2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
114 void skb_truesize_bug(struct sk_buff *skb)
116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb->truesize, skb->len, sizeof(struct sk_buff));
120 EXPORT_SYMBOL(skb_truesize_bug);
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
134 * @node: numa node to allocate memory on
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 int fclone, int node)
146 struct kmem_cache *cache;
147 struct skb_shared_info *shinfo;
151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
154 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size = SKB_DATA_ALIGN(size);
160 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
165 memset(skb, 0, offsetof(struct sk_buff, truesize));
166 skb->truesize = size + sizeof(struct sk_buff);
167 atomic_set(&skb->users, 1);
171 skb->end = data + size;
172 /* make sure we initialize shinfo sequentially */
173 shinfo = skb_shinfo(skb);
174 atomic_set(&shinfo->dataref, 1);
175 shinfo->nr_frags = 0;
176 shinfo->gso_size = 0;
177 shinfo->gso_segs = 0;
178 shinfo->gso_type = 0;
179 shinfo->ip6_frag_id = 0;
180 shinfo->frag_list = NULL;
183 struct sk_buff *child = skb + 1;
184 atomic_t *fclone_ref = (atomic_t *) (child + 1);
186 skb->fclone = SKB_FCLONE_ORIG;
187 atomic_set(fclone_ref, 1);
189 child->fclone = SKB_FCLONE_UNAVAILABLE;
194 kmem_cache_free(cache, skb);
200 * alloc_skb_from_cache - allocate a network buffer
201 * @cp: kmem_cache from which to allocate the data area
202 * (object size must be big enough for @size bytes + skb overheads)
203 * @size: size to allocate
204 * @gfp_mask: allocation mask
206 * Allocate a new &sk_buff. The returned buffer has no headroom and
207 * tail room of size bytes. The object has a reference count of one.
208 * The return is the buffer. On a failure the return is %NULL.
210 * Buffers may only be allocated from interrupts using a @gfp_mask of
213 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
221 skb = kmem_cache_alloc(skbuff_head_cache,
222 gfp_mask & ~__GFP_DMA);
227 size = SKB_DATA_ALIGN(size);
228 data = kmem_cache_alloc(cp, gfp_mask);
232 memset(skb, 0, offsetof(struct sk_buff, truesize));
233 skb->truesize = size + sizeof(struct sk_buff);
234 atomic_set(&skb->users, 1);
238 skb->end = data + size;
240 atomic_set(&(skb_shinfo(skb)->dataref), 1);
241 skb_shinfo(skb)->nr_frags = 0;
242 skb_shinfo(skb)->gso_size = 0;
243 skb_shinfo(skb)->gso_segs = 0;
244 skb_shinfo(skb)->gso_type = 0;
245 skb_shinfo(skb)->frag_list = NULL;
249 kmem_cache_free(skbuff_head_cache, skb);
255 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
256 * @dev: network device to receive on
257 * @length: length to allocate
258 * @gfp_mask: get_free_pages mask, passed to alloc_skb
260 * Allocate a new &sk_buff and assign it a usage count of one. The
261 * buffer has unspecified headroom built in. Users should allocate
262 * the headroom they think they need without accounting for the
263 * built in space. The built in space is used for optimisations.
265 * %NULL is returned if there is no free memory.
267 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
268 unsigned int length, gfp_t gfp_mask)
270 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
273 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
275 skb_reserve(skb, NET_SKB_PAD);
281 static void skb_drop_list(struct sk_buff **listp)
283 struct sk_buff *list = *listp;
288 struct sk_buff *this = list;
294 static inline void skb_drop_fraglist(struct sk_buff *skb)
296 skb_drop_list(&skb_shinfo(skb)->frag_list);
299 static void skb_clone_fraglist(struct sk_buff *skb)
301 struct sk_buff *list;
303 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
307 static void skb_release_data(struct sk_buff *skb)
310 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
311 &skb_shinfo(skb)->dataref)) {
312 if (skb_shinfo(skb)->nr_frags) {
314 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
315 put_page(skb_shinfo(skb)->frags[i].page);
318 if (skb_shinfo(skb)->frag_list)
319 skb_drop_fraglist(skb);
326 * Free an skbuff by memory without cleaning the state.
328 void kfree_skbmem(struct sk_buff *skb)
330 struct sk_buff *other;
331 atomic_t *fclone_ref;
333 skb_release_data(skb);
334 switch (skb->fclone) {
335 case SKB_FCLONE_UNAVAILABLE:
336 kmem_cache_free(skbuff_head_cache, skb);
339 case SKB_FCLONE_ORIG:
340 fclone_ref = (atomic_t *) (skb + 2);
341 if (atomic_dec_and_test(fclone_ref))
342 kmem_cache_free(skbuff_fclone_cache, skb);
345 case SKB_FCLONE_CLONE:
346 fclone_ref = (atomic_t *) (skb + 1);
349 /* The clone portion is available for
350 * fast-cloning again.
352 skb->fclone = SKB_FCLONE_UNAVAILABLE;
354 if (atomic_dec_and_test(fclone_ref))
355 kmem_cache_free(skbuff_fclone_cache, other);
361 * __kfree_skb - private function
364 * Free an sk_buff. Release anything attached to the buffer.
