2 * include/asm-s390/pgtable.h
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
16 #include <asm-generic/4level-fixup.h>
19 * The Linux memory management assumes a three-level page table setup. For
20 * s390 31 bit we "fold" the mid level into the top-level page table, so
21 * that we physically have the same two-level page table as the s390 mmu
22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
23 * the hardware provides (region first and region second tables are not
26 * The "pgd_xxx()" functions are trivial for a folded two-level
27 * setup: the pgd is never bad, and a pmd always exists (as it's folded
30 * This file contains the functions and defines necessary to modify and use
31 * the S390 page table tree.
34 #include <linux/mm_types.h>
36 #include <asm/processor.h>
38 struct vm_area_struct; /* forward declaration (include/linux/mm.h) */
41 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
42 extern void paging_init(void);
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
48 #define update_mmu_cache(vma, address, pte) do { } while (0)
51 * ZERO_PAGE is a global shared page that is always zero: used
52 * for zero-mapped memory areas etc..
54 extern char empty_zero_page[PAGE_SIZE];
55 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
56 #endif /* !__ASSEMBLY__ */
59 * PMD_SHIFT determines the size of the area a second-level page
61 * PGDIR_SHIFT determines what a third-level page table entry can map
65 # define PGDIR_SHIFT 22
68 # define PGDIR_SHIFT 31
69 #endif /* __s390x__ */
71 #define PMD_SIZE (1UL << PMD_SHIFT)
72 #define PMD_MASK (~(PMD_SIZE-1))
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
83 # define PTRS_PER_PTE 1024
84 # define PTRS_PER_PMD 1
85 # define PTRS_PER_PGD 512
87 # define PTRS_PER_PTE 512
88 # define PTRS_PER_PMD 1024
89 # define PTRS_PER_PGD 2048
90 #endif /* __s390x__ */
92 #define FIRST_USER_ADDRESS 0
94 #define pte_ERROR(e) \
95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
96 #define pmd_ERROR(e) \
97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
98 #define pgd_ERROR(e) \
99 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
103 * Just any arbitrary offset to the start of the vmalloc VM area: the
104 * current 8MB value just means that there will be a 8MB "hole" after the
105 * physical memory until the kernel virtual memory starts. That means that
106 * any out-of-bounds memory accesses will hopefully be caught.
107 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
108 * area for the same reason. ;)
110 #define VMALLOC_OFFSET (8*1024*1024)
111 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \
112 & ~(VMALLOC_OFFSET-1))
114 # define VMALLOC_END (0x7fffffffL)
115 #else /* __s390x__ */
116 # define VMALLOC_END (0x40000000000L)
117 #endif /* __s390x__ */
121 * A 31 bit pagetable entry of S390 has following format:
124 * 00000000001111111111222222222233
125 * 01234567890123456789012345678901
127 * I Page-Invalid Bit: Page is not available for address-translation
128 * P Page-Protection Bit: Store access not possible for page
130 * A 31 bit segmenttable entry of S390 has following format:
131 * | P-table origin | |PTL
133 * 00000000001111111111222222222233
134 * 01234567890123456789012345678901
136 * I Segment-Invalid Bit: Segment is not available for address-translation
137 * C Common-Segment Bit: Segment is not private (PoP 3-30)
138 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
140 * The 31 bit segmenttable origin of S390 has following format:
142 * |S-table origin | | STL |
144 * 00000000001111111111222222222233
145 * 01234567890123456789012345678901
147 * X Space-Switch event:
148 * G Segment-Invalid Bit: *
149 * P Private-Space Bit: Segment is not private (PoP 3-30)
150 * S Storage-Alteration:
151 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
153 * A 64 bit pagetable entry of S390 has following format:
155 * 0000000000111111111122222222223333333333444444444455555555556666
156 * 0123456789012345678901234567890123456789012345678901234567890123
158 * I Page-Invalid Bit: Page is not available for address-translation
159 * P Page-Protection Bit: Store access not possible for page
161 * A 64 bit segmenttable entry of S390 has following format:
162 * | P-table origin | TT
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
166 * I Segment-Invalid Bit: Segment is not available for address-translation
167 * C Common-Segment Bit: Segment is not private (PoP 3-30)
168 * P Page-Protection Bit: Store access not possible for page
171 * A 64 bit region table entry of S390 has following format:
172 * | S-table origin | TF TTTL
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
176 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * The 64 bit regiontable origin of S390 has following format:
182 * | region table origon | DTTL
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
186 * X Space-Switch event:
187 * G Segment-Invalid Bit:
188 * P Private-Space Bit:
189 * S Storage-Alteration:
193 * A storage key has the following format:
197 * F : fetch protection bit
202 /* Hardware bits in the page table entry */
203 #define _PAGE_RO 0x200 /* HW read-only */
204 #define _PAGE_INVALID 0x400 /* HW invalid */
206 /* Mask and six different types of pages. */
207 #define _PAGE_TYPE_MASK 0x601
208 #define _PAGE_TYPE_EMPTY 0x400
209 #define _PAGE_TYPE_NONE 0x401
210 #define _PAGE_TYPE_SWAP 0x600
211 #define _PAGE_TYPE_FILE 0x601
212 #define _PAGE_TYPE_RO 0x200
213 #define _PAGE_TYPE_RW 0x000
217 /* Bits in the segment table entry */
218 #define _PAGE_TABLE_LEN 0xf /* only full page-tables */
219 #define _PAGE_TABLE_COM 0x10 /* common page-table */
220 #define _PAGE_TABLE_INV 0x20 /* invalid page-table */
221 #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */
223 /* Bits int the storage key */
224 #define _PAGE_CHANGED 0x02 /* HW changed bit */
225 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
227 #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */
228 #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */
231 * User and Kernel pagetables are identical
233 #define _PAGE_TABLE _PAGE_TABLE_LEN
234 #define _KERNPG_TABLE _PAGE_TABLE_LEN
237 * The Kernel segment-tables includes the User segment-table
240 #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100)
241 #define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN
243 #define USER_STD_MASK 0x00000080UL
245 #else /* __s390x__ */
247 /* Bits in the segment table entry */
248 #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */
249 #define _PMD_ENTRY 0x00
251 /* Bits in the region third table entry */
252 #define _PGD_ENTRY_INV 0x20 /* invalid region table entry */
253 #define _PGD_ENTRY 0x07
256 * User and kernel page directory
258 #define _REGION_THIRD 0x4
259 #define _REGION_THIRD_LEN 0x3
260 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
261 #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN)
263 #define USER_STD_MASK 0x0000000000000080UL
265 /* Bits in the storage key */
266 #define _PAGE_CHANGED 0x02 /* HW changed bit */
267 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
269 #endif /* __s390x__ */
272 * Page protection definitions.
274 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
275 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
276 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
278 #define PAGE_KERNEL PAGE_RW
279 #define PAGE_COPY PAGE_RO
282 * The S390 can't do page protection for execute, and considers that the
283 * same are read. Also, write permissions imply read permissions. This is
284 * the closest we can get..
287 #define __P000 PAGE_NONE
288 #define __P001 PAGE_RO
289 #define __P010 PAGE_RO
290 #define __P011 PAGE_RO
291 #define __P100 PAGE_RO
292 #define __P101 PAGE_RO
293 #define __P110 PAGE_RO
294 #define __P111 PAGE_RO
296 #define __S000 PAGE_NONE
297 #define __S001 PAGE_RO
298 #define __S010 PAGE_RW
299 #define __S011 PAGE_RW
300 #define __S100 PAGE_RO
301 #define __S101 PAGE_RO
302 #define __S110 PAGE_RW
303 #define __S111 PAGE_RW
306 * Certain architectures need to do special things when PTEs
307 * within a page table are directly modified. Thus, the following
308 * hook is made available.
310 static inline void set_pte(pte_t *pteptr, pte_t pteval)
314 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
317 * pgd/pmd/pte query functions
321 static inline int pgd_present(pgd_t pgd) { return 1; }
322 static inline int pgd_none(pgd_t pgd) { return 0; }
323 static inline int pgd_bad(pgd_t pgd) { return 0; }
325 static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
326 static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; }
327 static inline int pmd_bad(pmd_t pmd)
329 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE;
332 #else /* __s390x__ */
334 static inline int pgd_present(pgd_t pgd)
336 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY;
339 static inline int pgd_none(pgd_t pgd)
341 return pgd_val(pgd) & _PGD_ENTRY_INV;
344 static inline int pgd_bad(pgd_t pgd)
346 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY;
349 static inline int pmd_present(pmd_t pmd)
351 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY;
354 static inline int pmd_none(pmd_t pmd)
356 return pmd_val(pmd) & _PMD_ENTRY_INV;
359 static inline int pmd_bad(pmd_t pmd)
361 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY;
364 #endif /* __s390x__ */
366 static inline int pte_none(pte_t pte)
368 return (pte_val(pte) & _PAGE_TYPE_MASK) == _PAGE_TYPE_EMPTY;
371 static inline int pte_present(pte_t pte)
373 return !(pte_val(pte) & _PAGE_INVALID) ||
374 (pte_val(pte) & _PAGE_TYPE_MASK) == _PAGE_TYPE_NONE;
377 static inline int pte_file(pte_t pte)
379 return (pte_val(pte) & _PAGE_TYPE_MASK) == _PAGE_TYPE_FILE;
382 #define pte_same(a,b) (pte_val(a) == pte_val(b))
385 * query functions pte_write/pte_dirty/pte_young only work if
386 * pte_present() is true. Undefined behaviour if not..
