2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
83 #ifndef CONFIG_CPU_IDLE
85 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89 * reduce history for more aggressive entry into C3
91 static unsigned int bm_history __read_mostly =
92 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101 * For now disable this. Probably a bug somewhere else.
103 * To skip this limit, boot/load with a large max_cstate limit.
105 static int set_max_cstate(const struct dmi_system_id *id)
107 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
110 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111 " Override with \"processor.max_cstate=%d\"\n", id->ident,
112 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
114 max_cstate = (long)id->driver_data;
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120 callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170 { set_max_cstate, "Medion 41700", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173 { set_max_cstate, "Clevo 5600D", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
184 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
187 return ((0xFFFFFFFF - t1) + t2);
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
193 return PM_TIMER_TICKS_TO_US(t2 - t1);
194 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
197 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
200 static void acpi_safe_halt(void)
202 current_thread_info()->status &= ~TS_POLLING;
204 * TS_POLLING-cleared state must be visible before we
210 current_thread_info()->status |= TS_POLLING;
213 #ifndef CONFIG_CPU_IDLE
216 acpi_processor_power_activate(struct acpi_processor *pr,
217 struct acpi_processor_cx *new)
219 struct acpi_processor_cx *old;
224 old = pr->power.state;
227 old->promotion.count = 0;
228 new->demotion.count = 0;
230 /* Cleanup from old state. */
234 /* Disable bus master reload */
235 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
236 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241 /* Prepare to use new state. */
244 /* Enable bus master reload */
245 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
246 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
250 pr->power.state = new;
255 static atomic_t c3_cpu_count;
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
260 if (cstate->space_id == ACPI_CSTATE_FFH) {
261 /* Call into architectural FFH based C-state */
262 acpi_processor_ffh_cstate_enter(cstate);
265 /* IO port based C-state */
266 inb(cstate->address);
267 /* Dummy wait op - must do something useless after P_LVL2 read
268 because chipsets cannot guarantee that STPCLK# signal
269 gets asserted in time to freeze execution properly. */
270 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
273 #endif /* !CONFIG_CPU_IDLE */
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
278 * Some BIOS implementations switch to C3 in the published C2 state.
279 * This seems to be a common problem on AMD boxen, but other vendors
280 * are affected too. We pick the most conservative approach: we assume
281 * that the local APIC stops in both C2 and C3.
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284 struct acpi_processor_cx *cx)
286 struct acpi_processor_power *pwr = &pr->power;
287 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
290 * Check, if one of the previous states already marked the lapic
293 if (pwr->timer_broadcast_on_state < state)
296 if (cx->type >= type)
297 pr->power.timer_broadcast_on_state = state;
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
302 unsigned long reason;
304 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
305 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
307 clockevents_notify(reason, &pr->id);
310 /* Power(C) State timer broadcast control */
311 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
312 struct acpi_processor_cx *cx,
315 int state = cx - pr->power.states;
317 if (state >= pr->power.timer_broadcast_on_state) {
318 unsigned long reason;
320 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
321 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
322 clockevents_notify(reason, &pr->id);
328 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
329 struct acpi_processor_cx *cstate) { }
330 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
331 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
332 struct acpi_processor_cx *cx,
340 * Suspend / resume control
342 static int acpi_idle_suspend;
344 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
346 acpi_idle_suspend = 1;
350 int acpi_processor_resume(struct acpi_device * device)
352 acpi_idle_suspend = 0;
356 #ifndef CONFIG_CPU_IDLE
357 static void acpi_processor_idle(void)
359 struct acpi_processor *pr = NULL;
360 struct acpi_processor_cx *cx = NULL;
361 struct acpi_processor_cx *next_state = NULL;
366 * Interrupts must be disabled during bus mastering calculations and
367 * for C2/C3 transitions.
371 pr = processors[smp_processor_id()];
378 * Check whether we truly need to go idle, or should
381 if (unlikely(need_resched())) {
386 cx = pr->power.state;
387 if (!cx || acpi_idle_suspend) {
398 * Check for bus mastering activity (if required), record, and check
401 if (pr->flags.bm_check) {
403 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
408 pr->power.bm_activity <<= diff;
410 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
412 pr->power.bm_activity |= 0x1;
413 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
416 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
417 * the true state of bus mastering activity; forcing us to
418 * manually check the BMIDEA bit of each IDE channel.
