[GFS2] Combine rg_flags and rd_flags
[linux-2.6] / net / xfrm / xfrm_algo.c
1 /*
2  * xfrm algorithm interface
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26  * Algorithms supported by IPsec.  These entries contain properties which
27  * are used in key negotiation and xfrm processing, and are used to verify
28  * that instantiated crypto transforms have correct parameters for IPsec
29  * purposes.
30  */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33         .name = "rfc4106(gcm(aes))",
34
35         .uinfo = {
36                 .aead = {
37                         .icv_truncbits = 64,
38                 }
39         },
40
41         .desc = {
42                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43                 .sadb_alg_ivlen = 8,
44                 .sadb_alg_minbits = 128,
45                 .sadb_alg_maxbits = 256
46         }
47 },
48 {
49         .name = "rfc4106(gcm(aes))",
50
51         .uinfo = {
52                 .aead = {
53                         .icv_truncbits = 96,
54                 }
55         },
56
57         .desc = {
58                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59                 .sadb_alg_ivlen = 8,
60                 .sadb_alg_minbits = 128,
61                 .sadb_alg_maxbits = 256
62         }
63 },
64 {
65         .name = "rfc4106(gcm(aes))",
66
67         .uinfo = {
68                 .aead = {
69                         .icv_truncbits = 128,
70                 }
71         },
72
73         .desc = {
74                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75                 .sadb_alg_ivlen = 8,
76                 .sadb_alg_minbits = 128,
77                 .sadb_alg_maxbits = 256
78         }
79 },
80 {
81         .name = "rfc4309(ccm(aes))",
82
83         .uinfo = {
84                 .aead = {
85                         .icv_truncbits = 64,
86                 }
87         },
88
89         .desc = {
90                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91                 .sadb_alg_ivlen = 8,
92                 .sadb_alg_minbits = 128,
93                 .sadb_alg_maxbits = 256
94         }
95 },
96 {
97         .name = "rfc4309(ccm(aes))",
98
99         .uinfo = {
100                 .aead = {
101                         .icv_truncbits = 96,
102                 }
103         },
104
105         .desc = {
106                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107                 .sadb_alg_ivlen = 8,
108                 .sadb_alg_minbits = 128,
109                 .sadb_alg_maxbits = 256
110         }
111 },
112 {
113         .name = "rfc4309(ccm(aes))",
114
115         .uinfo = {
116                 .aead = {
117                         .icv_truncbits = 128,
118                 }
119         },
120
121         .desc = {
122                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123                 .sadb_alg_ivlen = 8,
124                 .sadb_alg_minbits = 128,
125                 .sadb_alg_maxbits = 256
126         }
127 },
128 };
129
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132         .name = "hmac(digest_null)",
133         .compat = "digest_null",
134
135         .uinfo = {
136                 .auth = {
137                         .icv_truncbits = 0,
138                         .icv_fullbits = 0,
139                 }
140         },
141
142         .desc = {
143                 .sadb_alg_id = SADB_X_AALG_NULL,
144                 .sadb_alg_ivlen = 0,
145                 .sadb_alg_minbits = 0,
146                 .sadb_alg_maxbits = 0
147         }
148 },
149 {
150         .name = "hmac(md5)",
151         .compat = "md5",
152
153         .uinfo = {
154                 .auth = {
155                         .icv_truncbits = 96,
156                         .icv_fullbits = 128,
157                 }
158         },
159
160         .desc = {
161                 .sadb_alg_id = SADB_AALG_MD5HMAC,
162                 .sadb_alg_ivlen = 0,
163                 .sadb_alg_minbits = 128,
164                 .sadb_alg_maxbits = 128
165         }
166 },
167 {
168         .name = "hmac(sha1)",
169         .compat = "sha1",
170
171         .uinfo = {
172                 .auth = {
173                         .icv_truncbits = 96,
174                         .icv_fullbits = 160,
175                 }
176         },
177
178         .desc = {
179                 .sadb_alg_id = SADB_AALG_SHA1HMAC,
180                 .sadb_alg_ivlen = 0,
181                 .sadb_alg_minbits = 160,
182                 .sadb_alg_maxbits = 160
183         }
184 },
185 {
186         .name = "hmac(sha256)",
187         .compat = "sha256",
188
189         .uinfo = {
190                 .auth = {
191                         .icv_truncbits = 96,
192                         .icv_fullbits = 256,
193                 }
194         },
195
196         .desc = {
197                 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
198                 .sadb_alg_ivlen = 0,
199                 .sadb_alg_minbits = 256,
200                 .sadb_alg_maxbits = 256
201         }
202 },
203 {
204         .name = "hmac(ripemd160)",
205         .compat = "ripemd160",
206
207         .uinfo = {
208                 .auth = {
209                         .icv_truncbits = 96,
210                         .icv_fullbits = 160,
211                 }
212         },
213
214         .desc = {
215                 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
216                 .sadb_alg_ivlen = 0,
217                 .sadb_alg_minbits = 160,
218                 .sadb_alg_maxbits = 160
219         }
220 },
221 {
222         .name = "xcbc(aes)",
223
224         .uinfo = {
225                 .auth = {
226                         .icv_truncbits = 96,
227                         .icv_fullbits = 128,
228                 }
229         },
230
231         .desc = {
232                 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
233                 .sadb_alg_ivlen = 0,
