Merge branch 'kconfig' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc...
[linux-2.6] / drivers / net / irda / sa1100_ir.c
1 /*
2  *  linux/drivers/net/irda/sa1100_ir.c
3  *
4  *  Copyright (C) 2000-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11  *
12  *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13  *  so we use the straight forward dma_map_* functions with a null pointer.
14  *
15  *  This driver takes one kernel command line parameter, sa1100ir=, with
16  *  the following options:
17  *      max_rate:baudrate       - set the maximum baud rate
18  *      power_leve:level        - set the transmitter power level
19  *      tx_lpm:0|1              - set transmit low power mode
20  */
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/dma-mapping.h>
33
34 #include <net/irda/irda.h>
35 #include <net/irda/wrapper.h>
36 #include <net/irda/irda_device.h>
37
38 #include <asm/irq.h>
39 #include <asm/dma.h>
40 #include <asm/hardware.h>
41 #include <asm/mach/irda.h>
42
43 static int power_level = 3;
44 static int tx_lpm;
45 static int max_rate = 4000000;
46
47 struct sa1100_irda {
48         unsigned char           hscr0;
49         unsigned char           utcr4;
50         unsigned char           power;
51         unsigned char           open;
52
53         int                     speed;
54         int                     newspeed;
55
56         struct sk_buff          *txskb;
57         struct sk_buff          *rxskb;
58         dma_addr_t              txbuf_dma;
59         dma_addr_t              rxbuf_dma;
60         dma_regs_t              *txdma;
61         dma_regs_t              *rxdma;
62
63         struct net_device_stats stats;
64         struct device           *dev;
65         struct irda_platform_data *pdata;
66         struct irlap_cb         *irlap;
67         struct qos_info         qos;
68
69         iobuff_t                tx_buff;
70         iobuff_t                rx_buff;
71 };
72
73 #define IS_FIR(si)              ((si)->speed >= 4000000)
74
75 #define HPSIR_MAX_RXLEN         2047
76
77 /*
78  * Allocate and map the receive buffer, unless it is already allocated.
79  */
80 static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
81 {
82         if (si->rxskb)
83                 return 0;
84
85         si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
86
87         if (!si->rxskb) {
88                 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
89                 return -ENOMEM;
90         }
91
92         /*
93          * Align any IP headers that may be contained
94          * within the frame.
95          */
96         skb_reserve(si->rxskb, 1);
97
98         si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
99                                         HPSIR_MAX_RXLEN,
100                                         DMA_FROM_DEVICE);
101         return 0;
102 }
103
104 /*
105  * We want to get here as soon as possible, and get the receiver setup.
106  * We use the existing buffer.
107  */
108 static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
109 {
110         if (!si->rxskb) {
111                 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
112                 return;
113         }
114
115         /*
116          * First empty receive FIFO
117          */
118         Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
119
120         /*
121          * Enable the DMA, receiver and receive interrupt.
122          */
123         sa1100_clear_dma(si->rxdma);
124         sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
125         Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
126 }
127
128 /*
129  * Set the IrDA communications speed.
130  */
131 static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
132 {
133         unsigned long flags;
134         int brd, ret = -EINVAL;
135
136         switch (speed) {
137         case 9600:      case 19200:     case 38400:
138         case 57600:     case 115200:
139                 brd = 3686400 / (16 * speed) - 1;
140
141                 /*
142                  * Stop the receive DMA.
143                  */
144                 if (IS_FIR(si))
145                         sa1100_stop_dma(si->rxdma);
146
147                 local_irq_save(flags);
148
149                 Ser2UTCR3 = 0;
150                 Ser2HSCR0 = HSCR0_UART;
151
152                 Ser2UTCR1 = brd >> 8;
153                 Ser2UTCR2 = brd;
154
155                 /*
156                  * Clear status register
157                  */
158                 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
159                 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
160
161                 if (si->pdata->set_speed)
162                         si->pdata->set_speed(si->dev, speed);
163
164                 si->speed = speed;
165
166                 local_irq_restore(flags);
167                 ret = 0;
168                 break;
169
170         case 4000000:
171                 local_irq_save(flags);
172
173                 si->hscr0 = 0;
174
175                 Ser2HSSR0 = 0xff;
176                 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
177                 Ser2UTCR3 = 0;
178
179                 si->speed = speed;
180
181                 if (si->pdata->set_speed)
182                         si->pdata->set_speed(si->dev, speed);
183
184                 sa1100_irda_rx_alloc(si);
185                 sa1100_irda_rx_dma_start(si);
186
187                 local_irq_restore(flags);
188
189                 break;
190
191         default:
192                 break;
193         }
194
195         return ret;
196 }
197
198 /*
199  * Control the power state of the IrDA transmitter.
200  * State:
201  *  0 - off
202  *  1 - short range, lowest power
203  *  2 - medium range, medium power
204  *  3 - maximum range, high power
205  *
206  * Currently, only assabet is known to support this.
207  */
208 static int
209 __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
210 {
211         int ret = 0;
212         if (si->pdata->set_power)
213                 ret = si->pdata->set_power(si->dev, state);
214         return ret;
215 }
216
217 static inline int
218 sa1100_set_power(struct sa1100_irda *si, unsigned int state)
219 {
220         int ret;
221
222         ret = __sa1100_irda_set_power(si, state);
223         if (ret == 0)
224                 si->power = state;
225
226         return ret;
227 }
228
229 static int sa1100_irda_startup(struct sa1100_irda *si)
230 {
231         int ret;
232
233         /*
234          * Ensure that the ports for this device are setup correctly.
235          */
236         if (si->pdata->startup)
237                 si->pdata->startup(si->dev);
238
239         /*
240          * Configure PPC for IRDA - we want to drive TXD2 low.
241          * We also want to drive this pin low during sleep.
242          */
243         PPSR &= ~PPC_TXD2;
244         PSDR &= ~PPC_TXD2;
245         PPDR |= PPC_TXD2;
246
247         /*
248          * Enable HP-SIR modulation, and ensure that the port is disabled.
249          */
250         Ser2UTCR3 = 0;
251         Ser2HSCR0 = HSCR0_UART;
252         Ser2UTCR4 = si->utcr4;
253         Ser2UTCR0 = UTCR0_8BitData;
254         Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
255
256         /*
257          * Clear status register
258          */
259         Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
260
261         ret = sa1100_irda_set_speed(si, si->speed = 9600);
262         if (ret) {
263                 Ser2UTCR3 = 0;
264                 Ser2HSCR0 = 0;
265
266                 if (si->pdata->shutdown)
267                         si->pdata->shutdown(si->dev);
268         }
269
270         return ret;
271 }
272
273 static void sa1100_irda_shutdown(struct sa1100_irda *si)
274 {
275         /*
276          * Stop all DMA activity.
277          */
278         sa1100_stop_dma(si->rxdma);
279         sa1100_stop_dma(si->txdma);
280
281         /* Disable the port. */
282         Ser2UTCR3 = 0;
283         Ser2HSCR0 = 0;
284
285         if (si->pdata->shutdown)
286                 si->pdata->shutdown(si->dev);
287 }
288
289 #ifdef CONFIG_PM
290 /*
291  * Suspend the IrDA interface.
292  */
293 static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
294 {
295         struct net_device *dev = platform_get_drvdata(pdev);
296         struct sa1100_irda *si;
297
298         if (!dev)
299                 return 0;
300
301         si = dev->priv;
302         if (si->open) {
303                 /*
304                  * Stop the transmit queue
305                  */
306                 netif_device_detach(dev);
307                 disable_irq(dev->irq);
308                 sa1100_irda_shutdown(si);
309                 __sa1100_irda_set_power(si, 0);
310         }
311
312         return 0;
313 }
314
315 /*
316  * Resume the IrDA interface.
317  */
318 static int sa1100_irda_resume(struct platform_device *pdev)
319 {
320         struct net_device *dev = platform_get_drvdata(pdev);
321         struct sa1100_irda *si;
322
323         if (!dev)
324                 return 0;
325
326         si = dev->priv;
327         if (si->open) {
328                 /*
329                  * If we missed a speed change, initialise at the new speed
330                  * directly.  It is debatable whether this is actually
331                  * required, but in the interests of continuing from where
332                  * we left off it is desireable.  The converse argument is
333                  * that we should re-negotiate at 9600 baud again.
334                  */
335                 if (si->newspeed) {
336                         si->speed = si->newspeed;
337                         si->newspeed = 0;
338                 }
339
340                 sa1100_irda_startup(si);
341                 __sa1100_irda_set_power(si, si->power);
342                 enable_irq(dev->irq);
343
344                 /*
345                  * This automatically wakes up the queue
346                  */
347                 netif_device_attach(dev);
348         }
349
350         return 0;
351 }
352 #else
353 #define sa1100_irda_suspend     NULL
354 #define sa1100_irda_resume      NULL
355 #endif
356
357 /*
358  * HP-SIR format interrupt service routines.
359  */
360 static void sa1100_irda_hpsir_irq(struct net_device *dev)
361 {
362         struct sa1100_irda *si = dev->priv;
363         int status;
364
365         status = Ser2UTSR0;
366
367         /*
368          * Deal with any receive errors first.  The bytes in error may be
369          * the only bytes in the receive FIFO, so we do this first.
370          */
371         while (status & UTSR0_EIF) {
372                 int stat, data;
373
374                 stat = Ser2UTSR1;
375                 data = Ser2UTDR;
376
377                 if (stat & (UTSR1_FRE | UTSR1_ROR)) {
378                         si->stats.rx_errors++;
379                         if (stat & UTSR1_FRE)
380                                 si->stats.rx_frame_errors++;
381                         if (stat & UTSR1_ROR)
382                                 si->stats.rx_fifo_errors++;
383                 } else
384                         async_unwrap_char(dev, &si->stats, &si->rx_buff, data);
385
386                 status = Ser2UTSR0;
387         }
388
389         /*
390          * We must clear certain bits.
391          */
392         Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
393
394         if (status & UTSR0_RFS) {
395                 /*
396                  * There are at least 4 bytes in the FIFO.  Read 3 bytes
397                  * and leave the rest to the block below.
398                  */
399                 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
400                 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
401                 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
402         }
403
404         if (status & (UTSR0_RFS | UTSR0_RID)) {
405                 /*
406                  * Fifo contains more than 1 character.
407                  */
408                 do {
409                         async_unwrap_char(dev, &si->stats, &si->rx_buff,
410                                           Ser2UTDR);
411                 } while (Ser2UTSR1 & UTSR1_RNE);
412
413                 dev->last_rx = jiffies;
414         }
415
416         if (status & UTSR0_TFS && si->tx_buff.len) {
417                 /*
418                  * Transmitter FIFO is not full
419                  */
420                 do {
421                         Ser2UTDR = *si->tx_buff.data++;
422                         si->tx_buff.len -= 1;
423                 } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
424
425                 if (si->tx_buff.len == 0) {
426                         si->stats.tx_packets++;
427                         si->stats.tx_bytes += si->tx_buff.data -
428                                               si->tx_buff.head;
429
430                         /*
431                          * We need to ensure that the transmitter has
432                          * finished.
433                          */
434                         do
435                                 rmb();
436                         while (Ser2UTSR1 & UTSR1_TBY);
437
438                         /*
439                          * Ok, we've finished transmitting.  Now enable
440                          * the receiver.  Sometimes we get a receive IRQ
441                          * immediately after a transmit...
442                          */
443                         Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
444                         Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
445
446                         if (si->newspeed) {
447                                 sa1100_irda_set_speed(si, si->newspeed);
448                                 si->newspeed = 0;
449                         }
450
451                         /* I'm hungry! */
452                         netif_wake_queue(dev);
453                 }
454         }
455 }
456
457 static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
458 {
459         struct sk_buff *skb = si->rxskb;
460         dma_addr_t dma_addr;
461         unsigned int len, stat, data;
462
463         if (!skb) {
464                 printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
465                 return;
466         }
467
468         /*
469          * Get the current data position.
470          */
471         dma_addr = sa1100_get_dma_pos(si->rxdma);
472         len = dma_addr - si->rxbuf_dma;
473         if (len > HPSIR_MAX_RXLEN)
474                 len = HPSIR_MAX_RXLEN;
475         dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
476
477         do {
478                 /*
479                  * Read Status, and then Data.
480                  */
481                 stat = Ser2HSSR1;
482                 rmb();
483                 data = Ser2HSDR;
484
485                 if (stat & (HSSR1_CRE | HSSR1_ROR)) {
486                         si->stats.rx_errors++;
487                         if (stat & HSSR1_CRE)
488                                 si->stats.rx_crc_errors++;
489                         if (stat & HSSR1_ROR)
490                                 si->stats.rx_frame_errors++;
491                 } else
492                         skb->data[len++] = data;
493
494                 /*
495                  * If we hit the end of frame, there's
496                  * no point in continuing.
497                  */
498                 if (stat & HSSR1_EOF)
499                         break;
500         } while (Ser2HSSR0 & HSSR0_EIF);
501
502         if (stat & HSSR1_EOF) {
503                 si->rxskb = NULL;
504
505                 skb_put(skb, len);
506                 skb->dev = dev;
507                 skb->mac.raw = skb->data;
508                 skb->protocol = htons(ETH_P_IRDA);
509                 si->stats.rx_packets++;
510                 si->stats.rx_bytes += len;
511
512                 /*
513                  * Before we pass the buffer up, allocate a new one.
514                  */
515                 sa1100_irda_rx_alloc(si);
516
517                 netif_rx(skb);
518                 dev->last_rx = jiffies;
519         } else {
520                 /*
521                  * Remap the buffer.
522                  */
523                 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
524                                                 HPSIR_MAX_RXLEN,
525                                                 DMA_FROM_DEVICE);
526         }
527 }
528
529 /*
530  * FIR format interrupt service routine.  We only have to
531  * handle RX events; transmit events go via the TX DMA handler.
532  *
533  * No matter what, we disable RX, process, and the restart RX.
534  */
535 static void sa1100_irda_fir_irq(struct net_device *dev)
536 {
537         struct sa1100_irda *si = dev->priv;
538
539         /*
540          * Stop RX DMA
541          */
542         sa1100_stop_dma(si->rxdma);
543
544         /*
545          * Framing error - we throw away the packet completely.
546          * Clearing RXE flushes the error conditions and data
547          * from the fifo.
548          */
549         if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
550                 si->stats.rx_errors++;
551
552                 if (Ser2HSSR0 & HSSR0_FRE)
553                         si->stats.rx_frame_errors++;
554
555                 /*
556                  * Clear out the DMA...
557                  */
558                 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
559
560                 /*
561                  * Clear selected status bits now, so we
562                  * don't miss them next time around.
563                  */
564                 Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
565         }
566
567         /*
568          * Deal with any receive errors.  The any of the lowest
569          * 8 bytes in the FIFO may contain an error.  We must read
570          * them one by one.  The "error" could even be the end of
571          * packet!
572          */
573         if (Ser2HSSR0 & HSSR0_EIF)
574                 sa1100_irda_fir_error(si, dev);
575
576         /*
577          * No matter what happens, we must restart reception.
578          */
579         sa1100_irda_rx_dma_start(si);
580 }
581
582 static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
583 {
584         struct net_device *dev = dev_id;
585         if (IS_FIR(((struct sa1100_irda *)dev->priv)))
586                 sa1100_irda_fir_irq(dev);
587         else
588                 sa1100_irda_hpsir_irq(dev);
589         return IRQ_HANDLED;
590 }
591
592 /*
593  * TX DMA completion handler.
594  */
595 static void sa1100_irda_txdma_irq(void *id)
596 {
597         struct net_device *dev = id;
598         struct sa1100_irda *si = dev->priv;
599         struct sk_buff *skb = si->txskb;
600
601         si->txskb = NULL;
602
603         /*
604          * Wait for the transmission to complete.  Unfortunately,
605          * the hardware doesn't give us an interrupt to indicate
606          * "end of frame".
607          */
608         do
609                 rmb();
610         while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
611
612         /*
613          * Clear the transmit underrun bit.