365 * Clean the state. This is an internal helper function. Users should
366 * always call kfree_skb
369 void __kfree_skb(struct sk_buff *skb)
371 dst_release(skb->dst);
373 secpath_put(skb->sp);
375 if (skb->destructor) {
377 skb->destructor(skb);
379 #ifdef CONFIG_NETFILTER
380 nf_conntrack_put(skb->nfct);
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 nf_conntrack_put_reasm(skb->nfct_reasm);
384 #ifdef CONFIG_BRIDGE_NETFILTER
385 nf_bridge_put(skb->nf_bridge);
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
391 #ifdef CONFIG_NET_CLS_ACT
400 * kfree_skb - free an sk_buff
401 * @skb: buffer to free
403 * Drop a reference to the buffer and free it if the usage count has
406 void kfree_skb(struct sk_buff *skb)
410 if (likely(atomic_read(&skb->users) == 1))
412 else if (likely(!atomic_dec_and_test(&skb->users)))
418 * skb_clone - duplicate an sk_buff
419 * @skb: buffer to clone
420 * @gfp_mask: allocation priority
422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
423 * copies share the same packet data but not structure. The new
424 * buffer has a reference count of 1. If the allocation fails the
425 * function returns %NULL otherwise the new buffer is returned.
427 * If this function is called from an interrupt gfp_mask() must be
431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
436 if (skb->fclone == SKB_FCLONE_ORIG &&
437 n->fclone == SKB_FCLONE_UNAVAILABLE) {
438 atomic_t *fclone_ref = (atomic_t *) (n + 1);
439 n->fclone = SKB_FCLONE_CLONE;
440 atomic_inc(fclone_ref);
442 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
445 n->fclone = SKB_FCLONE_UNAVAILABLE;
448 #define C(x) n->x = skb->x
450 n->next = n->prev = NULL;
461 secpath_get(skb->sp);
463 memcpy(n->cb, skb->cb, sizeof(skb->cb));
473 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
477 n->destructor = NULL;
479 #ifdef CONFIG_NETFILTER
481 nf_conntrack_get(skb->nfct);
483 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
485 nf_conntrack_get_reasm(skb->nfct_reasm);
487 #ifdef CONFIG_BRIDGE_NETFILTER
489 nf_bridge_get(skb->nf_bridge);
491 #endif /*CONFIG_NETFILTER*/
492 #ifdef CONFIG_NET_SCHED
494 #ifdef CONFIG_NET_CLS_ACT
495 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
496 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
497 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
500 skb_copy_secmark(n, skb);
503 atomic_set(&n->users, 1);
509 atomic_inc(&(skb_shinfo(skb)->dataref));
515 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
518 * Shift between the two data areas in bytes
520 unsigned long offset = new->data - old->data;
524 new->priority = old->priority;
525 new->protocol = old->protocol;
526 new->dst = dst_clone(old->dst);
528 new->sp = secpath_get(old->sp);
530 new->h.raw = old->h.raw + offset;
531 new->nh.raw = old->nh.raw + offset;
532 new->mac.raw = old->mac.raw + offset;
533 memcpy(new->cb, old->cb, sizeof(old->cb));
534 new->local_df = old->local_df;
535 new->fclone = SKB_FCLONE_UNAVAILABLE;
536 new->pkt_type = old->pkt_type;
537 new->tstamp = old->tstamp;
538 new->destructor = NULL;
539 new->mark = old->mark;
540 #ifdef CONFIG_NETFILTER
541 new->nfct = old->nfct;
542 nf_conntrack_get(old->nfct);
543 new->nfctinfo = old->nfctinfo;
544 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
545 new->nfct_reasm = old->nfct_reasm;
546 nf_conntrack_get_reasm(old->nfct_reasm);
548 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
549 new->ipvs_property = old->ipvs_property;
551 #ifdef CONFIG_BRIDGE_NETFILTER
552 new->nf_bridge = old->nf_bridge;
553 nf_bridge_get(old->nf_bridge);
556 #ifdef CONFIG_NET_SCHED
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd = old->tc_verd;
560 new->tc_index = old->tc_index;
562 skb_copy_secmark(new, old);
563 atomic_set(&new->users, 1);
564 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
565 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
566 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
570 * skb_copy - create private copy of an sk_buff
571 * @skb: buffer to copy
572 * @gfp_mask: allocation priority
574 * Make a copy of both an &sk_buff and its data. This is used when the
575 * caller wishes to modify the data and needs a private copy of the
576 * data to alter. Returns %NULL on failure or the pointer to the buffer
577 * on success. The returned buffer has a reference count of 1.
579 * As by-product this function converts non-linear &sk_buff to linear
580 * one, so that &sk_buff becomes completely private and caller is allowed
581 * to modify all the data of returned buffer. This means that this
582 * function is not recommended for use in circumstances when only
583 * header is going to be modified. Use pskb_copy() instead.
586 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
588 int headerlen = skb->data - skb->head;
590 * Allocate the copy buffer
592 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
597 /* Set the data pointer */
598 skb_reserve(n, headerlen);
599 /* Set the tail pointer and length */
600 skb_put(n, skb->len);
602 n->ip_summed = skb->ip_summed;
604 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
607 copy_skb_header(n, skb);
613 * pskb_copy - create copy of an sk_buff with private head.
