NFSv4: stateful NFSv4 RPC call interface
[linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  * 
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static kmem_cache_t     *rpc_task_slabp __read_mostly;
38 static kmem_cache_t     *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_free(struct rpc_task *task);
45
46 static void                     rpc_async_schedule(void *);
47
48 /*
49  * RPC tasks that create another task (e.g. for contacting the portmapper)
50  * will wait on this queue for their child's completion
51  */
52 static RPC_WAITQ(childq, "childq");
53
54 /*
55  * RPC tasks sit here while waiting for conditions to improve.
56  */
57 static RPC_WAITQ(delay_queue, "delayq");
58
59 /*
60  * All RPC tasks are linked into this list
61  */
62 static LIST_HEAD(all_tasks);
63
64 /*
65  * rpciod-related stuff
66  */
67 static DECLARE_MUTEX(rpciod_sema);
68 static unsigned int             rpciod_users;
69 static struct workqueue_struct *rpciod_workqueue;
70
71 /*
72  * Spinlock for other critical sections of code.
73  */
74 static DEFINE_SPINLOCK(rpc_sched_lock);
75
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static inline void
82 __rpc_disable_timer(struct rpc_task *task)
83 {
84         dprintk("RPC: %4d disabling timer\n", task->tk_pid);
85         task->tk_timeout_fn = NULL;
86         task->tk_timeout = 0;
87 }
88
89 /*
90  * Run a timeout function.
91  * We use the callback in order to allow __rpc_wake_up_task()
92  * and friends to disable the timer synchronously on SMP systems
93  * without calling del_timer_sync(). The latter could cause a
94  * deadlock if called while we're holding spinlocks...
95  */
96 static void rpc_run_timer(struct rpc_task *task)
97 {
98         void (*callback)(struct rpc_task *);
99
100         callback = task->tk_timeout_fn;
101         task->tk_timeout_fn = NULL;
102         if (callback && RPC_IS_QUEUED(task)) {
103                 dprintk("RPC: %4d running timer\n", task->tk_pid);
104                 callback(task);
105         }
106         smp_mb__before_clear_bit();
107         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
108         smp_mb__after_clear_bit();
109 }
110
111 /*
112  * Set up a timer for the current task.
113  */
114 static inline void
115 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
116 {
117         if (!task->tk_timeout)
118                 return;
119
120         dprintk("RPC: %4d setting alarm for %lu ms\n",
121                         task->tk_pid, task->tk_timeout * 1000 / HZ);
122
123         if (timer)
124                 task->tk_timeout_fn = timer;
125         else
126                 task->tk_timeout_fn = __rpc_default_timer;
127         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
128         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
129 }
130
131 /*
132  * Delete any timer for the current task. Because we use del_timer_sync(),
133  * this function should never be called while holding queue->lock.
134  */
135 static void
136 rpc_delete_timer(struct rpc_task *task)
137 {
138         if (RPC_IS_QUEUED(task))
139                 return;
140         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
141                 del_singleshot_timer_sync(&task->tk_timer);
142                 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
143         }
144 }
145
146 /*
147  * Add new request to a priority queue.
148  */
149 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
150 {
151         struct list_head *q;
152         struct rpc_task *t;
153
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         q = &queue->tasks[task->tk_priority];
156         if (unlikely(task->tk_priority > queue->maxpriority))
157                 q = &queue->tasks[queue->maxpriority];
158         list_for_each_entry(t, q, u.tk_wait.list) {
159                 if (t->tk_cookie == task->tk_cookie) {
160                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
161                         return;
162                 }
163         }
164         list_add_tail(&task->u.tk_wait.list, q);
165 }
166
167 /*
168  * Add new request to wait queue.
169  *
170  * Swapper tasks always get inserted at the head of the queue.
171  * This should avoid many nasty memory deadlocks and hopefully
172  * improve overall performance.