420 else if (errata.piix4.bmisx) {
421 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
422 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
423 pr->power.bm_activity |= 0x1;
426 pr->power.bm_check_timestamp = jiffies;
429 * If bus mastering is or was active this jiffy, demote
430 * to avoid a faulty transition. Note that the processor
431 * won't enter a low-power state during this call (to this
432 * function) but should upon the next.
434 * TBD: A better policy might be to fallback to the demotion
435 * state (use it for this quantum only) istead of
436 * demoting -- and rely on duration as our sole demotion
437 * qualification. This may, however, introduce DMA
438 * issues (e.g. floppy DMA transfer overrun/underrun).
440 if ((pr->power.bm_activity & 0x1) &&
441 cx->demotion.threshold.bm) {
443 next_state = cx->demotion.state;
448 #ifdef CONFIG_HOTPLUG_CPU
450 * Check for P_LVL2_UP flag before entering C2 and above on
451 * an SMP system. We do it here instead of doing it at _CST/P_LVL
452 * detection phase, to work cleanly with logical CPU hotplug.
454 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
455 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
456 cx = &pr->power.states[ACPI_STATE_C1];
462 * Invoke the current Cx state to put the processor to sleep.
464 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
465 current_thread_info()->status &= ~TS_POLLING;
467 * TS_POLLING-cleared state must be visible before we
471 if (need_resched()) {
472 current_thread_info()->status |= TS_POLLING;
483 * Use the appropriate idle routine, the one that would
484 * be used without acpi C-states.
492 * TBD: Can't get time duration while in C1, as resumes
493 * go to an ISR rather than here. Need to instrument
494 * base interrupt handler.
496 * Note: the TSC better not stop in C1, sched_clock() will
499 sleep_ticks = 0xFFFFFFFF;
503 /* Get start time (ticks) */
504 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
505 /* Tell the scheduler that we are going deep-idle: */
506 sched_clock_idle_sleep_event();
508 acpi_state_timer_broadcast(pr, cx, 1);
509 acpi_cstate_enter(cx);
510 /* Get end time (ticks) */
511 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
513 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
514 /* TSC halts in C2, so notify users */
515 mark_tsc_unstable("possible TSC halt in C2");
517 /* Compute time (ticks) that we were actually asleep */
518 sleep_ticks = ticks_elapsed(t1, t2);
520 /* Tell the scheduler how much we idled: */
521 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
523 /* Re-enable interrupts */
525 /* Do not account our idle-switching overhead: */
526 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
528 current_thread_info()->status |= TS_POLLING;
529 acpi_state_timer_broadcast(pr, cx, 0);
534 * Must be done before busmaster disable as we might
535 * need to access HPET !
537 acpi_state_timer_broadcast(pr, cx, 1);
540 * bm_check implies we need ARB_DIS
541 * !bm_check implies we need cache flush
542 * bm_control implies whether we can do ARB_DIS
544 * That leaves a case where bm_check is set and bm_control is
545 * not set. In that case we cannot do much, we enter C3
546 * without doing anything.
548 if (pr->flags.bm_check && pr->flags.bm_control) {
549 if (atomic_inc_return(&c3_cpu_count) ==
552 * All CPUs are trying to go to C3
553 * Disable bus master arbitration
555 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
557 } else if (!pr->flags.bm_check) {
558 /* SMP with no shared cache... Invalidate cache */
559 ACPI_FLUSH_CPU_CACHE();
562 /* Get start time (ticks) */
563 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
565 /* Tell the scheduler that we are going deep-idle: */
566 sched_clock_idle_sleep_event();
567 acpi_cstate_enter(cx);
568 /* Get end time (ticks) */
569 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
570 if (pr->flags.bm_check && pr->flags.bm_control) {
571 /* Enable bus master arbitration */
572 atomic_dec(&c3_cpu_count);
573 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
576 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
577 /* TSC halts in C3, so notify users */
578 mark_tsc_unstable("TSC halts in C3");
580 /* Compute time (ticks) that we were actually asleep */
581 sleep_ticks = ticks_elapsed(t1, t2);
582 /* Tell the scheduler how much we idled: */
583 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
585 /* Re-enable interrupts */
587 /* Do not account our idle-switching overhead: */
588 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
590 current_thread_info()->status |= TS_POLLING;
591 acpi_state_timer_broadcast(pr, cx, 0);
599 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
600 cx->time += sleep_ticks;
602 next_state = pr->power.state;
604 #ifdef CONFIG_HOTPLUG_CPU
605 /* Don't do promotion/demotion */
606 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
607 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
616 * Track the number of longs (time asleep is greater than threshold)
617 * and promote when the count threshold is reached. Note that bus
618 * mastering activity may prevent promotions.
