2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/bitops.h> /* For get_bitmask_order */
36 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
38 * @ah: the &struct ath5k_hw
39 * @channel: the currently set channel upon reset
41 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
44 * Since delta slope is floating point we split it on its exponent and
45 * mantissa and provide these values on hw.
47 * For more infos i think this patent is related
48 * http://www.freepatentsonline.com/7184495.html
50 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
51 struct ieee80211_channel *channel)
53 /* Get exponent and mantissa and set it */
54 u32 coef_scaled, coef_exp, coef_man,
55 ds_coef_exp, ds_coef_man, clock;
57 if (!(ah->ah_version == AR5K_AR5212) ||
58 !(channel->hw_value & CHANNEL_OFDM))
62 * ALGO: coef = (5 * clock * carrier_freq) / 2)
63 * we scale coef by shifting clock value by 24 for
64 * better precision since we use integers */
65 /* TODO: Half/quarter rate */
66 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
68 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
71 * ALGO: coef_exp = 14 - highest set bit position */
72 coef_exp = get_bitmask_order(coef_scaled);
74 /* Doesn't make sense if it's zero*/
78 /* Note: we've shifted coef_scaled by 24 */
79 coef_exp = 14 - (coef_exp - 24);
82 /* Get mantissa (significant digits)
83 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
84 coef_man = coef_scaled +
85 (1 << (24 - coef_exp - 1));
87 /* Calculate delta slope coefficient exponent
88 * and mantissa (remove scaling) and set them on hw */
89 ds_coef_man = coef_man >> (24 - coef_exp);
90 ds_coef_exp = coef_exp - 16;
92 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
93 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
94 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
95 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
102 * index into rates for control rates, we can set it up like this because
103 * this is only used for AR5212 and we know it supports G mode
105 static const unsigned int control_rates[] =
106 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
109 * ath5k_hw_write_rate_duration - fill rate code to duration table
111 * @ah: the &struct ath5k_hw
112 * @mode: one of enum ath5k_driver_mode
114 * Write the rate code to duration table upon hw reset. This is a helper for
115 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
116 * the hardware, based on current mode, for each rate. The rates which are
117 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
118 * different rate code so we write their value twice (one for long preample
119 * and one for short).
121 * Note: Band doesn't matter here, if we set the values for OFDM it works
122 * on both a and g modes. So all we have to do is set values for all g rates
123 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
124 * quarter rate mode, we need to use another set of bitrates (that's why we
125 * need the mode parameter) but we don't handle these proprietary modes yet.
127 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
130 struct ath5k_softc *sc = ah->ah_sc;
131 struct ieee80211_rate *rate;
134 /* Write rate duration table */
135 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
139 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
141 /* Set ACK timeout */
142 reg = AR5K_RATE_DUR(rate->hw_value);
144 /* An ACK frame consists of 10 bytes. If you add the FCS,
145 * which ieee80211_generic_frame_duration() adds,
146 * its 14 bytes. Note we use the control rate and not the
147 * actual rate for this rate. See mac80211 tx.c
148 * ieee80211_duration() for a brief description of
149 * what rate we should choose to TX ACKs. */
150 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
153 ath5k_hw_reg_write(ah, tx_time, reg);
155 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
159 * We're not distinguishing short preamble here,
160 * This is true, all we'll get is a longer value here
161 * which is not necessarilly bad. We could use
162 * export ieee80211_frame_duration() but that needs to be
163 * fixed first to be properly used by mac802111 drivers:
165 * - remove erp stuff and let the routine figure ofdm
167 * - remove passing argument ieee80211_local as
168 * drivers don't have access to it
169 * - move drivers using ieee80211_generic_frame_duration()
172 ath5k_hw_reg_write(ah, tx_time,
173 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
180 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
183 u32 mask = val ? val : ~0U;
185 ATH5K_TRACE(ah->ah_sc);
187 /* Read-and-clear RX Descriptor Pointer*/
188 ath5k_hw_reg_read(ah, AR5K_RXDP);
191 * Reset the device and wait until success
193 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
195 /* Wait at least 128 PCI clocks */
198 if (ah->ah_version == AR5K_AR5210) {
199 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
200 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
201 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