173  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
174  */
175 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
176 {
177         BUG_ON (RPC_IS_QUEUED(task));
178
179         if (RPC_IS_PRIORITY(queue))
180                 __rpc_add_wait_queue_priority(queue, task);
181         else if (RPC_IS_SWAPPER(task))
182                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
183         else
184                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
185         task->u.tk_wait.rpc_waitq = queue;
186         rpc_set_queued(task);
187
188         dprintk("RPC: %4d added to queue %p \"%s\"\n",
189                                 task->tk_pid, queue, rpc_qname(queue));
190 }
191
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197         struct rpc_task *t;
198
199         if (!list_empty(&task->u.tk_wait.links)) {
200                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203         }
204         list_del(&task->u.tk_wait.list);
205 }
206
207 /*
208  * Remove request from queue.
209  * Note: must be called with spin lock held.
210  */
211 static void __rpc_remove_wait_queue(struct rpc_task *task)
212 {
213         struct rpc_wait_queue *queue;
214         queue = task->u.tk_wait.rpc_waitq;
215
216         if (RPC_IS_PRIORITY(queue))
217                 __rpc_remove_wait_queue_priority(task);
218         else
219                 list_del(&task->u.tk_wait.list);
220         dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221                                 task->tk_pid, queue, rpc_qname(queue));
222 }
223
224 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
225 {
226         queue->priority = priority;
227         queue->count = 1 << (priority * 2);
228 }
229
230 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
231 {
232         queue->cookie = cookie;
233         queue->nr = RPC_BATCH_COUNT;
234 }
235
236 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
237 {
238         rpc_set_waitqueue_priority(queue, queue->maxpriority);
239         rpc_set_waitqueue_cookie(queue, 0);
240 }
241
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
243 {
244         int i;
245
246         spin_lock_init(&queue->lock);
247         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
248                 INIT_LIST_HEAD(&queue->tasks[i]);
249         queue->maxpriority = maxprio;
250         rpc_reset_waitqueue_priority(queue);
251 #ifdef RPC_DEBUG
252         queue->name = qname;
253 #endif
254 }
255
256 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
259 }
260
261 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
262 {
263         __rpc_init_priority_wait_queue(queue, qname, 0);
264 }
265 EXPORT_SYMBOL(rpc_init_wait_queue);
266
267 static int rpc_wait_bit_interruptible(void *word)
268 {
269         if (signal_pending(current))
270                 return -ERESTARTSYS;
271         schedule();
272         return 0;
273 }
274
275 /*
276  * Mark an RPC call as having completed by clearing the 'active' bit
277  */
278 static inline void rpc_mark_complete_task(struct rpc_task *task)
279 {
280         rpc_clear_active(task);
281         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
282 }
283
284 /*
285  * Allow callers to wait for completion of an RPC call
286  */
287 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
288 {
289         if (action == NULL)
290                 action = rpc_wait_bit_interruptible;
291         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
292                         action, TASK_INTERRUPTIBLE);
293 }
294 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
295
296 /*
297  * Make an RPC task runnable.
298  *
299  * Note: If the task is ASYNC, this must be called with 
300  * the spinlock held to protect the wait queue operation.
301  */
302 static void rpc_make_runnable(struct rpc_task *task)
303 {
304         int do_ret;
305
306         BUG_ON(task->tk_timeout_fn);
307         do_ret = rpc_test_and_set_running(task);
308         rpc_clear_queued(task);
309         if (do_ret)
310                 return;
311         if (RPC_IS_ASYNC(task)) {
312                 int status;
313
314                 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
315                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
316                 if (status < 0) {
317                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
318                         task->tk_status = status;
319                         return;
320                 }
321         } else
322                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
323 }
324
325 /*
326  * Place a newly initialized task on the workqueue.
327  */
328 static inline void
329 rpc_schedule_run(struct rpc_task *task)
330 {
331         rpc_set_active(task);
332         rpc_make_runnable(task);
333 }
334
335 /*
336  * Prepare for sleeping on a wait queue.
337  * By always appending tasks to the list we ensure FIFO behavior.
338  * NB: An RPC task will only receive interrupt-driven events as long
339  * as it's on a wait queue.
