2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
79 #ifdef CONFIG_ZONE_DMA32
88 EXPORT_SYMBOL(totalram_pages);
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
94 #ifdef CONFIG_ZONE_DMA32
104 int min_free_kbytes = 1024;
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore;
140 unsigned long __initdata required_movablecore;
141 unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
145 EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
158 unsigned long pfn = page_to_pfn(page);
161 seq = zone_span_seqbegin(zone);
162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
164 else if (pfn < zone->zone_start_pfn)
166 } while (zone_span_seqretry(zone, seq));
171 static int page_is_consistent(struct zone *zone, struct page *page)
173 if (!pfn_valid_within(page_to_pfn(page)))
175 if (zone != page_zone(page))
181 * Temporary debugging check for pages not lying within a given zone.
183 static int bad_range(struct zone *zone, struct page *page)
185 if (page_outside_zone_boundaries(zone, page))
187 if (!page_is_consistent(zone, page))
193 static inline int bad_range(struct zone *zone, struct page *page)
199 static void bad_page(struct page *page)
201 printk(KERN_EMERG "Bad page state in process '%s'\n"
202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG "Backtrace:\n",
205 current->comm, page, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page->flags, page->mapping,
207 page_mapcount(page), page_count(page));
209 page->flags &= ~(1 << PG_lru |
219 set_page_count(page, 0);
220 reset_page_mapcount(page);
221 page->mapping = NULL;
222 add_taint(TAINT_BAD_PAGE);
226 * Higher-order pages are called "compound pages". They are structured thusly:
228 * The first PAGE_SIZE page is called the "head page".
230 * The remaining PAGE_SIZE pages are called "tail pages".
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
240 static void free_compound_page(struct page *page)
242 __free_pages_ok(page, compound_order(page));
245 static void prep_compound_page(struct page *page, unsigned long order)
248 int nr_pages = 1 << order;
250 set_compound_page_dtor(page, free_compound_page);
251 set_compound_order(page, order);
253 for (i = 1; i < nr_pages; i++) {
254 struct page *p = page + i;
257 p->first_page = page;
261 static void destroy_compound_page(struct page *page, unsigned long order)
264 int nr_pages = 1 << order;
266 if (unlikely(compound_order(page) != order))
269 if (unlikely(!PageHead(page)))
271 __ClearPageHead(page);
272 for (i = 1; i < nr_pages; i++) {
273 struct page *p = page + i;
275 if (unlikely(!PageTail(p) |
276 (p->first_page != page)))
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 for (i = 0; i < (1 << order); i++)
293 clear_highpage(page + i);
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
301 static inline unsigned long page_order(struct page *page)
303 return page_private(page);
306 static inline void set_page_order(struct page *page, int order)
308 set_page_private(page, order);
309 __SetPageBuddy(page);
312 static inline void rmv_page_order(struct page *page)
314 __ClearPageBuddy(page);
315 set_page_private(page, 0);
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
325 * For example, if the starting buddy (buddy2) is #8 its order
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
338 unsigned long buddy_idx = page_idx ^ (1 << order);
340 return page + (buddy_idx - page_idx);
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
346 return (page_idx & ~(1 << order));
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
360 * For recording page's order, we use page_private(page).
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
365 if (!pfn_valid_within(page_to_pfn(buddy)))
368 if (page_zone_id(page) != page_zone_id(buddy))
371 if (PageBuddy(buddy) && page_order(buddy) == order) {
372 BUG_ON(page_count(buddy) != 0);
379 * Freeing function for a buddy system allocator.
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
402 static inline void __free_one_page(struct page *page,
403 struct zone *zone, unsigned int order)
405 unsigned long page_idx;
406 int order_size = 1 << order;
408 if (unlikely(PageCompound(page)))
409 destroy_compound_page(page, order);
411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
413 VM_BUG_ON(page_idx & (order_size - 1));
414 VM_BUG_ON(bad_range(zone, page));
416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 while (order < MAX_ORDER-1) {
418 unsigned long combined_idx;
419 struct free_area *area;
422 buddy = __page_find_buddy(page, page_idx, order);
423 if (!page_is_buddy(page, buddy, order))
424 break; /* Move the buddy up one level. */
426 list_del(&buddy->lru);
427 area = zone->free_area + order;
429 rmv_page_order(buddy);
430 combined_idx = __find_combined_index(page_idx, order);
431 page = page + (combined_idx - page_idx);
432 page_idx = combined_idx;
435 set_page_order(page, order);
436 list_add(&page->lru, &zone->free_area[order].free_list);
437 zone->free_area[order].nr_free++;
440 static inline int free_pages_check(struct page *page)
442 if (unlikely(page_mapcount(page) |
443 (page->mapping != NULL) |
444 (page_count(page) != 0) |
457 * PageReclaim == PageTail. It is only an error
458 * for PageReclaim to be set if PageCompound is clear.
460 if (unlikely(!PageCompound(page) && PageReclaim(page)))
463 __ClearPageDirty(page);
465 * For now, we report if PG_reserved was found set, but do not
466 * clear it, and do not free the page. But we shall soon need
467 * to do more, for when the ZERO_PAGE count wraps negative.
469 return PageReserved(page);
473 * Frees a list of pages.
474 * Assumes all pages on list are in same zone, and of same order.
475 * count is the number of pages to free.
477 * If the zone was previously in an "all pages pinned" state then look to
478 * see if this freeing clears that state.
480 * And clear the zone's pages_scanned counter, to hold off the "all pages are
481 * pinned" detection logic.
483 static void free_pages_bulk(struct zone *zone, int count,
484 struct list_head *list, int order)
486 spin_lock(&zone->lock);
487 zone->all_unreclaimable = 0;
488 zone->pages_scanned = 0;
492 VM_BUG_ON(list_empty(list));
493 page = list_entry(list->prev, struct page, lru);
494 /* have to delete it as __free_one_page list manipulates */
495 list_del(&page->lru);
496 __free_one_page(page, zone, order);
498 spin_unlock(&zone->lock);
501 static void free_one_page(struct zone *zone, struct page *page, int order)
503 spin_lock(&zone->lock);
504 zone->all_unreclaimable = 0;
505 zone->pages_scanned = 0;
506 __free_one_page(page, zone, order);
507 spin_unlock(&zone->lock);
510 static void __free_pages_ok(struct page *page, unsigned int order)
516 for (i = 0 ; i < (1 << order) ; ++i)
517 reserved += free_pages_check(page + i);
521 if (!PageHighMem(page))
522 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
523 arch_free_page(page, order);
524 kernel_map_pages(page, 1 << order, 0);
526 local_irq_save(flags);
527 __count_vm_events(PGFREE, 1 << order);
528 free_one_page(page_zone(page), page, order);
529 local_irq_restore(flags);
533 * permit the bootmem allocator to evade page validation on high-order frees
535 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
538 __ClearPageReserved(page);
539 set_page_count(page, 0);
540 set_page_refcounted(page);
546 for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 struct page *p = &page[loop];
549 if (loop + 1 < BITS_PER_LONG)
551 __ClearPageReserved(p);
552 set_page_count(p, 0);
555 set_page_refcounted(page);
556 __free_pages(page, order);
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
575 static inline void expand(struct zone *zone, struct page *page,
576 int low, int high, struct free_area *area)
578 unsigned long size = 1 << high;
584 VM_BUG_ON(bad_range(zone, &page[size]));
585 list_add(&page[size].lru, &area->free_list);
587 set_page_order(&page[size], high);
592 * This page is about to be returned from the page allocator
594 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
596 if (unlikely(page_mapcount(page) |
597 (page->mapping != NULL) |
598 (page_count(page) != 0) |
614 * For now, we report if PG_reserved was found set, but do not
615 * clear it, and do not allocate the page: as a safety net.
617 if (PageReserved(page))
620 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
621 1 << PG_referenced | 1 << PG_arch_1 |
622 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
623 set_page_private(page, 0);
624 set_page_refcounted(page);
626 arch_alloc_page(page, order);
627 kernel_map_pages(page, 1 << order, 1);
629 if (gfp_flags & __GFP_ZERO)
630 prep_zero_page(page, order, gfp_flags);
632 if (order && (gfp_flags & __GFP_COMP))
633 prep_compound_page(page, order);
639 * Do the hard work of removing an element from the buddy allocator.
640 * Call me with the zone->lock already held.
642 static struct page *__rmqueue(struct zone *zone, unsigned int order)
644 struct free_area * area;
645 unsigned int current_order;
648 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
649 area = zone->free_area + current_order;
650 if (list_empty(&area->free_list))
653 page = list_entry(area->free_list.next, struct page, lru);
654 list_del(&page->lru);
655 rmv_page_order(page);
657 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658 expand(zone, page, order, current_order, area);
666 * Obtain a specified number of elements from the buddy allocator, all under
667 * a single hold of the lock, for efficiency. Add them to the supplied list.
668 * Returns the number of new pages which were placed at *list.
670 static int rmqueue_bulk(struct zone *zone, unsigned int order,
671 unsigned long count, struct list_head *list)
675 spin_lock(&zone->lock);
676 for (i = 0; i < count; ++i) {
677 struct page *page = __rmqueue(zone, order);
678 if (unlikely(page == NULL))
680 list_add_tail(&page->lru, list);
682 spin_unlock(&zone->lock);
688 * Called from the vmstat counter updater to drain pagesets of this
689 * currently executing processor on remote nodes after they have
692 * Note that this function must be called with the thread pinned to
693 * a single processor.
695 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
700 local_irq_save(flags);
701 if (pcp->count >= pcp->batch)
702 to_drain = pcp->batch;
704 to_drain = pcp->count;
705 free_pages_bulk(zone, to_drain, &pcp->list, 0);
706 pcp->count -= to_drain;
707 local_irq_restore(flags);
711 static void __drain_pages(unsigned int cpu)
717 for_each_zone(zone) {
718 struct per_cpu_pageset *pset;
720 if (!populated_zone(zone))
723 pset = zone_pcp(zone, cpu);
724 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
725 struct per_cpu_pages *pcp;
728 local_irq_save(flags);
729 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
731 local_irq_restore(flags);
738 void mark_free_pages(struct zone *zone)
740 unsigned long pfn, max_zone_pfn;
743 struct list_head *curr;
745 if (!zone->spanned_pages)
748 spin_lock_irqsave(&zone->lock, flags);
750 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
751 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
752 if (pfn_valid(pfn)) {
753 struct page *page = pfn_to_page(pfn);
755 if (!swsusp_page_is_forbidden(page))
756 swsusp_unset_page_free(page);
759 for (order = MAX_ORDER - 1; order >= 0; --order)
760 list_for_each(curr, &zone->free_area[order].free_list) {
763 pfn = page_to_pfn(list_entry(curr, struct page, lru));
764 for (i = 0; i < (1UL << order); i++)
765 swsusp_set_page_free(pfn_to_page(pfn + i));
768 spin_unlock_irqrestore(&zone->lock, flags);
772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
774 void drain_local_pages(void)
778 local_irq_save(flags);
779 __drain_pages(smp_processor_id());
780 local_irq_restore(flags);
782 #endif /* CONFIG_PM */
785 * Free a 0-order page
787 static void fastcall free_hot_cold_page(struct page *page, int cold)
789 struct zone *zone = page_zone(page);
790 struct per_cpu_pages *pcp;
794 page->mapping = NULL;
795 if (free_pages_check(page))
798 if (!PageHighMem(page))
799 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
800 arch_free_page(page, 0);
801 kernel_map_pages(page, 1, 0);
803 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
804 local_irq_save(flags);
805 __count_vm_event(PGFREE);
806 list_add(&page->lru, &pcp->list);
808 if (pcp->count >= pcp->high) {
809 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
810 pcp->count -= pcp->batch;
812 local_irq_restore(flags);
816 void fastcall free_hot_page(struct page *page)
818 free_hot_cold_page(page, 0);
821 void fastcall free_cold_page(struct page *page)
823 free_hot_cold_page(page, 1);
827 * split_page takes a non-compound higher-order page, and splits it into
828 * n (1<<order) sub-pages: page[0..n]
829 * Each sub-page must be freed individually.