202 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
204 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
205 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
208 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
211 * Reset configuration register (for hw byte-swap). Note that this
212 * is only set for big endian. We do the necessary magic in
215 if ((val & AR5K_RESET_CTL_PCU) == 0)
216 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
224 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
225 bool set_chip, u16 sleep_duration)
230 ATH5K_TRACE(ah->ah_sc);
231 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
235 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
237 case AR5K_PM_NETWORK_SLEEP:
239 ath5k_hw_reg_write(ah,
240 AR5K_SLEEP_CTL_SLE_ALLOW |
244 staid |= AR5K_STA_ID1_PWR_SV;
247 case AR5K_PM_FULL_SLEEP:
249 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
252 staid |= AR5K_STA_ID1_PWR_SV;
257 staid &= ~AR5K_STA_ID1_PWR_SV;
262 /* Preserve sleep duration */
263 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
264 if (data & 0xffc00000)
267 data = data & 0xfffcffff;
269 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
272 for (i = 50; i > 0; i--) {
273 /* Check if the chip did wake up */
274 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
275 AR5K_PCICFG_SPWR_DN) == 0)
278 /* Wait a bit and retry */
280 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
283 /* Fail if the chip didn't wake up */
294 ah->ah_power_mode = mode;
295 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
301 * Bring up MAC + PHY Chips and program PLL
302 * TODO: Half/Quarter rate support
304 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
306 struct pci_dev *pdev = ah->ah_sc->pdev;
307 u32 turbo, mode, clock, bus_flags;
314 ATH5K_TRACE(ah->ah_sc);
316 /* Wakeup the device */
317 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
319 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
323 if (ah->ah_version != AR5K_AR5210) {
325 * Get channel mode flags
328 if (ah->ah_radio >= AR5K_RF5112) {
329 mode = AR5K_PHY_MODE_RAD_RF5112;
330 clock = AR5K_PHY_PLL_RF5112;
332 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
333 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
336 if (flags & CHANNEL_2GHZ) {
337 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
338 clock |= AR5K_PHY_PLL_44MHZ;
340 if (flags & CHANNEL_CCK) {
341 mode |= AR5K_PHY_MODE_MOD_CCK;
342 } else if (flags & CHANNEL_OFDM) {
343 /* XXX Dynamic OFDM/CCK is not supported by the
344 * AR5211 so we set MOD_OFDM for plain g (no
345 * CCK headers) operation. We need to test
346 * this, 5211 might support ofdm-only g after
347 * all, there are also initial register values
348 * in the code for g mode (see initvals.c). */
349 if (ah->ah_version == AR5K_AR5211)
350 mode |= AR5K_PHY_MODE_MOD_OFDM;
352 mode |= AR5K_PHY_MODE_MOD_DYN;
355 "invalid radio modulation mode\n");
358 } else if (flags & CHANNEL_5GHZ) {
359 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
361 if (ah->ah_radio == AR5K_RF5413)
362 clock |= AR5K_PHY_PLL_40MHZ_5413;
364 clock |= AR5K_PHY_PLL_40MHZ;
366 if (flags & CHANNEL_OFDM)
367 mode |= AR5K_PHY_MODE_MOD_OFDM;
370 "invalid radio modulation mode\n");
374 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
378 if (flags & CHANNEL_TURBO)
379 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
380 } else { /* Reset the device */
382 /* ...enable Atheros turbo mode if requested */
383 if (flags & CHANNEL_TURBO)
384 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
388 /* reseting PCI on PCI-E cards results card to hang
389 * and always return 0xffff... so we ingore that flag
391 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
394 if (ah->ah_version == AR5K_AR5210) {
395 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
396 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
397 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
400 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
401 AR5K_RESET_CTL_BASEBAND | bus_flags);
404 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
408 /* ...wakeup again!*/
409 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
411 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
415 /* ...final warm reset */
416 if (ath5k_hw_nic_reset(ah, 0)) {
417 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
421 if (ah->ah_version != AR5K_AR5210) {
423 /* ...update PLL if needed */
424 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
425 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
429 /* ...set the PHY operating mode */
430 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
431 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
438 * If there is an external 32KHz crystal available, use it
439 * as ref. clock instead of 32/40MHz clock and baseband clocks
440 * to save power during sleep or restore normal 32/40MHz
443 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
444 * 123 - 127) require delay on access.