340  */
341 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
342                         rpc_action action, rpc_action timer)
343 {
344         dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
345                                 rpc_qname(q), jiffies);
346
347         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
348                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
349                 return;
350         }
351
352         /* Mark the task as being activated if so needed */
353         rpc_set_active(task);
354
355         __rpc_add_wait_queue(q, task);
356
357         BUG_ON(task->tk_callback != NULL);
358         task->tk_callback = action;
359         __rpc_add_timer(task, timer);
360 }
361
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363                                 rpc_action action, rpc_action timer)
364 {
365         /*
366          * Protect the queue operations.
367          */
368         spin_lock_bh(&q->lock);
369         __rpc_sleep_on(q, task, action, timer);
370         spin_unlock_bh(&q->lock);
371 }
372
373 /**
374  * __rpc_do_wake_up_task - wake up a single rpc_task
375  * @task: task to be woken up
376  *
377  * Caller must hold queue->lock, and have cleared the task queued flag.
378  */
379 static void __rpc_do_wake_up_task(struct rpc_task *task)
380 {
381         dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
382
383 #ifdef RPC_DEBUG
384         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
385 #endif
386         /* Has the task been executed yet? If not, we cannot wake it up! */
387         if (!RPC_IS_ACTIVATED(task)) {
388                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
389                 return;
390         }
391
392         __rpc_disable_timer(task);
393         __rpc_remove_wait_queue(task);
394
395         rpc_make_runnable(task);
396
397         dprintk("RPC:      __rpc_wake_up_task done\n");
398 }
399
400 /*
401  * Wake up the specified task
402  */
403 static void __rpc_wake_up_task(struct rpc_task *task)
404 {
405         if (rpc_start_wakeup(task)) {
406                 if (RPC_IS_QUEUED(task))
407                         __rpc_do_wake_up_task(task);
408                 rpc_finish_wakeup(task);
409         }
410 }
411
412 /*
413  * Default timeout handler if none specified by user
414  */
415 static void
416 __rpc_default_timer(struct rpc_task *task)
417 {
418         dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
419         task->tk_status = -ETIMEDOUT;
420         rpc_wake_up_task(task);
421 }
422
423 /*
424  * Wake up the specified task
425  */
426 void rpc_wake_up_task(struct rpc_task *task)
427 {
428         if (rpc_start_wakeup(task)) {
429                 if (RPC_IS_QUEUED(task)) {
430                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
431
432                         spin_lock_bh(&queue->lock);
433                         __rpc_do_wake_up_task(task);
434                         spin_unlock_bh(&queue->lock);
435                 }
436                 rpc_finish_wakeup(task);
437         }
438 }
439
440 /*
441  * Wake up the next task on a priority queue.
442  */
443 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
444 {
445         struct list_head *q;
446         struct rpc_task *task;
447
448         /*
449          * Service a batch of tasks from a single cookie.
450          */
451         q = &queue->tasks[queue->priority];
452         if (!list_empty(q)) {
453                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
454                 if (queue->cookie == task->tk_cookie) {
455                         if (--queue->nr)
456                                 goto out;
457                         list_move_tail(&task->u.tk_wait.list, q);
458                 }
459                 /*
460                  * Check if we need to switch queues.
461                  */
462                 if (--queue->count)
463                         goto new_cookie;
464         }
465
466         /*
467          * Service the next queue.
468          */
469         do {
470                 if (q == &queue->tasks[0])
471                         q = &queue->tasks[queue->maxpriority];
472                 else
473                         q = q - 1;
474                 if (!list_empty(q)) {
475                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
476                         goto new_queue;
477                 }
478         } while (q != &queue->tasks[queue->priority]);
479
480         rpc_reset_waitqueue_priority(queue);
481         return NULL;
482
483 new_queue:
484         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
485 new_cookie:
486         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
487 out:
488         __rpc_wake_up_task(task);
489         return task;
490 }
491
492 /*
493  * Wake up the next task on the wait queue.