831 * Note: this is probably too low level an operation for use in drivers.
832 * Please consult with lkml before using this in your driver.
834 void split_page(struct page *page, unsigned int order)
838 VM_BUG_ON(PageCompound(page));
839 VM_BUG_ON(!page_count(page));
840 for (i = 1; i < (1 << order); i++)
841 set_page_refcounted(page + i);
845 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
846 * we cheat by calling it from here, in the order > 0 path. Saves a branch
849 static struct page *buffered_rmqueue(struct zonelist *zonelist,
850 struct zone *zone, int order, gfp_t gfp_flags)
854 int cold = !!(gfp_flags & __GFP_COLD);
859 if (likely(order == 0)) {
860 struct per_cpu_pages *pcp;
862 pcp = &zone_pcp(zone, cpu)->pcp[cold];
863 local_irq_save(flags);
865 pcp->count = rmqueue_bulk(zone, 0,
866 pcp->batch, &pcp->list);
867 if (unlikely(!pcp->count))
870 page = list_entry(pcp->list.next, struct page, lru);
871 list_del(&page->lru);
874 spin_lock_irqsave(&zone->lock, flags);
875 page = __rmqueue(zone, order);
876 spin_unlock(&zone->lock);
881 __count_zone_vm_events(PGALLOC, zone, 1 << order);
882 zone_statistics(zonelist, zone);
883 local_irq_restore(flags);
886 VM_BUG_ON(bad_range(zone, page));
887 if (prep_new_page(page, order, gfp_flags))
892 local_irq_restore(flags);
897 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
898 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
899 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
900 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
901 #define ALLOC_HARDER 0x10 /* try to alloc harder */
902 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
903 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
905 #ifdef CONFIG_FAIL_PAGE_ALLOC
907 static struct fail_page_alloc_attr {
908 struct fault_attr attr;
910 u32 ignore_gfp_highmem;
914 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
916 struct dentry *ignore_gfp_highmem_file;
917 struct dentry *ignore_gfp_wait_file;
918 struct dentry *min_order_file;
920 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
922 } fail_page_alloc = {
923 .attr = FAULT_ATTR_INITIALIZER,
924 .ignore_gfp_wait = 1,
925 .ignore_gfp_highmem = 1,
929 static int __init setup_fail_page_alloc(char *str)
931 return setup_fault_attr(&fail_page_alloc.attr, str);
933 __setup("fail_page_alloc=", setup_fail_page_alloc);
935 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
937 if (order < fail_page_alloc.min_order)
939 if (gfp_mask & __GFP_NOFAIL)
941 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
943 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
946 return should_fail(&fail_page_alloc.attr, 1 << order);
949 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
951 static int __init fail_page_alloc_debugfs(void)
953 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
957 err = init_fault_attr_dentries(&fail_page_alloc.attr,
961 dir = fail_page_alloc.attr.dentries.dir;
963 fail_page_alloc.ignore_gfp_wait_file =
964 debugfs_create_bool("ignore-gfp-wait", mode, dir,
965 &fail_page_alloc.ignore_gfp_wait);
967 fail_page_alloc.ignore_gfp_highmem_file =
968 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
969 &fail_page_alloc.ignore_gfp_highmem);
970 fail_page_alloc.min_order_file =
971 debugfs_create_u32("min-order", mode, dir,
972 &fail_page_alloc.min_order);
974 if (!fail_page_alloc.ignore_gfp_wait_file ||
975 !fail_page_alloc.ignore_gfp_highmem_file ||
976 !fail_page_alloc.min_order_file) {
978 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
979 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
980 debugfs_remove(fail_page_alloc.min_order_file);
981 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
987 late_initcall(fail_page_alloc_debugfs);
989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
991 #else /* CONFIG_FAIL_PAGE_ALLOC */
993 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1001 * Return 1 if free pages are above 'mark'. This takes into account the order
1002 * of the allocation.
1004 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1005 int classzone_idx, int alloc_flags)
1007 /* free_pages my go negative - that's OK */
1009 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1012 if (alloc_flags & ALLOC_HIGH)
1014 if (alloc_flags & ALLOC_HARDER)
1017 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1019 for (o = 0; o < order; o++) {
1020 /* At the next order, this order's pages become unavailable */
1021 free_pages -= z->free_area[o].nr_free << o;
1023 /* Require fewer higher order pages to be free */
1026 if (free_pages <= min)
1034 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1035 * skip over zones that are not allowed by the cpuset, or that have
1036 * been recently (in last second) found to be nearly full. See further
1037 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1038 * that have to skip over alot of full or unallowed zones.
1040 * If the zonelist cache is present in the passed in zonelist, then
1041 * returns a pointer to the allowed node mask (either the current
1042 * tasks mems_allowed, or node_online_map.)
1044 * If the zonelist cache is not available for this zonelist, does
1045 * nothing and returns NULL.
1047 * If the fullzones BITMAP in the zonelist cache is stale (more than
1048 * a second since last zap'd) then we zap it out (clear its bits.)
1050 * We hold off even calling zlc_setup, until after we've checked the
1051 * first zone in the zonelist, on the theory that most allocations will
1052 * be satisfied from that first zone, so best to examine that zone as
1053 * quickly as we can.
1055 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1057 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1058 nodemask_t *allowednodes; /* zonelist_cache approximation */
1060 zlc = zonelist->zlcache_ptr;
1064 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1065 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1066 zlc->last_full_zap = jiffies;
1069 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1070 &cpuset_current_mems_allowed :
1072 return allowednodes;
1076 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1077 * if it is worth looking at further for free memory:
1078 * 1) Check that the zone isn't thought to be full (doesn't have its
1079 * bit set in the zonelist_cache fullzones BITMAP).
1080 * 2) Check that the zones node (obtained from the zonelist_cache
1081 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1082 * Return true (non-zero) if zone is worth looking at further, or
1083 * else return false (zero) if it is not.
1085 * This check -ignores- the distinction between various watermarks,
1086 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1087 * found to be full for any variation of these watermarks, it will
1088 * be considered full for up to one second by all requests, unless
1089 * we are so low on memory on all allowed nodes that we are forced
1090 * into the second scan of the zonelist.
1092 * In the second scan we ignore this zonelist cache and exactly
1093 * apply the watermarks to all zones, even it is slower to do so.
1094 * We are low on memory in the second scan, and should leave no stone
1095 * unturned looking for a free page.
1097 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1098 nodemask_t *allowednodes)
1100 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1101 int i; /* index of *z in zonelist zones */
1102 int n; /* node that zone *z is on */
1104 zlc = zonelist->zlcache_ptr;
1108 i = z - zonelist->zones;
1111 /* This zone is worth trying if it is allowed but not full */
1112 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1116 * Given 'z' scanning a zonelist, set the corresponding bit in
1117 * zlc->fullzones, so that subsequent attempts to allocate a page
1118 * from that zone don't waste time re-examining it.
1120 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1122 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1123 int i; /* index of *z in zonelist zones */
1125 zlc = zonelist->zlcache_ptr;
1129 i = z - zonelist->zones;
1131 set_bit(i, zlc->fullzones);
1134 #else /* CONFIG_NUMA */
1136 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1141 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1142 nodemask_t *allowednodes)
1147 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1150 #endif /* CONFIG_NUMA */
1153 * get_page_from_freelist goes through the zonelist trying to allocate
1156 static struct page *
1157 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1158 struct zonelist *zonelist, int alloc_flags)
1161 struct page *page = NULL;
1162 int classzone_idx = zone_idx(zonelist->zones[0]);
1164 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1165 int zlc_active = 0; /* set if using zonelist_cache */
1166 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1170 * Scan zonelist, looking for a zone with enough free.
1171 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1173 z = zonelist->zones;
1176 if (NUMA_BUILD && zlc_active &&
1177 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1180 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1181 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1183 if ((alloc_flags & ALLOC_CPUSET) &&
1184 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1187 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1189 if (alloc_flags & ALLOC_WMARK_MIN)
1190 mark = zone->pages_min;
1191 else if (alloc_flags & ALLOC_WMARK_LOW)
1192 mark = zone->pages_low;
1194 mark = zone->pages_high;
1195 if (!zone_watermark_ok(zone, order, mark,
1196 classzone_idx, alloc_flags)) {
1197 if (!zone_reclaim_mode ||
1198 !zone_reclaim(zone, gfp_mask, order))
1199 goto this_zone_full;
1203 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1208 zlc_mark_zone_full(zonelist, z);
1210 if (NUMA_BUILD && !did_zlc_setup) {
1211 /* we do zlc_setup after the first zone is tried */
1212 allowednodes = zlc_setup(zonelist, alloc_flags);
1216 } while (*(++z) != NULL);
1218 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1219 /* Disable zlc cache for second zonelist scan */
1227 * This is the 'heart' of the zoned buddy allocator.
1229 struct page * fastcall
1230 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1231 struct zonelist *zonelist)
1233 const gfp_t wait = gfp_mask & __GFP_WAIT;
1236 struct reclaim_state reclaim_state;
1237 struct task_struct *p = current;
1240 int did_some_progress;
1242 might_sleep_if(wait);
1244 if (should_fail_alloc_page(gfp_mask, order))
1248 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1250 if (unlikely(*z == NULL)) {
1251 /* Should this ever happen?? */
1255 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1256 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1261 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1262 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1263 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1264 * using a larger set of nodes after it has established that the
1265 * allowed per node queues are empty and that nodes are
1268 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1271 for (z = zonelist->zones; *z; z++)
1272 wakeup_kswapd(*z, order);
1275 * OK, we're below the kswapd watermark and have kicked background
1276 * reclaim. Now things get more complex, so set up alloc_flags according
1277 * to how we want to proceed.