614 * @skb: buffer to copy
615 * @gfp_mask: allocation priority
617 * Make a copy of both an &sk_buff and part of its data, located
618 * in header. Fragmented data remain shared. This is used when
619 * the caller wishes to modify only header of &sk_buff and needs
620 * private copy of the header to alter. Returns %NULL on failure
621 * or the pointer to the buffer on success.
622 * The returned buffer has a reference count of 1.
625 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
628 * Allocate the copy buffer
630 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
635 /* Set the data pointer */
636 skb_reserve(n, skb->data - skb->head);
637 /* Set the tail pointer and length */
638 skb_put(n, skb_headlen(skb));
640 memcpy(n->data, skb->data, n->len);
642 n->ip_summed = skb->ip_summed;
644 n->truesize += skb->data_len;
645 n->data_len = skb->data_len;
648 if (skb_shinfo(skb)->nr_frags) {
651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
653 get_page(skb_shinfo(n)->frags[i].page);
655 skb_shinfo(n)->nr_frags = i;
658 if (skb_shinfo(skb)->frag_list) {
659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
660 skb_clone_fraglist(n);
663 copy_skb_header(n, skb);
669 * pskb_expand_head - reallocate header of &sk_buff
670 * @skb: buffer to reallocate
671 * @nhead: room to add at head
672 * @ntail: room to add at tail
673 * @gfp_mask: allocation priority
675 * Expands (or creates identical copy, if &nhead and &ntail are zero)
676 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
677 * reference count of 1. Returns zero in the case of success or error,
678 * if expansion failed. In the last case, &sk_buff is not changed.
680 * All the pointers pointing into skb header may change and must be
681 * reloaded after call to this function.
684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
689 int size = nhead + (skb->end - skb->head) + ntail;
695 size = SKB_DATA_ALIGN(size);
697 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
701 /* Copy only real data... and, alas, header. This should be
702 * optimized for the cases when header is void. */
703 memcpy(data + nhead, skb->head, skb->tail - skb->head);
704 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
706 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
707 get_page(skb_shinfo(skb)->frags[i].page);
709 if (skb_shinfo(skb)->frag_list)
710 skb_clone_fraglist(skb);
712 skb_release_data(skb);
714 off = (data + nhead) - skb->head;
717 skb->end = data + size;
725 atomic_set(&skb_shinfo(skb)->dataref, 1);
732 /* Make private copy of skb with writable head and some headroom */
734 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
736 struct sk_buff *skb2;
737 int delta = headroom - skb_headroom(skb);
740 skb2 = pskb_copy(skb, GFP_ATOMIC);
742 skb2 = skb_clone(skb, GFP_ATOMIC);
743 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
754 * skb_copy_expand - copy and expand sk_buff
755 * @skb: buffer to copy
756 * @newheadroom: new free bytes at head
757 * @newtailroom: new free bytes at tail
758 * @gfp_mask: allocation priority
760 * Make a copy of both an &sk_buff and its data and while doing so
761 * allocate additional space.
763 * This is used when the caller wishes to modify the data and needs a
764 * private copy of the data to alter as well as more space for new fields.
765 * Returns %NULL on failure or the pointer to the buffer
766 * on success. The returned buffer has a reference count of 1.
768 * You must pass %GFP_ATOMIC as the allocation priority if this function
769 * is called from an interrupt.
771 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
772 * only by netfilter in the cases when checksum is recalculated? --ANK
774 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
775 int newheadroom, int newtailroom,
779 * Allocate the copy buffer
781 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
783 int head_copy_len, head_copy_off;
788 skb_reserve(n, newheadroom);
790 /* Set the tail pointer and length */
791 skb_put(n, skb->len);
793 head_copy_len = skb_headroom(skb);
795 if (newheadroom <= head_copy_len)
796 head_copy_len = newheadroom;
798 head_copy_off = newheadroom - head_copy_len;
800 /* Copy the linear header and data. */
801 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
802 skb->len + head_copy_len))
805 copy_skb_header(n, skb);
811 * skb_pad - zero pad the tail of an skb
812 * @skb: buffer to pad
815 * Ensure that a buffer is followed by a padding area that is zero
816 * filled. Used by network drivers which may DMA or transfer data
817 * beyond the buffer end onto the wire.
819 * May return error in out of memory cases. The skb is freed on error.
822 int skb_pad(struct sk_buff *skb, int pad)
827 /* If the skbuff is non linear tailroom is always zero.. */
828 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
829 memset(skb->data+skb->len, 0, pad);
833 ntail = skb->data_len + pad - (skb->end - skb->tail);
834 if (likely(skb_cloned(skb) || ntail > 0)) {
835 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
840 /* FIXME: The use of this function with non-linear skb's really needs
843 err = skb_linearize(skb);
847 memset(skb->data + skb->len, 0, pad);
855 /* Trims skb to length len. It can change skb pointers.