614          */
615         Ser2HSSR0 = HSSR0_TUR;
616
617         /*
618          * Do we need to change speed?  Note that we're lazy
619          * here - we don't free the old rxskb.  We don't need
620          * to allocate a buffer either.
621          */
622         if (si->newspeed) {
623                 sa1100_irda_set_speed(si, si->newspeed);
624                 si->newspeed = 0;
625         }
626
627         /*
628          * Start reception.  This disables the transmitter for
629          * us.  This will be using the existing RX buffer.
630          */
631         sa1100_irda_rx_dma_start(si);
632
633         /*
634          * Account and free the packet.
635          */
636         if (skb) {
637                 dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
638                 si->stats.tx_packets ++;
639                 si->stats.tx_bytes += skb->len;
640                 dev_kfree_skb_irq(skb);
641         }
642
643         /*
644          * Make sure that the TX queue is available for sending
645          * (for retries).  TX has priority over RX at all times.
646          */
647         netif_wake_queue(dev);
648 }
649
650 static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
651 {
652         struct sa1100_irda *si = dev->priv;
653         int speed = irda_get_next_speed(skb);
654
655         /*
656          * Does this packet contain a request to change the interface
657          * speed?  If so, remember it until we complete the transmission
658          * of this frame.
659          */
660         if (speed != si->speed && speed != -1)
661                 si->newspeed = speed;
662
663         /*
664          * If this is an empty frame, we can bypass a lot.
665          */
666         if (skb->len == 0) {
667                 if (si->newspeed) {
668                         si->newspeed = 0;
669                         sa1100_irda_set_speed(si, speed);
670                 }
671                 dev_kfree_skb(skb);
672                 return 0;
673         }
674
675         if (!IS_FIR(si)) {
676                 netif_stop_queue(dev);
677
678                 si->tx_buff.data = si->tx_buff.head;
679                 si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
680                                                   si->tx_buff.truesize);
681
682                 /*
683                  * Set the transmit interrupt enable.  This will fire
684                  * off an interrupt immediately.  Note that we disable
685                  * the receiver so we won't get spurious characteres
686                  * received.
687                  */
688                 Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
689
690                 dev_kfree_skb(skb);
691         } else {
692                 int mtt = irda_get_mtt(skb);
693
694                 /*
695                  * We must not be transmitting...
696                  */
697                 BUG_ON(si->txskb);
698
699                 netif_stop_queue(dev);
700
701                 si->txskb = skb;
702                 si->txbuf_dma = dma_map_single(si->dev, skb->data,
703                                          skb->len, DMA_TO_DEVICE);
704
705                 sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
706
707                 /*
708                  * If we have a mean turn-around time, impose the specified
709                  * specified delay.  We could shorten this by timing from
710                  * the point we received the packet.
711                  */
712                 if (mtt)
713                         udelay(mtt);
714
715                 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
716         }
717
718         dev->trans_start = jiffies;
719
720         return 0;
721 }
722
723 static int
724 sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
725 {
726         struct if_irda_req *rq = (struct if_irda_req *)ifreq;
727         struct sa1100_irda *si = dev->priv;
728         int ret = -EOPNOTSUPP;
729
730         switch (cmd) {
731         case SIOCSBANDWIDTH:
732                 if (capable(CAP_NET_ADMIN)) {
733                         /*
734                          * We are unable to set the speed if the
735                          * device is not running.
736                          */
737                         if (si->open) {
738                                 ret = sa1100_irda_set_speed(si,
739                                                 rq->ifr_baudrate);
740                         } else {
741                                 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
742                                 ret = 0;
743                         }
744                 }
745                 break;
746
747         case SIOCSMEDIABUSY:
748                 ret = -EPERM;
749                 if (capable(CAP_NET_ADMIN)) {
750                         irda_device_set_media_busy(dev, TRUE);
751                         ret = 0;
752                 }
753                 break;
754
755         case SIOCGRECEIVING:
756                 rq->ifr_receiving = IS_FIR(si) ? 0
757                                         : si->rx_buff.state != OUTSIDE_FRAME;
758                 break;
759
760         default:
761                 break;
762         }
763                 
764         return ret;
765 }
766
767 static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
768 {
769         struct sa1100_irda *si = dev->priv;
770         return &si->stats;
771 }
772
773 static int sa1100_irda_start(struct net_device *dev)
774 {
775         struct sa1100_irda *si = dev->priv;
776         int err;
777
778         si->speed = 9600;
779
780         err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
781         if (err)
782                 goto err_irq;
783
784         err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
785                                  NULL, NULL, &si->rxdma);
786         if (err)
787                 goto err_rx_dma;
788
789         err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
790                                  sa1100_irda_txdma_irq, dev, &si->txdma);
791         if (err)
792                 goto err_tx_dma;
793
794         /*
795          * The interrupt must remain disabled for now.
796          */
797         disable_irq(dev->irq);
798
799         /*
800          * Setup the serial port for the specified speed.
801          */
802         err = sa1100_irda_startup(si);
803         if (err)
804                 goto err_startup;
805
806         /*
807          * Open a new IrLAP layer instance.
808          */
809         si->irlap = irlap_open(dev, &si->qos, "sa1100");
810         err = -ENOMEM;
811         if (!si->irlap)
812                 goto err_irlap;
813
814         /*
815          * Now enable the interrupt and start the queue
816          */
817         si->open = 1;
818         sa1100_set_power(si, power_level); /* low power mode */
819         enable_irq(dev->irq);
820         netif_start_queue(dev);
821         return 0;
822
823 err_irlap:
824         si->open = 0;
825         sa1100_irda_shutdown(si);
826 err_startup:
827         sa1100_free_dma(si->txdma);
828 err_tx_dma:
829         sa1100_free_dma(si->rxdma);
830 err_rx_dma:
831         free_irq(dev->irq, dev);
832 err_irq:
833         return err;
834 }
835
836 static int sa1100_irda_stop(struct net_device *dev)
837 {
838         struct sa1100_irda *si = dev->priv;
839
840         disable_irq(dev->irq);
841         sa1100_irda_shutdown(si);
842
843         /*
844          * If we have been doing DMA receive, make sure we
845          * tidy that up cleanly.
846          */
847         if (si->rxskb) {
848                 dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
849                                  DMA_FROM_DEVICE);
850                 dev_kfree_skb(si->rxskb);
851                 si->rxskb = NULL;
852         }
853
854         /* Stop IrLAP */
855         if (si->irlap) {
856                 irlap_close(si->irlap);
857                 si->irlap = NULL;
858         }
859
860         netif_stop_queue(dev);
861         si->open = 0;
862
863         /*
864          * Free resources
865          */
866         sa1100_free_dma(si->txdma);
867         sa1100_free_dma(si->rxdma);
868         free_irq(dev->irq, dev);
869
870         sa1100_set_power(si, 0);
871
872         return 0;
873 }
874
875 static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
876 {
877         io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
878         if (io->head != NULL) {
879                 io->truesize = size;
880                 io->in_frame = FALSE;
881                 io->state    = OUTSIDE_FRAME;
882                 io->data     = io->head;
883         }
884         return io->head ? 0 : -ENOMEM;
885 }
886
887 static int sa1100_irda_probe(struct platform_device *pdev)
888 {
889         struct net_device *dev;
890         struct sa1100_irda *si;
891         unsigned int baudrate_mask;
892         int err;
893
894         if (!pdev->dev.platform_data)
895                 return -EINVAL;
896
897         err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
898         if (err)
899                 goto err_mem_1;
900         err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
901         if (err)
902                 goto err_mem_2;
903         err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
904         if (err)
905                 goto err_mem_3;
906
907         dev = alloc_irdadev(sizeof(struct sa1100_irda));
908         if (!dev)
909                 goto err_mem_4;
910
911         si = dev->priv;
912         si->dev = &pdev->dev;
913         si->pdata = pdev->dev.platform_data;
914
915         /*
916          * Initialise the HP-SIR buffers
917          */
918         err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
919         if (err)
920                 goto err_mem_5;
921         err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
922         if (err)
923                 goto err_mem_5;
924
925         dev->hard_start_xmit    = sa1100_irda_hard_xmit;
926         dev->open               = sa1100_irda_start;
927         dev->stop               = sa1100_irda_stop;
928         dev->do_ioctl           = sa1100_irda_ioctl;
929         dev->get_stats          = sa1100_irda_stats;
930         dev->irq                = IRQ_Ser2ICP;
931
932         irda_init_max_qos_capabilies(&si->qos);
933
934         /*
935          * We support original IRDA up to 115k2. (we don't currently
936          * support 4Mbps).  Min Turn Time set to 1ms or greater.
937          */
938         baudrate_mask = IR_9600;
939
940         switch (max_rate) {
941         case 4000000:           baudrate_mask |= IR_4000000 << 8;
942         case 115200:            baudrate_mask |= IR_115200;
943         case 57600:             baudrate_mask |= IR_57600;
944         case 38400:             baudrate_mask |= IR_38400;
945         case 19200:             baudrate_mask |= IR_19200;
946         }
947                 
948         si->qos.baud_rate.bits &= baudrate_mask;
949         si->qos.min_turn_time.bits = 7;
950
951         irda_qos_bits_to_value(&si->qos);
952
953         si->utcr4 = UTCR4_HPSIR;
954         if (tx_lpm)
955                 si->utcr4 |= UTCR4_Z1_6us;
956
957         /*
958          * Initially enable HP-SIR modulation, and ensure that the port
959          * is disabled.
960          */
961         Ser2UTCR3 = 0;
962         Ser2UTCR4 = si->utcr4;
963         Ser2HSCR0 = HSCR0_UART;
964
965         err = register_netdev(dev);
966         if (err == 0)
967                 platform_set_drvdata(pdev, dev);
968
969         if (err) {
970  err_mem_5:
971                 kfree(si->tx_buff.head);
972                 kfree(si->rx_buff.head);
973                 free_netdev(dev);
974  err_mem_4:
975                 release_mem_region(__PREG(Ser2HSCR2), 0x04);
976  err_mem_3:
977                 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
978  err_mem_2:
979                 release_mem_region(__PREG(Ser2UTCR0), 0x24);
980         }
981  err_mem_1:
982         return err;
983 }
984
985 static int sa1100_irda_remove(struct platform_device *pdev)
986 {
987         struct net_device *dev = platform_get_drvdata(pdev);
988
989         if (dev) {
990                 struct sa1100_irda *si = dev->priv;
991                 unregister_netdev(dev);
992                 kfree(si->tx_buff.head);
993                 kfree(si->rx_buff.head);
994                 free_netdev(dev);
995         }
996
997         release_mem_region(__PREG(Ser2HSCR2), 0x04);
998         release_mem_region(__PREG(Ser2HSCR0), 0x1c);
999         release_mem_region(__PREG(Ser2UTCR0), 0x24);
1000
1001         return 0;
1002 }
1003
1004 static struct platform_driver sa1100ir_driver = {
1005         .probe          = sa1100_irda_probe,
1006         .remove         = sa1100_irda_remove,
1007         .suspend        = sa1100_irda_suspend,
1008         .resume         = sa1100_irda_resume,
1009         .driver         = {
1010                 .name   = "sa11x0-ir",
1011         },
1012 };
1013
1014 static int __init sa1100_irda_init(void)
1015 {
1016         /*
1017          * Limit power level a sensible range.
1018          */
1019         if (power_level < 1)
1020                 power_level = 1;
1021         if (power_level > 3)
1022                 power_level = 3;
1023
1024         return platform_driver_register(&sa1100ir_driver);
1025 }
1026
1027 static void __exit sa1100_irda_exit(void)
1028 {
1029         platform_driver_unregister(&sa1100ir_driver);
1030 }
1031
1032 module_init(sa1100_irda_init);
1033 module_exit(sa1100_irda_exit);
1034 module_param(power_level, int, 0);
1035 module_param(tx_lpm, int, 0);
1036 module_param(max_rate, int, 0);
1037
1038 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1039 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1040 MODULE_LICENSE("GPL");
1041 MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1042 MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1043 MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");