1279 * The caller may dip into page reserves a bit more if the caller
1280 * cannot run direct reclaim, or if the caller has realtime scheduling
1281 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1282 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1284 alloc_flags = ALLOC_WMARK_MIN;
1285 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1286 alloc_flags |= ALLOC_HARDER;
1287 if (gfp_mask & __GFP_HIGH)
1288 alloc_flags |= ALLOC_HIGH;
1290 alloc_flags |= ALLOC_CPUSET;
1293 * Go through the zonelist again. Let __GFP_HIGH and allocations
1294 * coming from realtime tasks go deeper into reserves.
1296 * This is the last chance, in general, before the goto nopage.
1297 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1298 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1300 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1304 /* This allocation should allow future memory freeing. */
1307 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1308 && !in_interrupt()) {
1309 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1311 /* go through the zonelist yet again, ignoring mins */
1312 page = get_page_from_freelist(gfp_mask, order,
1313 zonelist, ALLOC_NO_WATERMARKS);
1316 if (gfp_mask & __GFP_NOFAIL) {
1317 congestion_wait(WRITE, HZ/50);
1324 /* Atomic allocations - we can't balance anything */
1330 /* We now go into synchronous reclaim */
1331 cpuset_memory_pressure_bump();
1332 p->flags |= PF_MEMALLOC;
1333 reclaim_state.reclaimed_slab = 0;
1334 p->reclaim_state = &reclaim_state;
1336 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1338 p->reclaim_state = NULL;
1339 p->flags &= ~PF_MEMALLOC;
1343 if (likely(did_some_progress)) {
1344 page = get_page_from_freelist(gfp_mask, order,
1345 zonelist, alloc_flags);
1348 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1350 * Go through the zonelist yet one more time, keep
1351 * very high watermark here, this is only to catch
1352 * a parallel oom killing, we must fail if we're still
1353 * under heavy pressure.
1355 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1356 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1360 out_of_memory(zonelist, gfp_mask, order);
1365 * Don't let big-order allocations loop unless the caller explicitly
1366 * requests that. Wait for some write requests to complete then retry.
1368 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1369 * <= 3, but that may not be true in other implementations.
1372 if (!(gfp_mask & __GFP_NORETRY)) {
1373 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1374 (gfp_mask & __GFP_REPEAT))
1376 if (gfp_mask & __GFP_NOFAIL)
1380 congestion_wait(WRITE, HZ/50);
1385 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1386 printk(KERN_WARNING "%s: page allocation failure."
1387 " order:%d, mode:0x%x\n",
1388 p->comm, order, gfp_mask);
1396 EXPORT_SYMBOL(__alloc_pages);
1399 * Common helper functions.
1401 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1404 page = alloc_pages(gfp_mask, order);
1407 return (unsigned long) page_address(page);
1410 EXPORT_SYMBOL(__get_free_pages);
1412 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1417 * get_zeroed_page() returns a 32-bit address, which cannot represent
1420 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1422 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1424 return (unsigned long) page_address(page);
1428 EXPORT_SYMBOL(get_zeroed_page);
1430 void __pagevec_free(struct pagevec *pvec)
1432 int i = pagevec_count(pvec);
1435 free_hot_cold_page(pvec->pages[i], pvec->cold);
1438 fastcall void __free_pages(struct page *page, unsigned int order)
1440 if (put_page_testzero(page)) {
1442 free_hot_page(page);
1444 __free_pages_ok(page, order);
1448 EXPORT_SYMBOL(__free_pages);
1450 fastcall void free_pages(unsigned long addr, unsigned int order)
1453 VM_BUG_ON(!virt_addr_valid((void *)addr));
1454 __free_pages(virt_to_page((void *)addr), order);
1458 EXPORT_SYMBOL(free_pages);
1460 static unsigned int nr_free_zone_pages(int offset)
1462 /* Just pick one node, since fallback list is circular */
1463 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1464 unsigned int sum = 0;
1466 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1467 struct zone **zonep = zonelist->zones;
1470 for (zone = *zonep++; zone; zone = *zonep++) {
1471 unsigned long size = zone->present_pages;
1472 unsigned long high = zone->pages_high;
1481 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1483 unsigned int nr_free_buffer_pages(void)
1485 return nr_free_zone_pages(gfp_zone(GFP_USER));
1489 * Amount of free RAM allocatable within all zones
1491 unsigned int nr_free_pagecache_pages(void)
1493 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1496 static inline void show_node(struct zone *zone)
1499 printk("Node %d ", zone_to_nid(zone));
1502 void si_meminfo(struct sysinfo *val)
1504 val->totalram = totalram_pages;
1506 val->freeram = global_page_state(NR_FREE_PAGES);
1507 val->bufferram = nr_blockdev_pages();
1508 val->totalhigh = totalhigh_pages;
1509 val->freehigh = nr_free_highpages();
1510 val->mem_unit = PAGE_SIZE;
1513 EXPORT_SYMBOL(si_meminfo);
1516 void si_meminfo_node(struct sysinfo *val, int nid)
1518 pg_data_t *pgdat = NODE_DATA(nid);
1520 val->totalram = pgdat->node_present_pages;
1521 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1522 #ifdef CONFIG_HIGHMEM
1523 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1524 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1530 val->mem_unit = PAGE_SIZE;
1534 #define K(x) ((x) << (PAGE_SHIFT-10))
1537 * Show free area list (used inside shift_scroll-lock stuff)
1538 * We also calculate the percentage fragmentation. We do this by counting the
1539 * memory on each free list with the exception of the first item on the list.
1541 void show_free_areas(void)
1546 for_each_zone(zone) {
1547 if (!populated_zone(zone))
1551 printk("%s per-cpu:\n", zone->name);
1553 for_each_online_cpu(cpu) {
1554 struct per_cpu_pageset *pageset;
1556 pageset = zone_pcp(zone, cpu);
1558 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1559 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1560 cpu, pageset->pcp[0].high,
1561 pageset->pcp[0].batch, pageset->pcp[0].count,
1562 pageset->pcp[1].high, pageset->pcp[1].batch,
1563 pageset->pcp[1].count);
1567 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1568 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1569 global_page_state(NR_ACTIVE),
1570 global_page_state(NR_INACTIVE),
1571 global_page_state(NR_FILE_DIRTY),
1572 global_page_state(NR_WRITEBACK),
1573 global_page_state(NR_UNSTABLE_NFS),
1574 global_page_state(NR_FREE_PAGES),
1575 global_page_state(NR_SLAB_RECLAIMABLE) +
1576 global_page_state(NR_SLAB_UNRECLAIMABLE),
1577 global_page_state(NR_FILE_MAPPED),
1578 global_page_state(NR_PAGETABLE),
1579 global_page_state(NR_BOUNCE));
1581 for_each_zone(zone) {
1584 if (!populated_zone(zone))
1596 " pages_scanned:%lu"
1597 " all_unreclaimable? %s"
1600 K(zone_page_state(zone, NR_FREE_PAGES)),
1603 K(zone->pages_high),
1604 K(zone_page_state(zone, NR_ACTIVE)),
1605 K(zone_page_state(zone, NR_INACTIVE)),
1606 K(zone->present_pages),
1607 zone->pages_scanned,
1608 (zone->all_unreclaimable ? "yes" : "no")
1610 printk("lowmem_reserve[]:");
1611 for (i = 0; i < MAX_NR_ZONES; i++)
1612 printk(" %lu", zone->lowmem_reserve[i]);
1616 for_each_zone(zone) {
1617 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1619 if (!populated_zone(zone))
1623 printk("%s: ", zone->name);
1625 spin_lock_irqsave(&zone->lock, flags);
1626 for (order = 0; order < MAX_ORDER; order++) {
1627 nr[order] = zone->free_area[order].nr_free;
1628 total += nr[order] << order;
1630 spin_unlock_irqrestore(&zone->lock, flags);
1631 for (order = 0; order < MAX_ORDER; order++)
1632 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1633 printk("= %lukB\n", K(total));
1636 show_swap_cache_info();
1640 * Builds allocation fallback zone lists.
1642 * Add all populated zones of a node to the zonelist.
1644 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1645 int nr_zones, enum zone_type zone_type)
1649 BUG_ON(zone_type >= MAX_NR_ZONES);
1654 zone = pgdat->node_zones + zone_type;
1655 if (populated_zone(zone)) {
1656 zonelist->zones[nr_zones++] = zone;
1657 check_highest_zone(zone_type);
1660 } while (zone_type);
1667 * 0 = automatic detection of better ordering.
1668 * 1 = order by ([node] distance, -zonetype)
1669 * 2 = order by (-zonetype, [node] distance)
1671 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1672 * the same zonelist. So only NUMA can configure this param.
1674 #define ZONELIST_ORDER_DEFAULT 0
1675 #define ZONELIST_ORDER_NODE 1
1676 #define ZONELIST_ORDER_ZONE 2
1678 /* zonelist order in the kernel.
1679 * set_zonelist_order() will set this to NODE or ZONE.
1681 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1682 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1686 /* The value user specified ....changed by config */
1687 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1688 /* string for sysctl */
1689 #define NUMA_ZONELIST_ORDER_LEN 16
1690 char numa_zonelist_order[16] = "default";
1693 * interface for configure zonelist ordering.
1694 * command line option "numa_zonelist_order"
1695 * = "[dD]efault - default, automatic configuration.
1696 * = "[nN]ode - order by node locality, then by zone within node
1697 * = "[zZ]one - order by zone, then by locality within zone
1700 static int __parse_numa_zonelist_order(char *s)
1702 if (*s == 'd' || *s == 'D') {
1703 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1704 } else if (*s == 'n' || *s == 'N') {
1705 user_zonelist_order = ZONELIST_ORDER_NODE;
1706 } else if (*s == 'z' || *s == 'Z') {
1707 user_zonelist_order = ZONELIST_ORDER_ZONE;
1710 "Ignoring invalid numa_zonelist_order value: "
1717 static __init int setup_numa_zonelist_order(char *s)
1720 return __parse_numa_zonelist_order(s);
1723 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1726 * sysctl handler for numa_zonelist_order
1728 int numa_zonelist_order_handler(ctl_table *table, int write,
1729 struct file *file, void __user *buffer, size_t *length,
1732 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1736 strncpy(saved_string, (char*)table->data,
1737 NUMA_ZONELIST_ORDER_LEN);
1738 ret = proc_dostring(table, write, file, buffer, length, ppos);
1742 int oldval = user_zonelist_order;
1743 if (__parse_numa_zonelist_order((char*)table->data)) {
1745 * bogus value. restore saved string
1747 strncpy((char*)table->data, saved_string,
1748 NUMA_ZONELIST_ORDER_LEN);
1749 user_zonelist_order = oldval;
1750 } else if (oldval != user_zonelist_order)
1751 build_all_zonelists();
1757 #define MAX_NODE_LOAD (num_online_nodes())
1758 static int node_load[MAX_NUMNODES];
1761 * find_next_best_node - find the next node that should appear in a given node's fallback list
1762 * @node: node whose fallback list we're appending
1763 * @used_node_mask: nodemask_t of already used nodes
1765 * We use a number of factors to determine which is the next node that should
1766 * appear on a given node's fallback list. The node should not have appeared
1767 * already in @node's fallback list, and it should be the next closest node
1768 * according to the distance array (which contains arbitrary distance values
1769 * from each node to each node in the system), and should also prefer nodes
1770 * with no CPUs, since presumably they'll have very little allocation pressure
1771 * on them otherwise.