446 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
448 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
449 u32 scal, spending, usec32;
451 /* Only set 32KHz settings if we have an external
452 * 32KHz crystal present */
453 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
454 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
458 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
459 /* Set up tsf increment on each cycle */
460 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
462 /* Set baseband sleep control registers
463 * and sleep control rate */
464 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
466 if ((ah->ah_radio == AR5K_RF5112) ||
467 (ah->ah_radio == AR5K_RF5413) ||
468 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
472 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
474 if ((ah->ah_radio == AR5K_RF5112) ||
475 (ah->ah_radio == AR5K_RF5413) ||
476 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
477 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
478 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
479 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
480 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
481 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
482 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
484 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
485 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
486 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
487 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
488 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
489 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
492 /* Enable sleep clock operation */
493 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
494 AR5K_PCICFG_SLEEP_CLOCK_EN);
498 /* Disable sleep clock operation and
499 * restore default parameters */
500 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
501 AR5K_PCICFG_SLEEP_CLOCK_EN);
503 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
504 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
506 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
507 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
509 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
510 scal = AR5K_PHY_SCAL_32MHZ_2417;
511 else if (ath5k_eeprom_is_hb63(ah))
512 scal = AR5K_PHY_SCAL_32MHZ_HB63;
514 scal = AR5K_PHY_SCAL_32MHZ;
515 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
517 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
518 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
520 if ((ah->ah_radio == AR5K_RF5112) ||
521 (ah->ah_radio == AR5K_RF5413) ||
522 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
526 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
528 if ((ah->ah_radio == AR5K_RF5112) ||
529 (ah->ah_radio == AR5K_RF5413))
533 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
535 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
540 static bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
541 struct ieee80211_channel *channel)
545 if ((ah->ah_radio == AR5K_RF5112) ||
546 (ah->ah_radio == AR5K_RF5413) ||
547 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
552 if ((channel->center_freq % refclk_freq != 0) &&
553 ((channel->center_freq % refclk_freq < 10) ||
554 (channel->center_freq % refclk_freq > 22)))
560 /* TODO: Half/Quarter rate */
561 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
562 struct ieee80211_channel *channel)
564 if (ah->ah_version == AR5K_AR5212 &&
565 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
567 /* Setup ADC control */
568 ath5k_hw_reg_write(ah,
570 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
572 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
573 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
574 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
579 /* Disable barker RSSI threshold */
580 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
581 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
583 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
584 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
586 /* Set the mute mask */
587 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
590 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
591 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
592 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
594 /* Enable DCU double buffering */
595 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
596 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
597 AR5K_TXCFG_DCU_DBL_BUF_DIS);
599 /* Set DAC/ADC delays */
600 if (ah->ah_version == AR5K_AR5212) {
602 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
603 scal = AR5K_PHY_SCAL_32MHZ_2417;
604 else if (ath5k_eeprom_is_hb63(ah))