619 * Do not promote above max_cstate.
621 if (cx->promotion.state &&
622 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
623 if (sleep_ticks > cx->promotion.threshold.ticks &&
624 cx->promotion.state->latency <= system_latency_constraint()) {
625 cx->promotion.count++;
626 cx->demotion.count = 0;
627 if (cx->promotion.count >=
628 cx->promotion.threshold.count) {
629 if (pr->flags.bm_check) {
631 (pr->power.bm_activity & cx->
632 promotion.threshold.bm)) {
638 next_state = cx->promotion.state;
648 * Track the number of shorts (time asleep is less than time threshold)
649 * and demote when the usage threshold is reached.
651 if (cx->demotion.state) {
652 if (sleep_ticks < cx->demotion.threshold.ticks) {
653 cx->demotion.count++;
654 cx->promotion.count = 0;
655 if (cx->demotion.count >= cx->demotion.threshold.count) {
656 next_state = cx->demotion.state;
664 * Demote if current state exceeds max_cstate
665 * or if the latency of the current state is unacceptable
667 if ((pr->power.state - pr->power.states) > max_cstate ||
668 pr->power.state->latency > system_latency_constraint()) {
669 if (cx->demotion.state)
670 next_state = cx->demotion.state;
676 * If we're going to start using a new Cx state we must clean up
677 * from the previous and prepare to use the new.
679 if (next_state != pr->power.state)
680 acpi_processor_power_activate(pr, next_state);
683 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
686 unsigned int state_is_set = 0;
687 struct acpi_processor_cx *lower = NULL;
688 struct acpi_processor_cx *higher = NULL;
689 struct acpi_processor_cx *cx;
696 * This function sets the default Cx state policy (OS idle handler).
697 * Our scheme is to promote quickly to C2 but more conservatively
698 * to C3. We're favoring C2 for its characteristics of low latency
699 * (quick response), good power savings, and ability to allow bus
700 * mastering activity. Note that the Cx state policy is completely
701 * customizable and can be altered dynamically.
705 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
706 cx = &pr->power.states[i];
711 pr->power.state = cx;
720 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
721 cx = &pr->power.states[i];
726 cx->demotion.state = lower;
727 cx->demotion.threshold.ticks = cx->latency_ticks;
728 cx->demotion.threshold.count = 1;
729 if (cx->type == ACPI_STATE_C3)
730 cx->demotion.threshold.bm = bm_history;
737 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
738 cx = &pr->power.states[i];
743 cx->promotion.state = higher;
744 cx->promotion.threshold.ticks = cx->latency_ticks;
745 if (cx->type >= ACPI_STATE_C2)
746 cx->promotion.threshold.count = 4;
748 cx->promotion.threshold.count = 10;
749 if (higher->type == ACPI_STATE_C3)
750 cx->promotion.threshold.bm = bm_history;
758 #endif /* !CONFIG_CPU_IDLE */
760 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
769 /* if info is obtained from pblk/fadt, type equals state */
770 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
771 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
773 #ifndef CONFIG_HOTPLUG_CPU
775 * Check for P_LVL2_UP flag before entering C2 and above on
778 if ((num_online_cpus() > 1) &&
779 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
783 /* determine C2 and C3 address from pblk */
784 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
785 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
787 /* determine latencies from FADT */
788 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
789 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
791 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
792 "lvl2[0x%08x] lvl3[0x%08x]\n",
793 pr->power.states[ACPI_STATE_C2].address,
794 pr->power.states[ACPI_STATE_C3].address));
799 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
801 if (!pr->power.states[ACPI_STATE_C1].valid) {
802 /* set the first C-State to C1 */
803 /* all processors need to support C1 */
804 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
805 pr->power.states[ACPI_STATE_C1].valid = 1;
807 /* the C0 state only exists as a filler in our array */
808 pr->power.states[ACPI_STATE_C0].valid = 1;