494  */
495 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
496 {
497         struct rpc_task *task = NULL;
498
499         dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
500         spin_lock_bh(&queue->lock);
501         if (RPC_IS_PRIORITY(queue))
502                 task = __rpc_wake_up_next_priority(queue);
503         else {
504                 task_for_first(task, &queue->tasks[0])
505                         __rpc_wake_up_task(task);
506         }
507         spin_unlock_bh(&queue->lock);
508
509         return task;
510 }
511
512 /**
513  * rpc_wake_up - wake up all rpc_tasks
514  * @queue: rpc_wait_queue on which the tasks are sleeping
515  *
516  * Grabs queue->lock
517  */
518 void rpc_wake_up(struct rpc_wait_queue *queue)
519 {
520         struct rpc_task *task;
521
522         struct list_head *head;
523         spin_lock_bh(&queue->lock);
524         head = &queue->tasks[queue->maxpriority];
525         for (;;) {
526                 while (!list_empty(head)) {
527                         task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
528                         __rpc_wake_up_task(task);
529                 }
530                 if (head == &queue->tasks[0])
531                         break;
532                 head--;
533         }
534         spin_unlock_bh(&queue->lock);
535 }
536
537 /**
538  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
539  * @queue: rpc_wait_queue on which the tasks are sleeping
540  * @status: status value to set
541  *
542  * Grabs queue->lock
543  */
544 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
545 {
546         struct list_head *head;
547         struct rpc_task *task;
548
549         spin_lock_bh(&queue->lock);
550         head = &queue->tasks[queue->maxpriority];
551         for (;;) {
552                 while (!list_empty(head)) {
553                         task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
554                         task->tk_status = status;
555                         __rpc_wake_up_task(task);
556                 }
557                 if (head == &queue->tasks[0])
558                         break;
559                 head--;
560         }
561         spin_unlock_bh(&queue->lock);
562 }
563
564 /*
565  * Run a task at a later time
566  */
567 static void     __rpc_atrun(struct rpc_task *);
568 void
569 rpc_delay(struct rpc_task *task, unsigned long delay)
570 {
571         task->tk_timeout = delay;
572         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
573 }
574
575 static void
576 __rpc_atrun(struct rpc_task *task)
577 {
578         task->tk_status = 0;
579         rpc_wake_up_task(task);
580 }
581
582 /*
583  * Helper to call task->tk_ops->rpc_call_prepare
584  */
585 static void rpc_prepare_task(struct rpc_task *task)
586 {
587         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
588 }
589
590 /*
591  * Helper that calls task->tk_ops->rpc_call_done if it exists
592  */
593 void rpc_exit_task(struct rpc_task *task)
594 {
595         task->tk_action = NULL;
596         if (task->tk_ops->rpc_call_done != NULL) {
597                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
598                 if (task->tk_action != NULL) {
599                         WARN_ON(RPC_ASSASSINATED(task));
600                         /* Always release the RPC slot and buffer memory */
601                         xprt_release(task);
602                         rpc_free(task);
603                 }
604         }
605 }
606 EXPORT_SYMBOL(rpc_exit_task);
607
608 /*
609  * This is the RPC `scheduler' (or rather, the finite state machine).
610  */
611 static int __rpc_execute(struct rpc_task *task)
612 {
613         int             status = 0;
614
615         dprintk("RPC: %4d rpc_execute flgs %x\n",
616                                 task->tk_pid, task->tk_flags);
617
618         BUG_ON(RPC_IS_QUEUED(task));
619
620         for (;;) {
621                 /*
622                  * Garbage collection of pending timers...
623                  */
624                 rpc_delete_timer(task);
625
626                 /*
627                  * Execute any pending callback.
628                  */
629                 if (RPC_DO_CALLBACK(task)) {
630                         /* Define a callback save pointer */
631                         void (*save_callback)(struct rpc_task *);
632         
633                         /* 
634                          * If a callback exists, save it, reset it,
635                          * call it.
636                          * The save is needed to stop from resetting
637                          * another callback set within the callback handler
638                          * - Dave
639                          */
640                         save_callback=task->tk_callback;
641                         task->tk_callback=NULL;
642                         lock_kernel();
643                         save_callback(task);
644                         unlock_kernel();
645                 }
646
647                 /*
648                  * Perform the next FSM step.
649                  * tk_action may be NULL when the task has been killed
650                  * by someone else.
651                  */
652                 if (!RPC_IS_QUEUED(task)) {
653                         if (task->tk_action == NULL)
654                                 break;
655                         lock_kernel();
656                         task->tk_action(task);
657                         unlock_kernel();
658                 }
659
660                 /*
661                  * Lockless check for whether task is sleeping or not.
662                  */
663                 if (!RPC_IS_QUEUED(task))
664                         continue;
665                 rpc_clear_running(task);
666                 if (RPC_IS_ASYNC(task)) {
667                         /* Careful! we may have raced... */
668                         if (RPC_IS_QUEUED(task))
669                                 return 0;
670                         if (rpc_test_and_set_running(task))
671                                 return 0;
672                         continue;
673                 }
674
675                 /* sync task: sleep here */
676                 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
677                 /* Note: Caller should be using rpc_clnt_sigmask() */
678                 status = out_of_line_wait_on_bit(&task->tk_runstate,
679                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
680                                 TASK_INTERRUPTIBLE);
681                 if (status == -ERESTARTSYS) {
682                         /*
683                          * When a sync task receives a signal, it exits with
684                          * -ERESTARTSYS. In order to catch any callbacks that
685                          * clean up after sleeping on some queue, we don't
686                          * break the loop here, but go around once more.
687                          */
688                         dprintk("RPC: %4d got signal\n", task->tk_pid);
689                         task->tk_flags |= RPC_TASK_KILLED;
690                         rpc_exit(task, -ERESTARTSYS);
691                         rpc_wake_up_task(task);
692                 }
693                 rpc_set_running(task);
694                 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
695         }
696
697         dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
698         status = task->tk_status;
699
700         /* Wake up anyone who is waiting for task completion */
701         rpc_mark_complete_task(task);
702         /* Release all resources associated with the task */
703         rpc_release_task(task);
704         return status;
705 }
706
707 /*
708  * User-visible entry point to the scheduler.
709  *
710  * This may be called recursively if e.g. an async NFS task updates
711  * the attributes and finds that dirty pages must be flushed.
712  * NOTE: Upon exit of this function the task is guaranteed to be
713  *       released. In particular note that tk_release() will have
714  *       been called, so your task memory may have been freed.
715  */
716 int
717 rpc_execute(struct rpc_task *task)
718 {
719         rpc_set_active(task);
720         rpc_set_running(task);
721         return __rpc_execute(task);
722 }
723
724 static void rpc_async_schedule(void *arg)
725 {
726         __rpc_execute((struct rpc_task *)arg);
727 }
728
729 /*
730  * Allocate memory for RPC purposes.
731  *
732  * We try to ensure that some NFS reads and writes can always proceed
733  * by using a mempool when allocating 'small' buffers.
734  * In order to avoid memory starvation triggering more writebacks of
735  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
736  */
737 void *
738 rpc_malloc(struct rpc_task *task, size_t size)
739 {
740         gfp_t   gfp;
741
742         if (task->tk_flags & RPC_TASK_SWAPPER)
743                 gfp = GFP_ATOMIC;
744         else
745                 gfp = GFP_NOFS;
746
747         if (size > RPC_BUFFER_MAXSIZE) {
748                 task->tk_buffer =  kmalloc(size, gfp);
749                 if (task->tk_buffer)
750                         task->tk_bufsize = size;
751         } else {
752                 task->tk_buffer =  mempool_alloc(rpc_buffer_mempool, gfp);
753                 if (task->tk_buffer)
754                         task->tk_bufsize = RPC_BUFFER_MAXSIZE;
755         }
756         return task->tk_buffer;
757 }
758
759 static void
760 rpc_free(struct rpc_task *task)
761 {
762         if (task->tk_buffer) {
763                 if (task->tk_bufsize == RPC_BUFFER_MAXSIZE)
764                         mempool_free(task->tk_buffer, rpc_buffer_mempool);
765                 else
766                         kfree(task->tk_buffer);
767                 task->tk_buffer = NULL;
768                 task->tk_bufsize = 0;
769         }
770 }
771
772 /*
773  * Creation and deletion of RPC task structures
774  */
775 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
776 {
777         memset(task, 0, sizeof(*task));
778         init_timer(&task->tk_timer);
779         task->tk_timer.data     = (unsigned long) task;
780         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
781         atomic_set(&task->tk_count, 1);
782         task->tk_client = clnt;
783         task->tk_flags  = flags;
784         task->tk_ops = tk_ops;
785         if (tk_ops->rpc_call_prepare != NULL)
786                 task->tk_action = rpc_prepare_task;
787         task->tk_calldata = calldata;
788
789         /* Initialize retry counters */
790         task->tk_garb_retry = 2;
791         task->tk_cred_retry = 2;
792
793         task->tk_priority = RPC_PRIORITY_NORMAL;
794         task->tk_cookie = (unsigned long)current;
795
796         /* Initialize workqueue for async tasks */
797         task->tk_workqueue = rpciod_workqueue;
798
799         if (clnt) {
800                 atomic_inc(&clnt->cl_users);
801                 if (clnt->cl_softrtry)
802                         task->tk_flags |= RPC_TASK_SOFT;
803                 if (!clnt->cl_intr)
804                         task->tk_flags |= RPC_TASK_NOINTR;
805         }
806
807 #ifdef RPC_DEBUG
808         task->tk_magic = RPC_TASK_MAGIC_ID;
809         task->tk_pid = rpc_task_id++;
810 #endif
811         /* Add to global list of all tasks */
812         spin_lock(&rpc_sched_lock);
813         list_add_tail(&task->tk_task, &all_tasks);
814         spin_unlock(&rpc_sched_lock);
815
816         BUG_ON(task->tk_ops == NULL);
817
818         dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
819                                 current->pid);
820 }
821
822 static struct rpc_task *
823 rpc_alloc_task(void)
824 {
825         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
826 }
827
828 static void rpc_free_task(struct rpc_task *task)
829 {
830         dprintk("RPC: %4d freeing task\n", task->tk_pid);
831         mempool_free(task, rpc_task_mempool);
832 }
833
834 /*
835  * Create a new task for the specified client.  We have to
836  * clean up after an allocation failure, as the client may
837  * have specified "oneshot".
838  */
839 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
840 {
841         struct rpc_task *task;
842
843         task = rpc_alloc_task();
844         if (!task)
845                 goto cleanup;
846
847         rpc_init_task(task, clnt, flags, tk_ops, calldata);
848
849         dprintk("RPC: %4d allocated task\n", task->tk_pid);
850         task->tk_flags |= RPC_TASK_DYNAMIC;
851 out:
852         return task;
853
854 cleanup:
855         /* Check whether to release the client */
856         if (clnt) {
857                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
858                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
859                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
860                 rpc_release_client(clnt);
861         }
862         goto out;
863 }
864
865 void rpc_release_task(struct rpc_task *task)
866 {
867         const struct rpc_call_ops *tk_ops = task->tk_ops;
868         void *calldata = task->tk_calldata;
869
870 #ifdef RPC_DEBUG
871         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
872 #endif
873         if (!atomic_dec_and_test(&task->tk_count))
874                 return;
875         dprintk("RPC: %4d release task\n", task->tk_pid);
876
877         /* Remove from global task list */
878         spin_lock(&rpc_sched_lock);
879         list_del(&task->tk_task);
880         spin_unlock(&rpc_sched_lock);
881
882         BUG_ON (RPC_IS_QUEUED(task));
883
884         /* Synchronously delete any running timer */
885         rpc_delete_timer(task);
886
887         /* Release resources */
888         if (task->tk_rqstp)
889                 xprt_release(task);
890         if (task->tk_msg.rpc_cred)
891                 rpcauth_unbindcred(task);
892         rpc_free(task);
893         if (task->tk_client) {
894                 rpc_release_client(task->tk_client);
895                 task->tk_client = NULL;
896         }
897
898 #ifdef RPC_DEBUG
899         task->tk_magic = 0;
900 #endif
901         if (task->tk_flags & RPC_TASK_DYNAMIC)
902                 rpc_free_task(task);
903         if (tk_ops->rpc_release)
904                 tk_ops->rpc_release(calldata);
905 }
906
907 /**
908  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
909  * @clnt - pointer to RPC client
910  * @flags - RPC flags
911  * @ops - RPC call ops
912  * @data - user call data
913  */
914 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
915                                         const struct rpc_call_ops *ops,
916                                         void *data)
917 {
918         struct rpc_task *task;
919         task = rpc_new_task(clnt, flags, ops, data);
920         if (task == NULL)
921                 return ERR_PTR(-ENOMEM);
922         atomic_inc(&task->tk_count);
923         rpc_execute(task);
924         return task;
925 }
926 EXPORT_SYMBOL(rpc_run_task);
927
928 /**
929  * rpc_find_parent - find the parent of a child task.
930  * @child: child task
931  *
932  * Checks that the parent task is still sleeping on the
933  * queue 'childq'. If so returns a pointer to the parent.
934  * Upon failure returns NULL.
935  *
936  * Caller must hold childq.lock
937  */
938 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent)
939 {
940         struct rpc_task *task;
941         struct list_head *le;
942
943         task_for_each(task, le, &childq.tasks[0])
944                 if (task == parent)
945                         return parent;
946
947         return NULL;
948 }
949
950 static void rpc_child_exit(struct rpc_task *child, void *calldata)
951 {
952         struct rpc_task *parent;
953
954         spin_lock_bh(&childq.lock);
955         if ((parent = rpc_find_parent(child, calldata)) != NULL) {
956                 parent->tk_status = child->tk_status;
957                 __rpc_wake_up_task(parent);
958         }
959         spin_unlock_bh(&childq.lock);
960 }
961
962 static const struct rpc_call_ops rpc_child_ops = {
963         .rpc_call_done = rpc_child_exit,
964 };
965
966 /*
967  * Note: rpc_new_task releases the client after a failure.
968  */
969 struct rpc_task *
970 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
971 {
972         struct rpc_task *task;
973
974         task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent);
975         if (!task)
976                 goto fail;
977         return task;
978
979 fail:
980         parent->tk_status = -ENOMEM;
981         return NULL;
982 }
983
984 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
985 {
986         spin_lock_bh(&childq.lock);
987         /* N.B. Is it possible for the child to have already finished? */
988         __rpc_sleep_on(&childq, task, func, NULL);
989         rpc_schedule_run(child);
990         spin_unlock_bh(&childq.lock);
991 }
992
993 /*
994  * Kill all tasks for the given client.
995  * XXX: kill their descendants as well?
996  */
997 void rpc_killall_tasks(struct rpc_clnt *clnt)
998 {
999         struct rpc_task *rovr;
1000         struct list_head *le;
1001
1002         dprintk("RPC:      killing all tasks for client %p\n", clnt);
1003
1004         /*
1005          * Spin lock all_tasks to prevent changes...
1006          */
1007         spin_lock(&rpc_sched_lock);
1008         alltask_for_each(rovr, le, &all_tasks) {
1009                 if (! RPC_IS_ACTIVATED(rovr))
1010                         continue;
1011                 if (!clnt || rovr->tk_client == clnt) {
1012                         rovr->tk_flags |= RPC_TASK_KILLED;
1013                         rpc_exit(rovr, -EIO);
1014                         rpc_wake_up_task(rovr);
1015                 }
1016         }
1017         spin_unlock(&rpc_sched_lock);
1018 }
1019
1020 static DECLARE_MUTEX_LOCKED(rpciod_running);
1021
1022 static void rpciod_killall(void)
1023 {
1024         unsigned long flags;
1025
1026         while (!list_empty(&all_tasks)) {
1027                 clear_thread_flag(TIF_SIGPENDING);
1028                 rpc_killall_tasks(NULL);
1029                 flush_workqueue(rpciod_workqueue);
1030                 if (!list_empty(&all_tasks)) {
1031                         dprintk("rpciod_killall: waiting for tasks to exit\n");
1032                         yield();
1033                 }
1034         }
1035
1036         spin_lock_irqsave(&current->sighand->siglock, flags);
1037         recalc_sigpending();
1038         spin_unlock_irqrestore(&current->sighand->siglock, flags);
1039 }
1040
1041 /*
1042  * Start up the rpciod process if it's not already running.
1043  */
1044 int
1045 rpciod_up(void)
1046 {
1047         struct workqueue_struct *wq;
1048         int error = 0;
1049
1050         down(&rpciod_sema);
1051         dprintk("rpciod_up: users %d\n", rpciod_users);
1052         rpciod_users++;
1053         if (rpciod_workqueue)
1054                 goto out;
1055         /*
1056          * If there's no pid, we should be the first user.
1057          */
1058         if (rpciod_users > 1)
1059                 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1060         /*
1061          * Create the rpciod thread and wait for it to start.
1062          */
1063         error = -ENOMEM;
1064         wq = create_workqueue("rpciod");
1065         if (wq == NULL) {
1066                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1067                 rpciod_users--;
1068                 goto out;
1069         }
1070         rpciod_workqueue = wq;
1071         error = 0;
1072 out:
1073         up(&rpciod_sema);
1074         return error;
1075 }
1076
1077 void
1078 rpciod_down(void)
1079 {
1080         down(&rpciod_sema);
1081         dprintk("rpciod_down sema %d\n", rpciod_users);
1082         if (rpciod_users) {
1083                 if (--rpciod_users)
1084                         goto out;
1085         } else
1086                 printk(KERN_WARNING "rpciod_down: no users??\n");
1087
1088         if (!rpciod_workqueue) {
1089                 dprintk("rpciod_down: Nothing to do!\n");
1090                 goto out;
1091         }
1092         rpciod_killall();
1093
1094         destroy_workqueue(rpciod_workqueue);
1095         rpciod_workqueue = NULL;
1096  out:
1097         up(&rpciod_sema);
1098 }
1099
1100 #ifdef RPC_DEBUG
1101 void rpc_show_tasks(void)
1102 {
1103         struct list_head *le;
1104         struct rpc_task *t;
1105
1106         spin_lock(&rpc_sched_lock);
1107         if (list_empty(&all_tasks)) {
1108                 spin_unlock(&rpc_sched_lock);
1109                 return;
1110         }
1111         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1112                 "-rpcwait -action- ---ops--\n");
1113         alltask_for_each(t, le, &all_tasks) {
1114                 const char *rpc_waitq = "none";
1115
1116                 if (RPC_IS_QUEUED(t))
1117                         rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1118
1119                 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1120                         t->tk_pid,
1121                         (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1122                         t->tk_flags, t->tk_status,
1123                         t->tk_client,
1124                         (t->tk_client ? t->tk_client->cl_prog : 0),
1125                         t->tk_rqstp, t->tk_timeout,
1126                         rpc_waitq,
1127                         t->tk_action, t->tk_ops);
1128         }
1129         spin_unlock(&rpc_sched_lock);
1130 }
1131 #endif
1132
1133 void
1134 rpc_destroy_mempool(void)
1135 {
1136         if (rpc_buffer_mempool)
1137                 mempool_destroy(rpc_buffer_mempool);
1138         if (rpc_task_mempool)
1139                 mempool_destroy(rpc_task_mempool);
1140         if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1141                 printk(KERN_INFO "rpc_task: not all structures were freed\n");
1142         if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1143                 printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1144 }
1145
1146 int
1147 rpc_init_mempool(void)
1148 {
1149         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1150                                              sizeof(struct rpc_task),
1151                                              0, SLAB_HWCACHE_ALIGN,
1152                                              NULL, NULL);
1153         if (!rpc_task_slabp)
1154                 goto err_nomem;
1155         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1156                                              RPC_BUFFER_MAXSIZE,
1157                                              0, SLAB_HWCACHE_ALIGN,
1158                                              NULL, NULL);
1159         if (!rpc_buffer_slabp)
1160                 goto err_nomem;
1161         rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1162                                             mempool_alloc_slab,
1163                                             mempool_free_slab,
1164                                             rpc_task_slabp);
1165         if (!rpc_task_mempool)
1166                 goto err_nomem;
1167         rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1168                                             mempool_alloc_slab,
1169                                             mempool_free_slab,
1170                                             rpc_buffer_slabp);
1171         if (!rpc_buffer_mempool)
1172                 goto err_nomem;
1173         return 0;
1174 err_nomem:
1175         rpc_destroy_mempool();
1176         return -ENOMEM;
1177 }