2 * arch/sh/kernel/time_64.c
4 * Copyright (C) 2000, 2001 Paolo Alberelli
5 * Copyright (C) 2003 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
8 * Original TMU/RTC code taken from sh version.
9 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
10 * Some code taken from i386 version.
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
17 #include <linux/errno.h>
18 #include <linux/rwsem.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/profile.h>
29 #include <linux/smp.h>
30 #include <linux/module.h>
31 #include <linux/bcd.h>
32 #include <linux/timex.h>
33 #include <linux/irq.h>
35 #include <linux/platform_device.h>
36 #include <asm/cpu/registers.h> /* required by inline __asm__ stmt. */
37 #include <asm/cpu/irq.h>
38 #include <asm/addrspace.h>
39 #include <asm/processor.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
43 #define TMU_TOCR_INIT 0x00
44 #define TMU0_TCR_INIT 0x0020
45 #define TMU_TSTR_INIT 1
46 #define TMU_TSTR_OFF 0
49 #define RTC_BLOCK_OFF 0x01040000
50 #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
51 #define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */
52 #define RTC_RCR1 (rtc_base + 0x38)
54 /* Clock, Power and Reset Controller */
55 #define CPRC_BLOCK_OFF 0x01010000
56 #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
58 #define FRQCR (cprc_base+0x0)
59 #define WTCSR (cprc_base+0x0018)
60 #define STBCR (cprc_base+0x0030)
62 /* Time Management Unit */
63 #define TMU_BLOCK_OFF 0x01020000
64 #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
65 #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
66 #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
67 #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
69 #define TMU_TOCR tmu_base+0x0 /* Byte access */
70 #define TMU_TSTR tmu_base+0x4 /* Byte access */
72 #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
73 #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
74 #define TMU0_TCR TMU0_BASE+0x8 /* Word access */
76 #define TICK_SIZE (tick_nsec / 1000)
78 static unsigned long tmu_base, rtc_base;
79 unsigned long cprc_base;
81 /* Variables to allow interpolation of time of day to resolution better than a
84 /* This is effectively protected by xtime_lock */
85 static unsigned long ctc_last_interrupt;
86 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
88 #define CTC_JIFFY_SCALE_SHIFT 40
90 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
91 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
93 /* Estimate number of microseconds that have elapsed since the last timer tick,
94 by scaling the delta that has occurred in the CTC register.
96 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
97 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
98 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
99 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
100 sleeping, though will be coarser.
102 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
103 is running or if the freq or tick arguments of adjtimex are modified after
104 we have calibrated the scaling factor? This will result in either a jump at
105 the end of a tick period, or a wrap backwards at the start of the next one,
106 if the application is reading the time of day often enough. I think we
107 ought to do better than this. For this reason, usecs_per_jiffy is left
108 separated out in the calculation below. This allows some future hook into
109 the adjtime-related stuff in kernel/timer.c to remove this hazard.
113 static unsigned long usecs_since_tick(void)
115 unsigned long long current_ctc;
116 long ctc_ticks_since_interrupt;
117 unsigned long long ull_ctc_ticks_since_interrupt;
118 unsigned long result;
120 unsigned long long mul1_out;
121 unsigned long long mul1_out_high;
122 unsigned long long mul2_out_low, mul2_out_high;
124 /* Read CTC register */
125 asm ("getcon cr62, %0" : "=r" (current_ctc));
126 /* Note, the CTC counts down on each CPU clock, not up.
127 Note(2), use long type to get correct wraparound arithmetic when
128 the counter crosses zero. */
129 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
130 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
132 /* Inline assembly to do 32x32x32->64 multiplier */
133 asm volatile ("mulu.l %1, %2, %0" :
135 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
137 mul1_out_high = mul1_out >> 32;
139 asm volatile ("mulu.l %1, %2, %0" :
140 "=r" (mul2_out_low) :
141 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
144 asm volatile ("mulu.l %1, %2, %0" :
145 "=r" (mul2_out_high) :
146 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
149 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
154 void do_gettimeofday(struct timeval *tv)
158 unsigned long usec, sec;
161 seq = read_seqbegin_irqsave(&xtime_lock, flags);
162 usec = usecs_since_tick();
164 usec += xtime.tv_nsec / 1000;
165 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
167 while (usec >= 1000000) {
176 int do_settimeofday(struct timespec *tv)
178 time_t wtm_sec, sec = tv->tv_sec;
179 long wtm_nsec, nsec = tv->tv_nsec;
181 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
184 write_seqlock_irq(&xtime_lock);
186 * This is revolting. We need to set "xtime" correctly. However, the
187 * value in this location is the value at the most recent update of
188 * wall time. Discover what correction gettimeofday() would have
189 * made, and then undo it!
191 nsec -= 1000 * usecs_since_tick();
193 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
194 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
196 set_normalized_timespec(&xtime, sec, nsec);
197 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
200 write_sequnlock_irq(&xtime_lock);
205 EXPORT_SYMBOL(do_settimeofday);
208 static void null_rtc_get_time(struct timespec *tv)
210 tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
214 static int null_rtc_set_time(const time_t secs)
219 void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
220 int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
222 /* last time the RTC clock got updated */
223 static long last_rtc_update;
226 * timer_interrupt() needs to keep up the real-time clock,
227 * as well as call the "do_timer()" routine every clocktick
229 static inline void do_timer_interrupt(void)
231 unsigned long long current_ctc;
234 profile_tick(CPU_PROFILING);
237 * Here we are in the timer irq handler. We just have irqs locally
238 * disabled but we don't know if the timer_bh is running on the other
239 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
240 * the irq version of write_lock because as just said we have irq
241 * locally disabled. -arca
243 write_lock(&xtime_lock);
244 asm ("getcon cr62, %0" : "=r" (current_ctc));
245 ctc_last_interrupt = (unsigned long) current_ctc;
249 #ifdef CONFIG_HEARTBEAT
250 if (sh_mv.mv_heartbeat != NULL)
251 sh_mv.mv_heartbeat();
255 * If we have an externally synchronized Linux clock, then update
256 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
257 * called as close as possible to 500 ms before the new second starts.
260 xtime.tv_sec > last_rtc_update + 660 &&
261 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
262 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
263 if (rtc_sh_set_time(xtime.tv_sec) == 0)
264 last_rtc_update = xtime.tv_sec;
266 /* do it again in 60 s */
267 last_rtc_update = xtime.tv_sec - 600;
269 write_unlock(&xtime_lock);
272 update_process_times(user_mode(get_irq_regs()));
277 * This is the same as the above, except we _also_ save the current
278 * Time Stamp Counter value at the time of the timer interrupt, so that
279 * we later on can estimate the time of day more exactly.
281 static irqreturn_t timer_interrupt(int irq, void *dev_id)
283 unsigned long timer_status;
286 timer_status = ctrl_inw(TMU0_TCR);
287 timer_status &= ~0x100;
288 ctrl_outw(timer_status, TMU0_TCR);
290 do_timer_interrupt();
296 static __init unsigned int get_cpu_hz(void)
299 unsigned long __dummy;
300 unsigned long ctc_val_init, ctc_val;
303 ** Regardless the toolchain, force the compiler to use the
304 ** arbitrary register r3 as a clock tick counter.
305 ** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
307 register unsigned long long __rtc_irq_flag __asm__ ("r3");
310 do {} while (ctrl_inb(rtc_base) != 0);
311 ctrl_outb(RTC_RCR1_CIE, RTC_RCR1); /* Enable carry interrupt */
314 * r3 is arbitrary. CDC does not support "=z".
316 ctc_val_init = 0xffffffff;
317 ctc_val = ctc_val_init;
319 asm volatile("gettr tr0, %1\n\t"
320 "putcon %0, " __CTC "\n\t"
321 "and %2, r63, %2\n\t"
323 "beq/l %2, r63, tr0\n\t"
325 "getcon " __CTC ", %0\n\t"
326 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
331 * CPU clock = 4 stages * loop
335 * (if) pipe line stole
341 * CPU clock = 6 stages * loop
346 * Use CTC register to count. This approach returns the right value
347 * even if the I-cache is disabled (e.g. whilst debugging.)
351 count = ctc_val_init - ctc_val; /* CTC counts down */
354 * This really is count by the number of clock cycles
355 * by the ratio between a complete R64CNT
356 * wrap-around (128) and CUI interrupt being raised (64).
361 static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
363 struct pt_regs *regs = get_irq_regs();
365 ctrl_outb(0, RTC_RCR1); /* Disable Carry Interrupts */
366 regs->regs[3] = 1; /* Using r3 */
371 static struct irqaction irq0 = {
372 .handler = timer_interrupt,
373 .flags = IRQF_DISABLED,
374 .mask = CPU_MASK_NONE,
377 static struct irqaction irq1 = {
378 .handler = sh64_rtc_interrupt,
379 .flags = IRQF_DISABLED,
380 .mask = CPU_MASK_NONE,
384 void __init time_init(void)
386 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
387 unsigned long interval;
388 unsigned long frqcr, ifc, pfc;
389 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
390 #define bfc_table ifc_table /* Same */
391 #define pfc_table ifc_table /* Same */
393 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
395 panic("Unable to remap TMU\n");
398 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
400 panic("Unable to remap RTC\n");
403 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
405 panic("Unable to remap CPRC\n");
408 rtc_sh_get_time(&xtime);
410 setup_irq(TIMER_IRQ, &irq0);
411 setup_irq(RTC_IRQ, &irq1);
413 /* Check how fast it is.. */
414 cpu_clock = get_cpu_hz();
416 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
417 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
419 free_irq(RTC_IRQ, NULL);
421 printk("CPU clock: %d.%02dMHz\n",
422 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
425 frqcr = ctrl_inl(FRQCR);
426 ifc = ifc_table[(frqcr>> 6) & 0x0007];
427 bfc = bfc_table[(frqcr>> 3) & 0x0007];
428 pfc = pfc_table[(frqcr>> 12) & 0x0007];
429 master_clock = cpu_clock * ifc;
430 bus_clock = master_clock/bfc;
433 printk("Bus clock: %d.%02dMHz\n",
434 (bus_clock/1000000), (bus_clock % 1000000)/10000);
435 module_clock = master_clock/pfc;
436 printk("Module clock: %d.%02dMHz\n",
437 (module_clock/1000000), (module_clock % 1000000)/10000);
438 interval = (module_clock/(HZ*4));
440 printk("Interval = %ld\n", interval);
442 current_cpu_data.cpu_clock = cpu_clock;
443 current_cpu_data.master_clock = master_clock;
444 current_cpu_data.bus_clock = bus_clock;
445 current_cpu_data.module_clock = module_clock;
448 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
449 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
450 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
451 ctrl_outl(interval, TMU0_TCOR);
452 ctrl_outl(interval, TMU0_TCNT);
453 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
456 void enter_deep_standby(void)
458 /* Disable watchdog timer */
459 ctrl_outl(0xa5000000, WTCSR);
460 /* Configure deep standby on sleep */
461 ctrl_outl(0x03, STBCR);
463 #ifdef CONFIG_SH_ALPHANUMERIC
465 extern void mach_alphanum(int position, unsigned char value);
466 extern void mach_alphanum_brightness(int setting);
467 char halted[] = "Halted. ";
469 mach_alphanum_brightness(6); /* dimmest setting above off */
470 for (i=0; i<8; i++) {
471 mach_alphanum(i, halted[i]);
473 asm __volatile__ ("synco");
477 asm __volatile__ ("sleep");
478 asm __volatile__ ("synci");
479 asm __volatile__ ("nop");
480 asm __volatile__ ("nop");
481 asm __volatile__ ("nop");
482 asm __volatile__ ("nop");
483 panic("Unexpected wakeup!\n");
486 static struct resource rtc_resources[] = {
488 /* RTC base, filled in by rtc_init */
489 .flags = IORESOURCE_IO,
494 .flags = IORESOURCE_IRQ,
499 .flags = IORESOURCE_IRQ,
504 .flags = IORESOURCE_IRQ,
508 static struct platform_device rtc_device = {
511 .num_resources = ARRAY_SIZE(rtc_resources),
512 .resource = rtc_resources,
515 static int __init rtc_init(void)
517 rtc_resources[0].start = rtc_base;
518 rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1;
520 return platform_device_register(&rtc_device);
522 device_initcall(rtc_init);