234                 .sadb_alg_minbits = 128,
235                 .sadb_alg_maxbits = 128
236         }
237 },
238 };
239
240 static struct xfrm_algo_desc ealg_list[] = {
241 {
242         .name = "ecb(cipher_null)",
243         .compat = "cipher_null",
244
245         .uinfo = {
246                 .encr = {
247                         .blockbits = 8,
248                         .defkeybits = 0,
249                 }
250         },
251
252         .desc = {
253                 .sadb_alg_id =  SADB_EALG_NULL,
254                 .sadb_alg_ivlen = 0,
255                 .sadb_alg_minbits = 0,
256                 .sadb_alg_maxbits = 0
257         }
258 },
259 {
260         .name = "cbc(des)",
261         .compat = "des",
262
263         .uinfo = {
264                 .encr = {
265                         .blockbits = 64,
266                         .defkeybits = 64,
267                 }
268         },
269
270         .desc = {
271                 .sadb_alg_id = SADB_EALG_DESCBC,
272                 .sadb_alg_ivlen = 8,
273                 .sadb_alg_minbits = 64,
274                 .sadb_alg_maxbits = 64
275         }
276 },
277 {
278         .name = "cbc(des3_ede)",
279         .compat = "des3_ede",
280
281         .uinfo = {
282                 .encr = {
283                         .blockbits = 64,
284                         .defkeybits = 192,
285                 }
286         },
287
288         .desc = {
289                 .sadb_alg_id = SADB_EALG_3DESCBC,
290                 .sadb_alg_ivlen = 8,
291                 .sadb_alg_minbits = 192,
292                 .sadb_alg_maxbits = 192
293         }
294 },
295 {
296         .name = "cbc(cast128)",
297         .compat = "cast128",
298
299         .uinfo = {
300                 .encr = {
301                         .blockbits = 64,
302                         .defkeybits = 128,
303                 }
304         },
305
306         .desc = {
307                 .sadb_alg_id = SADB_X_EALG_CASTCBC,
308                 .sadb_alg_ivlen = 8,
309                 .sadb_alg_minbits = 40,
310                 .sadb_alg_maxbits = 128
311         }
312 },
313 {
314         .name = "cbc(blowfish)",
315         .compat = "blowfish",
316
317         .uinfo = {
318                 .encr = {
319                         .blockbits = 64,
320                         .defkeybits = 128,
321                 }
322         },
323
324         .desc = {
325                 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
326                 .sadb_alg_ivlen = 8,
327                 .sadb_alg_minbits = 40,
328                 .sadb_alg_maxbits = 448
329         }
330 },
331 {
332         .name = "cbc(aes)",
333         .compat = "aes",
334
335         .uinfo = {
336                 .encr = {
337                         .blockbits = 128,
338                         .defkeybits = 128,
339                 }
340         },
341
342         .desc = {
343                 .sadb_alg_id = SADB_X_EALG_AESCBC,
344                 .sadb_alg_ivlen = 8,
345                 .sadb_alg_minbits = 128,
346                 .sadb_alg_maxbits = 256
347         }
348 },
349 {
350         .name = "cbc(serpent)",
351         .compat = "serpent",
352
353         .uinfo = {
354                 .encr = {
355                         .blockbits = 128,
356                         .defkeybits = 128,
357                 }
358         },
359
360         .desc = {
361                 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
362                 .sadb_alg_ivlen = 8,
363                 .sadb_alg_minbits = 128,
364                 .sadb_alg_maxbits = 256,
365         }
366 },
367 {
368         .name = "cbc(camellia)",
369
370         .uinfo = {
371                 .encr = {
372                         .blockbits = 128,
373                         .defkeybits = 128,
374                 }
375         },
376
377         .desc = {
378                 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
379                 .sadb_alg_ivlen = 8,
380                 .sadb_alg_minbits = 128,
381                 .sadb_alg_maxbits = 256
382         }
383 },
384 {
385         .name = "cbc(twofish)",
386         .compat = "twofish",
387
388         .uinfo = {
389                 .encr = {
390                         .blockbits = 128,
391                         .defkeybits = 128,
392                 }
393         },
394
395         .desc = {
396                 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
397                 .sadb_alg_ivlen = 8,
398                 .sadb_alg_minbits = 128,
399                 .sadb_alg_maxbits = 256
400         }
401 },
402 {
403         .name = "rfc3686(ctr(aes))",
404
405         .uinfo = {
406                 .encr = {
407                         .blockbits = 128,
408                         .defkeybits = 160, /* 128-bit key + 32-bit nonce */
409                 }
410         },
411
412         .desc = {
413                 .sadb_alg_id = SADB_X_EALG_AESCTR,
414                 .sadb_alg_ivlen = 8,
415                 .sadb_alg_minbits = 128,
416                 .sadb_alg_maxbits = 256
417         }
418 },
419 };
420
421 static struct xfrm_algo_desc calg_list[] = {
422 {
423         .name = "deflate",
424         .uinfo = {
425                 .comp = {
426                         .threshold = 90,
427                 }
428         },
429         .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
430 },
431 {
432         .name = "lzs",
433         .uinfo = {
434                 .comp = {
435                         .threshold = 90,
436                 }
437         },
438         .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
439 },
440 {
441         .name = "lzjh",
442         .uinfo = {
443                 .comp = {
444                         .threshold = 50,
445                 }
446         },
447         .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
448 },
449 };
450
451 static inline int aead_entries(void)