858 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
860 struct sk_buff **fragp;
861 struct sk_buff *frag;
862 int offset = skb_headlen(skb);
863 int nfrags = skb_shinfo(skb)->nr_frags;
867 if (skb_cloned(skb) &&
868 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
875 for (; i < nfrags; i++) {
876 int end = offset + skb_shinfo(skb)->frags[i].size;
883 skb_shinfo(skb)->frags[i++].size = len - offset;
886 skb_shinfo(skb)->nr_frags = i;
888 for (; i < nfrags; i++)
889 put_page(skb_shinfo(skb)->frags[i].page);
891 if (skb_shinfo(skb)->frag_list)
892 skb_drop_fraglist(skb);
896 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
897 fragp = &frag->next) {
898 int end = offset + frag->len;
900 if (skb_shared(frag)) {
901 struct sk_buff *nfrag;
903 nfrag = skb_clone(frag, GFP_ATOMIC);
904 if (unlikely(!nfrag))
907 nfrag->next = frag->next;
919 unlikely((err = pskb_trim(frag, len - offset))))
923 skb_drop_list(&frag->next);
928 if (len > skb_headlen(skb)) {
929 skb->data_len -= skb->len - len;
934 skb->tail = skb->data + len;
941 * __pskb_pull_tail - advance tail of skb header
942 * @skb: buffer to reallocate
943 * @delta: number of bytes to advance tail
945 * The function makes a sense only on a fragmented &sk_buff,
946 * it expands header moving its tail forward and copying necessary
947 * data from fragmented part.
949 * &sk_buff MUST have reference count of 1.
951 * Returns %NULL (and &sk_buff does not change) if pull failed
952 * or value of new tail of skb in the case of success.
954 * All the pointers pointing into skb header may change and must be
955 * reloaded after call to this function.
958 /* Moves tail of skb head forward, copying data from fragmented part,
959 * when it is necessary.
960 * 1. It may fail due to malloc failure.
961 * 2. It may change skb pointers.
963 * It is pretty complicated. Luckily, it is called only in exceptional cases.
965 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
967 /* If skb has not enough free space at tail, get new one
968 * plus 128 bytes for future expansions. If we have enough
969 * room at tail, reallocate without expansion only if skb is cloned.
971 int i, k, eat = (skb->tail + delta) - skb->end;
973 if (eat > 0 || skb_cloned(skb)) {
974 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
979 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
982 /* Optimization: no fragments, no reasons to preestimate
983 * size of pulled pages. Superb.
985 if (!skb_shinfo(skb)->frag_list)
988 /* Estimate size of pulled pages. */
990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
991 if (skb_shinfo(skb)->frags[i].size >= eat)
993 eat -= skb_shinfo(skb)->frags[i].size;
996 /* If we need update frag list, we are in troubles.
997 * Certainly, it possible to add an offset to skb data,
998 * but taking into account that pulling is expected to
999 * be very rare operation, it is worth to fight against
1000 * further bloating skb head and crucify ourselves here instead.
1001 * Pure masohism, indeed. 8)8)
1004 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1005 struct sk_buff *clone = NULL;
1006 struct sk_buff *insp = NULL;
1011 if (list->len <= eat) {
1012 /* Eaten as whole. */
1017 /* Eaten partially. */
1019 if (skb_shared(list)) {
1020 /* Sucks! We need to fork list. :-( */
1021 clone = skb_clone(list, GFP_ATOMIC);
1027 /* This may be pulled without
1031 if (!pskb_pull(list, eat)) {
1040 /* Free pulled out fragments. */
1041 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1042 skb_shinfo(skb)->frag_list = list->next;
1045 /* And insert new clone at head. */
1048 skb_shinfo(skb)->frag_list = clone;
1051 /* Success! Now we may commit changes to skb data. */
1056 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057 if (skb_shinfo(skb)->frags[i].size <= eat) {
1058 put_page(skb_shinfo(skb)->frags[i].page);
1059 eat -= skb_shinfo(skb)->frags[i].size;
1061 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1063 skb_shinfo(skb)->frags[k].page_offset += eat;
1064 skb_shinfo(skb)->frags[k].size -= eat;
1070 skb_shinfo(skb)->nr_frags = k;
1073 skb->data_len -= delta;
1078 /* Copy some data bits from skb to kernel buffer. */
1080 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1083 int start = skb_headlen(skb);
1085 if (offset > (int)skb->len - len)
1089 if ((copy = start - offset) > 0) {
1092 memcpy(to, skb->data + offset, copy);
1093 if ((len -= copy) == 0)
1099 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1102 BUG_TRAP(start <= offset + len);
1104 end = start + skb_shinfo(skb)->frags[i].size;
1105 if ((copy = end - offset) > 0) {
1111 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1113 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1114 offset - start, copy);
1115 kunmap_skb_frag(vaddr);
1117 if ((len -= copy) == 0)
1125 if (skb_shinfo(skb)->frag_list) {
1126 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1128 for (; list; list = list->next) {
1131 BUG_TRAP(start <= offset + len);
1133 end = start + list->len;
1134 if ((copy = end - offset) > 0) {
1137 if (skb_copy_bits(list, offset - start,
1140 if ((len -= copy) == 0)
1156 * skb_store_bits - store bits from kernel buffer to skb
1157 * @skb: destination buffer
1158 * @offset: offset in destination
1159 * @from: source buffer
1160 * @len: number of bytes to copy
1162 * Copy the specified number of bytes from the source buffer to the
1163 * destination skb. This function handles all the messy bits of
1164 * traversing fragment lists and such.