1772 * It returns -1 if no node is found.
1774 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1777 int min_val = INT_MAX;
1780 /* Use the local node if we haven't already */
1781 if (!node_isset(node, *used_node_mask)) {
1782 node_set(node, *used_node_mask);
1786 for_each_online_node(n) {
1789 /* Don't want a node to appear more than once */
1790 if (node_isset(n, *used_node_mask))
1793 /* Use the distance array to find the distance */
1794 val = node_distance(node, n);
1796 /* Penalize nodes under us ("prefer the next node") */
1799 /* Give preference to headless and unused nodes */
1800 tmp = node_to_cpumask(n);
1801 if (!cpus_empty(tmp))
1802 val += PENALTY_FOR_NODE_WITH_CPUS;
1804 /* Slight preference for less loaded node */
1805 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1806 val += node_load[n];
1808 if (val < min_val) {
1815 node_set(best_node, *used_node_mask);
1822 * Build zonelists ordered by node and zones within node.
1823 * This results in maximum locality--normal zone overflows into local
1824 * DMA zone, if any--but risks exhausting DMA zone.
1826 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1830 struct zonelist *zonelist;
1832 for (i = 0; i < MAX_NR_ZONES; i++) {
1833 zonelist = pgdat->node_zonelists + i;
1834 for (j = 0; zonelist->zones[j] != NULL; j++)
1836 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1837 zonelist->zones[j] = NULL;
1842 * Build zonelists ordered by zone and nodes within zones.
1843 * This results in conserving DMA zone[s] until all Normal memory is
1844 * exhausted, but results in overflowing to remote node while memory
1845 * may still exist in local DMA zone.
1847 static int node_order[MAX_NUMNODES];
1849 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1853 int zone_type; /* needs to be signed */
1855 struct zonelist *zonelist;
1857 for (i = 0; i < MAX_NR_ZONES; i++) {
1858 zonelist = pgdat->node_zonelists + i;
1860 for (zone_type = i; zone_type >= 0; zone_type--) {
1861 for (j = 0; j < nr_nodes; j++) {
1862 node = node_order[j];
1863 z = &NODE_DATA(node)->node_zones[zone_type];
1864 if (populated_zone(z)) {
1865 zonelist->zones[pos++] = z;
1866 check_highest_zone(zone_type);
1870 zonelist->zones[pos] = NULL;
1874 static int default_zonelist_order(void)
1877 unsigned long low_kmem_size,total_size;
1881 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1882 * If they are really small and used heavily, the system can fall
1883 * into OOM very easily.
1884 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1886 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1889 for_each_online_node(nid) {
1890 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1891 z = &NODE_DATA(nid)->node_zones[zone_type];
1892 if (populated_zone(z)) {
1893 if (zone_type < ZONE_NORMAL)
1894 low_kmem_size += z->present_pages;
1895 total_size += z->present_pages;
1899 if (!low_kmem_size || /* there are no DMA area. */
1900 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1901 return ZONELIST_ORDER_NODE;
1903 * look into each node's config.
1904 * If there is a node whose DMA/DMA32 memory is very big area on
1905 * local memory, NODE_ORDER may be suitable.
1907 average_size = total_size / (num_online_nodes() + 1);
1908 for_each_online_node(nid) {
1911 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1912 z = &NODE_DATA(nid)->node_zones[zone_type];
1913 if (populated_zone(z)) {
1914 if (zone_type < ZONE_NORMAL)
1915 low_kmem_size += z->present_pages;
1916 total_size += z->present_pages;
1919 if (low_kmem_size &&
1920 total_size > average_size && /* ignore small node */
1921 low_kmem_size > total_size * 70/100)
1922 return ZONELIST_ORDER_NODE;
1924 return ZONELIST_ORDER_ZONE;
1927 static void set_zonelist_order(void)
1929 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1930 current_zonelist_order = default_zonelist_order();
1932 current_zonelist_order = user_zonelist_order;
1935 static void build_zonelists(pg_data_t *pgdat)
1939 nodemask_t used_mask;
1940 int local_node, prev_node;
1941 struct zonelist *zonelist;
1942 int order = current_zonelist_order;
1944 /* initialize zonelists */
1945 for (i = 0; i < MAX_NR_ZONES; i++) {
1946 zonelist = pgdat->node_zonelists + i;
1947 zonelist->zones[0] = NULL;
1950 /* NUMA-aware ordering of nodes */
1951 local_node = pgdat->node_id;
1952 load = num_online_nodes();
1953 prev_node = local_node;
1954 nodes_clear(used_mask);
1956 memset(node_load, 0, sizeof(node_load));
1957 memset(node_order, 0, sizeof(node_order));
1960 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1961 int distance = node_distance(local_node, node);
1964 * If another node is sufficiently far away then it is better
1965 * to reclaim pages in a zone before going off node.
1967 if (distance > RECLAIM_DISTANCE)
1968 zone_reclaim_mode = 1;
1971 * We don't want to pressure a particular node.
1972 * So adding penalty to the first node in same
1973 * distance group to make it round-robin.
1975 if (distance != node_distance(local_node, prev_node))
1976 node_load[node] = load;
1980 if (order == ZONELIST_ORDER_NODE)
1981 build_zonelists_in_node_order(pgdat, node);
1983 node_order[j++] = node; /* remember order */
1986 if (order == ZONELIST_ORDER_ZONE) {
1987 /* calculate node order -- i.e., DMA last! */
1988 build_zonelists_in_zone_order(pgdat, j);
1992 /* Construct the zonelist performance cache - see further mmzone.h */
1993 static void build_zonelist_cache(pg_data_t *pgdat)
1997 for (i = 0; i < MAX_NR_ZONES; i++) {
1998 struct zonelist *zonelist;
1999 struct zonelist_cache *zlc;
2002 zonelist = pgdat->node_zonelists + i;
2003 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2004 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2005 for (z = zonelist->zones; *z; z++)
2006 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2011 #else /* CONFIG_NUMA */
2013 static void set_zonelist_order(void)
2015 current_zonelist_order = ZONELIST_ORDER_ZONE;
2018 static void build_zonelists(pg_data_t *pgdat)
2020 int node, local_node;
2023 local_node = pgdat->node_id;
2024 for (i = 0; i < MAX_NR_ZONES; i++) {
2025 struct zonelist *zonelist;
2027 zonelist = pgdat->node_zonelists + i;
2029 j = build_zonelists_node(pgdat, zonelist, 0, i);
2031 * Now we build the zonelist so that it contains the zones
2032 * of all the other nodes.
2033 * We don't want to pressure a particular node, so when
2034 * building the zones for node N, we make sure that the
2035 * zones coming right after the local ones are those from
2036 * node N+1 (modulo N)
2038 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2039 if (!node_online(node))
2041 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2043 for (node = 0; node < local_node; node++) {
2044 if (!node_online(node))
2046 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2049 zonelist->zones[j] = NULL;
2053 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2054 static void build_zonelist_cache(pg_data_t *pgdat)
2058 for (i = 0; i < MAX_NR_ZONES; i++)
2059 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2062 #endif /* CONFIG_NUMA */
2064 /* return values int ....just for stop_machine_run() */
2065 static int __build_all_zonelists(void *dummy)
2069 for_each_online_node(nid) {
2070 build_zonelists(NODE_DATA(nid));
2071 build_zonelist_cache(NODE_DATA(nid));
2076 void build_all_zonelists(void)
2078 set_zonelist_order();
2080 if (system_state == SYSTEM_BOOTING) {
2081 __build_all_zonelists(NULL);
2082 cpuset_init_current_mems_allowed();
2084 /* we have to stop all cpus to guaranntee there is no user
2086 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2087 /* cpuset refresh routine should be here */
2089 vm_total_pages = nr_free_pagecache_pages();
2090 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2092 zonelist_order_name[current_zonelist_order],
2095 printk("Policy zone: %s\n", zone_names[policy_zone]);
2100 * Helper functions to size the waitqueue hash table.
2101 * Essentially these want to choose hash table sizes sufficiently
2102 * large so that collisions trying to wait on pages are rare.
2103 * But in fact, the number of active page waitqueues on typical
2104 * systems is ridiculously low, less than 200. So this is even
2105 * conservative, even though it seems large.
2107 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2108 * waitqueues, i.e. the size of the waitq table given the number of pages.
2110 #define PAGES_PER_WAITQUEUE 256
2112 #ifndef CONFIG_MEMORY_HOTPLUG
2113 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2115 unsigned long size = 1;
2117 pages /= PAGES_PER_WAITQUEUE;
2119 while (size < pages)
2123 * Once we have dozens or even hundreds of threads sleeping
2124 * on IO we've got bigger problems than wait queue collision.
2125 * Limit the size of the wait table to a reasonable size.
2127 size = min(size, 4096UL);
2129 return max(size, 4UL);
2133 * A zone's size might be changed by hot-add, so it is not possible to determine
2134 * a suitable size for its wait_table. So we use the maximum size now.
2136 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2138 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2139 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2140 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2142 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2143 * or more by the traditional way. (See above). It equals:
2145 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2146 * ia64(16K page size) : = ( 8G + 4M)byte.
2147 * powerpc (64K page size) : = (32G +16M)byte.
2149 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2156 * This is an integer logarithm so that shifts can be used later
2157 * to extract the more random high bits from the multiplicative
2158 * hash function before the remainder is taken.
2160 static inline unsigned long wait_table_bits(unsigned long size)
2165 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2168 * Initially all pages are reserved - free ones are freed
2169 * up by free_all_bootmem() once the early boot process is
2170 * done. Non-atomic initialization, single-pass.
2172 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2173 unsigned long start_pfn, enum memmap_context context)
2176 unsigned long end_pfn = start_pfn + size;
2179 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2181 * There can be holes in boot-time mem_map[]s
2182 * handed to this function. They do not
2183 * exist on hotplugged memory.