452 {
453         return ARRAY_SIZE(aead_list);
454 }
455
456 static inline int aalg_entries(void)
457 {
458         return ARRAY_SIZE(aalg_list);
459 }
460
461 static inline int ealg_entries(void)
462 {
463         return ARRAY_SIZE(ealg_list);
464 }
465
466 static inline int calg_entries(void)
467 {
468         return ARRAY_SIZE(calg_list);
469 }
470
471 struct xfrm_algo_list {
472         struct xfrm_algo_desc *algs;
473         int entries;
474         u32 type;
475         u32 mask;
476 };
477
478 static const struct xfrm_algo_list xfrm_aead_list = {
479         .algs = aead_list,
480         .entries = ARRAY_SIZE(aead_list),
481         .type = CRYPTO_ALG_TYPE_AEAD,
482         .mask = CRYPTO_ALG_TYPE_MASK,
483 };
484
485 static const struct xfrm_algo_list xfrm_aalg_list = {
486         .algs = aalg_list,
487         .entries = ARRAY_SIZE(aalg_list),
488         .type = CRYPTO_ALG_TYPE_HASH,
489         .mask = CRYPTO_ALG_TYPE_HASH_MASK,
490 };
491
492 static const struct xfrm_algo_list xfrm_ealg_list = {
493         .algs = ealg_list,
494         .entries = ARRAY_SIZE(ealg_list),
495         .type = CRYPTO_ALG_TYPE_BLKCIPHER,
496         .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
497 };
498
499 static const struct xfrm_algo_list xfrm_calg_list = {
500         .algs = calg_list,
501         .entries = ARRAY_SIZE(calg_list),
502         .type = CRYPTO_ALG_TYPE_COMPRESS,
503         .mask = CRYPTO_ALG_TYPE_MASK,
504 };
505
506 static struct xfrm_algo_desc *xfrm_find_algo(
507         const struct xfrm_algo_list *algo_list,
508         int match(const struct xfrm_algo_desc *entry, const void *data),
509         const void *data, int probe)
510 {
511         struct xfrm_algo_desc *list = algo_list->algs;
512         int i, status;
513
514         for (i = 0; i < algo_list->entries; i++) {
515                 if (!match(list + i, data))
516                         continue;
517
518                 if (list[i].available)
519                         return &list[i];
520
521                 if (!probe)
522                         break;
523
524                 status = crypto_has_alg(list[i].name, algo_list->type,
525                                         algo_list->mask);
526                 if (!status)
527                         break;
528
529                 list[i].available = status;
530                 return &list[i];
531         }
532         return NULL;
533 }
534
535 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
536                              const void *data)
537 {
538         return entry->desc.sadb_alg_id == (unsigned long)data;
539 }
540
541 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
542 {
543         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
544                               (void *)(unsigned long)alg_id, 1);
545 }
546 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
547
548 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
549 {
550         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
551                               (void *)(unsigned long)alg_id, 1);
552 }
553 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
554
555 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
556 {
557         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
558                               (void *)(unsigned long)alg_id, 1);
559 }
560 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
561
562 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
563                                const void *data)
564 {
565         const char *name = data;
566
567         return name && (!strcmp(name, entry->name) ||
568                         (entry->compat && !strcmp(name, entry->compat)));
569 }
570
571 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
572 {
573         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
574                               probe);
575 }
576 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
577
578 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
579 {
580         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
581                               probe);
582 }
583 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
584
585 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
586 {
587         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
588                               probe);
589 }
590 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
591
592 struct xfrm_aead_name {
593         const char *name;
594         int icvbits;
595 };
596
597 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
598                                 const void *data)
599 {
600         const struct xfrm_aead_name *aead = data;
601         const char *name = aead->name;
602
603         return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
604                !strcmp(name, entry->name);
605 }
606
607 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
608 {
609         struct xfrm_aead_name data = {
610                 .name = name,
611                 .icvbits = icv_len,
612         };
613
614         return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
615                               probe);
616 }
617 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
618
619 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
620 {
621         if (idx >= aalg_entries())
622                 return NULL;
623
624         return &aalg_list[idx];
625 }
626 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
627
628 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
629 {
630         if (idx >= ealg_entries())
631                 return NULL;
632
633         return &ealg_list[idx];
634 }
635 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
636
637 /*
638  * Probe for the availability of crypto algorithms, and set the available
639  * flag for any algorithms found on the system.  This is typically called by
640  * pfkey during userspace SA add, update or register.
