1790         ret = __cpufreq_set_policy(data, &policy);
1791
1792         unlock_policy_rwsem_write(cpu);
1793
1794 fail:
1795         cpufreq_cpu_put(data);
1796 no_policy:
1797         return ret;
1798 }
1799 EXPORT_SYMBOL(cpufreq_update_policy);
1800
1801 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1802                                         unsigned long action, void *hcpu)
1803 {
1804         unsigned int cpu = (unsigned long)hcpu;
1805         struct sys_device *sys_dev;
1806
1807         sys_dev = get_cpu_sysdev(cpu);
1808         if (sys_dev) {
1809                 switch (action) {
1810                 case CPU_ONLINE:
1811                 case CPU_ONLINE_FROZEN:
1812                         cpufreq_add_dev(sys_dev);
1813                         break;
1814                 case CPU_DOWN_PREPARE:
1815                 case CPU_DOWN_PREPARE_FROZEN:
1816                         if (unlikely(lock_policy_rwsem_write(cpu)))
1817                                 BUG();
1818
1819                         __cpufreq_remove_dev(sys_dev);
1820                         break;
1821                 case CPU_DOWN_FAILED:
1822                 case CPU_DOWN_FAILED_FROZEN:
1823                         cpufreq_add_dev(sys_dev);
1824                         break;
1825                 }
1826         }
1827         return NOTIFY_OK;
1828 }
1829
1830 static struct notifier_block __refdata cpufreq_cpu_notifier =
1831 {
1832     .notifier_call = cpufreq_cpu_callback,
1833 };
1834
1835 /*********************************************************************
1836  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1837  *********************************************************************/
1838
1839 /**
1840  * cpufreq_register_driver - register a CPU Frequency driver
1841  * @driver_data: A struct cpufreq_driver containing the values#
1842  * submitted by the CPU Frequency driver.
1843  *
1844  *   Registers a CPU Frequency driver to this core code. This code
1845  * returns zero on success, -EBUSY when another driver got here first
1846  * (and isn't unregistered in the meantime).
1847  *
1848  */
1849 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1850 {
1851         unsigned long flags;
1852         int ret;
1853
1854         if (!driver_data || !driver_data->verify || !driver_data->init ||
1855             ((!driver_data->setpolicy) && (!driver_data->target)))
1856                 return -EINVAL;
1857
1858         dprintk("trying to register driver %s\n", driver_data->name);
1859
1860         if (driver_data->setpolicy)
1861                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1862
1863         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1864         if (cpufreq_driver) {
1865                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1866                 return -EBUSY;
1867         }
1868         cpufreq_driver = driver_data;
1869         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1870
1871         ret = sysdev_driver_register(&cpu_sysdev_class,
1872                                         &cpufreq_sysdev_driver);
1873
1874         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1875                 int i;
1876                 ret = -ENODEV;
1877
1878                 /* check for at least one working CPU */
1879                 for (i = 0; i < nr_cpu_ids; i++)
1880                         if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1881                                 ret = 0;
1882                                 break;
1883                         }
1884
1885                 /* if all ->init() calls failed, unregister */
1886                 if (ret) {
1887                         dprintk("no CPU initialized for driver %s\n",
1888                                                         driver_data->name);
1889                         sysdev_driver_unregister(&cpu_sysdev_class,
1890                                                 &cpufreq_sysdev_driver);
1891
1892                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1893                         cpufreq_driver = NULL;
1894                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1895                 }
1896         }
1897
1898         if (!ret) {
1899                 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1900                 dprintk("driver %s up and running\n", driver_data->name);
1901                 cpufreq_debug_enable_ratelimit();
1902         }
1903
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1907
1908
1909 /**
1910  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1911  *
1912  *    Unregister the current CPUFreq driver. Only call this if you have
1913  * the right to do so, i.e. if you have succeeded in initialising before!
1914  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1915  * currently not initialised.
1916  */
1917 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1918 {
1919         unsigned long flags;
1920
1921         cpufreq_debug_disable_ratelimit();
1922
1923         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1924                 cpufreq_debug_enable_ratelimit();
1925                 return -EINVAL;
1926         }
1927
1928         dprintk("unregistering driver %s\n", driver->name);
1929
1930         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1931         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1932
1933         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1934         cpufreq_driver = NULL;
1935         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1936
1937         return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1940
1941 static int __init cpufreq_core_init(void)
1942 {
1943         int cpu;
1944
1945         for_each_possible_cpu(cpu) {
1946                 per_cpu(policy_cpu, cpu) = -1;
1947                 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1948         }
1949         return 0;
1950 }
1951
1952 core_initcall(cpufreq_core_init);