2185 if (context == MEMMAP_EARLY) {
2186 if (!early_pfn_valid(pfn))
2188 if (!early_pfn_in_nid(pfn, nid))
2191 page = pfn_to_page(pfn);
2192 set_page_links(page, zone, nid, pfn);
2193 init_page_count(page);
2194 reset_page_mapcount(page);
2195 SetPageReserved(page);
2196 INIT_LIST_HEAD(&page->lru);
2197 #ifdef WANT_PAGE_VIRTUAL
2198 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2199 if (!is_highmem_idx(zone))
2200 set_page_address(page, __va(pfn << PAGE_SHIFT));
2205 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2206 struct zone *zone, unsigned long size)
2209 for (order = 0; order < MAX_ORDER ; order++) {
2210 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2211 zone->free_area[order].nr_free = 0;
2215 #ifndef __HAVE_ARCH_MEMMAP_INIT
2216 #define memmap_init(size, nid, zone, start_pfn) \
2217 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2220 static int __devinit zone_batchsize(struct zone *zone)
2225 * The per-cpu-pages pools are set to around 1000th of the
2226 * size of the zone. But no more than 1/2 of a meg.
2228 * OK, so we don't know how big the cache is. So guess.
2230 batch = zone->present_pages / 1024;
2231 if (batch * PAGE_SIZE > 512 * 1024)
2232 batch = (512 * 1024) / PAGE_SIZE;
2233 batch /= 4; /* We effectively *= 4 below */
2238 * Clamp the batch to a 2^n - 1 value. Having a power
2239 * of 2 value was found to be more likely to have
2240 * suboptimal cache aliasing properties in some cases.
2242 * For example if 2 tasks are alternately allocating
2243 * batches of pages, one task can end up with a lot
2244 * of pages of one half of the possible page colors
2245 * and the other with pages of the other colors.
2247 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2252 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2254 struct per_cpu_pages *pcp;
2256 memset(p, 0, sizeof(*p));
2258 pcp = &p->pcp[0]; /* hot */
2260 pcp->high = 6 * batch;
2261 pcp->batch = max(1UL, 1 * batch);
2262 INIT_LIST_HEAD(&pcp->list);
2264 pcp = &p->pcp[1]; /* cold*/
2266 pcp->high = 2 * batch;
2267 pcp->batch = max(1UL, batch/2);
2268 INIT_LIST_HEAD(&pcp->list);
2272 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2273 * to the value high for the pageset p.
2276 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2279 struct per_cpu_pages *pcp;
2281 pcp = &p->pcp[0]; /* hot list */
2283 pcp->batch = max(1UL, high/4);
2284 if ((high/4) > (PAGE_SHIFT * 8))
2285 pcp->batch = PAGE_SHIFT * 8;
2291 * Boot pageset table. One per cpu which is going to be used for all
2292 * zones and all nodes. The parameters will be set in such a way
2293 * that an item put on a list will immediately be handed over to
2294 * the buddy list. This is safe since pageset manipulation is done
2295 * with interrupts disabled.
2297 * Some NUMA counter updates may also be caught by the boot pagesets.
2299 * The boot_pagesets must be kept even after bootup is complete for
2300 * unused processors and/or zones. They do play a role for bootstrapping
2301 * hotplugged processors.
2303 * zoneinfo_show() and maybe other functions do
2304 * not check if the processor is online before following the pageset pointer.
2305 * Other parts of the kernel may not check if the zone is available.
2307 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2310 * Dynamically allocate memory for the
2311 * per cpu pageset array in struct zone.
2313 static int __cpuinit process_zones(int cpu)
2315 struct zone *zone, *dzone;
2317 for_each_zone(zone) {
2319 if (!populated_zone(zone))
2322 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2323 GFP_KERNEL, cpu_to_node(cpu));
2324 if (!zone_pcp(zone, cpu))
2327 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2329 if (percpu_pagelist_fraction)
2330 setup_pagelist_highmark(zone_pcp(zone, cpu),
2331 (zone->present_pages / percpu_pagelist_fraction));
2336 for_each_zone(dzone) {
2339 kfree(zone_pcp(dzone, cpu));
2340 zone_pcp(dzone, cpu) = NULL;
2345 static inline void free_zone_pagesets(int cpu)
2349 for_each_zone(zone) {
2350 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2352 /* Free per_cpu_pageset if it is slab allocated */
2353 if (pset != &boot_pageset[cpu])
2355 zone_pcp(zone, cpu) = NULL;
2359 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2360 unsigned long action,
2363 int cpu = (long)hcpu;
2364 int ret = NOTIFY_OK;
2367 case CPU_UP_PREPARE:
2368 case CPU_UP_PREPARE_FROZEN:
2369 if (process_zones(cpu))
2372 case CPU_UP_CANCELED:
2373 case CPU_UP_CANCELED_FROZEN:
2375 case CPU_DEAD_FROZEN:
2376 free_zone_pagesets(cpu);
2384 static struct notifier_block __cpuinitdata pageset_notifier =
2385 { &pageset_cpuup_callback, NULL, 0 };
2387 void __init setup_per_cpu_pageset(void)
2391 /* Initialize per_cpu_pageset for cpu 0.
2392 * A cpuup callback will do this for every cpu
2393 * as it comes online
2395 err = process_zones(smp_processor_id());
2397 register_cpu_notifier(&pageset_notifier);
2402 static noinline __init_refok
2403 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2406 struct pglist_data *pgdat = zone->zone_pgdat;
2410 * The per-page waitqueue mechanism uses hashed waitqueues
2413 zone->wait_table_hash_nr_entries =
2414 wait_table_hash_nr_entries(zone_size_pages);
2415 zone->wait_table_bits =
2416 wait_table_bits(zone->wait_table_hash_nr_entries);
2417 alloc_size = zone->wait_table_hash_nr_entries
2418 * sizeof(wait_queue_head_t);
2420 if (system_state == SYSTEM_BOOTING) {
2421 zone->wait_table = (wait_queue_head_t *)
2422 alloc_bootmem_node(pgdat, alloc_size);
2425 * This case means that a zone whose size was 0 gets new memory
2426 * via memory hot-add.
2427 * But it may be the case that a new node was hot-added. In
2428 * this case vmalloc() will not be able to use this new node's
2429 * memory - this wait_table must be initialized to use this new
2430 * node itself as well.
2431 * To use this new node's memory, further consideration will be
2434 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2436 if (!zone->wait_table)
2439 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2440 init_waitqueue_head(zone->wait_table + i);
2445 static __meminit void zone_pcp_init(struct zone *zone)
2448 unsigned long batch = zone_batchsize(zone);
2450 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2452 /* Early boot. Slab allocator not functional yet */
2453 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2454 setup_pageset(&boot_pageset[cpu],0);
2456 setup_pageset(zone_pcp(zone,cpu), batch);
2459 if (zone->present_pages)
2460 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2461 zone->name, zone->present_pages, batch);
2464 __meminit int init_currently_empty_zone(struct zone *zone,
2465 unsigned long zone_start_pfn,
2467 enum memmap_context context)
2469 struct pglist_data *pgdat = zone->zone_pgdat;
2471 ret = zone_wait_table_init(zone, size);
2474 pgdat->nr_zones = zone_idx(zone) + 1;
2476 zone->zone_start_pfn = zone_start_pfn;
2478 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2480 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2485 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2487 * Basic iterator support. Return the first range of PFNs for a node
2488 * Note: nid == MAX_NUMNODES returns first region regardless of node
2490 static int __meminit first_active_region_index_in_nid(int nid)
2494 for (i = 0; i < nr_nodemap_entries; i++)
2495 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2502 * Basic iterator support. Return the next active range of PFNs for a node
2503 * Note: nid == MAX_NUMNODES returns next region regardles of node
2505 static int __meminit next_active_region_index_in_nid(int index, int nid)
2507 for (index = index + 1; index < nr_nodemap_entries; index++)
2508 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2514 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2516 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2517 * Architectures may implement their own version but if add_active_range()
2518 * was used and there are no special requirements, this is a convenient
2521 int __meminit early_pfn_to_nid(unsigned long pfn)
2525 for (i = 0; i < nr_nodemap_entries; i++) {
2526 unsigned long start_pfn = early_node_map[i].start_pfn;
2527 unsigned long end_pfn = early_node_map[i].end_pfn;
2529 if (start_pfn <= pfn && pfn < end_pfn)
2530 return early_node_map[i].nid;
2535 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2537 /* Basic iterator support to walk early_node_map[] */
2538 #define for_each_active_range_index_in_nid(i, nid) \
2539 for (i = first_active_region_index_in_nid(nid); i != -1; \
2540 i = next_active_region_index_in_nid(i, nid))
2543 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2544 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2545 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2547 * If an architecture guarantees that all ranges registered with
2548 * add_active_ranges() contain no holes and may be freed, this
2549 * this function may be used instead of calling free_bootmem() manually.
2551 void __init free_bootmem_with_active_regions(int nid,
2552 unsigned long max_low_pfn)
2556 for_each_active_range_index_in_nid(i, nid) {
2557 unsigned long size_pages = 0;
2558 unsigned long end_pfn = early_node_map[i].end_pfn;
2560 if (early_node_map[i].start_pfn >= max_low_pfn)
2563 if (end_pfn > max_low_pfn)
2564 end_pfn = max_low_pfn;
2566 size_pages = end_pfn - early_node_map[i].start_pfn;
2567 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2568 PFN_PHYS(early_node_map[i].start_pfn),
2569 size_pages << PAGE_SHIFT);
2574 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2575 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2577 * If an architecture guarantees that all ranges registered with
2578 * add_active_ranges() contain no holes and may be freed, this
2579 * function may be used instead of calling memory_present() manually.