1167 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1170 int start = skb_headlen(skb);
1172 if (offset > (int)skb->len - len)
1175 if ((copy = start - offset) > 0) {
1178 memcpy(skb->data + offset, from, copy);
1179 if ((len -= copy) == 0)
1185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1186 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1189 BUG_TRAP(start <= offset + len);
1191 end = start + frag->size;
1192 if ((copy = end - offset) > 0) {
1198 vaddr = kmap_skb_frag(frag);
1199 memcpy(vaddr + frag->page_offset + offset - start,
1201 kunmap_skb_frag(vaddr);
1203 if ((len -= copy) == 0)
1211 if (skb_shinfo(skb)->frag_list) {
1212 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1214 for (; list; list = list->next) {
1217 BUG_TRAP(start <= offset + len);
1219 end = start + list->len;
1220 if ((copy = end - offset) > 0) {
1223 if (skb_store_bits(list, offset - start,
1226 if ((len -= copy) == 0)
1241 EXPORT_SYMBOL(skb_store_bits);
1243 /* Checksum skb data. */
1245 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1246 int len, __wsum csum)
1248 int start = skb_headlen(skb);
1249 int i, copy = start - offset;
1252 /* Checksum header. */
1256 csum = csum_partial(skb->data + offset, copy, csum);
1257 if ((len -= copy) == 0)
1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1266 BUG_TRAP(start <= offset + len);
1268 end = start + skb_shinfo(skb)->frags[i].size;
1269 if ((copy = end - offset) > 0) {
1272 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1276 vaddr = kmap_skb_frag(frag);
1277 csum2 = csum_partial(vaddr + frag->page_offset +
1278 offset - start, copy, 0);
1279 kunmap_skb_frag(vaddr);
1280 csum = csum_block_add(csum, csum2, pos);
1289 if (skb_shinfo(skb)->frag_list) {
1290 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1292 for (; list; list = list->next) {
1295 BUG_TRAP(start <= offset + len);
1297 end = start + list->len;
1298 if ((copy = end - offset) > 0) {
1302 csum2 = skb_checksum(list, offset - start,
1304 csum = csum_block_add(csum, csum2, pos);
1305 if ((len -= copy) == 0)
1318 /* Both of above in one bottle. */
1320 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1321 u8 *to, int len, __wsum csum)
1323 int start = skb_headlen(skb);
1324 int i, copy = start - offset;
1331 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1333 if ((len -= copy) == 0)
1340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1343 BUG_TRAP(start <= offset + len);
1345 end = start + skb_shinfo(skb)->frags[i].size;
1346 if ((copy = end - offset) > 0) {
1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1353 vaddr = kmap_skb_frag(frag);
1354 csum2 = csum_partial_copy_nocheck(vaddr +
1358 kunmap_skb_frag(vaddr);
1359 csum = csum_block_add(csum, csum2, pos);
1369 if (skb_shinfo(skb)->frag_list) {
1370 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1372 for (; list; list = list->next) {
1376 BUG_TRAP(start <= offset + len);
1378 end = start + list->len;
1379 if ((copy = end - offset) > 0) {
1382 csum2 = skb_copy_and_csum_bits(list,
1385 csum = csum_block_add(csum, csum2, pos);
1386 if ((len -= copy) == 0)
1399 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1404 if (skb->ip_summed == CHECKSUM_PARTIAL)
1405 csstart = skb->h.raw - skb->data;
1407 csstart = skb_headlen(skb);
1409 BUG_ON(csstart > skb_headlen(skb));
1411 memcpy(to, skb->data, csstart);
1414 if (csstart != skb->len)
1415 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1416 skb->len - csstart, 0);
1418 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1419 long csstuff = csstart + skb->csum_offset;
1421 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1426 * skb_dequeue - remove from the head of the queue
1427 * @list: list to dequeue from
1429 * Remove the head of the list. The list lock is taken so the function
1430 * may be used safely with other locking list functions. The head item is
1431 * returned or %NULL if the list is empty.
1434 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1436 unsigned long flags;
1437 struct sk_buff *result;
1439 spin_lock_irqsave(&list->lock, flags);
1440 result = __skb_dequeue(list);
1441 spin_unlock_irqrestore(&list->lock, flags);
1446 * skb_dequeue_tail - remove from the tail of the queue
1447 * @list: list to dequeue from
1449 * Remove the tail of the list. The list lock is taken so the function
1450 * may be used safely with other locking list functions. The tail item is
1451 * returned or %NULL if the list is empty.
1453 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1455 unsigned long flags;
1456 struct sk_buff *result;
1458 spin_lock_irqsave(&list->lock, flags);
1459 result = __skb_dequeue_tail(list);
1460 spin_unlock_irqrestore(&list->lock, flags);
1465 * skb_queue_purge - empty a list
1466 * @list: list to empty
1468 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1469 * the list and one reference dropped. This function takes the list
1470 * lock and is atomic with respect to other list locking functions.
1472 void skb_queue_purge(struct sk_buff_head *list)
1474 struct sk_buff *skb;
1475 while ((skb = skb_dequeue(list)) != NULL)
1480 * skb_queue_head - queue a buffer at the list head
1481 * @list: list to use
1482 * @newsk: buffer to queue
1484 * Queue a buffer at the start of the list. This function takes the
1485 * list lock and can be used safely with other locking &sk_buff functions
1488 * A buffer cannot be placed on two lists at the same time.