388 static inline int pte_write(pte_t pte)
390 return (pte_val(pte) & _PAGE_RO) == 0;
393 static inline int pte_dirty(pte_t pte)
395 /* A pte is neither clean nor dirty on s/390. The dirty bit
396 * is in the storage key. See page_test_and_clear_dirty for
402 static inline int pte_young(pte_t pte)
404 /* A pte is neither young nor old on s/390. The young bit
405 * is in the storage key. See page_test_and_clear_young for
411 static inline int pte_read(pte_t pte)
413 /* All pages are readable since we don't use the fetch
414 * protection bit in the storage key.
420 * pgd/pmd/pte modification functions
425 static inline void pgd_clear(pgd_t * pgdp) { }
427 static inline void pmd_clear(pmd_t * pmdp)
429 pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
430 pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
431 pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
432 pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
435 #else /* __s390x__ */
437 static inline void pgd_clear(pgd_t * pgdp)
439 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY;
442 static inline void pmd_clear(pmd_t * pmdp)
444 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
445 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
448 #endif /* __s390x__ */
450 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
452 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
456 * The following pte modification functions only work if
457 * pte_present() is true. Undefined behaviour if not..
459 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
461 pte_val(pte) &= PAGE_MASK;
462 pte_val(pte) |= pgprot_val(newprot);
466 static inline pte_t pte_wrprotect(pte_t pte)
468 /* Do not clobber _PAGE_TYPE_NONE pages! */
469 if (!(pte_val(pte) & _PAGE_INVALID))
470 pte_val(pte) |= _PAGE_RO;
474 static inline pte_t pte_mkwrite(pte_t pte)
476 pte_val(pte) &= ~_PAGE_RO;
480 static inline pte_t pte_mkclean(pte_t pte)
482 /* The only user of pte_mkclean is the fork() code.
483 We must *not* clear the *physical* page dirty bit
484 just because fork() wants to clear the dirty bit in
485 *one* of the page's mappings. So we just do nothing. */
489 static inline pte_t pte_mkdirty(pte_t pte)
491 /* We do not explicitly set the dirty bit because the
492 * sske instruction is slow. It is faster to let the
493 * next instruction set the dirty bit.
498 static inline pte_t pte_mkold(pte_t pte)
500 /* S/390 doesn't keep its dirty/referenced bit in the pte.
501 * There is no point in clearing the real referenced bit.
506 static inline pte_t pte_mkyoung(pte_t pte)
508 /* S/390 doesn't keep its dirty/referenced bit in the pte.
509 * There is no point in setting the real referenced bit.
514 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
520 ptep_clear_flush_young(struct vm_area_struct *vma,
521 unsigned long address, pte_t *ptep)
523 /* No need to flush TLB; bits are in storage key */
524 return ptep_test_and_clear_young(vma, address, ptep);
527 static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
533 ptep_clear_flush_dirty(struct vm_area_struct *vma,
534 unsigned long address, pte_t *ptep)
536 /* No need to flush TLB; bits are in storage key */
537 return ptep_test_and_clear_dirty(vma, address, ptep);
540 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
543 pte_clear(mm, addr, ptep);
547 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
549 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
551 /* S390 has 1mb segments, we are emulating 4MB segments */
552 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
554 /* ipte in zarch mode can do the math */
559 : "=m" (*ptep) : "m" (*ptep),
560 "a" (pto), "a" (address));
562 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
566 ptep_clear_flush(struct vm_area_struct *vma,
567 unsigned long address, pte_t *ptep)
571 __ptep_ipte(address, ptep);
575 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
577 pte_t old_pte = *ptep;
578 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
582 ptep_establish(struct vm_area_struct *vma,
583 unsigned long address, pte_t *ptep,
586 ptep_clear_flush(vma, address, ptep);
587 set_pte(ptep, entry);
590 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
591 ptep_establish(__vma, __address, __ptep, __entry)
594 * Test and clear dirty bit in storage key.