2581 void __init sparse_memory_present_with_active_regions(int nid)
2585 for_each_active_range_index_in_nid(i, nid)
2586 memory_present(early_node_map[i].nid,
2587 early_node_map[i].start_pfn,
2588 early_node_map[i].end_pfn);
2592 * push_node_boundaries - Push node boundaries to at least the requested boundary
2593 * @nid: The nid of the node to push the boundary for
2594 * @start_pfn: The start pfn of the node
2595 * @end_pfn: The end pfn of the node
2597 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2598 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2599 * be hotplugged even though no physical memory exists. This function allows
2600 * an arch to push out the node boundaries so mem_map is allocated that can
2603 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2604 void __init push_node_boundaries(unsigned int nid,
2605 unsigned long start_pfn, unsigned long end_pfn)
2607 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2608 nid, start_pfn, end_pfn);
2610 /* Initialise the boundary for this node if necessary */
2611 if (node_boundary_end_pfn[nid] == 0)
2612 node_boundary_start_pfn[nid] = -1UL;
2614 /* Update the boundaries */
2615 if (node_boundary_start_pfn[nid] > start_pfn)
2616 node_boundary_start_pfn[nid] = start_pfn;
2617 if (node_boundary_end_pfn[nid] < end_pfn)
2618 node_boundary_end_pfn[nid] = end_pfn;
2621 /* If necessary, push the node boundary out for reserve hotadd */
2622 static void __meminit account_node_boundary(unsigned int nid,
2623 unsigned long *start_pfn, unsigned long *end_pfn)
2625 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2626 nid, *start_pfn, *end_pfn);
2628 /* Return if boundary information has not been provided */
2629 if (node_boundary_end_pfn[nid] == 0)
2632 /* Check the boundaries and update if necessary */
2633 if (node_boundary_start_pfn[nid] < *start_pfn)
2634 *start_pfn = node_boundary_start_pfn[nid];
2635 if (node_boundary_end_pfn[nid] > *end_pfn)
2636 *end_pfn = node_boundary_end_pfn[nid];
2639 void __init push_node_boundaries(unsigned int nid,
2640 unsigned long start_pfn, unsigned long end_pfn) {}
2642 static void __meminit account_node_boundary(unsigned int nid,
2643 unsigned long *start_pfn, unsigned long *end_pfn) {}
2648 * get_pfn_range_for_nid - Return the start and end page frames for a node
2649 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2650 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2651 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2653 * It returns the start and end page frame of a node based on information
2654 * provided by an arch calling add_active_range(). If called for a node
2655 * with no available memory, a warning is printed and the start and end
2658 void __meminit get_pfn_range_for_nid(unsigned int nid,
2659 unsigned long *start_pfn, unsigned long *end_pfn)
2665 for_each_active_range_index_in_nid(i, nid) {
2666 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2667 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2670 if (*start_pfn == -1UL) {
2671 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2675 /* Push the node boundaries out if requested */
2676 account_node_boundary(nid, start_pfn, end_pfn);
2680 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2681 * assumption is made that zones within a node are ordered in monotonic
2682 * increasing memory addresses so that the "highest" populated zone is used
2684 void __init find_usable_zone_for_movable(void)
2687 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2688 if (zone_index == ZONE_MOVABLE)
2691 if (arch_zone_highest_possible_pfn[zone_index] >
2692 arch_zone_lowest_possible_pfn[zone_index])
2696 VM_BUG_ON(zone_index == -1);
2697 movable_zone = zone_index;
2701 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2702 * because it is sized independant of architecture. Unlike the other zones,
2703 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2704 * in each node depending on the size of each node and how evenly kernelcore
2705 * is distributed. This helper function adjusts the zone ranges
2706 * provided by the architecture for a given node by using the end of the
2707 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2708 * zones within a node are in order of monotonic increases memory addresses
2710 void __meminit adjust_zone_range_for_zone_movable(int nid,
2711 unsigned long zone_type,
2712 unsigned long node_start_pfn,
2713 unsigned long node_end_pfn,
2714 unsigned long *zone_start_pfn,
2715 unsigned long *zone_end_pfn)
2717 /* Only adjust if ZONE_MOVABLE is on this node */
2718 if (zone_movable_pfn[nid]) {
2719 /* Size ZONE_MOVABLE */
2720 if (zone_type == ZONE_MOVABLE) {
2721 *zone_start_pfn = zone_movable_pfn[nid];
2722 *zone_end_pfn = min(node_end_pfn,
2723 arch_zone_highest_possible_pfn[movable_zone]);
2725 /* Adjust for ZONE_MOVABLE starting within this range */
2726 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2727 *zone_end_pfn > zone_movable_pfn[nid]) {
2728 *zone_end_pfn = zone_movable_pfn[nid];
2730 /* Check if this whole range is within ZONE_MOVABLE */
2731 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2732 *zone_start_pfn = *zone_end_pfn;
2737 * Return the number of pages a zone spans in a node, including holes
2738 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2740 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2741 unsigned long zone_type,
2742 unsigned long *ignored)
2744 unsigned long node_start_pfn, node_end_pfn;
2745 unsigned long zone_start_pfn, zone_end_pfn;
2747 /* Get the start and end of the node and zone */
2748 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2749 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2750 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2751 adjust_zone_range_for_zone_movable(nid, zone_type,
2752 node_start_pfn, node_end_pfn,
2753 &zone_start_pfn, &zone_end_pfn);
2755 /* Check that this node has pages within the zone's required range */
2756 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2759 /* Move the zone boundaries inside the node if necessary */
2760 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2761 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2763 /* Return the spanned pages */
2764 return zone_end_pfn - zone_start_pfn;
2768 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2769 * then all holes in the requested range will be accounted for.
2771 unsigned long __meminit __absent_pages_in_range(int nid,
2772 unsigned long range_start_pfn,
2773 unsigned long range_end_pfn)
2776 unsigned long prev_end_pfn = 0, hole_pages = 0;
2777 unsigned long start_pfn;
2779 /* Find the end_pfn of the first active range of pfns in the node */
2780 i = first_active_region_index_in_nid(nid);
2784 /* Account for ranges before physical memory on this node */
2785 if (early_node_map[i].start_pfn > range_start_pfn)
2786 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2788 prev_end_pfn = early_node_map[i].start_pfn;
2790 /* Find all holes for the zone within the node */
2791 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2793 /* No need to continue if prev_end_pfn is outside the zone */
2794 if (prev_end_pfn >= range_end_pfn)
2797 /* Make sure the end of the zone is not within the hole */
2798 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2799 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2801 /* Update the hole size cound and move on */
2802 if (start_pfn > range_start_pfn) {
2803 BUG_ON(prev_end_pfn > start_pfn);
2804 hole_pages += start_pfn - prev_end_pfn;
2806 prev_end_pfn = early_node_map[i].end_pfn;
2809 /* Account for ranges past physical memory on this node */
2810 if (range_end_pfn > prev_end_pfn)
2811 hole_pages += range_end_pfn -
2812 max(range_start_pfn, prev_end_pfn);
2818 * absent_pages_in_range - Return number of page frames in holes within a range
2819 * @start_pfn: The start PFN to start searching for holes
2820 * @end_pfn: The end PFN to stop searching for holes
2822 * It returns the number of pages frames in memory holes within a range.
2824 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2825 unsigned long end_pfn)
2827 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2830 /* Return the number of page frames in holes in a zone on a node */
2831 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2832 unsigned long zone_type,
2833 unsigned long *ignored)
2835 unsigned long node_start_pfn, node_end_pfn;
2836 unsigned long zone_start_pfn, zone_end_pfn;
2838 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2839 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2841 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2844 adjust_zone_range_for_zone_movable(nid, zone_type,
2845 node_start_pfn, node_end_pfn,
2846 &zone_start_pfn, &zone_end_pfn);
2847 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2851 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2852 unsigned long zone_type,
2853 unsigned long *zones_size)
2855 return zones_size[zone_type];
2858 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2859 unsigned long zone_type,
2860 unsigned long *zholes_size)
2865 return zholes_size[zone_type];
2870 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2871 unsigned long *zones_size, unsigned long *zholes_size)
2873 unsigned long realtotalpages, totalpages = 0;
2876 for (i = 0; i < MAX_NR_ZONES; i++)
2877 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2879 pgdat->node_spanned_pages = totalpages;
2881 realtotalpages = totalpages;
2882 for (i = 0; i < MAX_NR_ZONES; i++)
2884 zone_absent_pages_in_node(pgdat->node_id, i,
2886 pgdat->node_present_pages = realtotalpages;
2887 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2892 * Set up the zone data structures:
2893 * - mark all pages reserved
2894 * - mark all memory queues empty
2895 * - clear the memory bitmaps
2897 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2898 unsigned long *zones_size, unsigned long *zholes_size)
2901 int nid = pgdat->node_id;
2902 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2905 pgdat_resize_init(pgdat);
2906 pgdat->nr_zones = 0;
2907 init_waitqueue_head(&pgdat->kswapd_wait);
2908 pgdat->kswapd_max_order = 0;
2910 for (j = 0; j < MAX_NR_ZONES; j++) {
2911 struct zone *zone = pgdat->node_zones + j;
2912 unsigned long size, realsize, memmap_pages;
2914 size = zone_spanned_pages_in_node(nid, j, zones_size);
2915 realsize = size - zone_absent_pages_in_node(nid, j,
2919 * Adjust realsize so that it accounts for how much memory
2920 * is used by this zone for memmap. This affects the watermark
2921 * and per-cpu initialisations
2923 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2924 if (realsize >= memmap_pages) {
2925 realsize -= memmap_pages;
2927 " %s zone: %lu pages used for memmap\n",
2928 zone_names[j], memmap_pages);
2931 " %s zone: %lu pages exceeds realsize %lu\n",
2932 zone_names[j], memmap_pages, realsize);
2934 /* Account for reserved pages */
2935 if (j == 0 && realsize > dma_reserve) {
2936 realsize -= dma_reserve;
2937 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2938 zone_names[0], dma_reserve);
2941 if (!is_highmem_idx(j))
2942 nr_kernel_pages += realsize;
2943 nr_all_pages += realsize;
2945 zone->spanned_pages = size;
2946 zone->present_pages = realsize;
2949 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2951 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2953 zone->name = zone_names[j];
2954 spin_lock_init(&zone->lock);
2955 spin_lock_init(&zone->lru_lock);
2956 zone_seqlock_init(zone);
2957 zone->zone_pgdat = pgdat;
2959 zone->prev_priority = DEF_PRIORITY;
2961 zone_pcp_init(zone);
2962 INIT_LIST_HEAD(&zone->active_list);
2963 INIT_LIST_HEAD(&zone->inactive_list);
2964 zone->nr_scan_active = 0;
2965 zone->nr_scan_inactive = 0;
2966 zap_zone_vm_stats(zone);
2967 atomic_set(&zone->reclaim_in_progress, 0);
2971 ret = init_currently_empty_zone(zone, zone_start_pfn,
2972 size, MEMMAP_EARLY);
2974 zone_start_pfn += size;
2978 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2980 /* Skip empty nodes */
2981 if (!pgdat->node_spanned_pages)
2984 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2985 /* ia64 gets its own node_mem_map, before this, without bootmem */
2986 if (!pgdat->node_mem_map) {
2987 unsigned long size, start, end;
2991 * The zone's endpoints aren't required to be MAX_ORDER
2992 * aligned but the node_mem_map endpoints must be in order
2993 * for the buddy allocator to function correctly.
2995 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2996 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2997 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2998 size = (end - start) * sizeof(struct page);
2999 map = alloc_remap(pgdat->node_id, size);
3001 map = alloc_bootmem_node(pgdat, size);
3002 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3004 #ifndef CONFIG_NEED_MULTIPLE_NODES
3006 * With no DISCONTIG, the global mem_map is just set as node 0's
3008 if (pgdat == NODE_DATA(0)) {
3009 mem_map = NODE_DATA(0)->node_mem_map;
3010 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3011 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3012 mem_map -= pgdat->node_start_pfn;
3013 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3016 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3019 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3020 unsigned long *zones_size, unsigned long node_start_pfn,
3021 unsigned long *zholes_size)
3023 pgdat->node_id = nid;
3024 pgdat->node_start_pfn = node_start_pfn;
3025 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3027 alloc_node_mem_map(pgdat);
3029 free_area_init_core(pgdat, zones_size, zholes_size);
3032 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3034 #if MAX_NUMNODES > 1
3036 * Figure out the number of possible node ids.