812 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
814 acpi_status status = 0;
818 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
819 union acpi_object *cst;
827 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
828 if (ACPI_FAILURE(status)) {
829 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
833 cst = buffer.pointer;
835 /* There must be at least 2 elements */
836 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
837 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
842 count = cst->package.elements[0].integer.value;
844 /* Validate number of power states. */
845 if (count < 1 || count != cst->package.count - 1) {
846 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
851 /* Tell driver that at least _CST is supported. */
852 pr->flags.has_cst = 1;
854 for (i = 1; i <= count; i++) {
855 union acpi_object *element;
856 union acpi_object *obj;
857 struct acpi_power_register *reg;
858 struct acpi_processor_cx cx;
860 memset(&cx, 0, sizeof(cx));
862 element = &(cst->package.elements[i]);
863 if (element->type != ACPI_TYPE_PACKAGE)
866 if (element->package.count != 4)
869 obj = &(element->package.elements[0]);
871 if (obj->type != ACPI_TYPE_BUFFER)
874 reg = (struct acpi_power_register *)obj->buffer.pointer;
876 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
877 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
880 /* There should be an easy way to extract an integer... */
881 obj = &(element->package.elements[1]);
882 if (obj->type != ACPI_TYPE_INTEGER)
885 cx.type = obj->integer.value;
887 * Some buggy BIOSes won't list C1 in _CST -
888 * Let acpi_processor_get_power_info_default() handle them later
890 if (i == 1 && cx.type != ACPI_STATE_C1)
893 cx.address = reg->address;
894 cx.index = current_count + 1;
896 cx.space_id = ACPI_CSTATE_SYSTEMIO;
897 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
898 if (acpi_processor_ffh_cstate_probe
899 (pr->id, &cx, reg) == 0) {
900 cx.space_id = ACPI_CSTATE_FFH;
901 } else if (cx.type != ACPI_STATE_C1) {
903 * C1 is a special case where FIXED_HARDWARE
904 * can be handled in non-MWAIT way as well.
905 * In that case, save this _CST entry info.
906 * That is, we retain space_id of SYSTEM_IO for
908 * Otherwise, ignore this info and continue.
914 obj = &(element->package.elements[2]);
915 if (obj->type != ACPI_TYPE_INTEGER)
918 cx.latency = obj->integer.value;
920 obj = &(element->package.elements[3]);
921 if (obj->type != ACPI_TYPE_INTEGER)
924 cx.power = obj->integer.value;
927 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
930 * We support total ACPI_PROCESSOR_MAX_POWER - 1
931 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
933 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
935 "Limiting number of power states to max (%d)\n",
936 ACPI_PROCESSOR_MAX_POWER);
938 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
943 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
946 /* Validate number of power states discovered */
947 if (current_count < 2)
951 kfree(buffer.pointer);
956 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
963 * C2 latency must be less than or equal to 100
966 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
967 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
968 "latency too large [%d]\n", cx->latency));
973 * Otherwise we've met all of our C2 requirements.
974 * Normalize the C2 latency to expidite policy
978 #ifndef CONFIG_CPU_IDLE
979 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
981 cx->latency_ticks = cx->latency;
987 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
988 struct acpi_processor_cx *cx)
990 static int bm_check_flag;
997 * C3 latency must be less than or equal to 1000
1000 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1001 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1002 "latency too large [%d]\n", cx->latency));
1007 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1008 * DMA transfers are used by any ISA device to avoid livelock.
1009 * Note that we could disable Type-F DMA (as recommended by
1010 * the erratum), but this is known to disrupt certain ISA
1011 * devices thus we take the conservative approach.