641  */
642 void xfrm_probe_algs(void)
643 {
644         int i, status;
645
646         BUG_ON(in_softirq());
647
648         for (i = 0; i < aalg_entries(); i++) {
649                 status = crypto_has_hash(aalg_list[i].name, 0,
650                                          CRYPTO_ALG_ASYNC);
651                 if (aalg_list[i].available != status)
652                         aalg_list[i].available = status;
653         }
654
655         for (i = 0; i < ealg_entries(); i++) {
656                 status = crypto_has_blkcipher(ealg_list[i].name, 0,
657                                               CRYPTO_ALG_ASYNC);
658                 if (ealg_list[i].available != status)
659                         ealg_list[i].available = status;
660         }
661
662         for (i = 0; i < calg_entries(); i++) {
663                 status = crypto_has_comp(calg_list[i].name, 0,
664                                          CRYPTO_ALG_ASYNC);
665                 if (calg_list[i].available != status)
666                         calg_list[i].available = status;
667         }
668 }
669 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
670
671 int xfrm_count_auth_supported(void)
672 {
673         int i, n;
674
675         for (i = 0, n = 0; i < aalg_entries(); i++)
676                 if (aalg_list[i].available)
677                         n++;
678         return n;
679 }
680 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
681
682 int xfrm_count_enc_supported(void)
683 {
684         int i, n;
685
686         for (i = 0, n = 0; i < ealg_entries(); i++)
687                 if (ealg_list[i].available)
688                         n++;
689         return n;
690 }
691 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
692
693 /* Move to common area: it is shared with AH. */
694
695 int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
696                  int offset, int len, icv_update_fn_t icv_update)
697 {
698         int start = skb_headlen(skb);
699         int i, copy = start - offset;
700         int err;
701         struct scatterlist sg;
702
703         /* Checksum header. */
704         if (copy > 0) {
705                 if (copy > len)
706                         copy = len;
707
708                 sg_init_one(&sg, skb->data + offset, copy);
709
710                 err = icv_update(desc, &sg, copy);
711                 if (unlikely(err))
712                         return err;
713
714                 if ((len -= copy) == 0)
715                         return 0;
716                 offset += copy;
717         }
718
719         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
720                 int end;
721
722                 BUG_TRAP(start <= offset + len);
723
724                 end = start + skb_shinfo(skb)->frags[i].size;
725                 if ((copy = end - offset) > 0) {
726                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
727
728                         if (copy > len)
729                                 copy = len;
730
731                         sg_init_table(&sg, 1);
732                         sg_set_page(&sg, frag->page, copy,
733                                     frag->page_offset + offset-start);
734
735                         err = icv_update(desc, &sg, copy);
736                         if (unlikely(err))
737                                 return err;
738
739                         if (!(len -= copy))
740                                 return 0;
741                         offset += copy;
742                 }
743                 start = end;
744         }
745
746         if (skb_shinfo(skb)->frag_list) {
747                 struct sk_buff *list = skb_shinfo(skb)->frag_list;
748
749                 for (; list; list = list->next) {
750                         int end;
751
752                         BUG_TRAP(start <= offset + len);
753
754                         end = start + list->len;
755                         if ((copy = end - offset) > 0) {
756                                 if (copy > len)
757                                         copy = len;
758                                 err = skb_icv_walk(list, desc, offset-start,
759                                                    copy, icv_update);
760                                 if (unlikely(err))
761                                         return err;
762                                 if ((len -= copy) == 0)
763                                         return 0;
764                                 offset += copy;
765                         }
766                         start = end;
767                 }
768         }
769         BUG_ON(len);
770         return 0;
771 }
772 EXPORT_SYMBOL_GPL(skb_icv_walk);
773
774 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
775
776 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
777 {
778         if (tail != skb) {
779                 skb->data_len += len;
780                 skb->len += len;
781         }
782         return skb_put(tail, len);
783 }
784 EXPORT_SYMBOL_GPL(pskb_put);
785 #endif