3038 static void __init setup_nr_node_ids(void)
3041 unsigned int highest = 0;
3043 for_each_node_mask(node, node_possible_map)
3045 nr_node_ids = highest + 1;
3048 static inline void setup_nr_node_ids(void)
3054 * add_active_range - Register a range of PFNs backed by physical memory
3055 * @nid: The node ID the range resides on
3056 * @start_pfn: The start PFN of the available physical memory
3057 * @end_pfn: The end PFN of the available physical memory
3059 * These ranges are stored in an early_node_map[] and later used by
3060 * free_area_init_nodes() to calculate zone sizes and holes. If the
3061 * range spans a memory hole, it is up to the architecture to ensure
3062 * the memory is not freed by the bootmem allocator. If possible
3063 * the range being registered will be merged with existing ranges.
3065 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3066 unsigned long end_pfn)
3070 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3071 "%d entries of %d used\n",
3072 nid, start_pfn, end_pfn,
3073 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3075 /* Merge with existing active regions if possible */
3076 for (i = 0; i < nr_nodemap_entries; i++) {
3077 if (early_node_map[i].nid != nid)
3080 /* Skip if an existing region covers this new one */
3081 if (start_pfn >= early_node_map[i].start_pfn &&
3082 end_pfn <= early_node_map[i].end_pfn)
3085 /* Merge forward if suitable */
3086 if (start_pfn <= early_node_map[i].end_pfn &&
3087 end_pfn > early_node_map[i].end_pfn) {
3088 early_node_map[i].end_pfn = end_pfn;
3092 /* Merge backward if suitable */
3093 if (start_pfn < early_node_map[i].end_pfn &&
3094 end_pfn >= early_node_map[i].start_pfn) {
3095 early_node_map[i].start_pfn = start_pfn;
3100 /* Check that early_node_map is large enough */
3101 if (i >= MAX_ACTIVE_REGIONS) {
3102 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3103 MAX_ACTIVE_REGIONS);
3107 early_node_map[i].nid = nid;
3108 early_node_map[i].start_pfn = start_pfn;
3109 early_node_map[i].end_pfn = end_pfn;
3110 nr_nodemap_entries = i + 1;
3114 * shrink_active_range - Shrink an existing registered range of PFNs
3115 * @nid: The node id the range is on that should be shrunk
3116 * @old_end_pfn: The old end PFN of the range
3117 * @new_end_pfn: The new PFN of the range
3119 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3120 * The map is kept at the end physical page range that has already been
3121 * registered with add_active_range(). This function allows an arch to shrink
3122 * an existing registered range.
3124 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3125 unsigned long new_end_pfn)
3129 /* Find the old active region end and shrink */
3130 for_each_active_range_index_in_nid(i, nid)
3131 if (early_node_map[i].end_pfn == old_end_pfn) {
3132 early_node_map[i].end_pfn = new_end_pfn;
3138 * remove_all_active_ranges - Remove all currently registered regions
3140 * During discovery, it may be found that a table like SRAT is invalid
3141 * and an alternative discovery method must be used. This function removes
3142 * all currently registered regions.
3144 void __init remove_all_active_ranges(void)
3146 memset(early_node_map, 0, sizeof(early_node_map));
3147 nr_nodemap_entries = 0;
3148 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3149 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3150 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3151 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3154 /* Compare two active node_active_regions */
3155 static int __init cmp_node_active_region(const void *a, const void *b)
3157 struct node_active_region *arange = (struct node_active_region *)a;
3158 struct node_active_region *brange = (struct node_active_region *)b;
3160 /* Done this way to avoid overflows */
3161 if (arange->start_pfn > brange->start_pfn)
3163 if (arange->start_pfn < brange->start_pfn)
3169 /* sort the node_map by start_pfn */
3170 static void __init sort_node_map(void)
3172 sort(early_node_map, (size_t)nr_nodemap_entries,
3173 sizeof(struct node_active_region),
3174 cmp_node_active_region, NULL);
3177 /* Find the lowest pfn for a node */
3178 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3181 unsigned long min_pfn = ULONG_MAX;
3183 /* Assuming a sorted map, the first range found has the starting pfn */
3184 for_each_active_range_index_in_nid(i, nid)
3185 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3187 if (min_pfn == ULONG_MAX) {
3189 "Could not find start_pfn for node %lu\n", nid);
3197 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3199 * It returns the minimum PFN based on information provided via
3200 * add_active_range().
3202 unsigned long __init find_min_pfn_with_active_regions(void)
3204 return find_min_pfn_for_node(MAX_NUMNODES);
3208 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3210 * It returns the maximum PFN based on information provided via
3211 * add_active_range().
3213 unsigned long __init find_max_pfn_with_active_regions(void)
3216 unsigned long max_pfn = 0;
3218 for (i = 0; i < nr_nodemap_entries; i++)
3219 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3224 unsigned long __init early_calculate_totalpages(void)
3227 unsigned long totalpages = 0;
3229 for (i = 0; i < nr_nodemap_entries; i++)
3230 totalpages += early_node_map[i].end_pfn -
3231 early_node_map[i].start_pfn;
3237 * Find the PFN the Movable zone begins in each node. Kernel memory
3238 * is spread evenly between nodes as long as the nodes have enough
3239 * memory. When they don't, some nodes will have more kernelcore than
3242 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3245 unsigned long usable_startpfn;
3246 unsigned long kernelcore_node, kernelcore_remaining;
3247 int usable_nodes = num_online_nodes();
3250 * If movablecore was specified, calculate what size of
3251 * kernelcore that corresponds so that memory usable for
3252 * any allocation type is evenly spread. If both kernelcore
3253 * and movablecore are specified, then the value of kernelcore
3254 * will be used for required_kernelcore if it's greater than
3255 * what movablecore would have allowed.
3257 if (required_movablecore) {
3258 unsigned long totalpages = early_calculate_totalpages();
3259 unsigned long corepages;
3262 * Round-up so that ZONE_MOVABLE is at least as large as what
3263 * was requested by the user
3265 required_movablecore =
3266 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3267 corepages = totalpages - required_movablecore;
3269 required_kernelcore = max(required_kernelcore, corepages);
3272 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3273 if (!required_kernelcore)
3276 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3277 find_usable_zone_for_movable();
3278 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3281 /* Spread kernelcore memory as evenly as possible throughout nodes */
3282 kernelcore_node = required_kernelcore / usable_nodes;
3283 for_each_online_node(nid) {
3285 * Recalculate kernelcore_node if the division per node
3286 * now exceeds what is necessary to satisfy the requested
3287 * amount of memory for the kernel
3289 if (required_kernelcore < kernelcore_node)
3290 kernelcore_node = required_kernelcore / usable_nodes;
3293 * As the map is walked, we track how much memory is usable
3294 * by the kernel using kernelcore_remaining. When it is
3295 * 0, the rest of the node is usable by ZONE_MOVABLE
3297 kernelcore_remaining = kernelcore_node;
3299 /* Go through each range of PFNs within this node */
3300 for_each_active_range_index_in_nid(i, nid) {
3301 unsigned long start_pfn, end_pfn;
3302 unsigned long size_pages;
3304 start_pfn = max(early_node_map[i].start_pfn,
3305 zone_movable_pfn[nid]);
3306 end_pfn = early_node_map[i].end_pfn;
3307 if (start_pfn >= end_pfn)
3310 /* Account for what is only usable for kernelcore */
3311 if (start_pfn < usable_startpfn) {
3312 unsigned long kernel_pages;
3313 kernel_pages = min(end_pfn, usable_startpfn)
3316 kernelcore_remaining -= min(kernel_pages,
3317 kernelcore_remaining);
3318 required_kernelcore -= min(kernel_pages,
3319 required_kernelcore);
3321 /* Continue if range is now fully accounted */
3322 if (end_pfn <= usable_startpfn) {
3325 * Push zone_movable_pfn to the end so
3326 * that if we have to rebalance
3327 * kernelcore across nodes, we will
3328 * not double account here
3330 zone_movable_pfn[nid] = end_pfn;
3333 start_pfn = usable_startpfn;
3337 * The usable PFN range for ZONE_MOVABLE is from
3338 * start_pfn->end_pfn. Calculate size_pages as the
3339 * number of pages used as kernelcore
3341 size_pages = end_pfn - start_pfn;
3342 if (size_pages > kernelcore_remaining)
3343 size_pages = kernelcore_remaining;
3344 zone_movable_pfn[nid] = start_pfn + size_pages;
3347 * Some kernelcore has been met, update counts and
3348 * break if the kernelcore for this node has been
3351 required_kernelcore -= min(required_kernelcore,
3353 kernelcore_remaining -= size_pages;
3354 if (!kernelcore_remaining)
3360 * If there is still required_kernelcore, we do another pass with one
3361 * less node in the count. This will push zone_movable_pfn[nid] further
3362 * along on the nodes that still have memory until kernelcore is
3366 if (usable_nodes && required_kernelcore > usable_nodes)
3369 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3370 for (nid = 0; nid < MAX_NUMNODES; nid++)
3371 zone_movable_pfn[nid] =
3372 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3376 * free_area_init_nodes - Initialise all pg_data_t and zone data
3377 * @max_zone_pfn: an array of max PFNs for each zone
3379 * This will call free_area_init_node() for each active node in the system.
3380 * Using the page ranges provided by add_active_range(), the size of each
3381 * zone in each node and their holes is calculated. If the maximum PFN
3382 * between two adjacent zones match, it is assumed that the zone is empty.
3383 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3384 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3385 * starts where the previous one ended. For example, ZONE_DMA32 starts
3386 * at arch_max_dma_pfn.
3388 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3393 /* Sort early_node_map as initialisation assumes it is sorted */
3396 /* Record where the zone boundaries are */
3397 memset(arch_zone_lowest_possible_pfn, 0,
3398 sizeof(arch_zone_lowest_possible_pfn));
3399 memset(arch_zone_highest_possible_pfn, 0,
3400 sizeof(arch_zone_highest_possible_pfn));
3401 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3402 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3403 for (i = 1; i < MAX_NR_ZONES; i++) {
3404 if (i == ZONE_MOVABLE)
3406 arch_zone_lowest_possible_pfn[i] =
3407 arch_zone_highest_possible_pfn[i-1];
3408 arch_zone_highest_possible_pfn[i] =
3409 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3411 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3412 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3414 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3415 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3416 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3418 /* Print out the zone ranges */
3419 printk("Zone PFN ranges:\n");
3420 for (i = 0; i < MAX_NR_ZONES; i++) {
3421 if (i == ZONE_MOVABLE)
3423 printk(" %-8s %8lu -> %8lu\n",
3425 arch_zone_lowest_possible_pfn[i],
3426 arch_zone_highest_possible_pfn[i]);
3429 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3430 printk("Movable zone start PFN for each node\n");
3431 for (i = 0; i < MAX_NUMNODES; i++) {
3432 if (zone_movable_pfn[i])
3433 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3436 /* Print out the early_node_map[] */
3437 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3438 for (i = 0; i < nr_nodemap_entries; i++)
3439 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3440 early_node_map[i].start_pfn,
3441 early_node_map[i].end_pfn);
3443 /* Initialise every node */
3444 setup_nr_node_ids();
3445 for_each_online_node(nid) {
3446 pg_data_t *pgdat = NODE_DATA(nid);
3447 free_area_init_node(nid, pgdat, NULL,
3448 find_min_pfn_for_node(nid), NULL);
3452 static int __init cmdline_parse_core(char *p, unsigned long *core)
3454 unsigned long long coremem;
3458 coremem = memparse(p, &p);
3459 *core = coremem >> PAGE_SHIFT;
3461 /* Paranoid check that UL is enough for the coremem value */
3462 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3468 * kernelcore=size sets the amount of memory for use for allocations that
3469 * cannot be reclaimed or migrated.