1013 else if (errata.piix4.fdma) {
1014 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1015 "C3 not supported on PIIX4 with Type-F DMA\n"));
1019 /* All the logic here assumes flags.bm_check is same across all CPUs */
1020 if (!bm_check_flag) {
1021 /* Determine whether bm_check is needed based on CPU */
1022 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1023 bm_check_flag = pr->flags.bm_check;
1025 pr->flags.bm_check = bm_check_flag;
1028 if (pr->flags.bm_check) {
1029 if (!pr->flags.bm_control) {
1030 if (pr->flags.has_cst != 1) {
1031 /* bus mastering control is necessary */
1032 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1033 "C3 support requires BM control\n"));
1036 /* Here we enter C3 without bus mastering */
1037 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1038 "C3 support without BM control\n"));
1043 * WBINVD should be set in fadt, for C3 state to be
1044 * supported on when bm_check is not required.
1046 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1047 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1048 "Cache invalidation should work properly"
1049 " for C3 to be enabled on SMP systems\n"));
1052 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1056 * Otherwise we've met all of our C3 requirements.
1057 * Normalize the C3 latency to expidite policy. Enable
1058 * checking of bus mastering status (bm_check) so we can
1059 * use this in our C3 policy
1063 #ifndef CONFIG_CPU_IDLE
1064 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1066 cx->latency_ticks = cx->latency;
1072 static int acpi_processor_power_verify(struct acpi_processor *pr)
1075 unsigned int working = 0;
1077 pr->power.timer_broadcast_on_state = INT_MAX;
1079 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1080 struct acpi_processor_cx *cx = &pr->power.states[i];
1088 acpi_processor_power_verify_c2(cx);
1090 acpi_timer_check_state(i, pr, cx);
1094 acpi_processor_power_verify_c3(pr, cx);
1096 acpi_timer_check_state(i, pr, cx);
1104 acpi_propagate_timer_broadcast(pr);
1109 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1115 /* NOTE: the idle thread may not be running while calling
1118 /* Zero initialize all the C-states info. */
1119 memset(pr->power.states, 0, sizeof(pr->power.states));
1121 result = acpi_processor_get_power_info_cst(pr);
1122 if (result == -ENODEV)
1123 result = acpi_processor_get_power_info_fadt(pr);
1128 acpi_processor_get_power_info_default(pr);
1130 pr->power.count = acpi_processor_power_verify(pr);
1132 #ifndef CONFIG_CPU_IDLE
1134 * Set Default Policy
1135 * ------------------
1136 * Now that we know which states are supported, set the default
1137 * policy. Note that this policy can be changed dynamically
1138 * (e.g. encourage deeper sleeps to conserve battery life when
1141 result = acpi_processor_set_power_policy(pr);
1147 * if one state of type C2 or C3 is available, mark this
1148 * CPU as being "idle manageable"
1150 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1151 if (pr->power.states[i].valid) {
1152 pr->power.count = i;
1153 if (pr->power.states[i].type >= ACPI_STATE_C2)
1154 pr->flags.power = 1;
1161 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1163 struct acpi_processor *pr = seq->private;
1170 seq_printf(seq, "active state: C%zd\n"
1172 "bus master activity: %08x\n"
1173 "maximum allowed latency: %d usec\n",
1174 pr->power.state ? pr->power.state - pr->power.states : 0,
1175 max_cstate, (unsigned)pr->power.bm_activity,
1176 system_latency_constraint());
1178 seq_puts(seq, "states:\n");
1180 for (i = 1; i <= pr->power.count; i++) {
1181 seq_printf(seq, " %cC%d: ",
1182 (&pr->power.states[i] ==
1183 pr->power.state ? '*' : ' '), i);
1185 if (!pr->power.states[i].valid) {
1186 seq_puts(seq, "<not supported>\n");
1190 switch (pr->power.states[i].type) {
1192 seq_printf(seq, "type[C1] ");
1195 seq_printf(seq, "type[C2] ");
1198 seq_printf(seq, "type[C3] ");
1201 seq_printf(seq, "type[--] ");
1205 if (pr->power.states[i].promotion.state)
1206 seq_printf(seq, "promotion[C%zd] ",
1207 (pr->power.states[i].promotion.state -
1210 seq_puts(seq, "promotion[--] ");
1212 if (pr->power.states[i].demotion.state)
1213 seq_printf(seq, "demotion[C%zd] ",
1214 (pr->power.states[i].demotion.state -
1217 seq_puts(seq, "demotion[--] ");
1219 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1220 pr->power.states[i].latency,
1221 pr->power.states[i].usage,
1222 (unsigned long long)pr->power.states[i].time);
1229 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1231 return single_open(file, acpi_processor_power_seq_show,
1235 static const struct file_operations acpi_processor_power_fops = {
1236 .open = acpi_processor_power_open_fs,
1238 .llseek = seq_lseek,
1239 .release = single_release,
1242 #ifndef CONFIG_CPU_IDLE
1244 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1256 if (!pr->flags.power_setup_done)