605 scal = AR5K_PHY_SCAL_32MHZ_HB63;
607 scal = AR5K_PHY_SCAL_32MHZ;
608 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
612 if ((ah->ah_radio == AR5K_RF5413) ||
613 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
616 if (channel->center_freq == 2462 ||
617 channel->center_freq == 2467)
620 /* Only update if needed */
621 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
622 ath5k_hw_reg_write(ah, fast_adc,
626 /* Fix for first revision of the RF5112 RF chipset */
627 if (ah->ah_radio == AR5K_RF5112 &&
628 ah->ah_radio_5ghz_revision <
629 AR5K_SREV_RAD_5112A) {
631 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
633 if (channel->hw_value & CHANNEL_5GHZ)
637 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
640 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
642 /* 5311 has different tx/rx latency masks
643 * from 5211, since we deal 5311 the same
644 * as 5211 when setting initvals, shift
645 * values here to their proper locations */
646 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
647 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
649 AR5K_USEC_TX_LATENCY_5211 |
651 AR5K_USEC_RX_LATENCY_5210)),
653 /* Clear QCU/DCU clock gating register */
654 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
655 /* Set DAC/ADC delays */
656 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
657 /* Enable PCU FIFO corruption ECO */
658 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
659 AR5K_DIAG_SW_ECO_ENABLE);
663 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
664 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
668 /* Set CCK to OFDM power delta */
669 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
670 int16_t cck_ofdm_pwr_delta;
672 /* Adjust power delta for channel 14 */
673 if (channel->center_freq == 2484)
675 ((ee->ee_cck_ofdm_power_delta -
676 ee->ee_scaled_cck_delta) * 2) / 10;
679 (ee->ee_cck_ofdm_power_delta * 2) / 10;
681 if (channel->hw_value == CHANNEL_G)
682 ath5k_hw_reg_write(ah,
683 AR5K_REG_SM((ee->ee_cck_ofdm_power_delta * -1),
684 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
685 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
686 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
687 AR5K_PHY_TX_PWR_ADJ);
689 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
692 /* Set antenna idle switch table */
693 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
694 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
695 (ah->ah_antenna[ee_mode][0] |
696 AR5K_PHY_ANT_CTL_TXRX_EN));
698 /* Set antenna switch table */
699 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
700 AR5K_PHY_ANT_SWITCH_TABLE_0);
701 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
702 AR5K_PHY_ANT_SWITCH_TABLE_1);
704 /* Noise floor threshold */
705 ath5k_hw_reg_write(ah,
706 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
709 if ((channel->hw_value & CHANNEL_TURBO) &&
710 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
711 /* Switch settling time (Turbo) */
712 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
713 AR5K_PHY_SETTLING_SWITCH,
714 ee->ee_switch_settling_turbo[ee_mode]);
716 /* Tx/Rx attenuation (Turbo) */
717 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
718 AR5K_PHY_GAIN_TXRX_ATTEN,
719 ee->ee_atn_tx_rx_turbo[ee_mode]);
721 /* ADC/PGA desired size (Turbo) */
722 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
723 AR5K_PHY_DESIRED_SIZE_ADC,
724 ee->ee_adc_desired_size_turbo[ee_mode]);
726 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
727 AR5K_PHY_DESIRED_SIZE_PGA,
728 ee->ee_pga_desired_size_turbo[ee_mode]);
730 /* Tx/Rx margin (Turbo) */
731 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
732 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
733 ee->ee_margin_tx_rx_turbo[ee_mode]);
736 /* Switch settling time */
737 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
738 AR5K_PHY_SETTLING_SWITCH,
739 ee->ee_switch_settling[ee_mode]);
741 /* Tx/Rx attenuation */
742 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
743 AR5K_PHY_GAIN_TXRX_ATTEN,
744 ee->ee_atn_tx_rx[ee_mode]);
746 /* ADC/PGA desired size */
747 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
748 AR5K_PHY_DESIRED_SIZE_ADC,
749 ee->ee_adc_desired_size[ee_mode]);
751 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
752 AR5K_PHY_DESIRED_SIZE_PGA,
753 ee->ee_pga_desired_size[ee_mode]);
756 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
757 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
758 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
759 ee->ee_margin_tx_rx[ee_mode]);
763 ath5k_hw_reg_write(ah,
764 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
765 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
766 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
767 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
770 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
771 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
772 ee->ee_tx_end2xlna_enable[ee_mode]);
775 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
776 AR5K_PHY_NF_THRESH62,
777 ee->ee_thr_62[ee_mode]);
780 /* False detect backoff for channels
781 * that have spur noise. Write the new
782 * cyclic power RSSI threshold. */
783 if (ath5k_hw_chan_has_spur_noise(ah, channel))
784 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
785 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
786 AR5K_INIT_CYCRSSI_THR1 +
787 ee->ee_false_detect[ee_mode]);
789 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
790 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
791 AR5K_INIT_CYCRSSI_THR1);
794 * TODO: Per channel i/q infos ? */
795 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
796 AR5K_PHY_IQ_CORR_ENABLE |
797 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
798 ee->ee_q_cal[ee_mode]);
800 /* Heavy clipping -disable for now */
801 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
802 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
808 * Main reset function
810 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
811 struct ieee80211_channel *channel, bool change_channel)
813 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
815 u8 mode, freq, ee_mode, ant[2];
818 ATH5K_TRACE(ah->ah_sc);
829 * Save some registers before a reset
831 /*DCU/Antenna selection not available on 5210*/
832 if (ah->ah_version != AR5K_AR5210) {
834 switch (channel->hw_value & CHANNEL_MODES) {
836 mode = AR5K_MODE_11A;
837 freq = AR5K_INI_RFGAIN_5GHZ;
838 ee_mode = AR5K_EEPROM_MODE_11A;
841 mode = AR5K_MODE_11G;
842 freq = AR5K_INI_RFGAIN_2GHZ;
843 ee_mode = AR5K_EEPROM_MODE_11G;
846 mode = AR5K_MODE_11B;
847 freq = AR5K_INI_RFGAIN_2GHZ;
848 ee_mode = AR5K_EEPROM_MODE_11B;
851 mode = AR5K_MODE_11A_TURBO;
852 freq = AR5K_INI_RFGAIN_5GHZ;
853 ee_mode = AR5K_EEPROM_MODE_11A;
856 if (ah->ah_version == AR5K_AR5211) {
858 "TurboG mode not available on 5211");
861 mode = AR5K_MODE_11G_TURBO;
862 freq = AR5K_INI_RFGAIN_2GHZ;
863 ee_mode = AR5K_EEPROM_MODE_11G;
866 if (ah->ah_version == AR5K_AR5211) {
868 "XR mode not available on 5211");
872 freq = AR5K_INI_RFGAIN_5GHZ;
873 ee_mode = AR5K_EEPROM_MODE_11A;
877 "invalid channel: %d\n", channel->center_freq);
881 if (change_channel) {
883 * Save frame sequence count
884 * For revs. after Oahu, only save
885 * seq num for DCU 0 (Global seq num)
887 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
889 for (i = 0; i < 10; i++)
890 s_seq[i] = ath5k_hw_reg_read(ah,
891 AR5K_QUEUE_DCU_SEQNUM(i));
894 s_seq[0] = ath5k_hw_reg_read(ah,
895 AR5K_QUEUE_DCU_SEQNUM(0));
898 /* TSF accelerates on AR5211 durring reset
899 * As a workaround save it here and restore
900 * it later so that it's back in time after
901 * reset. This way it'll get re-synced on the
902 * next beacon without breaking ad-hoc.
904 * On AR5212 TSF is almost preserved across a
905 * reset so it stays back in time anyway and
906 * we don't have to save/restore it.
908 * XXX: Since this breaks power saving we have
909 * to disable power saving until we receive the
910 * next beacon, so we can resync beacon timers */
911 if (ah->ah_version == AR5K_AR5211) {
912 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
913 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
917 /* Save default antenna */
918 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
920 if (ah->ah_version == AR5K_AR5212) {
921 /* Restore normal 32/40MHz clock operation
922 * to avoid register access delay on certain
924 ath5k_hw_set_sleep_clock(ah, false);
926 /* Since we are going to write rf buffer
927 * check if we have any pending gain_F
928 * optimization settings */
929 if (change_channel && ah->ah_rf_banks != NULL)
930 ath5k_hw_gainf_calibrate(ah);
935 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
936 AR5K_PCICFG_LEDSTATE;
937 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
938 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
940 /* AR5K_STA_ID1 flags, only preserve antenna
941 * settings and ack/cts rate mode */
942 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
943 (AR5K_STA_ID1_DEFAULT_ANTENNA |
944 AR5K_STA_ID1_DESC_ANTENNA |
945 AR5K_STA_ID1_RTS_DEF_ANTENNA |
946 AR5K_STA_ID1_ACKCTS_6MB |
947 AR5K_STA_ID1_BASE_RATE_11B |
948 AR5K_STA_ID1_SELFGEN_DEF_ANT);
950 /* Wakeup the device */
951 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
956 * Initialize operating mode
958 ah->ah_op_mode = op_mode;
960 /* PHY access enable */
961 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
962 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
964 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
967 /* Write initial settings */
968 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
975 if (ah->ah_version != AR5K_AR5210) {
978 * Write initial RF gain settings
979 * This should work for both 5111/5112
981 ret = ath5k_hw_rfgain_init(ah, freq);
988 * Tweak initval settings for revised
989 * chipsets and add some more config
992 ath5k_hw_tweak_initval_settings(ah, channel);
995 * Set TX power (FIXME)
997 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
1001 /* Write rate duration table only on AR5212 and if
1002 * virtual interface has already been brought up
1003 * XXX: rethink this after new mode changes to
1004 * mac80211 are integrated */
1005 if (ah->ah_version == AR5K_AR5212 &&
1006 ah->ah_sc->vif != NULL)
1007 ath5k_hw_write_rate_duration(ah, mode);
1012 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1017 /* Write OFDM timings on 5212*/
1018 if (ah->ah_version == AR5K_AR5212 &&
1019 channel->hw_value & CHANNEL_OFDM) {
1020 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1025 /*Enable/disable 802.11b mode on 5111
1026 (enable 2111 frequency converter + CCK)*/
1027 if (ah->ah_radio == AR5K_RF5111) {
1028 if (mode == AR5K_MODE_11B)
1029 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1032 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1037 * In case a fixed antenna was set as default
1038 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
1042 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
1043 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
1045 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
1047 ant[0] = AR5K_ANT_FIXED_A;
1048 ant[1] = AR5K_ANT_FIXED_B;
1051 /* Commit values from EEPROM */
1052 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1056 * For 5210 we do all initialization using
1057 * initvals, so we don't have to modify
1058 * any settings (5210 also only supports
1062 /* Disable phy and wait */
1063 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1068 * Restore saved values
1071 /*DCU/Antenna selection not available on 5210*/
1072 if (ah->ah_version != AR5K_AR5210) {
1074 if (change_channel) {
1075 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1076 for (i = 0; i < 10; i++)
1077 ath5k_hw_reg_write(ah, s_seq[i],
1078 AR5K_QUEUE_DCU_SEQNUM(i));
1080 ath5k_hw_reg_write(ah, s_seq[0],
1081 AR5K_QUEUE_DCU_SEQNUM(0));
1085 if (ah->ah_version == AR5K_AR5211) {
1086 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1087 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1091 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1095 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1098 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1099 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1101 /* Restore sta_id flags and preserve our mac address*/
1102 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
1104 ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
1112 /* Restore bssid and bssid mask */
1113 /* XXX: add ah->aid once mac80211 gives this to us */
1114 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
1116 /* Set PCU config */
1117 ath5k_hw_set_opmode(ah);
1119 /* Clear any pending interrupts
1120 * PISR/SISR Not available on 5210 */
1121 if (ah->ah_version != AR5K_AR5210)
1122 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1124 /* Set RSSI/BRSSI thresholds
1126 * Note: If we decide to set this value
1127 * dynamicaly, have in mind that when AR5K_RSSI_THR
1128 * register is read it might return 0x40 if we haven't
1129 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1130 * So doing a save/restore procedure here isn't the right
1131 * choice. Instead store it on ath5k_hw */
1132 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1133 AR5K_TUNE_BMISS_THRES <<
1134 AR5K_RSSI_THR_BMISS_S),
1137 /* MIC QoS support */
1138 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1139 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1140 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1143 /* QoS NOACK Policy */
1144 if (ah->ah_version == AR5K_AR5212) {
1145 ath5k_hw_reg_write(ah,
1146 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1147 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1148 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1157 /* Set channel on PHY */
1158 ret = ath5k_hw_channel(ah, channel);
1163 * Enable the PHY and wait until completion
1164 * This includes BaseBand and Synthesizer
1167 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1170 * On 5211+ read activation -> rx delay
1173 * TODO: Half/quarter rate support
1175 if (ah->ah_version != AR5K_AR5210) {
1177 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1178 AR5K_PHY_RX_DELAY_M;
1179 delay = (channel->hw_value & CHANNEL_CCK) ?
1180 ((delay << 2) / 22) : (delay / 10);
1182 udelay(100 + (2 * delay));
1188 * Perform ADC test to see if baseband is ready
1189 * Set tx hold and check adc test register
1191 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1192 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1193 for (i = 0; i <= 20; i++) {
1194 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1198 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1201 * Start automatic gain control calibration
1203 * During AGC calibration RX path is re-routed to
1204 * a power detector so we don't receive anything.
1206 * This method is used to calibrate some static offsets
1207 * used together with on-the fly I/Q calibration (the
1208 * one performed via ath5k_hw_phy_calibrate), that doesn't
1209 * interrupt rx path.
1211 * While rx path is re-routed to the power detector we also
1212 * start a noise floor calibration, to measure the
1213 * card's noise floor (the noise we measure when we are not
1214 * transmiting or receiving anything).
1216 * If we are in a noisy environment AGC calibration may time
1217 * out and/or noise floor calibration might timeout.
1219 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1220 AR5K_PHY_AGCCTL_CAL);
1222 /* At the same time start I/Q calibration for QAM constellation
1223 * -no need for CCK- */
1224 ah->ah_calibration = false;
1225 if (!(mode == AR5K_MODE_11B)) {
1226 ah->ah_calibration = true;
1227 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1228 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1229 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1233 /* Wait for gain calibration to finish (we check for I/Q calibration
1234 * during ath5k_phy_calibrate) */
1235 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1236 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1237 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1238 channel->center_freq);
1242 * If we run NF calibration before AGC, it always times out.
1243 * Binary HAL starts NF and AGC calibration at the same time
1244 * and only waits for AGC to finish. Also if AGC or NF cal.
1245 * times out, reset doesn't fail on binary HAL. I believe
1246 * that's wrong because since rx path is routed to a detector,
1247 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1248 * enables noise floor calibration after offset calibration and if noise
1249 * floor calibration fails, reset fails. I believe that's
1250 * a better approach, we just need to find a polling interval
1251 * that suits best, even if reset continues we need to make
1252 * sure that rx path is ready.
1254 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1258 * Configure QCUs/DCUs
1261 /* TODO: HW Compression support for data queues */
1262 /* TODO: Burst prefetch for data queues */
1265 * Reset queues and start beacon timers at the end of the reset routine
1266 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1267 * Note: If we want we can assign multiple qcus on one dcu.
1269 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1270 ret = ath5k_hw_reset_tx_queue(ah, i);
1272 ATH5K_ERR(ah->ah_sc,
1273 "failed to reset TX queue #%d\n", i);
1280 * Configure DMA/Interrupts
1284 * Set Rx/Tx DMA Configuration
1286 * Set standard DMA size (128). Note that
1287 * a DMA size of 512 causes rx overruns and tx errors
1288 * on pci-e cards (tested on 5424 but since rx overruns
1289 * also occur on 5416/5418 with madwifi we set 128
1290 * for all PCI-E cards to be safe).
1292 * XXX: need to check 5210 for this
1293 * TODO: Check out tx triger level, it's always 64 on dumps but I
1294 * guess we can tweak it and see how it goes ;-)
1296 if (ah->ah_version != AR5K_AR5210) {
1297 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1298 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1299 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1300 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1303 /* Pre-enable interrupts on 5211/5212*/
1304 if (ah->ah_version != AR5K_AR5210)
1305 ath5k_hw_set_imr(ah, ah->ah_imr);
1308 * Setup RFKill interrupt if rfkill flag is set on eeprom.
1309 * TODO: Use gpio pin and polarity infos from eeprom
1310 * TODO: Handle this in ath5k_intr because it'll result
1311 * a nasty interrupt storm.
1314 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1315 ath5k_hw_set_gpio_input(ah, 0);
1316 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1317 if (ah->ah_gpio[0] == 0)
1318 ath5k_hw_set_gpio_intr(ah, 0, 1);
1320 ath5k_hw_set_gpio_intr(ah, 0, 0);
1324 /* Enable 32KHz clock function for AR5212+ chips
1325 * Set clocks to 32KHz operation and use an
1326 * external 32KHz crystal when sleeping if one
1328 if (ah->ah_version == AR5K_AR5212)
1329 ath5k_hw_set_sleep_clock(ah, true);
1332 * Disable beacons and reset the register
1334 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1335 AR5K_BEACON_RESET_TSF);