1490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1492 unsigned long flags;
1494 spin_lock_irqsave(&list->lock, flags);
1495 __skb_queue_head(list, newsk);
1496 spin_unlock_irqrestore(&list->lock, flags);
1500 * skb_queue_tail - queue a buffer at the list tail
1501 * @list: list to use
1502 * @newsk: buffer to queue
1504 * Queue a buffer at the tail of the list. This function takes the
1505 * list lock and can be used safely with other locking &sk_buff functions
1508 * A buffer cannot be placed on two lists at the same time.
1510 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1512 unsigned long flags;
1514 spin_lock_irqsave(&list->lock, flags);
1515 __skb_queue_tail(list, newsk);
1516 spin_unlock_irqrestore(&list->lock, flags);
1520 * skb_unlink - remove a buffer from a list
1521 * @skb: buffer to remove
1522 * @list: list to use
1524 * Remove a packet from a list. The list locks are taken and this
1525 * function is atomic with respect to other list locked calls
1527 * You must know what list the SKB is on.
1529 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1531 unsigned long flags;
1533 spin_lock_irqsave(&list->lock, flags);
1534 __skb_unlink(skb, list);
1535 spin_unlock_irqrestore(&list->lock, flags);
1539 * skb_append - append a buffer
1540 * @old: buffer to insert after
1541 * @newsk: buffer to insert
1542 * @list: list to use
1544 * Place a packet after a given packet in a list. The list locks are taken
1545 * and this function is atomic with respect to other list locked calls.
1546 * A buffer cannot be placed on two lists at the same time.
1548 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1550 unsigned long flags;
1552 spin_lock_irqsave(&list->lock, flags);
1553 __skb_append(old, newsk, list);
1554 spin_unlock_irqrestore(&list->lock, flags);
1559 * skb_insert - insert a buffer
1560 * @old: buffer to insert before
1561 * @newsk: buffer to insert
1562 * @list: list to use
1564 * Place a packet before a given packet in a list. The list locks are
1565 * taken and this function is atomic with respect to other list locked
1568 * A buffer cannot be placed on two lists at the same time.
1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1572 unsigned long flags;
1574 spin_lock_irqsave(&list->lock, flags);
1575 __skb_insert(newsk, old->prev, old, list);
1576 spin_unlock_irqrestore(&list->lock, flags);
1581 * Tune the memory allocator for a new MTU size.
1583 void skb_add_mtu(int mtu)
1585 /* Must match allocation in alloc_skb */
1586 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1588 kmem_add_cache_size(mtu);
1592 static inline void skb_split_inside_header(struct sk_buff *skb,
1593 struct sk_buff* skb1,
1594 const u32 len, const int pos)
1598 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1600 /* And move data appendix as is. */
1601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1602 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1604 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1605 skb_shinfo(skb)->nr_frags = 0;
1606 skb1->data_len = skb->data_len;
1607 skb1->len += skb1->data_len;
1610 skb->tail = skb->data + len;
1613 static inline void skb_split_no_header(struct sk_buff *skb,
1614 struct sk_buff* skb1,
1615 const u32 len, int pos)
1618 const int nfrags = skb_shinfo(skb)->nr_frags;
1620 skb_shinfo(skb)->nr_frags = 0;
1621 skb1->len = skb1->data_len = skb->len - len;
1623 skb->data_len = len - pos;
1625 for (i = 0; i < nfrags; i++) {
1626 int size = skb_shinfo(skb)->frags[i].size;
1628 if (pos + size > len) {
1629 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1633 * We have two variants in this case:
1634 * 1. Move all the frag to the second
1635 * part, if it is possible. F.e.
1636 * this approach is mandatory for TUX,
1637 * where splitting is expensive.
1638 * 2. Split is accurately. We make this.
1640 get_page(skb_shinfo(skb)->frags[i].page);
1641 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1642 skb_shinfo(skb1)->frags[0].size -= len - pos;
1643 skb_shinfo(skb)->frags[i].size = len - pos;
1644 skb_shinfo(skb)->nr_frags++;
1648 skb_shinfo(skb)->nr_frags++;
1651 skb_shinfo(skb1)->nr_frags = k;
1655 * skb_split - Split fragmented skb to two parts at length len.
1656 * @skb: the buffer to split
1657 * @skb1: the buffer to receive the second part
1658 * @len: new length for skb
1660 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1662 int pos = skb_headlen(skb);
1664 if (len < pos) /* Split line is inside header. */
1665 skb_split_inside_header(skb, skb1, len, pos);
1666 else /* Second chunk has no header, nothing to copy. */
1667 skb_split_no_header(skb, skb1, len, pos);
1671 * skb_prepare_seq_read - Prepare a sequential read of skb data
1672 * @skb: the buffer to read
1673 * @from: lower offset of data to be read
1674 * @to: upper offset of data to be read
1675 * @st: state variable
1677 * Initializes the specified state variable. Must be called before
1678 * invoking skb_seq_read() for the first time.
1680 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1681 unsigned int to, struct skb_seq_state *st)
1683 st->lower_offset = from;
1684 st->upper_offset = to;
1685 st->root_skb = st->cur_skb = skb;
1686 st->frag_idx = st->stepped_offset = 0;
1687 st->frag_data = NULL;
1691 * skb_seq_read - Sequentially read skb data
1692 * @consumed: number of bytes consumed by the caller so far
1693 * @data: destination pointer for data to be returned
1694 * @st: state variable
1696 * Reads a block of skb data at &consumed relative to the
1697 * lower offset specified to skb_prepare_seq_read(). Assigns
1698 * the head of the data block to &data and returns the length
1699 * of the block or 0 if the end of the skb data or the upper
1700 * offset has been reached.
1702 * The caller is not required to consume all of the data
1703 * returned, i.e. &consumed is typically set to the number
1704 * of bytes already consumed and the next call to
1705 * skb_seq_read() will return the remaining part of the block.
1707 * Note: The size of each block of data returned can be arbitary,
1708 * this limitation is the cost for zerocopy seqeuental
1709 * reads of potentially non linear data.
1711 * Note: Fragment lists within fragments are not implemented
1712 * at the moment, state->root_skb could be replaced with
1713 * a stack for this purpose.
1715 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1716 struct skb_seq_state *st)
1718 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1721 if (unlikely(abs_offset >= st->upper_offset))
1725 block_limit = skb_headlen(st->cur_skb);
1727 if (abs_offset < block_limit) {
1728 *data = st->cur_skb->data + abs_offset;
1729 return block_limit - abs_offset;
1732 if (st->frag_idx == 0 && !st->frag_data)
1733 st->stepped_offset += skb_headlen(st->cur_skb);
1735 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1736 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1737 block_limit = frag->size + st->stepped_offset;
1739 if (abs_offset < block_limit) {
1741 st->frag_data = kmap_skb_frag(frag);
1743 *data = (u8 *) st->frag_data + frag->page_offset +
1744 (abs_offset - st->stepped_offset);
1746 return block_limit - abs_offset;
1749 if (st->frag_data) {
1750 kunmap_skb_frag(st->frag_data);
1751 st->frag_data = NULL;
1755 st->stepped_offset += frag->size;
1758 if (st->cur_skb->next) {
1759 st->cur_skb = st->cur_skb->next;
1762 } else if (st->root_skb == st->cur_skb &&
1763 skb_shinfo(st->root_skb)->frag_list) {
1764 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1772 * skb_abort_seq_read - Abort a sequential read of skb data
1773 * @st: state variable
1775 * Must be called if skb_seq_read() was not called until it
1778 void skb_abort_seq_read(struct skb_seq_state *st)
1781 kunmap_skb_frag(st->frag_data);
1784 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1786 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1787 struct ts_config *conf,
1788 struct ts_state *state)
1790 return skb_seq_read(offset, text, TS_SKB_CB(state));
1793 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1795 skb_abort_seq_read(TS_SKB_CB(state));
1799 * skb_find_text - Find a text pattern in skb data
1800 * @skb: the buffer to look in
1801 * @from: search offset
1803 * @config: textsearch configuration
1804 * @state: uninitialized textsearch state variable
1806 * Finds a pattern in the skb data according to the specified
1807 * textsearch configuration. Use textsearch_next() to retrieve
1808 * subsequent occurrences of the pattern. Returns the offset
1809 * to the first occurrence or UINT_MAX if no match was found.
1811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1812 unsigned int to, struct ts_config *config,
1813 struct ts_state *state)
1817 config->get_next_block = skb_ts_get_next_block;
1818 config->finish = skb_ts_finish;
1820 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1822 ret = textsearch_find(config, state);
1823 return (ret <= to - from ? ret : UINT_MAX);
1827 * skb_append_datato_frags: - append the user data to a skb
1828 * @sk: sock structure
1829 * @skb: skb structure to be appened with user data.
1830 * @getfrag: call back function to be used for getting the user data
1831 * @from: pointer to user message iov
1832 * @length: length of the iov message
1834 * Description: This procedure append the user data in the fragment part
1835 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1837 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1838 int (*getfrag)(void *from, char *to, int offset,
1839 int len, int odd, struct sk_buff *skb),
1840 void *from, int length)
1843 skb_frag_t *frag = NULL;
1844 struct page *page = NULL;
1850 /* Return error if we don't have space for new frag */
1851 frg_cnt = skb_shinfo(skb)->nr_frags;
1852 if (frg_cnt >= MAX_SKB_FRAGS)
1855 /* allocate a new page for next frag */
1856 page = alloc_pages(sk->sk_allocation, 0);
1858 /* If alloc_page fails just return failure and caller will
1859 * free previous allocated pages by doing kfree_skb()
1864 /* initialize the next frag */
1865 sk->sk_sndmsg_page = page;
1866 sk->sk_sndmsg_off = 0;
1867 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1868 skb->truesize += PAGE_SIZE;
1869 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1871 /* get the new initialized frag */
1872 frg_cnt = skb_shinfo(skb)->nr_frags;
1873 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1875 /* copy the user data to page */
1876 left = PAGE_SIZE - frag->page_offset;
1877 copy = (length > left)? left : length;
1879 ret = getfrag(from, (page_address(frag->page) +
1880 frag->page_offset + frag->size),
1881 offset, copy, 0, skb);
1885 /* copy was successful so update the size parameters */
1886 sk->sk_sndmsg_off += copy;
1889 skb->data_len += copy;
1893 } while (length > 0);
1899 * skb_pull_rcsum - pull skb and update receive checksum
1900 * @skb: buffer to update
1901 * @start: start of data before pull
1902 * @len: length of data pulled
1904 * This function performs an skb_pull on the packet and updates
1905 * update the CHECKSUM_COMPLETE checksum. It should be used on
1906 * receive path processing instead of skb_pull unless you know
1907 * that the checksum difference is zero (e.g., a valid IP header)
1908 * or you are setting ip_summed to CHECKSUM_NONE.
1910 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1912 BUG_ON(len > skb->len);
1914 BUG_ON(skb->len < skb->data_len);
1915 skb_postpull_rcsum(skb, skb->data, len);
1916 return skb->data += len;
1919 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1922 * skb_segment - Perform protocol segmentation on skb.
1923 * @skb: buffer to segment
1924 * @features: features for the output path (see dev->features)
1926 * This function performs segmentation on the given skb. It returns
1927 * the segment at the given position. It returns NULL if there are
1928 * no more segments to generate, or when an error is encountered.
1930 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1932 struct sk_buff *segs = NULL;
1933 struct sk_buff *tail = NULL;
1934 unsigned int mss = skb_shinfo(skb)->gso_size;
1935 unsigned int doffset = skb->data - skb->mac.raw;
1936 unsigned int offset = doffset;
1937 unsigned int headroom;
1939 int sg = features & NETIF_F_SG;
1940 int nfrags = skb_shinfo(skb)->nr_frags;
1945 __skb_push(skb, doffset);
1946 headroom = skb_headroom(skb);
1947 pos = skb_headlen(skb);
1950 struct sk_buff *nskb;
1956 len = skb->len - offset;
1960 hsize = skb_headlen(skb) - offset;
1963 if (hsize > len || !sg)
1966 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1967 if (unlikely(!nskb))
1976 nskb->dev = skb->dev;
1977 nskb->priority = skb->priority;
1978 nskb->protocol = skb->protocol;
1979 nskb->dst = dst_clone(skb->dst);
1980 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1981 nskb->pkt_type = skb->pkt_type;
1982 nskb->mac_len = skb->mac_len;
1984 skb_reserve(nskb, headroom);
1985 nskb->mac.raw = nskb->data;
1986 nskb->nh.raw = nskb->data + skb->mac_len;
1987 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1988 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1991 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1997 frag = skb_shinfo(nskb)->frags;
2000 nskb->ip_summed = CHECKSUM_PARTIAL;
2001 nskb->csum = skb->csum;
2002 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2004 while (pos < offset + len) {
2005 BUG_ON(i >= nfrags);
2007 *frag = skb_shinfo(skb)->frags[i];
2008 get_page(frag->page);
2012 frag->page_offset += offset - pos;
2013 frag->size -= offset - pos;
2018 if (pos + size <= offset + len) {
2022 frag->size -= pos + size - (offset + len);
2029 skb_shinfo(nskb)->nr_frags = k;
2030 nskb->data_len = len - hsize;
2031 nskb->len += nskb->data_len;
2032 nskb->truesize += nskb->data_len;
2033 } while ((offset += len) < skb->len);
2038 while ((skb = segs)) {
2042 return ERR_PTR(err);
2045 EXPORT_SYMBOL_GPL(skb_segment);
2047 void __init skb_init(void)
2049 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2050 sizeof(struct sk_buff),
2052 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2054 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2055 (2*sizeof(struct sk_buff)) +
2058 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2062 EXPORT_SYMBOL(___pskb_trim);
2063 EXPORT_SYMBOL(__kfree_skb);
2064 EXPORT_SYMBOL(kfree_skb);
2065 EXPORT_SYMBOL(__pskb_pull_tail);
2066 EXPORT_SYMBOL(__alloc_skb);
2067 EXPORT_SYMBOL(__netdev_alloc_skb);
2068 EXPORT_SYMBOL(pskb_copy);
2069 EXPORT_SYMBOL(pskb_expand_head);
2070 EXPORT_SYMBOL(skb_checksum);
2071 EXPORT_SYMBOL(skb_clone);
2072 EXPORT_SYMBOL(skb_clone_fraglist);
2073 EXPORT_SYMBOL(skb_copy);
2074 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2075 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2076 EXPORT_SYMBOL(skb_copy_bits);
2077 EXPORT_SYMBOL(skb_copy_expand);
2078 EXPORT_SYMBOL(skb_over_panic);
2079 EXPORT_SYMBOL(skb_pad);
2080 EXPORT_SYMBOL(skb_realloc_headroom);
2081 EXPORT_SYMBOL(skb_under_panic);
2082 EXPORT_SYMBOL(skb_dequeue);
2083 EXPORT_SYMBOL(skb_dequeue_tail);
2084 EXPORT_SYMBOL(skb_insert);
2085 EXPORT_SYMBOL(skb_queue_purge);
2086 EXPORT_SYMBOL(skb_queue_head);
2087 EXPORT_SYMBOL(skb_queue_tail);
2088 EXPORT_SYMBOL(skb_unlink);
2089 EXPORT_SYMBOL(skb_append);
2090 EXPORT_SYMBOL(skb_split);
2091 EXPORT_SYMBOL(skb_prepare_seq_read);
2092 EXPORT_SYMBOL(skb_seq_read);
2093 EXPORT_SYMBOL(skb_abort_seq_read);
2094 EXPORT_SYMBOL(skb_find_text);
2095 EXPORT_SYMBOL(skb_append_datato_frags);