1259 /* Fall back to the default idle loop */
1260 pm_idle = pm_idle_save;
1261 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1263 pr->flags.power = 0;
1264 result = acpi_processor_get_power_info(pr);
1265 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1266 pm_idle = acpi_processor_idle;
1272 static void smp_callback(void *v)
1274 /* we already woke the CPU up, nothing more to do */
1278 * This function gets called when a part of the kernel has a new latency
1279 * requirement. This means we need to get all processors out of their C-state,
1280 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1281 * wakes them all right up.
1283 static int acpi_processor_latency_notify(struct notifier_block *b,
1284 unsigned long l, void *v)
1286 smp_call_function(smp_callback, NULL, 0, 1);
1290 static struct notifier_block acpi_processor_latency_notifier = {
1291 .notifier_call = acpi_processor_latency_notify,
1296 #else /* CONFIG_CPU_IDLE */
1299 * acpi_idle_bm_check - checks if bus master activity was detected
1301 static int acpi_idle_bm_check(void)
1305 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1307 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1309 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1310 * the true state of bus mastering activity; forcing us to
1311 * manually check the BMIDEA bit of each IDE channel.
1313 else if (errata.piix4.bmisx) {
1314 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1315 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1322 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1323 * @pr: the processor
1324 * @target: the new target state
1326 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1327 struct acpi_processor_cx *target)
1329 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1330 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1331 pr->flags.bm_rld_set = 0;
1334 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1335 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1336 pr->flags.bm_rld_set = 1;
1341 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1344 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1346 if (cx->space_id == ACPI_CSTATE_FFH) {
1347 /* Call into architectural FFH based C-state */
1348 acpi_processor_ffh_cstate_enter(cx);
1351 /* IO port based C-state */
1353 /* Dummy wait op - must do something useless after P_LVL2 read
1354 because chipsets cannot guarantee that STPCLK# signal
1355 gets asserted in time to freeze execution properly. */
1356 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1361 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1362 * @dev: the target CPU
1363 * @state: the state data
1365 * This is equivalent to the HALT instruction.
1367 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1368 struct cpuidle_state *state)
1370 struct acpi_processor *pr;
1371 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1372 pr = processors[smp_processor_id()];
1377 if (pr->flags.bm_check)
1378 acpi_idle_update_bm_rld(pr, cx);
1388 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1389 * @dev: the target CPU
1390 * @state: the state data
1392 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1393 struct cpuidle_state *state)
1395 struct acpi_processor *pr;
1396 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1398 int sleep_ticks = 0;
1400 pr = processors[smp_processor_id()];
1405 if (acpi_idle_suspend)
1406 return(acpi_idle_enter_c1(dev, state));
1408 local_irq_disable();
1409 current_thread_info()->status &= ~TS_POLLING;
1411 * TS_POLLING-cleared state must be visible before we test
1416 if (unlikely(need_resched())) {
1417 current_thread_info()->status |= TS_POLLING;
1423 * Must be done before busmaster disable as we might need to
1426 acpi_state_timer_broadcast(pr, cx, 1);
1428 if (pr->flags.bm_check)
1429 acpi_idle_update_bm_rld(pr, cx);
1431 if (cx->type == ACPI_STATE_C3)
1432 ACPI_FLUSH_CPU_CACHE();
1434 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1435 /* Tell the scheduler that we are going deep-idle: */
1436 sched_clock_idle_sleep_event();
1437 acpi_idle_do_entry(cx);
1438 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1440 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1441 /* TSC could halt in idle, so notify users */
1442 mark_tsc_unstable("TSC halts in idle");;
1444 sleep_ticks = ticks_elapsed(t1, t2);
1446 /* Tell the scheduler how much we idled: */
1447 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1450 current_thread_info()->status |= TS_POLLING;
1454 acpi_state_timer_broadcast(pr, cx, 0);
1455 cx->time += sleep_ticks;
1456 return ticks_elapsed_in_us(t1, t2);
1459 static int c3_cpu_count;
1460 static DEFINE_SPINLOCK(c3_lock);
1463 * acpi_idle_enter_bm - enters C3 with proper BM handling
1464 * @dev: the target CPU
1465 * @state: the state data
1467 * If BM is detected, the deepest non-C3 idle state is entered instead.