3471 static int __init cmdline_parse_kernelcore(char *p)
3473 return cmdline_parse_core(p, &required_kernelcore);
3477 * movablecore=size sets the amount of memory for use for allocations that
3478 * can be reclaimed or migrated.
3480 static int __init cmdline_parse_movablecore(char *p)
3482 return cmdline_parse_core(p, &required_movablecore);
3485 early_param("kernelcore", cmdline_parse_kernelcore);
3486 early_param("movablecore", cmdline_parse_movablecore);
3488 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3491 * set_dma_reserve - set the specified number of pages reserved in the first zone
3492 * @new_dma_reserve: The number of pages to mark reserved
3494 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3495 * In the DMA zone, a significant percentage may be consumed by kernel image
3496 * and other unfreeable allocations which can skew the watermarks badly. This
3497 * function may optionally be used to account for unfreeable pages in the
3498 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3499 * smaller per-cpu batchsize.
3501 void __init set_dma_reserve(unsigned long new_dma_reserve)
3503 dma_reserve = new_dma_reserve;
3506 #ifndef CONFIG_NEED_MULTIPLE_NODES
3507 static bootmem_data_t contig_bootmem_data;
3508 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3510 EXPORT_SYMBOL(contig_page_data);
3513 void __init free_area_init(unsigned long *zones_size)
3515 free_area_init_node(0, NODE_DATA(0), zones_size,
3516 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3519 static int page_alloc_cpu_notify(struct notifier_block *self,
3520 unsigned long action, void *hcpu)
3522 int cpu = (unsigned long)hcpu;
3524 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3525 local_irq_disable();
3527 vm_events_fold_cpu(cpu);
3529 refresh_cpu_vm_stats(cpu);
3534 void __init page_alloc_init(void)
3536 hotcpu_notifier(page_alloc_cpu_notify, 0);
3540 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3541 * or min_free_kbytes changes.
3543 static void calculate_totalreserve_pages(void)
3545 struct pglist_data *pgdat;
3546 unsigned long reserve_pages = 0;
3547 enum zone_type i, j;
3549 for_each_online_pgdat(pgdat) {
3550 for (i = 0; i < MAX_NR_ZONES; i++) {
3551 struct zone *zone = pgdat->node_zones + i;
3552 unsigned long max = 0;
3554 /* Find valid and maximum lowmem_reserve in the zone */
3555 for (j = i; j < MAX_NR_ZONES; j++) {
3556 if (zone->lowmem_reserve[j] > max)
3557 max = zone->lowmem_reserve[j];
3560 /* we treat pages_high as reserved pages. */
3561 max += zone->pages_high;
3563 if (max > zone->present_pages)
3564 max = zone->present_pages;
3565 reserve_pages += max;
3568 totalreserve_pages = reserve_pages;
3572 * setup_per_zone_lowmem_reserve - called whenever
3573 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3574 * has a correct pages reserved value, so an adequate number of
3575 * pages are left in the zone after a successful __alloc_pages().
3577 static void setup_per_zone_lowmem_reserve(void)
3579 struct pglist_data *pgdat;
3580 enum zone_type j, idx;
3582 for_each_online_pgdat(pgdat) {
3583 for (j = 0; j < MAX_NR_ZONES; j++) {
3584 struct zone *zone = pgdat->node_zones + j;
3585 unsigned long present_pages = zone->present_pages;
3587 zone->lowmem_reserve[j] = 0;
3591 struct zone *lower_zone;
3595 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3596 sysctl_lowmem_reserve_ratio[idx] = 1;
3598 lower_zone = pgdat->node_zones + idx;
3599 lower_zone->lowmem_reserve[j] = present_pages /
3600 sysctl_lowmem_reserve_ratio[idx];
3601 present_pages += lower_zone->present_pages;
3606 /* update totalreserve_pages */
3607 calculate_totalreserve_pages();
3611 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3613 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3614 * with respect to min_free_kbytes.
3616 void setup_per_zone_pages_min(void)
3618 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3619 unsigned long lowmem_pages = 0;
3621 unsigned long flags;
3623 /* Calculate total number of !ZONE_HIGHMEM pages */
3624 for_each_zone(zone) {
3625 if (!is_highmem(zone))
3626 lowmem_pages += zone->present_pages;
3629 for_each_zone(zone) {
3632 spin_lock_irqsave(&zone->lru_lock, flags);
3633 tmp = (u64)pages_min * zone->present_pages;
3634 do_div(tmp, lowmem_pages);
3635 if (is_highmem(zone)) {
3637 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3638 * need highmem pages, so cap pages_min to a small
3641 * The (pages_high-pages_low) and (pages_low-pages_min)
3642 * deltas controls asynch page reclaim, and so should
3643 * not be capped for highmem.
3647 min_pages = zone->present_pages / 1024;
3648 if (min_pages < SWAP_CLUSTER_MAX)
3649 min_pages = SWAP_CLUSTER_MAX;
3650 if (min_pages > 128)
3652 zone->pages_min = min_pages;
3655 * If it's a lowmem zone, reserve a number of pages
3656 * proportionate to the zone's size.
3658 zone->pages_min = tmp;
3661 zone->pages_low = zone->pages_min + (tmp >> 2);
3662 zone->pages_high = zone->pages_min + (tmp >> 1);
3663 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 /* update totalreserve_pages */
3667 calculate_totalreserve_pages();
3671 * Initialise min_free_kbytes.
3673 * For small machines we want it small (128k min). For large machines
3674 * we want it large (64MB max). But it is not linear, because network
3675 * bandwidth does not increase linearly with machine size. We use
3677 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3678 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3694 static int __init init_per_zone_pages_min(void)
3696 unsigned long lowmem_kbytes;
3698 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3700 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3701 if (min_free_kbytes < 128)
3702 min_free_kbytes = 128;
3703 if (min_free_kbytes > 65536)
3704 min_free_kbytes = 65536;
3705 setup_per_zone_pages_min();
3706 setup_per_zone_lowmem_reserve();
3709 module_init(init_per_zone_pages_min)
3712 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3713 * that we can call two helper functions whenever min_free_kbytes
3716 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3717 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3719 proc_dointvec(table, write, file, buffer, length, ppos);
3721 setup_per_zone_pages_min();
3726 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3727 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3732 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3737 zone->min_unmapped_pages = (zone->present_pages *
3738 sysctl_min_unmapped_ratio) / 100;
3742 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3743 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3748 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3753 zone->min_slab_pages = (zone->present_pages *
3754 sysctl_min_slab_ratio) / 100;
3760 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3761 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3762 * whenever sysctl_lowmem_reserve_ratio changes.
3764 * The reserve ratio obviously has absolutely no relation with the
3765 * pages_min watermarks. The lowmem reserve ratio can only make sense
3766 * if in function of the boot time zone sizes.
3768 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3769 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3771 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3772 setup_per_zone_lowmem_reserve();
3777 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3778 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3779 * can have before it gets flushed back to buddy allocator.
3782 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3783 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3789 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3790 if (!write || (ret == -EINVAL))
3792 for_each_zone(zone) {
3793 for_each_online_cpu(cpu) {
3795 high = zone->present_pages / percpu_pagelist_fraction;
3796 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3802 int hashdist = HASHDIST_DEFAULT;
3805 static int __init set_hashdist(char *str)
3809 hashdist = simple_strtoul(str, &str, 0);
3812 __setup("hashdist=", set_hashdist);
3816 * allocate a large system hash table from bootmem
3817 * - it is assumed that the hash table must contain an exact power-of-2
3818 * quantity of entries
3819 * - limit is the number of hash buckets, not the total allocation size
3821 void *__init alloc_large_system_hash(const char *tablename,
3822 unsigned long bucketsize,
3823 unsigned long numentries,
3826 unsigned int *_hash_shift,
3827 unsigned int *_hash_mask,
3828 unsigned long limit)
3830 unsigned long long max = limit;
3831 unsigned long log2qty, size;
3834 /* allow the kernel cmdline to have a say */
3836 /* round applicable memory size up to nearest megabyte */
3837 numentries = nr_kernel_pages;
3838 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3839 numentries >>= 20 - PAGE_SHIFT;
3840 numentries <<= 20 - PAGE_SHIFT;
3842 /* limit to 1 bucket per 2^scale bytes of low memory */
3843 if (scale > PAGE_SHIFT)
3844 numentries >>= (scale - PAGE_SHIFT);
3846 numentries <<= (PAGE_SHIFT - scale);
3848 /* Make sure we've got at least a 0-order allocation.. */
3849 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3850 numentries = PAGE_SIZE / bucketsize;
3852 numentries = roundup_pow_of_two(numentries);
3854 /* limit allocation size to 1/16 total memory by default */
3856 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3857 do_div(max, bucketsize);
3860 if (numentries > max)
3863 log2qty = ilog2(numentries);
3866 size = bucketsize << log2qty;
3867 if (flags & HASH_EARLY)
3868 table = alloc_bootmem(size);
3870 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3872 unsigned long order;
3873 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3875 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3877 * If bucketsize is not a power-of-two, we may free
3878 * some pages at the end of hash table.
3881 unsigned long alloc_end = (unsigned long)table +
3882 (PAGE_SIZE << order);
3883 unsigned long used = (unsigned long)table +
3885 split_page(virt_to_page(table), order);
3886 while (used < alloc_end) {
3892 } while (!table && size > PAGE_SIZE && --log2qty);
3895 panic("Failed to allocate %s hash table\n", tablename);
3897 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3900 ilog2(size) - PAGE_SHIFT,
3904 *_hash_shift = log2qty;
3906 *_hash_mask = (1 << log2qty) - 1;
3911 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3912 struct page *pfn_to_page(unsigned long pfn)
3914 return __pfn_to_page(pfn);
3916 unsigned long page_to_pfn(struct page *page)
3918 return __page_to_pfn(page);
3920 EXPORT_SYMBOL(pfn_to_page);
3921 EXPORT_SYMBOL(page_to_pfn);
3922 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */