[SCSI] qla2xxx: Resolve a performance issue in interrupt
[linux-2.6] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version     : v00.00.04.01-rc1
14  *
15  * Authors:
16  *      (email-id : megaraidlinux@lsi.com)
17  *      Sreenivas Bagalkote
18  *      Sumant Patro
19  *      Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM  Product Name                    VID     DID     SSVID   SSID
24  * ---  ------------                    ---     ---     ----    ----
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/smp_lock.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
49
50 /*
51  * poll_mode_io:1- schedule complete completion from q cmd
52  */
53 static unsigned int poll_mode_io;
54 module_param_named(poll_mode_io, poll_mode_io, int, 0);
55 MODULE_PARM_DESC(poll_mode_io,
56         "Complete cmds from IO path, (default=0)");
57
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(MEGASAS_VERSION);
60 MODULE_AUTHOR("megaraidlinux@lsi.com");
61 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
62
63 /*
64  * PCI ID table for all supported controllers
65  */
66 static struct pci_device_id megasas_pci_table[] = {
67
68         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
69         /* xscale IOP */
70         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
71         /* ppc IOP */
72         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
73         /* ppc IOP */
74         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
75         /* gen2*/
76         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
77         /* gen2*/
78         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
79         /* xscale IOP, vega */
80         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
81         /* xscale IOP */
82         {}
83 };
84
85 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
86
87 static int megasas_mgmt_majorno;
88 static struct megasas_mgmt_info megasas_mgmt_info;
89 static struct fasync_struct *megasas_async_queue;
90 static DEFINE_MUTEX(megasas_async_queue_mutex);
91
92 static u32 megasas_dbg_lvl;
93
94 static void
95 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
96                      u8 alt_status);
97
98 /**
99  * megasas_get_cmd -    Get a command from the free pool
100  * @instance:           Adapter soft state
101  *
102  * Returns a free command from the pool
103  */
104 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
105                                                   *instance)
106 {
107         unsigned long flags;
108         struct megasas_cmd *cmd = NULL;
109
110         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
111
112         if (!list_empty(&instance->cmd_pool)) {
113                 cmd = list_entry((&instance->cmd_pool)->next,
114                                  struct megasas_cmd, list);
115                 list_del_init(&cmd->list);
116         } else {
117                 printk(KERN_ERR "megasas: Command pool empty!\n");
118         }
119
120         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
121         return cmd;
122 }
123
124 /**
125  * megasas_return_cmd - Return a cmd to free command pool
126  * @instance:           Adapter soft state
127  * @cmd:                Command packet to be returned to free command pool
128  */
129 static inline void
130 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
131 {
132         unsigned long flags;
133
134         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
135
136         cmd->scmd = NULL;
137         list_add_tail(&cmd->list, &instance->cmd_pool);
138
139         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
140 }
141
142
143 /**
144 *       The following functions are defined for xscale 
145 *       (deviceid : 1064R, PERC5) controllers
146 */
147
148 /**
149  * megasas_enable_intr_xscale - Enables interrupts
150  * @regs:                       MFI register set
151  */
152 static inline void
153 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
154 {
155         writel(1, &(regs)->outbound_intr_mask);
156
157         /* Dummy readl to force pci flush */
158         readl(&regs->outbound_intr_mask);
159 }
160
161 /**
162  * megasas_disable_intr_xscale -Disables interrupt
163  * @regs:                       MFI register set
164  */
165 static inline void
166 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
167 {
168         u32 mask = 0x1f;
169         writel(mask, &regs->outbound_intr_mask);
170         /* Dummy readl to force pci flush */
171         readl(&regs->outbound_intr_mask);
172 }
173
174 /**
175  * megasas_read_fw_status_reg_xscale - returns the current FW status value
176  * @regs:                       MFI register set
177  */
178 static u32
179 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
180 {
181         return readl(&(regs)->outbound_msg_0);
182 }
183 /**
184  * megasas_clear_interrupt_xscale -     Check & clear interrupt
185  * @regs:                               MFI register set
186  */
187 static int 
188 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
189 {
190         u32 status;
191         /*
192          * Check if it is our interrupt
193          */
194         status = readl(&regs->outbound_intr_status);
195
196         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
197                 return 1;
198         }
199
200         /*
201          * Clear the interrupt by writing back the same value
202          */
203         writel(status, &regs->outbound_intr_status);
204
205         /* Dummy readl to force pci flush */
206         readl(&regs->outbound_intr_status);
207
208         return 0;
209 }
210
211 /**
212  * megasas_fire_cmd_xscale -    Sends command to the FW
213  * @frame_phys_addr :           Physical address of cmd
214  * @frame_count :               Number of frames for the command
215  * @regs :                      MFI register set
216  */
217 static inline void 
218 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
219 {
220         writel((frame_phys_addr >> 3)|(frame_count),
221                &(regs)->inbound_queue_port);
222 }
223
224 static struct megasas_instance_template megasas_instance_template_xscale = {
225
226         .fire_cmd = megasas_fire_cmd_xscale,
227         .enable_intr = megasas_enable_intr_xscale,
228         .disable_intr = megasas_disable_intr_xscale,
229         .clear_intr = megasas_clear_intr_xscale,
230         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
231 };
232
233 /**
234 *       This is the end of set of functions & definitions specific 
235 *       to xscale (deviceid : 1064R, PERC5) controllers
236 */
237
238 /**
239 *       The following functions are defined for ppc (deviceid : 0x60) 
240 *       controllers
241 */
242
243 /**
244  * megasas_enable_intr_ppc -    Enables interrupts
245  * @regs:                       MFI register set
246  */
247 static inline void
248 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
249 {
250         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
251     
252         writel(~0x80000004, &(regs)->outbound_intr_mask);
253
254         /* Dummy readl to force pci flush */
255         readl(&regs->outbound_intr_mask);
256 }
257
258 /**
259  * megasas_disable_intr_ppc -   Disable interrupt
260  * @regs:                       MFI register set
261  */
262 static inline void
263 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
264 {
265         u32 mask = 0xFFFFFFFF;
266         writel(mask, &regs->outbound_intr_mask);
267         /* Dummy readl to force pci flush */
268         readl(&regs->outbound_intr_mask);
269 }
270
271 /**
272  * megasas_read_fw_status_reg_ppc - returns the current FW status value
273  * @regs:                       MFI register set
274  */
275 static u32
276 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
277 {
278         return readl(&(regs)->outbound_scratch_pad);
279 }
280
281 /**
282  * megasas_clear_interrupt_ppc -        Check & clear interrupt
283  * @regs:                               MFI register set
284  */
285 static int 
286 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
287 {
288         u32 status;
289         /*
290          * Check if it is our interrupt
291          */
292         status = readl(&regs->outbound_intr_status);
293
294         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
295                 return 1;
296         }
297
298         /*
299          * Clear the interrupt by writing back the same value
300          */
301         writel(status, &regs->outbound_doorbell_clear);
302
303         /* Dummy readl to force pci flush */
304         readl(&regs->outbound_doorbell_clear);
305
306         return 0;
307 }
308 /**
309  * megasas_fire_cmd_ppc -       Sends command to the FW
310  * @frame_phys_addr :           Physical address of cmd
311  * @frame_count :               Number of frames for the command
312  * @regs :                      MFI register set
313  */
314 static inline void 
315 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
316 {
317         writel((frame_phys_addr | (frame_count<<1))|1, 
318                         &(regs)->inbound_queue_port);
319 }
320
321 static struct megasas_instance_template megasas_instance_template_ppc = {
322         
323         .fire_cmd = megasas_fire_cmd_ppc,
324         .enable_intr = megasas_enable_intr_ppc,
325         .disable_intr = megasas_disable_intr_ppc,
326         .clear_intr = megasas_clear_intr_ppc,
327         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
328 };
329
330 /**
331 *       The following functions are defined for gen2 (deviceid : 0x78 0x79)
332 *       controllers
333 */
334
335 /**
336  * megasas_enable_intr_gen2 -  Enables interrupts
337  * @regs:                      MFI register set
338  */
339 static inline void
340 megasas_enable_intr_gen2(struct megasas_register_set __iomem *regs)
341 {
342         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
343
344         /* write ~0x00000005 (4 & 1) to the intr mask*/
345         writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
346
347         /* Dummy readl to force pci flush */
348         readl(&regs->outbound_intr_mask);
349 }
350
351 /**
352  * megasas_disable_intr_gen2 - Disables interrupt
353  * @regs:                      MFI register set
354  */
355 static inline void
356 megasas_disable_intr_gen2(struct megasas_register_set __iomem *regs)
357 {
358         u32 mask = 0xFFFFFFFF;
359         writel(mask, &regs->outbound_intr_mask);
360         /* Dummy readl to force pci flush */
361         readl(&regs->outbound_intr_mask);
362 }
363
364 /**
365  * megasas_read_fw_status_reg_gen2 - returns the current FW status value
366  * @regs:                      MFI register set
367  */
368 static u32
369 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
370 {
371         return readl(&(regs)->outbound_scratch_pad);
372 }
373
374 /**
375  * megasas_clear_interrupt_gen2 -      Check & clear interrupt
376  * @regs:                              MFI register set
377  */
378 static int
379 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
380 {
381         u32 status;
382         /*
383          * Check if it is our interrupt
384          */
385         status = readl(&regs->outbound_intr_status);
386
387         if (!(status & MFI_GEN2_ENABLE_INTERRUPT_MASK))
388                 return 1;
389
390         /*
391          * Clear the interrupt by writing back the same value
392          */
393         writel(status, &regs->outbound_doorbell_clear);
394
395         /* Dummy readl to force pci flush */
396         readl(&regs->outbound_intr_status);
397
398         return 0;
399 }
400 /**
401  * megasas_fire_cmd_gen2 -     Sends command to the FW
402  * @frame_phys_addr :          Physical address of cmd
403  * @frame_count :              Number of frames for the command
404  * @regs :                     MFI register set
405  */
406 static inline void
407 megasas_fire_cmd_gen2(dma_addr_t frame_phys_addr, u32 frame_count,
408                         struct megasas_register_set __iomem *regs)
409 {
410         writel((frame_phys_addr | (frame_count<<1))|1,
411                         &(regs)->inbound_queue_port);
412 }
413
414 static struct megasas_instance_template megasas_instance_template_gen2 = {
415
416         .fire_cmd = megasas_fire_cmd_gen2,
417         .enable_intr = megasas_enable_intr_gen2,
418         .disable_intr = megasas_disable_intr_gen2,
419         .clear_intr = megasas_clear_intr_gen2,
420         .read_fw_status_reg = megasas_read_fw_status_reg_gen2,
421 };
422
423 /**
424 *       This is the end of set of functions & definitions
425 *       specific to ppc (deviceid : 0x60) controllers
426 */
427
428 /**
429  * megasas_issue_polled -       Issues a polling command
430  * @instance:                   Adapter soft state
431  * @cmd:                        Command packet to be issued 
432  *
433  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
434  */
435 static int
436 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
437 {
438         int i;
439         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
440
441         struct megasas_header *frame_hdr = &cmd->frame->hdr;
442
443         frame_hdr->cmd_status = 0xFF;
444         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
445
446         /*
447          * Issue the frame using inbound queue port
448          */
449         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
450
451         /*
452          * Wait for cmd_status to change
453          */
454         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
455                 rmb();
456                 msleep(1);
457         }
458
459         if (frame_hdr->cmd_status == 0xff)
460                 return -ETIME;
461
462         return 0;
463 }
464
465 /**
466  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
467  * @instance:                   Adapter soft state
468  * @cmd:                        Command to be issued
469  *
470  * This function waits on an event for the command to be returned from ISR.
471  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
472  * Used to issue ioctl commands.
473  */
474 static int
475 megasas_issue_blocked_cmd(struct megasas_instance *instance,
476                           struct megasas_cmd *cmd)
477 {
478         cmd->cmd_status = ENODATA;
479
480         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
481
482         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
483                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
484
485         return 0;
486 }
487
488 /**
489  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
490  * @instance:                           Adapter soft state
491  * @cmd_to_abort:                       Previously issued cmd to be aborted
492  *
493  * MFI firmware can abort previously issued AEN comamnd (automatic event
494  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
495  * cmd and waits for return status.
496  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
497  */
498 static int
499 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
500                                 struct megasas_cmd *cmd_to_abort)
501 {
502         struct megasas_cmd *cmd;
503         struct megasas_abort_frame *abort_fr;
504
505         cmd = megasas_get_cmd(instance);
506
507         if (!cmd)
508                 return -1;
509
510         abort_fr = &cmd->frame->abort;
511
512         /*
513          * Prepare and issue the abort frame
514          */
515         abort_fr->cmd = MFI_CMD_ABORT;
516         abort_fr->cmd_status = 0xFF;
517         abort_fr->flags = 0;
518         abort_fr->abort_context = cmd_to_abort->index;
519         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
520         abort_fr->abort_mfi_phys_addr_hi = 0;
521
522         cmd->sync_cmd = 1;
523         cmd->cmd_status = 0xFF;
524
525         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
526
527         /*
528          * Wait for this cmd to complete
529          */
530         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
531                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
532
533         megasas_return_cmd(instance, cmd);
534         return 0;
535 }
536
537 /**
538  * megasas_make_sgl32 - Prepares 32-bit SGL
539  * @instance:           Adapter soft state
540  * @scp:                SCSI command from the mid-layer
541  * @mfi_sgl:            SGL to be filled in
542  *
543  * If successful, this function returns the number of SG elements. Otherwise,
544  * it returnes -1.
545  */
546 static int
547 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
548                    union megasas_sgl *mfi_sgl)
549 {
550         int i;
551         int sge_count;
552         struct scatterlist *os_sgl;
553
554         sge_count = scsi_dma_map(scp);
555         BUG_ON(sge_count < 0);
556
557         if (sge_count) {
558                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
559                         mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
560                         mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
561                 }
562         }
563         return sge_count;
564 }
565
566 /**
567  * megasas_make_sgl64 - Prepares 64-bit SGL
568  * @instance:           Adapter soft state
569  * @scp:                SCSI command from the mid-layer
570  * @mfi_sgl:            SGL to be filled in
571  *
572  * If successful, this function returns the number of SG elements. Otherwise,
573  * it returnes -1.
574  */
575 static int
576 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
577                    union megasas_sgl *mfi_sgl)
578 {
579         int i;
580         int sge_count;
581         struct scatterlist *os_sgl;
582
583         sge_count = scsi_dma_map(scp);
584         BUG_ON(sge_count < 0);
585
586         if (sge_count) {
587                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
588                         mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
589                         mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
590                 }
591         }
592         return sge_count;
593 }
594
595  /**
596  * megasas_get_frame_count - Computes the number of frames
597  * @frame_type          : type of frame- io or pthru frame
598  * @sge_count           : number of sg elements
599  *
600  * Returns the number of frames required for numnber of sge's (sge_count)
601  */
602
603 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
604 {
605         int num_cnt;
606         int sge_bytes;
607         u32 sge_sz;
608         u32 frame_count=0;
609
610         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
611             sizeof(struct megasas_sge32);
612
613         /*
614          * Main frame can contain 2 SGEs for 64-bit SGLs and
615          * 3 SGEs for 32-bit SGLs for ldio &
616          * 1 SGEs for 64-bit SGLs and
617          * 2 SGEs for 32-bit SGLs for pthru frame
618          */
619         if (unlikely(frame_type == PTHRU_FRAME)) {
620                 if (IS_DMA64)
621                         num_cnt = sge_count - 1;
622                 else
623                         num_cnt = sge_count - 2;
624         } else {
625                 if (IS_DMA64)
626                         num_cnt = sge_count - 2;
627                 else
628                         num_cnt = sge_count - 3;
629         }
630
631         if(num_cnt>0){
632                 sge_bytes = sge_sz * num_cnt;
633
634                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
635                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
636         }
637         /* Main frame */
638         frame_count +=1;
639
640         if (frame_count > 7)
641                 frame_count = 8;
642         return frame_count;
643 }
644
645 /**
646  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
647  * @instance:           Adapter soft state
648  * @scp:                SCSI command
649  * @cmd:                Command to be prepared in
650  *
651  * This function prepares CDB commands. These are typcially pass-through
652  * commands to the devices.
653  */
654 static int
655 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
656                    struct megasas_cmd *cmd)
657 {
658         u32 is_logical;
659         u32 device_id;
660         u16 flags = 0;
661         struct megasas_pthru_frame *pthru;
662
663         is_logical = MEGASAS_IS_LOGICAL(scp);
664         device_id = MEGASAS_DEV_INDEX(instance, scp);
665         pthru = (struct megasas_pthru_frame *)cmd->frame;
666
667         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
668                 flags = MFI_FRAME_DIR_WRITE;
669         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
670                 flags = MFI_FRAME_DIR_READ;
671         else if (scp->sc_data_direction == PCI_DMA_NONE)
672                 flags = MFI_FRAME_DIR_NONE;
673
674         /*
675          * Prepare the DCDB frame
676          */
677         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
678         pthru->cmd_status = 0x0;
679         pthru->scsi_status = 0x0;
680         pthru->target_id = device_id;
681         pthru->lun = scp->device->lun;
682         pthru->cdb_len = scp->cmd_len;
683         pthru->timeout = 0;
684         pthru->flags = flags;
685         pthru->data_xfer_len = scsi_bufflen(scp);
686
687         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
688
689         /*
690          * Construct SGL
691          */
692         if (IS_DMA64) {
693                 pthru->flags |= MFI_FRAME_SGL64;
694                 pthru->sge_count = megasas_make_sgl64(instance, scp,
695                                                       &pthru->sgl);
696         } else
697                 pthru->sge_count = megasas_make_sgl32(instance, scp,
698                                                       &pthru->sgl);
699
700         /*
701          * Sense info specific
702          */
703         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
704         pthru->sense_buf_phys_addr_hi = 0;
705         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
706
707         /*
708          * Compute the total number of frames this command consumes. FW uses
709          * this number to pull sufficient number of frames from host memory.
710          */
711         cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
712                                                         PTHRU_FRAME);
713
714         return cmd->frame_count;
715 }
716
717 /**
718  * megasas_build_ldio - Prepares IOs to logical devices
719  * @instance:           Adapter soft state
720  * @scp:                SCSI command
721  * @cmd:                Command to to be prepared
722  *
723  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
724  */
725 static int
726 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
727                    struct megasas_cmd *cmd)
728 {
729         u32 device_id;
730         u8 sc = scp->cmnd[0];
731         u16 flags = 0;
732         struct megasas_io_frame *ldio;
733
734         device_id = MEGASAS_DEV_INDEX(instance, scp);
735         ldio = (struct megasas_io_frame *)cmd->frame;
736
737         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
738                 flags = MFI_FRAME_DIR_WRITE;
739         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
740                 flags = MFI_FRAME_DIR_READ;
741
742         /*
743          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
744          */
745         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
746         ldio->cmd_status = 0x0;
747         ldio->scsi_status = 0x0;
748         ldio->target_id = device_id;
749         ldio->timeout = 0;
750         ldio->reserved_0 = 0;
751         ldio->pad_0 = 0;
752         ldio->flags = flags;
753         ldio->start_lba_hi = 0;
754         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
755
756         /*
757          * 6-byte READ(0x08) or WRITE(0x0A) cdb
758          */
759         if (scp->cmd_len == 6) {
760                 ldio->lba_count = (u32) scp->cmnd[4];
761                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
762                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
763
764                 ldio->start_lba_lo &= 0x1FFFFF;
765         }
766
767         /*
768          * 10-byte READ(0x28) or WRITE(0x2A) cdb
769          */
770         else if (scp->cmd_len == 10) {
771                 ldio->lba_count = (u32) scp->cmnd[8] |
772                     ((u32) scp->cmnd[7] << 8);
773                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
774                     ((u32) scp->cmnd[3] << 16) |
775                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
776         }
777
778         /*
779          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
780          */
781         else if (scp->cmd_len == 12) {
782                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
783                     ((u32) scp->cmnd[7] << 16) |
784                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
785
786                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
787                     ((u32) scp->cmnd[3] << 16) |
788                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
789         }
790
791         /*
792          * 16-byte READ(0x88) or WRITE(0x8A) cdb
793          */
794         else if (scp->cmd_len == 16) {
795                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
796                     ((u32) scp->cmnd[11] << 16) |
797                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
798
799                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
800                     ((u32) scp->cmnd[7] << 16) |
801                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
802
803                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
804                     ((u32) scp->cmnd[3] << 16) |
805                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
806
807         }
808
809         /*
810          * Construct SGL
811          */
812         if (IS_DMA64) {
813                 ldio->flags |= MFI_FRAME_SGL64;
814                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
815         } else
816                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
817
818         /*
819          * Sense info specific
820          */
821         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
822         ldio->sense_buf_phys_addr_hi = 0;
823         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
824
825         /*
826          * Compute the total number of frames this command consumes. FW uses
827          * this number to pull sufficient number of frames from host memory.
828          */
829         cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
830
831         return cmd->frame_count;
832 }
833
834 /**
835  * megasas_is_ldio -            Checks if the cmd is for logical drive
836  * @scmd:                       SCSI command
837  *      
838  * Called by megasas_queue_command to find out if the command to be queued
839  * is a logical drive command   
840  */
841 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
842 {
843         if (!MEGASAS_IS_LOGICAL(cmd))
844                 return 0;
845         switch (cmd->cmnd[0]) {
846         case READ_10:
847         case WRITE_10:
848         case READ_12:
849         case WRITE_12:
850         case READ_6:
851         case WRITE_6:
852         case READ_16:
853         case WRITE_16:
854                 return 1;
855         default:
856                 return 0;
857         }
858 }
859
860  /**
861  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
862  *                                      in FW
863  * @instance:                           Adapter soft state
864  */
865 static inline void
866 megasas_dump_pending_frames(struct megasas_instance *instance)
867 {
868         struct megasas_cmd *cmd;
869         int i,n;
870         union megasas_sgl *mfi_sgl;
871         struct megasas_io_frame *ldio;
872         struct megasas_pthru_frame *pthru;
873         u32 sgcount;
874         u32 max_cmd = instance->max_fw_cmds;
875
876         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
877         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
878         if (IS_DMA64)
879                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
880         else
881                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
882
883         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
884         for (i = 0; i < max_cmd; i++) {
885                 cmd = instance->cmd_list[i];
886                 if(!cmd->scmd)
887                         continue;
888                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
889                 if (megasas_is_ldio(cmd->scmd)){
890                         ldio = (struct megasas_io_frame *)cmd->frame;
891                         mfi_sgl = &ldio->sgl;
892                         sgcount = ldio->sge_count;
893                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
894                 }
895                 else {
896                         pthru = (struct megasas_pthru_frame *) cmd->frame;
897                         mfi_sgl = &pthru->sgl;
898                         sgcount = pthru->sge_count;
899                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
900                 }
901         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
902                 for (n = 0; n < sgcount; n++){
903                         if (IS_DMA64)
904                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
905                         else
906                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
907                         }
908                 }
909                 printk(KERN_ERR "\n");
910         } /*for max_cmd*/
911         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
912         for (i = 0; i < max_cmd; i++) {
913
914                 cmd = instance->cmd_list[i];
915
916                 if(cmd->sync_cmd == 1){
917                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
918                 }
919         }
920         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
921 }
922
923 /**
924  * megasas_queue_command -      Queue entry point
925  * @scmd:                       SCSI command to be queued
926  * @done:                       Callback entry point
927  */
928 static int
929 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
930 {
931         u32 frame_count;
932         struct megasas_cmd *cmd;
933         struct megasas_instance *instance;
934
935         instance = (struct megasas_instance *)
936             scmd->device->host->hostdata;
937
938         /* Don't process if we have already declared adapter dead */
939         if (instance->hw_crit_error)
940                 return SCSI_MLQUEUE_HOST_BUSY;
941
942         scmd->scsi_done = done;
943         scmd->result = 0;
944
945         if (MEGASAS_IS_LOGICAL(scmd) &&
946             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
947                 scmd->result = DID_BAD_TARGET << 16;
948                 goto out_done;
949         }
950
951         switch (scmd->cmnd[0]) {
952         case SYNCHRONIZE_CACHE:
953                 /*
954                  * FW takes care of flush cache on its own
955                  * No need to send it down
956                  */
957                 scmd->result = DID_OK << 16;
958                 goto out_done;
959         default:
960                 break;
961         }
962
963         cmd = megasas_get_cmd(instance);
964         if (!cmd)
965                 return SCSI_MLQUEUE_HOST_BUSY;
966
967         /*
968          * Logical drive command
969          */
970         if (megasas_is_ldio(scmd))
971                 frame_count = megasas_build_ldio(instance, scmd, cmd);
972         else
973                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
974
975         if (!frame_count)
976                 goto out_return_cmd;
977
978         cmd->scmd = scmd;
979         scmd->SCp.ptr = (char *)cmd;
980
981         /*
982          * Issue the command to the FW
983          */
984         atomic_inc(&instance->fw_outstanding);
985
986         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
987         /*
988          * Check if we have pend cmds to be completed
989          */
990         if (poll_mode_io && atomic_read(&instance->fw_outstanding))
991                 tasklet_schedule(&instance->isr_tasklet);
992
993
994         return 0;
995
996  out_return_cmd:
997         megasas_return_cmd(instance, cmd);
998  out_done:
999         done(scmd);
1000         return 0;
1001 }
1002
1003 static int megasas_slave_configure(struct scsi_device *sdev)
1004 {
1005         /*
1006          * Don't export physical disk devices to the disk driver.
1007          *
1008          * FIXME: Currently we don't export them to the midlayer at all.
1009          *        That will be fixed once LSI engineers have audited the
1010          *        firmware for possible issues.
1011          */
1012         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
1013                 return -ENXIO;
1014
1015         /*
1016          * The RAID firmware may require extended timeouts.
1017          */
1018         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
1019                 blk_queue_rq_timeout(sdev->request_queue,
1020                                      MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1021         return 0;
1022 }
1023
1024 /**
1025  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
1026  * @instance_addr:                      Address of adapter soft state
1027  *
1028  * Tasklet to complete cmds
1029  */
1030 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1031 {
1032         u32 producer;
1033         u32 consumer;
1034         u32 context;
1035         struct megasas_cmd *cmd;
1036         struct megasas_instance *instance =
1037                                 (struct megasas_instance *)instance_addr;
1038         unsigned long flags;
1039
1040         /* If we have already declared adapter dead, donot complete cmds */
1041         if (instance->hw_crit_error)
1042                 return;
1043
1044         spin_lock_irqsave(&instance->completion_lock, flags);
1045
1046         producer = *instance->producer;
1047         consumer = *instance->consumer;
1048
1049         while (consumer != producer) {
1050                 context = instance->reply_queue[consumer];
1051
1052                 cmd = instance->cmd_list[context];
1053
1054                 megasas_complete_cmd(instance, cmd, DID_OK);
1055
1056                 consumer++;
1057                 if (consumer == (instance->max_fw_cmds + 1)) {
1058                         consumer = 0;
1059                 }
1060         }
1061
1062         *instance->consumer = producer;
1063
1064         spin_unlock_irqrestore(&instance->completion_lock, flags);
1065
1066         /*
1067          * Check if we can restore can_queue
1068          */
1069         if (instance->flag & MEGASAS_FW_BUSY
1070                 && time_after(jiffies, instance->last_time + 5 * HZ)
1071                 && atomic_read(&instance->fw_outstanding) < 17) {
1072
1073                 spin_lock_irqsave(instance->host->host_lock, flags);
1074                 instance->flag &= ~MEGASAS_FW_BUSY;
1075                 instance->host->can_queue =
1076                                 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1077
1078                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1079         }
1080 }
1081
1082 /**
1083  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
1084  * @instance:                           Adapter soft state
1085  *
1086  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
1087  * complete all its outstanding commands. Returns error if one or more IOs
1088  * are pending after this time period. It also marks the controller dead.
1089  */
1090 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1091 {
1092         int i;
1093         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1094
1095         for (i = 0; i < wait_time; i++) {
1096
1097                 int outstanding = atomic_read(&instance->fw_outstanding);
1098
1099                 if (!outstanding)
1100                         break;
1101
1102                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1103                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1104                                "commands to complete\n",i,outstanding);
1105                         /*
1106                          * Call cmd completion routine. Cmd to be
1107                          * be completed directly without depending on isr.
1108                          */
1109                         megasas_complete_cmd_dpc((unsigned long)instance);
1110                 }
1111
1112                 msleep(1000);
1113         }
1114
1115         if (atomic_read(&instance->fw_outstanding)) {
1116                 /*
1117                 * Send signal to FW to stop processing any pending cmds.
1118                 * The controller will be taken offline by the OS now.
1119                 */
1120                 writel(MFI_STOP_ADP,
1121                                 &instance->reg_set->inbound_doorbell);
1122                 megasas_dump_pending_frames(instance);
1123                 instance->hw_crit_error = 1;
1124                 return FAILED;
1125         }
1126
1127         return SUCCESS;
1128 }
1129
1130 /**
1131  * megasas_generic_reset -      Generic reset routine
1132  * @scmd:                       Mid-layer SCSI command
1133  *
1134  * This routine implements a generic reset handler for device, bus and host
1135  * reset requests. Device, bus and host specific reset handlers can use this
1136  * function after they do their specific tasks.
1137  */
1138 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1139 {
1140         int ret_val;
1141         struct megasas_instance *instance;
1142
1143         instance = (struct megasas_instance *)scmd->device->host->hostdata;
1144
1145         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1146                  scmd->serial_number, scmd->cmnd[0], scmd->retries);
1147
1148         if (instance->hw_crit_error) {
1149                 printk(KERN_ERR "megasas: cannot recover from previous reset "
1150                        "failures\n");
1151                 return FAILED;
1152         }
1153
1154         ret_val = megasas_wait_for_outstanding(instance);
1155         if (ret_val == SUCCESS)
1156                 printk(KERN_NOTICE "megasas: reset successful \n");
1157         else
1158                 printk(KERN_ERR "megasas: failed to do reset\n");
1159
1160         return ret_val;
1161 }
1162
1163 /**
1164  * megasas_reset_timer - quiesce the adapter if required
1165  * @scmd:               scsi cmnd
1166  *
1167  * Sets the FW busy flag and reduces the host->can_queue if the
1168  * cmd has not been completed within the timeout period.
1169  */
1170 static enum
1171 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1172 {
1173         struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1174         struct megasas_instance *instance;
1175         unsigned long flags;
1176
1177         if (time_after(jiffies, scmd->jiffies_at_alloc +
1178                                 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1179                 return BLK_EH_NOT_HANDLED;
1180         }
1181
1182         instance = cmd->instance;
1183         if (!(instance->flag & MEGASAS_FW_BUSY)) {
1184                 /* FW is busy, throttle IO */
1185                 spin_lock_irqsave(instance->host->host_lock, flags);
1186
1187                 instance->host->can_queue = 16;
1188                 instance->last_time = jiffies;
1189                 instance->flag |= MEGASAS_FW_BUSY;
1190
1191                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1192         }
1193         return BLK_EH_RESET_TIMER;
1194 }
1195
1196 /**
1197  * megasas_reset_device -       Device reset handler entry point
1198  */
1199 static int megasas_reset_device(struct scsi_cmnd *scmd)
1200 {
1201         int ret;
1202
1203         /*
1204          * First wait for all commands to complete
1205          */
1206         ret = megasas_generic_reset(scmd);
1207
1208         return ret;
1209 }
1210
1211 /**
1212  * megasas_reset_bus_host -     Bus & host reset handler entry point
1213  */
1214 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1215 {
1216         int ret;
1217
1218         /*
1219          * First wait for all commands to complete
1220          */
1221         ret = megasas_generic_reset(scmd);
1222
1223         return ret;
1224 }
1225
1226 /**
1227  * megasas_bios_param - Returns disk geometry for a disk
1228  * @sdev:               device handle
1229  * @bdev:               block device
1230  * @capacity:           drive capacity
1231  * @geom:               geometry parameters
1232  */
1233 static int
1234 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1235                  sector_t capacity, int geom[])
1236 {
1237         int heads;
1238         int sectors;
1239         sector_t cylinders;
1240         unsigned long tmp;
1241         /* Default heads (64) & sectors (32) */
1242         heads = 64;
1243         sectors = 32;
1244
1245         tmp = heads * sectors;
1246         cylinders = capacity;
1247
1248         sector_div(cylinders, tmp);
1249
1250         /*
1251          * Handle extended translation size for logical drives > 1Gb
1252          */
1253
1254         if (capacity >= 0x200000) {
1255                 heads = 255;
1256                 sectors = 63;
1257                 tmp = heads*sectors;
1258                 cylinders = capacity;
1259                 sector_div(cylinders, tmp);
1260         }
1261
1262         geom[0] = heads;
1263         geom[1] = sectors;
1264         geom[2] = cylinders;
1265
1266         return 0;
1267 }
1268
1269 /**
1270  * megasas_service_aen -        Processes an event notification
1271  * @instance:                   Adapter soft state
1272  * @cmd:                        AEN command completed by the ISR
1273  *
1274  * For AEN, driver sends a command down to FW that is held by the FW till an
1275  * event occurs. When an event of interest occurs, FW completes the command
1276  * that it was previously holding.
1277  *
1278  * This routines sends SIGIO signal to processes that have registered with the
1279  * driver for AEN.
1280  */
1281 static void
1282 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1283 {
1284         /*
1285          * Don't signal app if it is just an aborted previously registered aen
1286          */
1287         if (!cmd->abort_aen)
1288                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1289         else
1290                 cmd->abort_aen = 0;
1291
1292         instance->aen_cmd = NULL;
1293         megasas_return_cmd(instance, cmd);
1294 }
1295
1296 /*
1297  * Scsi host template for megaraid_sas driver
1298  */
1299 static struct scsi_host_template megasas_template = {
1300
1301         .module = THIS_MODULE,
1302         .name = "LSI SAS based MegaRAID driver",
1303         .proc_name = "megaraid_sas",
1304         .slave_configure = megasas_slave_configure,
1305         .queuecommand = megasas_queue_command,
1306         .eh_device_reset_handler = megasas_reset_device,
1307         .eh_bus_reset_handler = megasas_reset_bus_host,
1308         .eh_host_reset_handler = megasas_reset_bus_host,
1309         .eh_timed_out = megasas_reset_timer,
1310         .bios_param = megasas_bios_param,
1311         .use_clustering = ENABLE_CLUSTERING,
1312 };
1313
1314 /**
1315  * megasas_complete_int_cmd -   Completes an internal command
1316  * @instance:                   Adapter soft state
1317  * @cmd:                        Command to be completed
1318  *
1319  * The megasas_issue_blocked_cmd() function waits for a command to complete
1320  * after it issues a command. This function wakes up that waiting routine by
1321  * calling wake_up() on the wait queue.
1322  */
1323 static void
1324 megasas_complete_int_cmd(struct megasas_instance *instance,
1325                          struct megasas_cmd *cmd)
1326 {
1327         cmd->cmd_status = cmd->frame->io.cmd_status;
1328
1329         if (cmd->cmd_status == ENODATA) {
1330                 cmd->cmd_status = 0;
1331         }
1332         wake_up(&instance->int_cmd_wait_q);
1333 }
1334
1335 /**
1336  * megasas_complete_abort -     Completes aborting a command
1337  * @instance:                   Adapter soft state
1338  * @cmd:                        Cmd that was issued to abort another cmd
1339  *
1340  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1341  * after it issues an abort on a previously issued command. This function 
1342  * wakes up all functions waiting on the same wait queue.
1343  */
1344 static void
1345 megasas_complete_abort(struct megasas_instance *instance,
1346                        struct megasas_cmd *cmd)
1347 {
1348         if (cmd->sync_cmd) {
1349                 cmd->sync_cmd = 0;
1350                 cmd->cmd_status = 0;
1351                 wake_up(&instance->abort_cmd_wait_q);
1352         }
1353
1354         return;
1355 }
1356
1357 /**
1358  * megasas_complete_cmd -       Completes a command
1359  * @instance:                   Adapter soft state
1360  * @cmd:                        Command to be completed
1361  * @alt_status:                 If non-zero, use this value as status to 
1362  *                              SCSI mid-layer instead of the value returned
1363  *                              by the FW. This should be used if caller wants
1364  *                              an alternate status (as in the case of aborted
1365  *                              commands)
1366  */
1367 static void
1368 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1369                      u8 alt_status)
1370 {
1371         int exception = 0;
1372         struct megasas_header *hdr = &cmd->frame->hdr;
1373
1374         if (cmd->scmd)
1375                 cmd->scmd->SCp.ptr = NULL;
1376
1377         switch (hdr->cmd) {
1378
1379         case MFI_CMD_PD_SCSI_IO:
1380         case MFI_CMD_LD_SCSI_IO:
1381
1382                 /*
1383                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1384                  * issued either through an IO path or an IOCTL path. If it
1385                  * was via IOCTL, we will send it to internal completion.
1386                  */
1387                 if (cmd->sync_cmd) {
1388                         cmd->sync_cmd = 0;
1389                         megasas_complete_int_cmd(instance, cmd);
1390                         break;
1391                 }
1392
1393         case MFI_CMD_LD_READ:
1394         case MFI_CMD_LD_WRITE:
1395
1396                 if (alt_status) {
1397                         cmd->scmd->result = alt_status << 16;
1398                         exception = 1;
1399                 }
1400
1401                 if (exception) {
1402
1403                         atomic_dec(&instance->fw_outstanding);
1404
1405                         scsi_dma_unmap(cmd->scmd);
1406                         cmd->scmd->scsi_done(cmd->scmd);
1407                         megasas_return_cmd(instance, cmd);
1408
1409                         break;
1410                 }
1411
1412                 switch (hdr->cmd_status) {
1413
1414                 case MFI_STAT_OK:
1415                         cmd->scmd->result = DID_OK << 16;
1416                         break;
1417
1418                 case MFI_STAT_SCSI_IO_FAILED:
1419                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1420                         cmd->scmd->result =
1421                             (DID_ERROR << 16) | hdr->scsi_status;
1422                         break;
1423
1424                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1425
1426                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1427
1428                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1429                                 memset(cmd->scmd->sense_buffer, 0,
1430                                        SCSI_SENSE_BUFFERSIZE);
1431                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1432                                        hdr->sense_len);
1433
1434                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1435                         }
1436
1437                         break;
1438
1439                 case MFI_STAT_LD_OFFLINE:
1440                 case MFI_STAT_DEVICE_NOT_FOUND:
1441                         cmd->scmd->result = DID_BAD_TARGET << 16;
1442                         break;
1443
1444                 default:
1445                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1446                                hdr->cmd_status);
1447                         cmd->scmd->result = DID_ERROR << 16;
1448                         break;
1449                 }
1450
1451                 atomic_dec(&instance->fw_outstanding);
1452
1453                 scsi_dma_unmap(cmd->scmd);
1454                 cmd->scmd->scsi_done(cmd->scmd);
1455                 megasas_return_cmd(instance, cmd);
1456
1457                 break;
1458
1459         case MFI_CMD_SMP:
1460         case MFI_CMD_STP:
1461         case MFI_CMD_DCMD:
1462
1463                 /*
1464                  * See if got an event notification
1465                  */
1466                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1467                         megasas_service_aen(instance, cmd);
1468                 else
1469                         megasas_complete_int_cmd(instance, cmd);
1470
1471                 break;
1472
1473         case MFI_CMD_ABORT:
1474                 /*
1475                  * Cmd issued to abort another cmd returned
1476                  */
1477                 megasas_complete_abort(instance, cmd);
1478                 break;
1479
1480         default:
1481                 printk("megasas: Unknown command completed! [0x%X]\n",
1482                        hdr->cmd);
1483                 break;
1484         }
1485 }
1486
1487 /**
1488  * megasas_deplete_reply_queue -        Processes all completed commands
1489  * @instance:                           Adapter soft state
1490  * @alt_status:                         Alternate status to be returned to
1491  *                                      SCSI mid-layer instead of the status
1492  *                                      returned by the FW
1493  */
1494 static int
1495 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1496 {
1497         /*
1498          * Check if it is our interrupt
1499          * Clear the interrupt 
1500          */
1501         if(instance->instancet->clear_intr(instance->reg_set))
1502                 return IRQ_NONE;
1503
1504         if (instance->hw_crit_error)
1505                 goto out_done;
1506         /*
1507          * Schedule the tasklet for cmd completion
1508          */
1509         tasklet_schedule(&instance->isr_tasklet);
1510 out_done:
1511         return IRQ_HANDLED;
1512 }
1513
1514 /**
1515  * megasas_isr - isr entry point
1516  */
1517 static irqreturn_t megasas_isr(int irq, void *devp)
1518 {
1519         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1520                                            DID_OK);
1521 }
1522
1523 /**
1524  * megasas_transition_to_ready -        Move the FW to READY state
1525  * @instance:                           Adapter soft state
1526  *
1527  * During the initialization, FW passes can potentially be in any one of
1528  * several possible states. If the FW in operational, waiting-for-handshake
1529  * states, driver must take steps to bring it to ready state. Otherwise, it
1530  * has to wait for the ready state.
1531  */
1532 static int
1533 megasas_transition_to_ready(struct megasas_instance* instance)
1534 {
1535         int i;
1536         u8 max_wait;
1537         u32 fw_state;
1538         u32 cur_state;
1539
1540         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1541
1542         if (fw_state != MFI_STATE_READY)
1543                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1544                        " state\n");
1545
1546         while (fw_state != MFI_STATE_READY) {
1547
1548                 switch (fw_state) {
1549
1550                 case MFI_STATE_FAULT:
1551
1552                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1553                         return -ENODEV;
1554
1555                 case MFI_STATE_WAIT_HANDSHAKE:
1556                         /*
1557                          * Set the CLR bit in inbound doorbell
1558                          */
1559                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1560                                 &instance->reg_set->inbound_doorbell);
1561
1562                         max_wait = 2;
1563                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1564                         break;
1565
1566                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1567                         writel(MFI_INIT_HOTPLUG,
1568                                 &instance->reg_set->inbound_doorbell);
1569
1570                         max_wait = 10;
1571                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1572                         break;
1573
1574                 case MFI_STATE_OPERATIONAL:
1575                         /*
1576                          * Bring it to READY state; assuming max wait 10 secs
1577                          */
1578                         instance->instancet->disable_intr(instance->reg_set);
1579                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1580
1581                         max_wait = 60;
1582                         cur_state = MFI_STATE_OPERATIONAL;
1583                         break;
1584
1585                 case MFI_STATE_UNDEFINED:
1586                         /*
1587                          * This state should not last for more than 2 seconds
1588                          */
1589                         max_wait = 2;
1590                         cur_state = MFI_STATE_UNDEFINED;
1591                         break;
1592
1593                 case MFI_STATE_BB_INIT:
1594                         max_wait = 2;
1595                         cur_state = MFI_STATE_BB_INIT;
1596                         break;
1597
1598                 case MFI_STATE_FW_INIT:
1599                         max_wait = 20;
1600                         cur_state = MFI_STATE_FW_INIT;
1601                         break;
1602
1603                 case MFI_STATE_FW_INIT_2:
1604                         max_wait = 20;
1605                         cur_state = MFI_STATE_FW_INIT_2;
1606                         break;
1607
1608                 case MFI_STATE_DEVICE_SCAN:
1609                         max_wait = 20;
1610                         cur_state = MFI_STATE_DEVICE_SCAN;
1611                         break;
1612
1613                 case MFI_STATE_FLUSH_CACHE:
1614                         max_wait = 20;
1615                         cur_state = MFI_STATE_FLUSH_CACHE;
1616                         break;
1617
1618                 default:
1619                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1620                                fw_state);
1621                         return -ENODEV;
1622                 }
1623
1624                 /*
1625                  * The cur_state should not last for more than max_wait secs
1626                  */
1627                 for (i = 0; i < (max_wait * 1000); i++) {
1628                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1629                                         MFI_STATE_MASK ;
1630
1631                         if (fw_state == cur_state) {
1632                                 msleep(1);
1633                         } else
1634                                 break;
1635                 }
1636
1637                 /*
1638                  * Return error if fw_state hasn't changed after max_wait
1639                  */
1640                 if (fw_state == cur_state) {
1641                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1642                                "in %d secs\n", fw_state, max_wait);
1643                         return -ENODEV;
1644                 }
1645         };
1646         printk(KERN_INFO "megasas: FW now in Ready state\n");
1647
1648         return 0;
1649 }
1650
1651 /**
1652  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1653  * @instance:                           Adapter soft state
1654  */
1655 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1656 {
1657         int i;
1658         u32 max_cmd = instance->max_fw_cmds;
1659         struct megasas_cmd *cmd;
1660
1661         if (!instance->frame_dma_pool)
1662                 return;
1663
1664         /*
1665          * Return all frames to pool
1666          */
1667         for (i = 0; i < max_cmd; i++) {
1668
1669                 cmd = instance->cmd_list[i];
1670
1671                 if (cmd->frame)
1672                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1673                                       cmd->frame_phys_addr);
1674
1675                 if (cmd->sense)
1676                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1677                                       cmd->sense_phys_addr);
1678         }
1679
1680         /*
1681          * Now destroy the pool itself
1682          */
1683         pci_pool_destroy(instance->frame_dma_pool);
1684         pci_pool_destroy(instance->sense_dma_pool);
1685
1686         instance->frame_dma_pool = NULL;
1687         instance->sense_dma_pool = NULL;
1688 }
1689
1690 /**
1691  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1692  * @instance:                   Adapter soft state
1693  *
1694  * Each command packet has an embedded DMA memory buffer that is used for
1695  * filling MFI frame and the SG list that immediately follows the frame. This
1696  * function creates those DMA memory buffers for each command packet by using
1697  * PCI pool facility.
1698  */
1699 static int megasas_create_frame_pool(struct megasas_instance *instance)
1700 {
1701         int i;
1702         u32 max_cmd;
1703         u32 sge_sz;
1704         u32 sgl_sz;
1705         u32 total_sz;
1706         u32 frame_count;
1707         struct megasas_cmd *cmd;
1708
1709         max_cmd = instance->max_fw_cmds;
1710
1711         /*
1712          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1713          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1714          */
1715         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1716             sizeof(struct megasas_sge32);
1717
1718         /*
1719          * Calculated the number of 64byte frames required for SGL
1720          */
1721         sgl_sz = sge_sz * instance->max_num_sge;
1722         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1723
1724         /*
1725          * We need one extra frame for the MFI command
1726          */
1727         frame_count++;
1728
1729         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1730         /*
1731          * Use DMA pool facility provided by PCI layer
1732          */
1733         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1734                                                    instance->pdev, total_sz, 64,
1735                                                    0);
1736
1737         if (!instance->frame_dma_pool) {
1738                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1739                 return -ENOMEM;
1740         }
1741
1742         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1743                                                    instance->pdev, 128, 4, 0);
1744
1745         if (!instance->sense_dma_pool) {
1746                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1747
1748                 pci_pool_destroy(instance->frame_dma_pool);
1749                 instance->frame_dma_pool = NULL;
1750
1751                 return -ENOMEM;
1752         }
1753
1754         /*
1755          * Allocate and attach a frame to each of the commands in cmd_list.
1756          * By making cmd->index as the context instead of the &cmd, we can
1757          * always use 32bit context regardless of the architecture
1758          */
1759         for (i = 0; i < max_cmd; i++) {
1760
1761                 cmd = instance->cmd_list[i];
1762
1763                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1764                                             GFP_KERNEL, &cmd->frame_phys_addr);
1765
1766                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1767                                             GFP_KERNEL, &cmd->sense_phys_addr);
1768
1769                 /*
1770                  * megasas_teardown_frame_pool() takes care of freeing
1771                  * whatever has been allocated
1772                  */
1773                 if (!cmd->frame || !cmd->sense) {
1774                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1775                         megasas_teardown_frame_pool(instance);
1776                         return -ENOMEM;
1777                 }
1778
1779                 cmd->frame->io.context = cmd->index;
1780         }
1781
1782         return 0;
1783 }
1784
1785 /**
1786  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1787  * @instance:           Adapter soft state
1788  */
1789 static void megasas_free_cmds(struct megasas_instance *instance)
1790 {
1791         int i;
1792         /* First free the MFI frame pool */
1793         megasas_teardown_frame_pool(instance);
1794
1795         /* Free all the commands in the cmd_list */
1796         for (i = 0; i < instance->max_fw_cmds; i++)
1797                 kfree(instance->cmd_list[i]);
1798
1799         /* Free the cmd_list buffer itself */
1800         kfree(instance->cmd_list);
1801         instance->cmd_list = NULL;
1802
1803         INIT_LIST_HEAD(&instance->cmd_pool);
1804 }
1805
1806 /**
1807  * megasas_alloc_cmds - Allocates the command packets
1808  * @instance:           Adapter soft state
1809  *
1810  * Each command that is issued to the FW, whether IO commands from the OS or
1811  * internal commands like IOCTLs, are wrapped in local data structure called
1812  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1813  * the FW.
1814  *
1815  * Each frame has a 32-bit field called context (tag). This context is used
1816  * to get back the megasas_cmd from the frame when a frame gets completed in
1817  * the ISR. Typically the address of the megasas_cmd itself would be used as
1818  * the context. But we wanted to keep the differences between 32 and 64 bit
1819  * systems to the mininum. We always use 32 bit integers for the context. In
1820  * this driver, the 32 bit values are the indices into an array cmd_list.
1821  * This array is used only to look up the megasas_cmd given the context. The
1822  * free commands themselves are maintained in a linked list called cmd_pool.
1823  */
1824 static int megasas_alloc_cmds(struct megasas_instance *instance)
1825 {
1826         int i;
1827         int j;
1828         u32 max_cmd;
1829         struct megasas_cmd *cmd;
1830
1831         max_cmd = instance->max_fw_cmds;
1832
1833         /*
1834          * instance->cmd_list is an array of struct megasas_cmd pointers.
1835          * Allocate the dynamic array first and then allocate individual
1836          * commands.
1837          */
1838         instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1839
1840         if (!instance->cmd_list) {
1841                 printk(KERN_DEBUG "megasas: out of memory\n");
1842                 return -ENOMEM;
1843         }
1844
1845
1846         for (i = 0; i < max_cmd; i++) {
1847                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1848                                                 GFP_KERNEL);
1849
1850                 if (!instance->cmd_list[i]) {
1851
1852                         for (j = 0; j < i; j++)
1853                                 kfree(instance->cmd_list[j]);
1854
1855                         kfree(instance->cmd_list);
1856                         instance->cmd_list = NULL;
1857
1858                         return -ENOMEM;
1859                 }
1860         }
1861
1862         /*
1863          * Add all the commands to command pool (instance->cmd_pool)
1864          */
1865         for (i = 0; i < max_cmd; i++) {
1866                 cmd = instance->cmd_list[i];
1867                 memset(cmd, 0, sizeof(struct megasas_cmd));
1868                 cmd->index = i;
1869                 cmd->instance = instance;
1870
1871                 list_add_tail(&cmd->list, &instance->cmd_pool);
1872         }
1873
1874         /*
1875          * Create a frame pool and assign one frame to each cmd
1876          */
1877         if (megasas_create_frame_pool(instance)) {
1878                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1879                 megasas_free_cmds(instance);
1880         }
1881
1882         return 0;
1883 }
1884
1885 /**
1886  * megasas_get_controller_info -        Returns FW's controller structure
1887  * @instance:                           Adapter soft state
1888  * @ctrl_info:                          Controller information structure
1889  *
1890  * Issues an internal command (DCMD) to get the FW's controller structure.
1891  * This information is mainly used to find out the maximum IO transfer per
1892  * command supported by the FW.
1893  */
1894 static int
1895 megasas_get_ctrl_info(struct megasas_instance *instance,
1896                       struct megasas_ctrl_info *ctrl_info)
1897 {
1898         int ret = 0;
1899         struct megasas_cmd *cmd;
1900         struct megasas_dcmd_frame *dcmd;
1901         struct megasas_ctrl_info *ci;
1902         dma_addr_t ci_h = 0;
1903
1904         cmd = megasas_get_cmd(instance);
1905
1906         if (!cmd) {
1907                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1908                 return -ENOMEM;
1909         }
1910
1911         dcmd = &cmd->frame->dcmd;
1912
1913         ci = pci_alloc_consistent(instance->pdev,
1914                                   sizeof(struct megasas_ctrl_info), &ci_h);
1915
1916         if (!ci) {
1917                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1918                 megasas_return_cmd(instance, cmd);
1919                 return -ENOMEM;
1920         }
1921
1922         memset(ci, 0, sizeof(*ci));
1923         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1924
1925         dcmd->cmd = MFI_CMD_DCMD;
1926         dcmd->cmd_status = 0xFF;
1927         dcmd->sge_count = 1;
1928         dcmd->flags = MFI_FRAME_DIR_READ;
1929         dcmd->timeout = 0;
1930         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1931         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1932         dcmd->sgl.sge32[0].phys_addr = ci_h;
1933         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1934
1935         if (!megasas_issue_polled(instance, cmd)) {
1936                 ret = 0;
1937                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1938         } else {
1939                 ret = -1;
1940         }
1941
1942         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1943                             ci, ci_h);
1944
1945         megasas_return_cmd(instance, cmd);
1946         return ret;
1947 }
1948
1949 /**
1950  * megasas_issue_init_mfi -     Initializes the FW
1951  * @instance:           Adapter soft state
1952  *
1953  * Issues the INIT MFI cmd
1954  */
1955 static int
1956 megasas_issue_init_mfi(struct megasas_instance *instance)
1957 {
1958         u32 context;
1959
1960         struct megasas_cmd *cmd;
1961
1962         struct megasas_init_frame *init_frame;
1963         struct megasas_init_queue_info *initq_info;
1964         dma_addr_t init_frame_h;
1965         dma_addr_t initq_info_h;
1966
1967         /*
1968          * Prepare a init frame. Note the init frame points to queue info
1969          * structure. Each frame has SGL allocated after first 64 bytes. For
1970          * this frame - since we don't need any SGL - we use SGL's space as
1971          * queue info structure
1972          *
1973          * We will not get a NULL command below. We just created the pool.
1974          */
1975         cmd = megasas_get_cmd(instance);
1976
1977         init_frame = (struct megasas_init_frame *)cmd->frame;
1978         initq_info = (struct megasas_init_queue_info *)
1979                 ((unsigned long)init_frame + 64);
1980
1981         init_frame_h = cmd->frame_phys_addr;
1982         initq_info_h = init_frame_h + 64;
1983
1984         context = init_frame->context;
1985         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1986         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1987         init_frame->context = context;
1988
1989         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1990         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1991
1992         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1993         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1994
1995         init_frame->cmd = MFI_CMD_INIT;
1996         init_frame->cmd_status = 0xFF;
1997         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1998
1999         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
2000
2001         /*
2002          * disable the intr before firing the init frame to FW
2003          */
2004         instance->instancet->disable_intr(instance->reg_set);
2005
2006         /*
2007          * Issue the init frame in polled mode
2008          */
2009
2010         if (megasas_issue_polled(instance, cmd)) {
2011                 printk(KERN_ERR "megasas: Failed to init firmware\n");
2012                 megasas_return_cmd(instance, cmd);
2013                 goto fail_fw_init;
2014         }
2015
2016         megasas_return_cmd(instance, cmd);
2017
2018         return 0;
2019
2020 fail_fw_init:
2021         return -EINVAL;
2022 }
2023
2024 /**
2025  * megasas_start_timer - Initializes a timer object
2026  * @instance:           Adapter soft state
2027  * @timer:              timer object to be initialized
2028  * @fn:                 timer function
2029  * @interval:           time interval between timer function call
2030  */
2031 static inline void
2032 megasas_start_timer(struct megasas_instance *instance,
2033                         struct timer_list *timer,
2034                         void *fn, unsigned long interval)
2035 {
2036         init_timer(timer);
2037         timer->expires = jiffies + interval;
2038         timer->data = (unsigned long)instance;
2039         timer->function = fn;
2040         add_timer(timer);
2041 }
2042
2043 /**
2044  * megasas_io_completion_timer - Timer fn
2045  * @instance_addr:      Address of adapter soft state
2046  *
2047  * Schedules tasklet for cmd completion
2048  * if poll_mode_io is set
2049  */
2050 static void
2051 megasas_io_completion_timer(unsigned long instance_addr)
2052 {
2053         struct megasas_instance *instance =
2054                         (struct megasas_instance *)instance_addr;
2055
2056         if (atomic_read(&instance->fw_outstanding))
2057                 tasklet_schedule(&instance->isr_tasklet);
2058
2059         /* Restart timer */
2060         if (poll_mode_io)
2061                 mod_timer(&instance->io_completion_timer,
2062                         jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
2063 }
2064
2065 /**
2066  * megasas_init_mfi -   Initializes the FW
2067  * @instance:           Adapter soft state
2068  *
2069  * This is the main function for initializing MFI firmware.
2070  */
2071 static int megasas_init_mfi(struct megasas_instance *instance)
2072 {
2073         u32 context_sz;
2074         u32 reply_q_sz;
2075         u32 max_sectors_1;
2076         u32 max_sectors_2;
2077         u32 tmp_sectors;
2078         struct megasas_register_set __iomem *reg_set;
2079         struct megasas_ctrl_info *ctrl_info;
2080         /*
2081          * Map the message registers
2082          */
2083         if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
2084                 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) {
2085                 instance->base_addr = pci_resource_start(instance->pdev, 1);
2086         } else {
2087                 instance->base_addr = pci_resource_start(instance->pdev, 0);
2088         }
2089
2090         if (pci_request_regions(instance->pdev, "megasas: LSI")) {
2091                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
2092                 return -EBUSY;
2093         }
2094
2095         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
2096
2097         if (!instance->reg_set) {
2098                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
2099                 goto fail_ioremap;
2100         }
2101
2102         reg_set = instance->reg_set;
2103
2104         switch(instance->pdev->device)
2105         {
2106                 case PCI_DEVICE_ID_LSI_SAS1078R:
2107                 case PCI_DEVICE_ID_LSI_SAS1078DE:
2108                         instance->instancet = &megasas_instance_template_ppc;
2109                         break;
2110                 case PCI_DEVICE_ID_LSI_SAS1078GEN2:
2111                 case PCI_DEVICE_ID_LSI_SAS0079GEN2:
2112                         instance->instancet = &megasas_instance_template_gen2;
2113                         break;
2114                 case PCI_DEVICE_ID_LSI_SAS1064R:
2115                 case PCI_DEVICE_ID_DELL_PERC5:
2116                 default:
2117                         instance->instancet = &megasas_instance_template_xscale;
2118                         break;
2119         }
2120
2121         /*
2122          * We expect the FW state to be READY
2123          */
2124         if (megasas_transition_to_ready(instance))
2125                 goto fail_ready_state;
2126
2127         /*
2128          * Get various operational parameters from status register
2129          */
2130         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2131         /*
2132          * Reduce the max supported cmds by 1. This is to ensure that the
2133          * reply_q_sz (1 more than the max cmd that driver may send)
2134          * does not exceed max cmds that the FW can support
2135          */
2136         instance->max_fw_cmds = instance->max_fw_cmds-1;
2137         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
2138                                         0x10;
2139         /*
2140          * Create a pool of commands
2141          */
2142         if (megasas_alloc_cmds(instance))
2143                 goto fail_alloc_cmds;
2144
2145         /*
2146          * Allocate memory for reply queue. Length of reply queue should
2147          * be _one_ more than the maximum commands handled by the firmware.
2148          *
2149          * Note: When FW completes commands, it places corresponding contex
2150          * values in this circular reply queue. This circular queue is a fairly
2151          * typical producer-consumer queue. FW is the producer (of completed
2152          * commands) and the driver is the consumer.
2153          */
2154         context_sz = sizeof(u32);
2155         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2156
2157         instance->reply_queue = pci_alloc_consistent(instance->pdev,
2158                                                      reply_q_sz,
2159                                                      &instance->reply_queue_h);
2160
2161         if (!instance->reply_queue) {
2162                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2163                 goto fail_reply_queue;
2164         }
2165
2166         if (megasas_issue_init_mfi(instance))
2167                 goto fail_fw_init;
2168
2169         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2170
2171         /*
2172          * Compute the max allowed sectors per IO: The controller info has two
2173          * limits on max sectors. Driver should use the minimum of these two.
2174          *
2175          * 1 << stripe_sz_ops.min = max sectors per strip
2176          *
2177          * Note that older firmwares ( < FW ver 30) didn't report information
2178          * to calculate max_sectors_1. So the number ended up as zero always.
2179          */
2180         tmp_sectors = 0;
2181         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2182
2183                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2184                     ctrl_info->max_strips_per_io;
2185                 max_sectors_2 = ctrl_info->max_request_size;
2186
2187                 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2188         }
2189
2190         instance->max_sectors_per_req = instance->max_num_sge *
2191                                                 PAGE_SIZE / 512;
2192         if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2193                 instance->max_sectors_per_req = tmp_sectors;
2194
2195         kfree(ctrl_info);
2196
2197         /*
2198         * Setup tasklet for cmd completion
2199         */
2200
2201         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2202                 (unsigned long)instance);
2203
2204         /* Initialize the cmd completion timer */
2205         if (poll_mode_io)
2206                 megasas_start_timer(instance, &instance->io_completion_timer,
2207                                 megasas_io_completion_timer,
2208                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2209         return 0;
2210
2211       fail_fw_init:
2212
2213         pci_free_consistent(instance->pdev, reply_q_sz,
2214                             instance->reply_queue, instance->reply_queue_h);
2215       fail_reply_queue:
2216         megasas_free_cmds(instance);
2217
2218       fail_alloc_cmds:
2219       fail_ready_state:
2220         iounmap(instance->reg_set);
2221
2222       fail_ioremap:
2223         pci_release_regions(instance->pdev);
2224
2225         return -EINVAL;
2226 }
2227
2228 /**
2229  * megasas_release_mfi -        Reverses the FW initialization
2230  * @intance:                    Adapter soft state
2231  */
2232 static void megasas_release_mfi(struct megasas_instance *instance)
2233 {
2234         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2235
2236         pci_free_consistent(instance->pdev, reply_q_sz,
2237                             instance->reply_queue, instance->reply_queue_h);
2238
2239         megasas_free_cmds(instance);
2240
2241         iounmap(instance->reg_set);
2242
2243         pci_release_regions(instance->pdev);
2244 }
2245
2246 /**
2247  * megasas_get_seq_num -        Gets latest event sequence numbers
2248  * @instance:                   Adapter soft state
2249  * @eli:                        FW event log sequence numbers information
2250  *
2251  * FW maintains a log of all events in a non-volatile area. Upper layers would
2252  * usually find out the latest sequence number of the events, the seq number at
2253  * the boot etc. They would "read" all the events below the latest seq number
2254  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2255  * number), they would subsribe to AEN (asynchronous event notification) and
2256  * wait for the events to happen.
2257  */
2258 static int
2259 megasas_get_seq_num(struct megasas_instance *instance,
2260                     struct megasas_evt_log_info *eli)
2261 {
2262         struct megasas_cmd *cmd;
2263         struct megasas_dcmd_frame *dcmd;
2264         struct megasas_evt_log_info *el_info;
2265         dma_addr_t el_info_h = 0;
2266
2267         cmd = megasas_get_cmd(instance);
2268
2269         if (!cmd) {
2270                 return -ENOMEM;
2271         }
2272
2273         dcmd = &cmd->frame->dcmd;
2274         el_info = pci_alloc_consistent(instance->pdev,
2275                                        sizeof(struct megasas_evt_log_info),
2276                                        &el_info_h);
2277
2278         if (!el_info) {
2279                 megasas_return_cmd(instance, cmd);
2280                 return -ENOMEM;
2281         }
2282
2283         memset(el_info, 0, sizeof(*el_info));
2284         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2285
2286         dcmd->cmd = MFI_CMD_DCMD;
2287         dcmd->cmd_status = 0x0;
2288         dcmd->sge_count = 1;
2289         dcmd->flags = MFI_FRAME_DIR_READ;
2290         dcmd->timeout = 0;
2291         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2292         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2293         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2294         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2295
2296         megasas_issue_blocked_cmd(instance, cmd);
2297
2298         /*
2299          * Copy the data back into callers buffer
2300          */
2301         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2302
2303         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2304                             el_info, el_info_h);
2305
2306         megasas_return_cmd(instance, cmd);
2307
2308         return 0;
2309 }
2310
2311 /**
2312  * megasas_register_aen -       Registers for asynchronous event notification
2313  * @instance:                   Adapter soft state
2314  * @seq_num:                    The starting sequence number
2315  * @class_locale:               Class of the event
2316  *
2317  * This function subscribes for AEN for events beyond the @seq_num. It requests
2318  * to be notified if and only if the event is of type @class_locale
2319  */
2320 static int
2321 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2322                      u32 class_locale_word)
2323 {
2324         int ret_val;
2325         struct megasas_cmd *cmd;
2326         struct megasas_dcmd_frame *dcmd;
2327         union megasas_evt_class_locale curr_aen;
2328         union megasas_evt_class_locale prev_aen;
2329
2330         /*
2331          * If there an AEN pending already (aen_cmd), check if the
2332          * class_locale of that pending AEN is inclusive of the new
2333          * AEN request we currently have. If it is, then we don't have
2334          * to do anything. In other words, whichever events the current
2335          * AEN request is subscribing to, have already been subscribed
2336          * to.
2337          *
2338          * If the old_cmd is _not_ inclusive, then we have to abort
2339          * that command, form a class_locale that is superset of both
2340          * old and current and re-issue to the FW
2341          */
2342
2343         curr_aen.word = class_locale_word;
2344
2345         if (instance->aen_cmd) {
2346
2347                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2348
2349                 /*
2350                  * A class whose enum value is smaller is inclusive of all
2351                  * higher values. If a PROGRESS (= -1) was previously
2352                  * registered, then a new registration requests for higher
2353                  * classes need not be sent to FW. They are automatically
2354                  * included.
2355                  *
2356                  * Locale numbers don't have such hierarchy. They are bitmap
2357                  * values
2358                  */
2359                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2360                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2361                       curr_aen.members.locale)) {
2362                         /*
2363                          * Previously issued event registration includes
2364                          * current request. Nothing to do.
2365                          */
2366                         return 0;
2367                 } else {
2368                         curr_aen.members.locale |= prev_aen.members.locale;
2369
2370                         if (prev_aen.members.class < curr_aen.members.class)
2371                                 curr_aen.members.class = prev_aen.members.class;
2372
2373                         instance->aen_cmd->abort_aen = 1;
2374                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2375                                                                   instance->
2376                                                                   aen_cmd);
2377
2378                         if (ret_val) {
2379                                 printk(KERN_DEBUG "megasas: Failed to abort "
2380                                        "previous AEN command\n");
2381                                 return ret_val;
2382                         }
2383                 }
2384         }
2385
2386         cmd = megasas_get_cmd(instance);
2387
2388         if (!cmd)
2389                 return -ENOMEM;
2390
2391         dcmd = &cmd->frame->dcmd;
2392
2393         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2394
2395         /*
2396          * Prepare DCMD for aen registration
2397          */
2398         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2399
2400         dcmd->cmd = MFI_CMD_DCMD;
2401         dcmd->cmd_status = 0x0;
2402         dcmd->sge_count = 1;
2403         dcmd->flags = MFI_FRAME_DIR_READ;
2404         dcmd->timeout = 0;
2405         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2406         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2407         dcmd->mbox.w[0] = seq_num;
2408         dcmd->mbox.w[1] = curr_aen.word;
2409         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2410         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2411
2412         /*
2413          * Store reference to the cmd used to register for AEN. When an
2414          * application wants us to register for AEN, we have to abort this
2415          * cmd and re-register with a new EVENT LOCALE supplied by that app
2416          */
2417         instance->aen_cmd = cmd;
2418
2419         /*
2420          * Issue the aen registration frame
2421          */
2422         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2423
2424         return 0;
2425 }
2426
2427 /**
2428  * megasas_start_aen -  Subscribes to AEN during driver load time
2429  * @instance:           Adapter soft state
2430  */
2431 static int megasas_start_aen(struct megasas_instance *instance)
2432 {
2433         struct megasas_evt_log_info eli;
2434         union megasas_evt_class_locale class_locale;
2435
2436         /*
2437          * Get the latest sequence number from FW
2438          */
2439         memset(&eli, 0, sizeof(eli));
2440
2441         if (megasas_get_seq_num(instance, &eli))
2442                 return -1;
2443
2444         /*
2445          * Register AEN with FW for latest sequence number plus 1
2446          */
2447         class_locale.members.reserved = 0;
2448         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2449         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2450
2451         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2452                                     class_locale.word);
2453 }
2454
2455 /**
2456  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2457  * @instance:           Adapter soft state
2458  */
2459 static int megasas_io_attach(struct megasas_instance *instance)
2460 {
2461         struct Scsi_Host *host = instance->host;
2462
2463         /*
2464          * Export parameters required by SCSI mid-layer
2465          */
2466         host->irq = instance->pdev->irq;
2467         host->unique_id = instance->unique_id;
2468         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2469         host->this_id = instance->init_id;
2470         host->sg_tablesize = instance->max_num_sge;
2471         host->max_sectors = instance->max_sectors_per_req;
2472         host->cmd_per_lun = 128;
2473         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2474         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2475         host->max_lun = MEGASAS_MAX_LUN;
2476         host->max_cmd_len = 16;
2477
2478         /*
2479          * Notify the mid-layer about the new controller
2480          */
2481         if (scsi_add_host(host, &instance->pdev->dev)) {
2482                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2483                 return -ENODEV;
2484         }
2485
2486         /*
2487          * Trigger SCSI to scan our drives
2488          */
2489         scsi_scan_host(host);
2490         return 0;
2491 }
2492
2493 static int
2494 megasas_set_dma_mask(struct pci_dev *pdev)
2495 {
2496         /*
2497          * All our contollers are capable of performing 64-bit DMA
2498          */
2499         if (IS_DMA64) {
2500                 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
2501
2502                         if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
2503                                 goto fail_set_dma_mask;
2504                 }
2505         } else {
2506                 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
2507                         goto fail_set_dma_mask;
2508         }
2509         return 0;
2510
2511 fail_set_dma_mask:
2512         return 1;
2513 }
2514
2515 /**
2516  * megasas_probe_one -  PCI hotplug entry point
2517  * @pdev:               PCI device structure
2518  * @id:                 PCI ids of supported hotplugged adapter 
2519  */
2520 static int __devinit
2521 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2522 {
2523         int rval;
2524         struct Scsi_Host *host;
2525         struct megasas_instance *instance;
2526
2527         /*
2528          * Announce PCI information
2529          */
2530         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2531                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2532                pdev->subsystem_device);
2533
2534         printk("bus %d:slot %d:func %d\n",
2535                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2536
2537         /*
2538          * PCI prepping: enable device set bus mastering and dma mask
2539          */
2540         rval = pci_enable_device(pdev);
2541
2542         if (rval) {
2543                 return rval;
2544         }
2545
2546         pci_set_master(pdev);
2547
2548         if (megasas_set_dma_mask(pdev))
2549                 goto fail_set_dma_mask;
2550
2551         host = scsi_host_alloc(&megasas_template,
2552                                sizeof(struct megasas_instance));
2553
2554         if (!host) {
2555                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2556                 goto fail_alloc_instance;
2557         }
2558
2559         instance = (struct megasas_instance *)host->hostdata;
2560         memset(instance, 0, sizeof(*instance));
2561
2562         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2563                                                   &instance->producer_h);
2564         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2565                                                   &instance->consumer_h);
2566
2567         if (!instance->producer || !instance->consumer) {
2568                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2569                        "producer, consumer\n");
2570                 goto fail_alloc_dma_buf;
2571         }
2572
2573         *instance->producer = 0;
2574         *instance->consumer = 0;
2575
2576         instance->evt_detail = pci_alloc_consistent(pdev,
2577                                                     sizeof(struct
2578                                                            megasas_evt_detail),
2579                                                     &instance->evt_detail_h);
2580
2581         if (!instance->evt_detail) {
2582                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2583                        "event detail structure\n");
2584                 goto fail_alloc_dma_buf;
2585         }
2586
2587         /*
2588          * Initialize locks and queues
2589          */
2590         INIT_LIST_HEAD(&instance->cmd_pool);
2591
2592         atomic_set(&instance->fw_outstanding,0);
2593
2594         init_waitqueue_head(&instance->int_cmd_wait_q);
2595         init_waitqueue_head(&instance->abort_cmd_wait_q);
2596
2597         spin_lock_init(&instance->cmd_pool_lock);
2598         spin_lock_init(&instance->completion_lock);
2599
2600         mutex_init(&instance->aen_mutex);
2601         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2602
2603         /*
2604          * Initialize PCI related and misc parameters
2605          */
2606         instance->pdev = pdev;
2607         instance->host = host;
2608         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2609         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2610
2611         megasas_dbg_lvl = 0;
2612         instance->flag = 0;
2613         instance->last_time = 0;
2614
2615         /*
2616          * Initialize MFI Firmware
2617          */
2618         if (megasas_init_mfi(instance))
2619                 goto fail_init_mfi;
2620
2621         /*
2622          * Register IRQ
2623          */
2624         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2625                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2626                 goto fail_irq;
2627         }
2628
2629         instance->instancet->enable_intr(instance->reg_set);
2630
2631         /*
2632          * Store instance in PCI softstate
2633          */
2634         pci_set_drvdata(pdev, instance);
2635
2636         /*
2637          * Add this controller to megasas_mgmt_info structure so that it
2638          * can be exported to management applications
2639          */
2640         megasas_mgmt_info.count++;
2641         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2642         megasas_mgmt_info.max_index++;
2643
2644         /*
2645          * Initiate AEN (Asynchronous Event Notification)
2646          */
2647         if (megasas_start_aen(instance)) {
2648                 printk(KERN_DEBUG "megasas: start aen failed\n");
2649                 goto fail_start_aen;
2650         }
2651
2652         /*
2653          * Register with SCSI mid-layer
2654          */
2655         if (megasas_io_attach(instance))
2656                 goto fail_io_attach;
2657
2658         return 0;
2659
2660       fail_start_aen:
2661       fail_io_attach:
2662         megasas_mgmt_info.count--;
2663         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2664         megasas_mgmt_info.max_index--;
2665
2666         pci_set_drvdata(pdev, NULL);
2667         instance->instancet->disable_intr(instance->reg_set);
2668         free_irq(instance->pdev->irq, instance);
2669
2670         megasas_release_mfi(instance);
2671
2672       fail_irq:
2673       fail_init_mfi:
2674       fail_alloc_dma_buf:
2675         if (instance->evt_detail)
2676                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2677                                     instance->evt_detail,
2678                                     instance->evt_detail_h);
2679
2680         if (instance->producer)
2681                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2682                                     instance->producer_h);
2683         if (instance->consumer)
2684                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2685                                     instance->consumer_h);
2686         scsi_host_put(host);
2687
2688       fail_alloc_instance:
2689       fail_set_dma_mask:
2690         pci_disable_device(pdev);
2691
2692         return -ENODEV;
2693 }
2694
2695 /**
2696  * megasas_flush_cache -        Requests FW to flush all its caches
2697  * @instance:                   Adapter soft state
2698  */
2699 static void megasas_flush_cache(struct megasas_instance *instance)
2700 {
2701         struct megasas_cmd *cmd;
2702         struct megasas_dcmd_frame *dcmd;
2703
2704         cmd = megasas_get_cmd(instance);
2705
2706         if (!cmd)
2707                 return;
2708
2709         dcmd = &cmd->frame->dcmd;
2710
2711         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2712
2713         dcmd->cmd = MFI_CMD_DCMD;
2714         dcmd->cmd_status = 0x0;
2715         dcmd->sge_count = 0;
2716         dcmd->flags = MFI_FRAME_DIR_NONE;
2717         dcmd->timeout = 0;
2718         dcmd->data_xfer_len = 0;
2719         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2720         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2721
2722         megasas_issue_blocked_cmd(instance, cmd);
2723
2724         megasas_return_cmd(instance, cmd);
2725
2726         return;
2727 }
2728
2729 /**
2730  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2731  * @instance:                           Adapter soft state
2732  * @opcode:                             Shutdown/Hibernate
2733  */
2734 static void megasas_shutdown_controller(struct megasas_instance *instance,
2735                                         u32 opcode)
2736 {
2737         struct megasas_cmd *cmd;
2738         struct megasas_dcmd_frame *dcmd;
2739
2740         cmd = megasas_get_cmd(instance);
2741
2742         if (!cmd)
2743                 return;
2744
2745         if (instance->aen_cmd)
2746                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2747
2748         dcmd = &cmd->frame->dcmd;
2749
2750         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2751
2752         dcmd->cmd = MFI_CMD_DCMD;
2753         dcmd->cmd_status = 0x0;
2754         dcmd->sge_count = 0;
2755         dcmd->flags = MFI_FRAME_DIR_NONE;
2756         dcmd->timeout = 0;
2757         dcmd->data_xfer_len = 0;
2758         dcmd->opcode = opcode;
2759
2760         megasas_issue_blocked_cmd(instance, cmd);
2761
2762         megasas_return_cmd(instance, cmd);
2763
2764         return;
2765 }
2766
2767 #ifdef CONFIG_PM
2768 /**
2769  * megasas_suspend -    driver suspend entry point
2770  * @pdev:               PCI device structure
2771  * @state:              PCI power state to suspend routine
2772  */
2773 static int
2774 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2775 {
2776         struct Scsi_Host *host;
2777         struct megasas_instance *instance;
2778
2779         instance = pci_get_drvdata(pdev);
2780         host = instance->host;
2781
2782         if (poll_mode_io)
2783                 del_timer_sync(&instance->io_completion_timer);
2784
2785         megasas_flush_cache(instance);
2786         megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2787         tasklet_kill(&instance->isr_tasklet);
2788
2789         pci_set_drvdata(instance->pdev, instance);
2790         instance->instancet->disable_intr(instance->reg_set);
2791         free_irq(instance->pdev->irq, instance);
2792
2793         pci_save_state(pdev);
2794         pci_disable_device(pdev);
2795
2796         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2797
2798         return 0;
2799 }
2800
2801 /**
2802  * megasas_resume-      driver resume entry point
2803  * @pdev:               PCI device structure
2804  */
2805 static int
2806 megasas_resume(struct pci_dev *pdev)
2807 {
2808         int rval;
2809         struct Scsi_Host *host;
2810         struct megasas_instance *instance;
2811
2812         instance = pci_get_drvdata(pdev);
2813         host = instance->host;
2814         pci_set_power_state(pdev, PCI_D0);
2815         pci_enable_wake(pdev, PCI_D0, 0);
2816         pci_restore_state(pdev);
2817
2818         /*
2819          * PCI prepping: enable device set bus mastering and dma mask
2820          */
2821         rval = pci_enable_device(pdev);
2822
2823         if (rval) {
2824                 printk(KERN_ERR "megasas: Enable device failed\n");
2825                 return rval;
2826         }
2827
2828         pci_set_master(pdev);
2829
2830         if (megasas_set_dma_mask(pdev))
2831                 goto fail_set_dma_mask;
2832
2833         /*
2834          * Initialize MFI Firmware
2835          */
2836
2837         *instance->producer = 0;
2838         *instance->consumer = 0;
2839
2840         atomic_set(&instance->fw_outstanding, 0);
2841
2842         /*
2843          * We expect the FW state to be READY
2844          */
2845         if (megasas_transition_to_ready(instance))
2846                 goto fail_ready_state;
2847
2848         if (megasas_issue_init_mfi(instance))
2849                 goto fail_init_mfi;
2850
2851         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2852                         (unsigned long)instance);
2853
2854         /*
2855          * Register IRQ
2856          */
2857         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2858                 "megasas", instance)) {
2859                 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2860                 goto fail_irq;
2861         }
2862
2863         instance->instancet->enable_intr(instance->reg_set);
2864
2865         /*
2866          * Initiate AEN (Asynchronous Event Notification)
2867          */
2868         if (megasas_start_aen(instance))
2869                 printk(KERN_ERR "megasas: Start AEN failed\n");
2870
2871         /* Initialize the cmd completion timer */
2872         if (poll_mode_io)
2873                 megasas_start_timer(instance, &instance->io_completion_timer,
2874                                 megasas_io_completion_timer,
2875                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2876         return 0;
2877
2878 fail_irq:
2879 fail_init_mfi:
2880         if (instance->evt_detail)
2881                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2882                                 instance->evt_detail,
2883                                 instance->evt_detail_h);
2884
2885         if (instance->producer)
2886                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2887                                 instance->producer_h);
2888         if (instance->consumer)
2889                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2890                                 instance->consumer_h);
2891         scsi_host_put(host);
2892
2893 fail_set_dma_mask:
2894 fail_ready_state:
2895
2896         pci_disable_device(pdev);
2897
2898         return -ENODEV;
2899 }
2900 #else
2901 #define megasas_suspend NULL
2902 #define megasas_resume  NULL
2903 #endif
2904
2905 /**
2906  * megasas_detach_one - PCI hot"un"plug entry point
2907  * @pdev:               PCI device structure
2908  */
2909 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2910 {
2911         int i;
2912         struct Scsi_Host *host;
2913         struct megasas_instance *instance;
2914
2915         instance = pci_get_drvdata(pdev);
2916         host = instance->host;
2917
2918         if (poll_mode_io)
2919                 del_timer_sync(&instance->io_completion_timer);
2920
2921         scsi_remove_host(instance->host);
2922         megasas_flush_cache(instance);
2923         megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2924         tasklet_kill(&instance->isr_tasklet);
2925
2926         /*
2927          * Take the instance off the instance array. Note that we will not
2928          * decrement the max_index. We let this array be sparse array
2929          */
2930         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2931                 if (megasas_mgmt_info.instance[i] == instance) {
2932                         megasas_mgmt_info.count--;
2933                         megasas_mgmt_info.instance[i] = NULL;
2934
2935                         break;
2936                 }
2937         }
2938
2939         pci_set_drvdata(instance->pdev, NULL);
2940
2941         instance->instancet->disable_intr(instance->reg_set);
2942
2943         free_irq(instance->pdev->irq, instance);
2944
2945         megasas_release_mfi(instance);
2946
2947         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2948                             instance->evt_detail, instance->evt_detail_h);
2949
2950         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2951                             instance->producer_h);
2952
2953         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2954                             instance->consumer_h);
2955
2956         scsi_host_put(host);
2957
2958         pci_set_drvdata(pdev, NULL);
2959
2960         pci_disable_device(pdev);
2961
2962         return;
2963 }
2964
2965 /**
2966  * megasas_shutdown -   Shutdown entry point
2967  * @device:             Generic device structure
2968  */
2969 static void megasas_shutdown(struct pci_dev *pdev)
2970 {
2971         struct megasas_instance *instance = pci_get_drvdata(pdev);
2972         megasas_flush_cache(instance);
2973         megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2974 }
2975
2976 /**
2977  * megasas_mgmt_open -  char node "open" entry point
2978  */
2979 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2980 {
2981         cycle_kernel_lock();
2982         /*
2983          * Allow only those users with admin rights
2984          */
2985         if (!capable(CAP_SYS_ADMIN))
2986                 return -EACCES;
2987
2988         return 0;
2989 }
2990
2991 /**
2992  * megasas_mgmt_fasync -        Async notifier registration from applications
2993  *
2994  * This function adds the calling process to a driver global queue. When an
2995  * event occurs, SIGIO will be sent to all processes in this queue.
2996  */
2997 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2998 {
2999         int rc;
3000
3001         mutex_lock(&megasas_async_queue_mutex);
3002
3003         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
3004
3005         mutex_unlock(&megasas_async_queue_mutex);
3006
3007         if (rc >= 0) {
3008                 /* For sanity check when we get ioctl */
3009                 filep->private_data = filep;
3010                 return 0;
3011         }
3012
3013         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
3014
3015         return rc;
3016 }
3017
3018 /**
3019  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
3020  * @instance:                   Adapter soft state
3021  * @argp:                       User's ioctl packet
3022  */
3023 static int
3024 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
3025                       struct megasas_iocpacket __user * user_ioc,
3026                       struct megasas_iocpacket *ioc)
3027 {
3028         struct megasas_sge32 *kern_sge32;
3029         struct megasas_cmd *cmd;
3030         void *kbuff_arr[MAX_IOCTL_SGE];
3031         dma_addr_t buf_handle = 0;
3032         int error = 0, i;
3033         void *sense = NULL;
3034         dma_addr_t sense_handle;
3035         u32 *sense_ptr;
3036
3037         memset(kbuff_arr, 0, sizeof(kbuff_arr));
3038
3039         if (ioc->sge_count > MAX_IOCTL_SGE) {
3040                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
3041                        ioc->sge_count, MAX_IOCTL_SGE);
3042                 return -EINVAL;
3043         }
3044
3045         cmd = megasas_get_cmd(instance);
3046         if (!cmd) {
3047                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
3048                 return -ENOMEM;
3049         }
3050
3051         /*
3052          * User's IOCTL packet has 2 frames (maximum). Copy those two
3053          * frames into our cmd's frames. cmd->frame's context will get
3054          * overwritten when we copy from user's frames. So set that value
3055          * alone separately
3056          */
3057         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
3058         cmd->frame->hdr.context = cmd->index;
3059
3060         /*
3061          * The management interface between applications and the fw uses
3062          * MFI frames. E.g, RAID configuration changes, LD property changes
3063          * etc are accomplishes through different kinds of MFI frames. The
3064          * driver needs to care only about substituting user buffers with
3065          * kernel buffers in SGLs. The location of SGL is embedded in the
3066          * struct iocpacket itself.
3067          */
3068         kern_sge32 = (struct megasas_sge32 *)
3069             ((unsigned long)cmd->frame + ioc->sgl_off);
3070
3071         /*
3072          * For each user buffer, create a mirror buffer and copy in
3073          */
3074         for (i = 0; i < ioc->sge_count; i++) {
3075                 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
3076                                                     ioc->sgl[i].iov_len,
3077                                                     &buf_handle, GFP_KERNEL);
3078                 if (!kbuff_arr[i]) {
3079                         printk(KERN_DEBUG "megasas: Failed to alloc "
3080                                "kernel SGL buffer for IOCTL \n");
3081                         error = -ENOMEM;
3082                         goto out;
3083                 }
3084
3085                 /*
3086                  * We don't change the dma_coherent_mask, so
3087                  * pci_alloc_consistent only returns 32bit addresses
3088                  */
3089                 kern_sge32[i].phys_addr = (u32) buf_handle;
3090                 kern_sge32[i].length = ioc->sgl[i].iov_len;
3091
3092                 /*
3093                  * We created a kernel buffer corresponding to the
3094                  * user buffer. Now copy in from the user buffer
3095                  */
3096                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
3097                                    (u32) (ioc->sgl[i].iov_len))) {
3098                         error = -EFAULT;
3099                         goto out;
3100                 }
3101         }
3102
3103         if (ioc->sense_len) {
3104                 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3105                                              &sense_handle, GFP_KERNEL);
3106                 if (!sense) {
3107                         error = -ENOMEM;
3108                         goto out;
3109                 }
3110
3111                 sense_ptr =
3112                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3113                 *sense_ptr = sense_handle;
3114         }
3115
3116         /*
3117          * Set the sync_cmd flag so that the ISR knows not to complete this
3118          * cmd to the SCSI mid-layer
3119          */
3120         cmd->sync_cmd = 1;
3121         megasas_issue_blocked_cmd(instance, cmd);
3122         cmd->sync_cmd = 0;
3123
3124         /*
3125          * copy out the kernel buffers to user buffers
3126          */
3127         for (i = 0; i < ioc->sge_count; i++) {
3128                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3129                                  ioc->sgl[i].iov_len)) {
3130                         error = -EFAULT;
3131                         goto out;
3132                 }
3133         }
3134
3135         /*
3136          * copy out the sense
3137          */
3138         if (ioc->sense_len) {
3139                 /*
3140                  * sense_ptr points to the location that has the user
3141                  * sense buffer address
3142                  */
3143                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3144                                      ioc->sense_off);
3145
3146                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3147                                  sense, ioc->sense_len)) {
3148                         printk(KERN_ERR "megasas: Failed to copy out to user "
3149                                         "sense data\n");
3150                         error = -EFAULT;
3151                         goto out;
3152                 }
3153         }
3154
3155         /*
3156          * copy the status codes returned by the fw
3157          */
3158         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3159                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3160                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3161                 error = -EFAULT;
3162         }
3163
3164       out:
3165         if (sense) {
3166                 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3167                                     sense, sense_handle);
3168         }
3169
3170         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3171                 dma_free_coherent(&instance->pdev->dev,
3172                                     kern_sge32[i].length,
3173                                     kbuff_arr[i], kern_sge32[i].phys_addr);
3174         }
3175
3176         megasas_return_cmd(instance, cmd);
3177         return error;
3178 }
3179
3180 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3181 {
3182         int i;
3183
3184         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3185
3186                 if ((megasas_mgmt_info.instance[i]) &&
3187                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3188                         return megasas_mgmt_info.instance[i];
3189         }
3190
3191         return NULL;
3192 }
3193
3194 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3195 {
3196         struct megasas_iocpacket __user *user_ioc =
3197             (struct megasas_iocpacket __user *)arg;
3198         struct megasas_iocpacket *ioc;
3199         struct megasas_instance *instance;
3200         int error;
3201
3202         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3203         if (!ioc)
3204                 return -ENOMEM;
3205
3206         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3207                 error = -EFAULT;
3208                 goto out_kfree_ioc;
3209         }
3210
3211         instance = megasas_lookup_instance(ioc->host_no);
3212         if (!instance) {
3213                 error = -ENODEV;
3214                 goto out_kfree_ioc;
3215         }
3216
3217         /*
3218          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3219          */
3220         if (down_interruptible(&instance->ioctl_sem)) {
3221                 error = -ERESTARTSYS;
3222                 goto out_kfree_ioc;
3223         }
3224         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3225         up(&instance->ioctl_sem);
3226
3227       out_kfree_ioc:
3228         kfree(ioc);
3229         return error;
3230 }
3231
3232 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3233 {
3234         struct megasas_instance *instance;
3235         struct megasas_aen aen;
3236         int error;
3237
3238         if (file->private_data != file) {
3239                 printk(KERN_DEBUG "megasas: fasync_helper was not "
3240                        "called first\n");
3241                 return -EINVAL;
3242         }
3243
3244         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3245                 return -EFAULT;
3246
3247         instance = megasas_lookup_instance(aen.host_no);
3248
3249         if (!instance)
3250                 return -ENODEV;
3251
3252         mutex_lock(&instance->aen_mutex);
3253         error = megasas_register_aen(instance, aen.seq_num,
3254                                      aen.class_locale_word);
3255         mutex_unlock(&instance->aen_mutex);
3256         return error;
3257 }
3258
3259 /**
3260  * megasas_mgmt_ioctl - char node ioctl entry point
3261  */
3262 static long
3263 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3264 {
3265         switch (cmd) {
3266         case MEGASAS_IOC_FIRMWARE:
3267                 return megasas_mgmt_ioctl_fw(file, arg);
3268
3269         case MEGASAS_IOC_GET_AEN:
3270                 return megasas_mgmt_ioctl_aen(file, arg);
3271         }
3272
3273         return -ENOTTY;
3274 }
3275
3276 #ifdef CONFIG_COMPAT
3277 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3278 {
3279         struct compat_megasas_iocpacket __user *cioc =
3280             (struct compat_megasas_iocpacket __user *)arg;
3281         struct megasas_iocpacket __user *ioc =
3282             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3283         int i;
3284         int error = 0;
3285
3286         if (clear_user(ioc, sizeof(*ioc)))
3287                 return -EFAULT;
3288
3289         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3290             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3291             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3292             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3293             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3294             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3295                 return -EFAULT;
3296
3297         for (i = 0; i < MAX_IOCTL_SGE; i++) {
3298                 compat_uptr_t ptr;
3299
3300                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3301                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3302                     copy_in_user(&ioc->sgl[i].iov_len,
3303                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3304                         return -EFAULT;
3305         }
3306
3307         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3308
3309         if (copy_in_user(&cioc->frame.hdr.cmd_status,
3310                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3311                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3312                 return -EFAULT;
3313         }
3314         return error;
3315 }
3316
3317 static long
3318 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3319                           unsigned long arg)
3320 {
3321         switch (cmd) {
3322         case MEGASAS_IOC_FIRMWARE32:
3323                 return megasas_mgmt_compat_ioctl_fw(file, arg);
3324         case MEGASAS_IOC_GET_AEN:
3325                 return megasas_mgmt_ioctl_aen(file, arg);
3326         }
3327
3328         return -ENOTTY;
3329 }
3330 #endif
3331
3332 /*
3333  * File operations structure for management interface
3334  */
3335 static const struct file_operations megasas_mgmt_fops = {
3336         .owner = THIS_MODULE,
3337         .open = megasas_mgmt_open,
3338         .fasync = megasas_mgmt_fasync,
3339         .unlocked_ioctl = megasas_mgmt_ioctl,
3340 #ifdef CONFIG_COMPAT
3341         .compat_ioctl = megasas_mgmt_compat_ioctl,
3342 #endif
3343 };
3344
3345 /*
3346  * PCI hotplug support registration structure
3347  */
3348 static struct pci_driver megasas_pci_driver = {
3349
3350         .name = "megaraid_sas",
3351         .id_table = megasas_pci_table,
3352         .probe = megasas_probe_one,
3353         .remove = __devexit_p(megasas_detach_one),
3354         .suspend = megasas_suspend,
3355         .resume = megasas_resume,
3356         .shutdown = megasas_shutdown,
3357 };
3358
3359 /*
3360  * Sysfs driver attributes
3361  */
3362 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3363 {
3364         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3365                         MEGASAS_VERSION);
3366 }
3367
3368 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3369
3370 static ssize_t
3371 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3372 {
3373         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3374                         MEGASAS_RELDATE);
3375 }
3376
3377 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3378                    NULL);
3379
3380 static ssize_t
3381 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3382 {
3383         return sprintf(buf, "%u\n", megasas_dbg_lvl);
3384 }
3385
3386 static ssize_t
3387 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3388 {
3389         int retval = count;
3390         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3391                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3392                 retval = -EINVAL;
3393         }
3394         return retval;
3395 }
3396
3397 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
3398                 megasas_sysfs_set_dbg_lvl);
3399
3400 static ssize_t
3401 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3402 {
3403         return sprintf(buf, "%u\n", poll_mode_io);
3404 }
3405
3406 static ssize_t
3407 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3408                                 const char *buf, size_t count)
3409 {
3410         int retval = count;
3411         int tmp = poll_mode_io;
3412         int i;
3413         struct megasas_instance *instance;
3414
3415         if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3416                 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3417                 retval = -EINVAL;
3418         }
3419
3420         /*
3421          * Check if poll_mode_io is already set or is same as previous value
3422          */
3423         if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3424                 goto out;
3425
3426         if (poll_mode_io) {
3427                 /*
3428                  * Start timers for all adapters
3429                  */
3430                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3431                         instance = megasas_mgmt_info.instance[i];
3432                         if (instance) {
3433                                 megasas_start_timer(instance,
3434                                         &instance->io_completion_timer,
3435                                         megasas_io_completion_timer,
3436                                         MEGASAS_COMPLETION_TIMER_INTERVAL);
3437                         }
3438                 }
3439         } else {
3440                 /*
3441                  * Delete timers for all adapters
3442                  */
3443                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3444                         instance = megasas_mgmt_info.instance[i];
3445                         if (instance)
3446                                 del_timer_sync(&instance->io_completion_timer);
3447                 }
3448         }
3449
3450 out:
3451         return retval;
3452 }
3453
3454 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3455                 megasas_sysfs_show_poll_mode_io,
3456                 megasas_sysfs_set_poll_mode_io);
3457
3458 /**
3459  * megasas_init - Driver load entry point
3460  */
3461 static int __init megasas_init(void)
3462 {
3463         int rval;
3464
3465         /*
3466          * Announce driver version and other information
3467          */
3468         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3469                MEGASAS_EXT_VERSION);
3470
3471         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3472
3473         /*
3474          * Register character device node
3475          */
3476         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3477
3478         if (rval < 0) {
3479                 printk(KERN_DEBUG "megasas: failed to open device node\n");
3480                 return rval;
3481         }
3482
3483         megasas_mgmt_majorno = rval;
3484
3485         /*
3486          * Register ourselves as PCI hotplug module
3487          */
3488         rval = pci_register_driver(&megasas_pci_driver);
3489
3490         if (rval) {
3491                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3492                 goto err_pcidrv;
3493         }
3494
3495         rval = driver_create_file(&megasas_pci_driver.driver,
3496                                   &driver_attr_version);
3497         if (rval)
3498                 goto err_dcf_attr_ver;
3499         rval = driver_create_file(&megasas_pci_driver.driver,
3500                                   &driver_attr_release_date);
3501         if (rval)
3502                 goto err_dcf_rel_date;
3503         rval = driver_create_file(&megasas_pci_driver.driver,
3504                                   &driver_attr_dbg_lvl);
3505         if (rval)
3506                 goto err_dcf_dbg_lvl;
3507         rval = driver_create_file(&megasas_pci_driver.driver,
3508                                   &driver_attr_poll_mode_io);
3509         if (rval)
3510                 goto err_dcf_poll_mode_io;
3511
3512         return rval;
3513
3514 err_dcf_poll_mode_io:
3515         driver_remove_file(&megasas_pci_driver.driver,
3516                            &driver_attr_dbg_lvl);
3517 err_dcf_dbg_lvl:
3518         driver_remove_file(&megasas_pci_driver.driver,
3519                            &driver_attr_release_date);
3520 err_dcf_rel_date:
3521         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3522 err_dcf_attr_ver:
3523         pci_unregister_driver(&megasas_pci_driver);
3524 err_pcidrv:
3525         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3526         return rval;
3527 }
3528
3529 /**
3530  * megasas_exit - Driver unload entry point
3531  */
3532 static void __exit megasas_exit(void)
3533 {
3534         driver_remove_file(&megasas_pci_driver.driver,
3535                            &driver_attr_poll_mode_io);
3536         driver_remove_file(&megasas_pci_driver.driver,
3537                            &driver_attr_dbg_lvl);
3538         driver_remove_file(&megasas_pci_driver.driver,
3539                            &driver_attr_release_date);
3540         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3541
3542         pci_unregister_driver(&megasas_pci_driver);
3543         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3544 }
3545
3546 module_init(megasas_init);
3547 module_exit(megasas_exit);