1469 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1470 struct cpuidle_state *state)
1472 struct acpi_processor *pr;
1473 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1475 int sleep_ticks = 0;
1477 pr = processors[smp_processor_id()];
1482 if (acpi_idle_suspend)
1483 return(acpi_idle_enter_c1(dev, state));
1485 if (acpi_idle_bm_check()) {
1486 if (dev->safe_state) {
1487 return dev->safe_state->enter(dev, dev->safe_state);
1494 local_irq_disable();
1495 current_thread_info()->status &= ~TS_POLLING;
1497 * TS_POLLING-cleared state must be visible before we test
1502 if (unlikely(need_resched())) {
1503 current_thread_info()->status |= TS_POLLING;
1508 /* Tell the scheduler that we are going deep-idle: */
1509 sched_clock_idle_sleep_event();
1511 * Must be done before busmaster disable as we might need to
1514 acpi_state_timer_broadcast(pr, cx, 1);
1516 acpi_idle_update_bm_rld(pr, cx);
1519 * disable bus master
1520 * bm_check implies we need ARB_DIS
1521 * !bm_check implies we need cache flush
1522 * bm_control implies whether we can do ARB_DIS
1524 * That leaves a case where bm_check is set and bm_control is
1525 * not set. In that case we cannot do much, we enter C3
1526 * without doing anything.
1528 if (pr->flags.bm_check && pr->flags.bm_control) {
1529 spin_lock(&c3_lock);
1531 /* Disable bus master arbitration when all CPUs are in C3 */
1532 if (c3_cpu_count == num_online_cpus())
1533 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1534 spin_unlock(&c3_lock);
1535 } else if (!pr->flags.bm_check) {
1536 ACPI_FLUSH_CPU_CACHE();
1539 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1540 acpi_idle_do_entry(cx);
1541 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1543 /* Re-enable bus master arbitration */
1544 if (pr->flags.bm_check && pr->flags.bm_control) {
1545 spin_lock(&c3_lock);
1546 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1548 spin_unlock(&c3_lock);
1551 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1552 /* TSC could halt in idle, so notify users */
1553 mark_tsc_unstable("TSC halts in idle");
1555 sleep_ticks = ticks_elapsed(t1, t2);
1556 /* Tell the scheduler how much we idled: */
1557 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1560 current_thread_info()->status |= TS_POLLING;
1564 acpi_state_timer_broadcast(pr, cx, 0);
1565 cx->time += sleep_ticks;
1566 return ticks_elapsed_in_us(t1, t2);
1569 struct cpuidle_driver acpi_idle_driver = {
1570 .name = "acpi_idle",
1571 .owner = THIS_MODULE,
1575 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1576 * @pr: the ACPI processor
1578 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1581 struct acpi_processor_cx *cx;
1582 struct cpuidle_state *state;
1583 struct cpuidle_device *dev = &pr->power.dev;
1585 if (!pr->flags.power_setup_done)
1588 if (pr->flags.power == 0) {
1592 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1593 cx = &pr->power.states[i];
1594 state = &dev->states[count];
1599 #ifdef CONFIG_HOTPLUG_CPU
1600 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1601 !pr->flags.has_cst &&
1602 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1605 cpuidle_set_statedata(state, cx);
1607 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1608 state->exit_latency = cx->latency;
1609 state->target_residency = cx->latency * 6;
1610 state->power_usage = cx->power;
1615 state->flags |= CPUIDLE_FLAG_SHALLOW;
1616 state->enter = acpi_idle_enter_c1;
1617 dev->safe_state = state;
1621 state->flags |= CPUIDLE_FLAG_BALANCED;
1622 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1623 state->enter = acpi_idle_enter_simple;
1624 dev->safe_state = state;
1628 state->flags |= CPUIDLE_FLAG_DEEP;
1629 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1630 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1631 state->enter = pr->flags.bm_check ?
1632 acpi_idle_enter_bm :
1633 acpi_idle_enter_simple;
1640 dev->state_count = count;
1648 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1659 if (!pr->flags.power_setup_done)
1662 cpuidle_pause_and_lock();
1663 cpuidle_disable_device(&pr->power.dev);
1664 acpi_processor_get_power_info(pr);
1665 acpi_processor_setup_cpuidle(pr);
1666 ret = cpuidle_enable_device(&pr->power.dev);
1667 cpuidle_resume_and_unlock();
1672 #endif /* CONFIG_CPU_IDLE */
1674 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1675 struct acpi_device *device)
1677 acpi_status status = 0;
1678 static int first_run;
1679 struct proc_dir_entry *entry = NULL;
1684 dmi_check_system(processor_power_dmi_table);
1685 max_cstate = acpi_processor_cstate_check(max_cstate);
1686 if (max_cstate < ACPI_C_STATES_MAX)
1688 "ACPI: processor limited to max C-state %d\n",
1691 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1692 register_latency_notifier(&acpi_processor_latency_notifier);
1699 if (acpi_gbl_FADT.cst_control && !nocst) {
1701 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1702 if (ACPI_FAILURE(status)) {
1703 ACPI_EXCEPTION((AE_INFO, status,
1704 "Notifying BIOS of _CST ability failed"));
1708 acpi_processor_get_power_info(pr);
1709 pr->flags.power_setup_done = 1;
1712 * Install the idle handler if processor power management is supported.
1713 * Note that we use previously set idle handler will be used on
1714 * platforms that only support C1.
1716 if ((pr->flags.power) && (!boot_option_idle_override)) {
1717 #ifdef CONFIG_CPU_IDLE
1718 acpi_processor_setup_cpuidle(pr);
1719 pr->power.dev.cpu = pr->id;
1720 if (cpuidle_register_device(&pr->power.dev))
1724 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1725 for (i = 1; i <= pr->power.count; i++)
1726 if (pr->power.states[i].valid)
1727 printk(" C%d[C%d]", i,
1728 pr->power.states[i].type);
1731 #ifndef CONFIG_CPU_IDLE
1733 pm_idle_save = pm_idle;
1734 pm_idle = acpi_processor_idle;
1740 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1741 S_IRUGO, acpi_device_dir(device));
1745 entry->proc_fops = &acpi_processor_power_fops;
1746 entry->data = acpi_driver_data(device);
1747 entry->owner = THIS_MODULE;
1753 int acpi_processor_power_exit(struct acpi_processor *pr,
1754 struct acpi_device *device)
1756 #ifdef CONFIG_CPU_IDLE
1757 if ((pr->flags.power) && (!boot_option_idle_override))
1758 cpuidle_unregister_device(&pr->power.dev);
1760 pr->flags.power_setup_done = 0;
1762 if (acpi_device_dir(device))
1763 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1764 acpi_device_dir(device));
1766 #ifndef CONFIG_CPU_IDLE
1768 /* Unregister the idle handler when processor #0 is removed. */
1770 pm_idle = pm_idle_save;
1773 * We are about to unload the current idle thread pm callback
1774 * (pm_idle), Wait for all processors to update cached/local
1775 * copies of pm_idle before proceeding.
1779 unregister_latency_notifier(&acpi_processor_latency_notifier);