595 * We can't clear the changed bit atomically. This is a potential
596 * race against modification of the referenced bit. This function
597 * should therefore only be called if it is not mapped in any
600 static inline int page_test_and_clear_dirty(struct page *page)
602 unsigned long physpage = __pa((page - mem_map) << PAGE_SHIFT);
603 int skey = page_get_storage_key(physpage);
605 if (skey & _PAGE_CHANGED)
606 page_set_storage_key(physpage, skey & ~_PAGE_CHANGED);
607 return skey & _PAGE_CHANGED;
611 * Test and clear referenced bit in storage key.
613 static inline int page_test_and_clear_young(struct page *page)
615 unsigned long physpage = __pa((page - mem_map) << PAGE_SHIFT);
622 : "=d" (ccode) : "a" (physpage) : "cc" );
627 * Conversion functions: convert a page and protection to a page entry,
628 * and a page entry and page directory to the page they refer to.
630 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
633 pte_val(__pte) = physpage + pgprot_val(pgprot);
637 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
639 unsigned long physpage = __pa((page - mem_map) << PAGE_SHIFT);
641 return mk_pte_phys(physpage, pgprot);
644 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
646 unsigned long physpage = __pa((pfn) << PAGE_SHIFT);
648 return mk_pte_phys(physpage, pgprot);
653 static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
655 unsigned long physpage = __pa((pfn) << PAGE_SHIFT);
657 return __pmd(physpage + pgprot_val(pgprot));
660 #endif /* __s390x__ */
662 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
663 #define pte_page(x) pfn_to_page(pte_pfn(x))
665 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK)
667 #define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT))
669 #define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK)
671 #define pgd_page(pgd) (mem_map+(pgd_val(pgd) >> PAGE_SHIFT))
673 /* to find an entry in a page-table-directory */
674 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
675 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
677 /* to find an entry in a kernel page-table-directory */
678 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
682 /* Find an entry in the second-level page table.. */
683 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
685 return (pmd_t *) dir;
688 #else /* __s390x__ */
690 /* Find an entry in the second-level page table.. */
691 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
692 #define pmd_offset(dir,addr) \
693 ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr))
695 #endif /* __s390x__ */
697 /* Find an entry in the third-level page table.. */
698 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
699 #define pte_offset_kernel(pmd, address) \
700 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
701 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
702 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
703 #define pte_unmap(pte) do { } while (0)
704 #define pte_unmap_nested(pte) do { } while (0)
707 * 31 bit swap entry format:
708 * A page-table entry has some bits we have to treat in a special way.
709 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
710 * exception will occur instead of a page translation exception. The
711 * specifiation exception has the bad habit not to store necessary
712 * information in the lowcore.
713 * Bit 21 and bit 22 are the page invalid bit and the page protection
714 * bit. We set both to indicate a swapped page.
715 * Bit 30 and 31 are used to distinguish the different page types. For
716 * a swapped page these bits need to be zero.
717 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
718 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
719 * plus 24 for the offset.
720 * 0| offset |0110|o|type |00|
721 * 0 0000000001111111111 2222 2 22222 33
722 * 0 1234567890123456789 0123 4 56789 01
724 * 64 bit swap entry format:
725 * A page-table entry has some bits we have to treat in a special way.
726 * Bits 52 and bit 55 have to be zero, otherwise an specification
727 * exception will occur instead of a page translation exception. The
728 * specifiation exception has the bad habit not to store necessary
729 * information in the lowcore.
730 * Bit 53 and bit 54 are the page invalid bit and the page protection
731 * bit. We set both to indicate a swapped page.
732 * Bit 62 and 63 are used to distinguish the different page types. For
733 * a swapped page these bits need to be zero.
734 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
735 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
736 * plus 56 for the offset.
737 * | offset |0110|o|type |00|
738 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
739 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
742 #define __SWP_OFFSET_MASK (~0UL >> 12)
744 #define __SWP_OFFSET_MASK (~0UL >> 11)
746 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
749 offset &= __SWP_OFFSET_MASK;
750 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
751 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
755 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
756 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
757 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
759 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
760 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
763 # define PTE_FILE_MAX_BITS 26
764 #else /* __s390x__ */
765 # define PTE_FILE_MAX_BITS 59
766 #endif /* __s390x__ */
768 #define pte_to_pgoff(__pte) \
769 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
771 #define pgoff_to_pte(__off) \
772 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
775 #endif /* !__ASSEMBLY__ */
777 #define kern_addr_valid(addr) (1)
780 * No page table caches to initialise
782 #define pgtable_cache_init() do { } while (0)
784 #define __HAVE_ARCH_PTEP_ESTABLISH
785 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
786 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
787 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
788 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
789 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
790 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
791 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
792 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
793 #define __HAVE_ARCH_PTE_SAME
794 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
795 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
796 #include <asm-generic/pgtable.h>
798 #endif /* _S390_PAGE_H */