2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
32 #define MAX_IO_MSRS 256
33 #define CR0_RESERVED_BITS \
34 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
35 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
36 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
37 #define CR4_RESERVED_BITS \
38 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
39 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
40 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
41 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
44 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
46 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
47 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
49 struct kvm_x86_ops *kvm_x86_ops;
51 struct kvm_stats_debugfs_item debugfs_entries[] = {
52 { "pf_fixed", VCPU_STAT(pf_fixed) },
53 { "pf_guest", VCPU_STAT(pf_guest) },
54 { "tlb_flush", VCPU_STAT(tlb_flush) },
55 { "invlpg", VCPU_STAT(invlpg) },
56 { "exits", VCPU_STAT(exits) },
57 { "io_exits", VCPU_STAT(io_exits) },
58 { "mmio_exits", VCPU_STAT(mmio_exits) },
59 { "signal_exits", VCPU_STAT(signal_exits) },
60 { "irq_window", VCPU_STAT(irq_window_exits) },
61 { "halt_exits", VCPU_STAT(halt_exits) },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
63 { "request_irq", VCPU_STAT(request_irq_exits) },
64 { "irq_exits", VCPU_STAT(irq_exits) },
65 { "host_state_reload", VCPU_STAT(host_state_reload) },
66 { "efer_reload", VCPU_STAT(efer_reload) },
67 { "fpu_reload", VCPU_STAT(fpu_reload) },
68 { "insn_emulation", VCPU_STAT(insn_emulation) },
69 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
70 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
71 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
72 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
73 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
74 { "mmu_flooded", VM_STAT(mmu_flooded) },
75 { "mmu_recycled", VM_STAT(mmu_recycled) },
76 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
77 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
82 unsigned long segment_base(u16 selector)
84 struct descriptor_table gdt;
85 struct segment_descriptor *d;
86 unsigned long table_base;
92 asm("sgdt %0" : "=m"(gdt));
93 table_base = gdt.base;
95 if (selector & 4) { /* from ldt */
98 asm("sldt %0" : "=g"(ldt_selector));
99 table_base = segment_base(ldt_selector);
101 d = (struct segment_descriptor *)(table_base + (selector & ~7));
102 v = d->base_low | ((unsigned long)d->base_mid << 16) |
103 ((unsigned long)d->base_high << 24);
105 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
106 v |= ((unsigned long) \
107 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
111 EXPORT_SYMBOL_GPL(segment_base);
113 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
115 if (irqchip_in_kernel(vcpu->kvm))
116 return vcpu->arch.apic_base;
118 return vcpu->arch.apic_base;
120 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
122 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
124 /* TODO: reserve bits check */
125 if (irqchip_in_kernel(vcpu->kvm))
126 kvm_lapic_set_base(vcpu, data);
128 vcpu->arch.apic_base = data;
130 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
132 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
134 WARN_ON(vcpu->arch.exception.pending);
135 vcpu->arch.exception.pending = true;
136 vcpu->arch.exception.has_error_code = false;
137 vcpu->arch.exception.nr = nr;
139 EXPORT_SYMBOL_GPL(kvm_queue_exception);
141 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
144 ++vcpu->stat.pf_guest;
145 if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
146 printk(KERN_DEBUG "kvm: inject_page_fault:"
147 " double fault 0x%lx\n", addr);
148 vcpu->arch.exception.nr = DF_VECTOR;
149 vcpu->arch.exception.error_code = 0;
152 vcpu->arch.cr2 = addr;
153 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
156 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
158 WARN_ON(vcpu->arch.exception.pending);
159 vcpu->arch.exception.pending = true;
160 vcpu->arch.exception.has_error_code = true;
161 vcpu->arch.exception.nr = nr;
162 vcpu->arch.exception.error_code = error_code;
164 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
166 static void __queue_exception(struct kvm_vcpu *vcpu)
168 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
169 vcpu->arch.exception.has_error_code,
170 vcpu->arch.exception.error_code);
174 * Load the pae pdptrs. Return true is they are all valid.
176 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
178 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
179 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
182 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
184 down_read(¤t->mm->mmap_sem);
185 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
186 offset * sizeof(u64), sizeof(pdpte));
191 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
192 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
199 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
201 up_read(¤t->mm->mmap_sem);
206 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
208 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
212 if (is_long_mode(vcpu) || !is_pae(vcpu))
215 down_read(¤t->mm->mmap_sem);
216 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
219 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
221 up_read(¤t->mm->mmap_sem);
226 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
228 if (cr0 & CR0_RESERVED_BITS) {
229 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
230 cr0, vcpu->arch.cr0);
231 kvm_inject_gp(vcpu, 0);
235 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
236 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
237 kvm_inject_gp(vcpu, 0);
241 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
242 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
243 "and a clear PE flag\n");
244 kvm_inject_gp(vcpu, 0);
248 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
250 if ((vcpu->arch.shadow_efer & EFER_LME)) {
254 printk(KERN_DEBUG "set_cr0: #GP, start paging "
255 "in long mode while PAE is disabled\n");
256 kvm_inject_gp(vcpu, 0);
259 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
261 printk(KERN_DEBUG "set_cr0: #GP, start paging "
262 "in long mode while CS.L == 1\n");
263 kvm_inject_gp(vcpu, 0);
269 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
270 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
272 kvm_inject_gp(vcpu, 0);
278 kvm_x86_ops->set_cr0(vcpu, cr0);
279 vcpu->arch.cr0 = cr0;
281 kvm_mmu_reset_context(vcpu);
284 EXPORT_SYMBOL_GPL(set_cr0);
286 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
288 set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
290 EXPORT_SYMBOL_GPL(lmsw);
292 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
294 if (cr4 & CR4_RESERVED_BITS) {
295 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
296 kvm_inject_gp(vcpu, 0);
300 if (is_long_mode(vcpu)) {
301 if (!(cr4 & X86_CR4_PAE)) {
302 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
304 kvm_inject_gp(vcpu, 0);
307 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
308 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
309 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
310 kvm_inject_gp(vcpu, 0);
314 if (cr4 & X86_CR4_VMXE) {
315 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
316 kvm_inject_gp(vcpu, 0);
319 kvm_x86_ops->set_cr4(vcpu, cr4);
320 vcpu->arch.cr4 = cr4;
321 kvm_mmu_reset_context(vcpu);
323 EXPORT_SYMBOL_GPL(set_cr4);
325 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
327 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
328 kvm_mmu_flush_tlb(vcpu);
332 if (is_long_mode(vcpu)) {
333 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
334 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
335 kvm_inject_gp(vcpu, 0);
340 if (cr3 & CR3_PAE_RESERVED_BITS) {
342 "set_cr3: #GP, reserved bits\n");
343 kvm_inject_gp(vcpu, 0);
346 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
347 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
349 kvm_inject_gp(vcpu, 0);
354 * We don't check reserved bits in nonpae mode, because
355 * this isn't enforced, and VMware depends on this.
359 down_read(¤t->mm->mmap_sem);
361 * Does the new cr3 value map to physical memory? (Note, we
362 * catch an invalid cr3 even in real-mode, because it would
363 * cause trouble later on when we turn on paging anyway.)
365 * A real CPU would silently accept an invalid cr3 and would
366 * attempt to use it - with largely undefined (and often hard
367 * to debug) behavior on the guest side.
369 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
370 kvm_inject_gp(vcpu, 0);
372 vcpu->arch.cr3 = cr3;
373 vcpu->arch.mmu.new_cr3(vcpu);
375 up_read(¤t->mm->mmap_sem);
377 EXPORT_SYMBOL_GPL(set_cr3);
379 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
381 if (cr8 & CR8_RESERVED_BITS) {
382 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
383 kvm_inject_gp(vcpu, 0);
386 if (irqchip_in_kernel(vcpu->kvm))
387 kvm_lapic_set_tpr(vcpu, cr8);
389 vcpu->arch.cr8 = cr8;
391 EXPORT_SYMBOL_GPL(set_cr8);
393 unsigned long get_cr8(struct kvm_vcpu *vcpu)
395 if (irqchip_in_kernel(vcpu->kvm))
396 return kvm_lapic_get_cr8(vcpu);
398 return vcpu->arch.cr8;
400 EXPORT_SYMBOL_GPL(get_cr8);
403 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
404 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
406 * This list is modified at module load time to reflect the
407 * capabilities of the host cpu.
409 static u32 msrs_to_save[] = {
410 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
413 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
415 MSR_IA32_TIME_STAMP_COUNTER,
418 static unsigned num_msrs_to_save;
420 static u32 emulated_msrs[] = {
421 MSR_IA32_MISC_ENABLE,
426 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
428 if (efer & EFER_RESERVED_BITS) {
429 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
431 kvm_inject_gp(vcpu, 0);
436 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
437 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
438 kvm_inject_gp(vcpu, 0);
442 kvm_x86_ops->set_efer(vcpu, efer);
445 efer |= vcpu->arch.shadow_efer & EFER_LMA;
447 vcpu->arch.shadow_efer = efer;
453 * Writes msr value into into the appropriate "register".
454 * Returns 0 on success, non-0 otherwise.
455 * Assumes vcpu_load() was already called.
457 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
459 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
463 * Adapt set_msr() to msr_io()'s calling convention
465 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
467 return kvm_set_msr(vcpu, index, *data);
471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
476 set_efer(vcpu, data);
479 case MSR_IA32_MC0_STATUS:
480 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
483 case MSR_IA32_MCG_STATUS:
484 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
487 case MSR_IA32_UCODE_REV:
488 case MSR_IA32_UCODE_WRITE:
489 case 0x200 ... 0x2ff: /* MTRRs */
491 case MSR_IA32_APICBASE:
492 kvm_set_apic_base(vcpu, data);
494 case MSR_IA32_MISC_ENABLE:
495 vcpu->arch.ia32_misc_enable_msr = data;
498 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
503 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
507 * Reads an msr value (of 'msr_index') into 'pdata'.
508 * Returns 0 on success, non-0 otherwise.
509 * Assumes vcpu_load() was already called.
511 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
513 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
516 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
521 case 0xc0010010: /* SYSCFG */
522 case 0xc0010015: /* HWCR */
523 case MSR_IA32_PLATFORM_ID:
524 case MSR_IA32_P5_MC_ADDR:
525 case MSR_IA32_P5_MC_TYPE:
526 case MSR_IA32_MC0_CTL:
527 case MSR_IA32_MCG_STATUS:
528 case MSR_IA32_MCG_CAP:
529 case MSR_IA32_MC0_MISC:
530 case MSR_IA32_MC0_MISC+4:
531 case MSR_IA32_MC0_MISC+8:
532 case MSR_IA32_MC0_MISC+12:
533 case MSR_IA32_MC0_MISC+16:
534 case MSR_IA32_UCODE_REV:
535 case MSR_IA32_PERF_STATUS:
536 case MSR_IA32_EBL_CR_POWERON:
539 case 0x200 ... 0x2ff:
542 case 0xcd: /* fsb frequency */
545 case MSR_IA32_APICBASE:
546 data = kvm_get_apic_base(vcpu);
548 case MSR_IA32_MISC_ENABLE:
549 data = vcpu->arch.ia32_misc_enable_msr;
553 data = vcpu->arch.shadow_efer;
557 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
563 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
566 * Read or write a bunch of msrs. All parameters are kernel addresses.
568 * @return number of msrs set successfully.
570 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
571 struct kvm_msr_entry *entries,
572 int (*do_msr)(struct kvm_vcpu *vcpu,
573 unsigned index, u64 *data))
579 for (i = 0; i < msrs->nmsrs; ++i)
580 if (do_msr(vcpu, entries[i].index, &entries[i].data))
589 * Read or write a bunch of msrs. Parameters are user addresses.
591 * @return number of msrs set successfully.
593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
594 int (*do_msr)(struct kvm_vcpu *vcpu,
595 unsigned index, u64 *data),
598 struct kvm_msrs msrs;
599 struct kvm_msr_entry *entries;
604 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
608 if (msrs.nmsrs >= MAX_IO_MSRS)
612 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
613 entries = vmalloc(size);
618 if (copy_from_user(entries, user_msrs->entries, size))
621 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
626 if (writeback && copy_to_user(user_msrs->entries, entries, size))
638 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
641 void decache_vcpus_on_cpu(int cpu)
644 struct kvm_vcpu *vcpu;
647 spin_lock(&kvm_lock);
648 list_for_each_entry(vm, &vm_list, vm_list)
649 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
654 * If the vcpu is locked, then it is running on some
655 * other cpu and therefore it is not cached on the
658 * If it's not locked, check the last cpu it executed
661 if (mutex_trylock(&vcpu->mutex)) {
662 if (vcpu->cpu == cpu) {
663 kvm_x86_ops->vcpu_decache(vcpu);
666 mutex_unlock(&vcpu->mutex);
669 spin_unlock(&kvm_lock);
672 int kvm_dev_ioctl_check_extension(long ext)
677 case KVM_CAP_IRQCHIP:
679 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
680 case KVM_CAP_USER_MEMORY:
681 case KVM_CAP_SET_TSS_ADDR:
682 case KVM_CAP_EXT_CPUID:
686 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
696 long kvm_arch_dev_ioctl(struct file *filp,
697 unsigned int ioctl, unsigned long arg)
699 void __user *argp = (void __user *)arg;
703 case KVM_GET_MSR_INDEX_LIST: {
704 struct kvm_msr_list __user *user_msr_list = argp;
705 struct kvm_msr_list msr_list;
709 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
712 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
713 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
716 if (n < num_msrs_to_save)
719 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
720 num_msrs_to_save * sizeof(u32)))
722 if (copy_to_user(user_msr_list->indices
723 + num_msrs_to_save * sizeof(u32),
725 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
737 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
739 kvm_x86_ops->vcpu_load(vcpu, cpu);
742 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
744 kvm_x86_ops->vcpu_put(vcpu);
745 kvm_put_guest_fpu(vcpu);
748 static int is_efer_nx(void)
752 rdmsrl(MSR_EFER, efer);
753 return efer & EFER_NX;
756 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
759 struct kvm_cpuid_entry2 *e, *entry;
762 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
763 e = &vcpu->arch.cpuid_entries[i];
764 if (e->function == 0x80000001) {
769 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
770 entry->edx &= ~(1 << 20);
771 printk(KERN_INFO "kvm: guest NX capability removed\n");
775 /* when an old userspace process fills a new kernel module */
776 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
777 struct kvm_cpuid *cpuid,
778 struct kvm_cpuid_entry __user *entries)
781 struct kvm_cpuid_entry *cpuid_entries;
784 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
787 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
791 if (copy_from_user(cpuid_entries, entries,
792 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
794 for (i = 0; i < cpuid->nent; i++) {
795 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
796 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
797 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
798 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
799 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
800 vcpu->arch.cpuid_entries[i].index = 0;
801 vcpu->arch.cpuid_entries[i].flags = 0;
802 vcpu->arch.cpuid_entries[i].padding[0] = 0;
803 vcpu->arch.cpuid_entries[i].padding[1] = 0;
804 vcpu->arch.cpuid_entries[i].padding[2] = 0;
806 vcpu->arch.cpuid_nent = cpuid->nent;
807 cpuid_fix_nx_cap(vcpu);
811 vfree(cpuid_entries);
816 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
817 struct kvm_cpuid2 *cpuid,
818 struct kvm_cpuid_entry2 __user *entries)
823 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
826 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
827 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
829 vcpu->arch.cpuid_nent = cpuid->nent;
836 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
837 struct kvm_cpuid2 *cpuid,
838 struct kvm_cpuid_entry2 __user *entries)
843 if (cpuid->nent < vcpu->arch.cpuid_nent)
846 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
847 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
852 cpuid->nent = vcpu->arch.cpuid_nent;
856 static inline u32 bit(int bitno)
858 return 1 << (bitno & 31);
861 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
864 entry->function = function;
865 entry->index = index;
866 cpuid_count(entry->function, entry->index,
867 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
871 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
872 u32 index, int *nent, int maxnent)
874 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
875 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
876 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
877 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
878 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
879 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
880 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
881 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
882 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
883 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
884 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
885 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
886 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
887 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
888 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
889 bit(X86_FEATURE_PGE) |
890 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
891 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
892 bit(X86_FEATURE_SYSCALL) |
893 (bit(X86_FEATURE_NX) && is_efer_nx()) |
895 bit(X86_FEATURE_LM) |
897 bit(X86_FEATURE_MMXEXT) |
898 bit(X86_FEATURE_3DNOWEXT) |
899 bit(X86_FEATURE_3DNOW);
900 const u32 kvm_supported_word3_x86_features =
901 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
902 const u32 kvm_supported_word6_x86_features =
903 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
905 /* all func 2 cpuid_count() should be called on the same cpu */
907 do_cpuid_1_ent(entry, function, index);
912 entry->eax = min(entry->eax, (u32)0xb);
915 entry->edx &= kvm_supported_word0_x86_features;
916 entry->ecx &= kvm_supported_word3_x86_features;
918 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
919 * may return different values. This forces us to get_cpu() before
920 * issuing the first command, and also to emulate this annoying behavior
921 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
923 int t, times = entry->eax & 0xff;
925 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
926 for (t = 1; t < times && *nent < maxnent; ++t) {
927 do_cpuid_1_ent(&entry[t], function, 0);
928 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
933 /* function 4 and 0xb have additional index. */
935 int index, cache_type;
937 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
938 /* read more entries until cache_type is zero */
939 for (index = 1; *nent < maxnent; ++index) {
940 cache_type = entry[index - 1].eax & 0x1f;
943 do_cpuid_1_ent(&entry[index], function, index);
944 entry[index].flags |=
945 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
951 int index, level_type;
953 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
954 /* read more entries until level_type is zero */
955 for (index = 1; *nent < maxnent; ++index) {
956 level_type = entry[index - 1].ecx & 0xff;
959 do_cpuid_1_ent(&entry[index], function, index);
960 entry[index].flags |=
961 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
967 entry->eax = min(entry->eax, 0x8000001a);
970 entry->edx &= kvm_supported_word1_x86_features;
971 entry->ecx &= kvm_supported_word6_x86_features;
977 static int kvm_vm_ioctl_get_supported_cpuid(struct kvm *kvm,
978 struct kvm_cpuid2 *cpuid,
979 struct kvm_cpuid_entry2 __user *entries)
981 struct kvm_cpuid_entry2 *cpuid_entries;
982 int limit, nent = 0, r = -E2BIG;
988 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
992 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
993 limit = cpuid_entries[0].eax;
994 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
995 do_cpuid_ent(&cpuid_entries[nent], func, 0,
998 if (nent >= cpuid->nent)
1001 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1002 limit = cpuid_entries[nent - 1].eax;
1003 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1004 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1005 &nent, cpuid->nent);
1007 if (copy_to_user(entries, cpuid_entries,
1008 nent * sizeof(struct kvm_cpuid_entry2)))
1014 vfree(cpuid_entries);
1019 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1020 struct kvm_lapic_state *s)
1023 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1029 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1030 struct kvm_lapic_state *s)
1033 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1034 kvm_apic_post_state_restore(vcpu);
1040 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1041 struct kvm_interrupt *irq)
1043 if (irq->irq < 0 || irq->irq >= 256)
1045 if (irqchip_in_kernel(vcpu->kvm))
1049 set_bit(irq->irq, vcpu->arch.irq_pending);
1050 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1057 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1058 struct kvm_tpr_access_ctl *tac)
1062 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1066 long kvm_arch_vcpu_ioctl(struct file *filp,
1067 unsigned int ioctl, unsigned long arg)
1069 struct kvm_vcpu *vcpu = filp->private_data;
1070 void __user *argp = (void __user *)arg;
1074 case KVM_GET_LAPIC: {
1075 struct kvm_lapic_state lapic;
1077 memset(&lapic, 0, sizeof lapic);
1078 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1082 if (copy_to_user(argp, &lapic, sizeof lapic))
1087 case KVM_SET_LAPIC: {
1088 struct kvm_lapic_state lapic;
1091 if (copy_from_user(&lapic, argp, sizeof lapic))
1093 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1099 case KVM_INTERRUPT: {
1100 struct kvm_interrupt irq;
1103 if (copy_from_user(&irq, argp, sizeof irq))
1105 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1111 case KVM_SET_CPUID: {
1112 struct kvm_cpuid __user *cpuid_arg = argp;
1113 struct kvm_cpuid cpuid;
1116 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1118 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1123 case KVM_SET_CPUID2: {
1124 struct kvm_cpuid2 __user *cpuid_arg = argp;
1125 struct kvm_cpuid2 cpuid;
1128 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1130 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1131 cpuid_arg->entries);
1136 case KVM_GET_CPUID2: {
1137 struct kvm_cpuid2 __user *cpuid_arg = argp;
1138 struct kvm_cpuid2 cpuid;
1141 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1143 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1144 cpuid_arg->entries);
1148 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1154 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1157 r = msr_io(vcpu, argp, do_set_msr, 0);
1159 case KVM_TPR_ACCESS_REPORTING: {
1160 struct kvm_tpr_access_ctl tac;
1163 if (copy_from_user(&tac, argp, sizeof tac))
1165 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1169 if (copy_to_user(argp, &tac, sizeof tac))
1174 case KVM_SET_VAPIC_ADDR: {
1175 struct kvm_vapic_addr va;
1178 if (!irqchip_in_kernel(vcpu->kvm))
1181 if (copy_from_user(&va, argp, sizeof va))
1184 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1194 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1198 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1200 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1204 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1205 u32 kvm_nr_mmu_pages)
1207 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1210 down_write(¤t->mm->mmap_sem);
1212 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1213 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1215 up_write(¤t->mm->mmap_sem);
1219 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1221 return kvm->arch.n_alloc_mmu_pages;
1224 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1227 struct kvm_mem_alias *alias;
1229 for (i = 0; i < kvm->arch.naliases; ++i) {
1230 alias = &kvm->arch.aliases[i];
1231 if (gfn >= alias->base_gfn
1232 && gfn < alias->base_gfn + alias->npages)
1233 return alias->target_gfn + gfn - alias->base_gfn;
1239 * Set a new alias region. Aliases map a portion of physical memory into
1240 * another portion. This is useful for memory windows, for example the PC
1243 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1244 struct kvm_memory_alias *alias)
1247 struct kvm_mem_alias *p;
1250 /* General sanity checks */
1251 if (alias->memory_size & (PAGE_SIZE - 1))
1253 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1255 if (alias->slot >= KVM_ALIAS_SLOTS)
1257 if (alias->guest_phys_addr + alias->memory_size
1258 < alias->guest_phys_addr)
1260 if (alias->target_phys_addr + alias->memory_size
1261 < alias->target_phys_addr)
1264 down_write(¤t->mm->mmap_sem);
1266 p = &kvm->arch.aliases[alias->slot];
1267 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1268 p->npages = alias->memory_size >> PAGE_SHIFT;
1269 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1271 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1272 if (kvm->arch.aliases[n - 1].npages)
1274 kvm->arch.naliases = n;
1276 kvm_mmu_zap_all(kvm);
1278 up_write(¤t->mm->mmap_sem);
1286 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1291 switch (chip->chip_id) {
1292 case KVM_IRQCHIP_PIC_MASTER:
1293 memcpy(&chip->chip.pic,
1294 &pic_irqchip(kvm)->pics[0],
1295 sizeof(struct kvm_pic_state));
1297 case KVM_IRQCHIP_PIC_SLAVE:
1298 memcpy(&chip->chip.pic,
1299 &pic_irqchip(kvm)->pics[1],
1300 sizeof(struct kvm_pic_state));
1302 case KVM_IRQCHIP_IOAPIC:
1303 memcpy(&chip->chip.ioapic,
1304 ioapic_irqchip(kvm),
1305 sizeof(struct kvm_ioapic_state));
1314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1319 switch (chip->chip_id) {
1320 case KVM_IRQCHIP_PIC_MASTER:
1321 memcpy(&pic_irqchip(kvm)->pics[0],
1323 sizeof(struct kvm_pic_state));
1325 case KVM_IRQCHIP_PIC_SLAVE:
1326 memcpy(&pic_irqchip(kvm)->pics[1],
1328 sizeof(struct kvm_pic_state));
1330 case KVM_IRQCHIP_IOAPIC:
1331 memcpy(ioapic_irqchip(kvm),
1333 sizeof(struct kvm_ioapic_state));
1339 kvm_pic_update_irq(pic_irqchip(kvm));
1344 * Get (and clear) the dirty memory log for a memory slot.
1346 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1347 struct kvm_dirty_log *log)
1351 struct kvm_memory_slot *memslot;
1354 down_write(¤t->mm->mmap_sem);
1356 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1360 /* If nothing is dirty, don't bother messing with page tables. */
1362 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1363 kvm_flush_remote_tlbs(kvm);
1364 memslot = &kvm->memslots[log->slot];
1365 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1366 memset(memslot->dirty_bitmap, 0, n);
1370 up_write(¤t->mm->mmap_sem);
1374 long kvm_arch_vm_ioctl(struct file *filp,
1375 unsigned int ioctl, unsigned long arg)
1377 struct kvm *kvm = filp->private_data;
1378 void __user *argp = (void __user *)arg;
1382 case KVM_SET_TSS_ADDR:
1383 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1387 case KVM_SET_MEMORY_REGION: {
1388 struct kvm_memory_region kvm_mem;
1389 struct kvm_userspace_memory_region kvm_userspace_mem;
1392 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1394 kvm_userspace_mem.slot = kvm_mem.slot;
1395 kvm_userspace_mem.flags = kvm_mem.flags;
1396 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1397 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1398 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1403 case KVM_SET_NR_MMU_PAGES:
1404 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1408 case KVM_GET_NR_MMU_PAGES:
1409 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1411 case KVM_SET_MEMORY_ALIAS: {
1412 struct kvm_memory_alias alias;
1415 if (copy_from_user(&alias, argp, sizeof alias))
1417 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1422 case KVM_CREATE_IRQCHIP:
1424 kvm->arch.vpic = kvm_create_pic(kvm);
1425 if (kvm->arch.vpic) {
1426 r = kvm_ioapic_init(kvm);
1428 kfree(kvm->arch.vpic);
1429 kvm->arch.vpic = NULL;
1435 case KVM_IRQ_LINE: {
1436 struct kvm_irq_level irq_event;
1439 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1441 if (irqchip_in_kernel(kvm)) {
1442 mutex_lock(&kvm->lock);
1443 if (irq_event.irq < 16)
1444 kvm_pic_set_irq(pic_irqchip(kvm),
1447 kvm_ioapic_set_irq(kvm->arch.vioapic,
1450 mutex_unlock(&kvm->lock);
1455 case KVM_GET_IRQCHIP: {
1456 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1457 struct kvm_irqchip chip;
1460 if (copy_from_user(&chip, argp, sizeof chip))
1463 if (!irqchip_in_kernel(kvm))
1465 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1469 if (copy_to_user(argp, &chip, sizeof chip))
1474 case KVM_SET_IRQCHIP: {
1475 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1476 struct kvm_irqchip chip;
1479 if (copy_from_user(&chip, argp, sizeof chip))
1482 if (!irqchip_in_kernel(kvm))
1484 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1490 case KVM_GET_SUPPORTED_CPUID: {
1491 struct kvm_cpuid2 __user *cpuid_arg = argp;
1492 struct kvm_cpuid2 cpuid;
1495 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1497 r = kvm_vm_ioctl_get_supported_cpuid(kvm, &cpuid,
1498 cpuid_arg->entries);
1503 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1515 static void kvm_init_msr_list(void)
1520 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1521 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1524 msrs_to_save[j] = msrs_to_save[i];
1527 num_msrs_to_save = j;
1531 * Only apic need an MMIO device hook, so shortcut now..
1533 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1536 struct kvm_io_device *dev;
1538 if (vcpu->arch.apic) {
1539 dev = &vcpu->arch.apic->dev;
1540 if (dev->in_range(dev, addr))
1547 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1550 struct kvm_io_device *dev;
1552 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1554 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1558 int emulator_read_std(unsigned long addr,
1561 struct kvm_vcpu *vcpu)
1564 int r = X86EMUL_CONTINUE;
1566 down_read(¤t->mm->mmap_sem);
1568 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1569 unsigned offset = addr & (PAGE_SIZE-1);
1570 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1573 if (gpa == UNMAPPED_GVA) {
1574 r = X86EMUL_PROPAGATE_FAULT;
1577 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1579 r = X86EMUL_UNHANDLEABLE;
1588 up_read(¤t->mm->mmap_sem);
1591 EXPORT_SYMBOL_GPL(emulator_read_std);
1593 static int emulator_read_emulated(unsigned long addr,
1596 struct kvm_vcpu *vcpu)
1598 struct kvm_io_device *mmio_dev;
1601 if (vcpu->mmio_read_completed) {
1602 memcpy(val, vcpu->mmio_data, bytes);
1603 vcpu->mmio_read_completed = 0;
1604 return X86EMUL_CONTINUE;
1607 down_read(¤t->mm->mmap_sem);
1608 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1609 up_read(¤t->mm->mmap_sem);
1611 /* For APIC access vmexit */
1612 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1615 if (emulator_read_std(addr, val, bytes, vcpu)
1616 == X86EMUL_CONTINUE)
1617 return X86EMUL_CONTINUE;
1618 if (gpa == UNMAPPED_GVA)
1619 return X86EMUL_PROPAGATE_FAULT;
1623 * Is this MMIO handled locally?
1625 mutex_lock(&vcpu->kvm->lock);
1626 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1628 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1629 mutex_unlock(&vcpu->kvm->lock);
1630 return X86EMUL_CONTINUE;
1632 mutex_unlock(&vcpu->kvm->lock);
1634 vcpu->mmio_needed = 1;
1635 vcpu->mmio_phys_addr = gpa;
1636 vcpu->mmio_size = bytes;
1637 vcpu->mmio_is_write = 0;
1639 return X86EMUL_UNHANDLEABLE;
1642 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1643 const void *val, int bytes)
1647 down_read(¤t->mm->mmap_sem);
1648 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1650 up_read(¤t->mm->mmap_sem);
1653 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1654 up_read(¤t->mm->mmap_sem);
1658 static int emulator_write_emulated_onepage(unsigned long addr,
1661 struct kvm_vcpu *vcpu)
1663 struct kvm_io_device *mmio_dev;
1666 down_read(¤t->mm->mmap_sem);
1667 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1668 up_read(¤t->mm->mmap_sem);
1670 if (gpa == UNMAPPED_GVA) {
1671 kvm_inject_page_fault(vcpu, addr, 2);
1672 return X86EMUL_PROPAGATE_FAULT;
1675 /* For APIC access vmexit */
1676 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1679 if (emulator_write_phys(vcpu, gpa, val, bytes))
1680 return X86EMUL_CONTINUE;
1684 * Is this MMIO handled locally?
1686 mutex_lock(&vcpu->kvm->lock);
1687 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1689 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1690 mutex_unlock(&vcpu->kvm->lock);
1691 return X86EMUL_CONTINUE;
1693 mutex_unlock(&vcpu->kvm->lock);
1695 vcpu->mmio_needed = 1;
1696 vcpu->mmio_phys_addr = gpa;
1697 vcpu->mmio_size = bytes;
1698 vcpu->mmio_is_write = 1;
1699 memcpy(vcpu->mmio_data, val, bytes);
1701 return X86EMUL_CONTINUE;
1704 int emulator_write_emulated(unsigned long addr,
1707 struct kvm_vcpu *vcpu)
1709 /* Crossing a page boundary? */
1710 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1713 now = -addr & ~PAGE_MASK;
1714 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1715 if (rc != X86EMUL_CONTINUE)
1721 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1723 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1725 static int emulator_cmpxchg_emulated(unsigned long addr,
1729 struct kvm_vcpu *vcpu)
1731 static int reported;
1735 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1737 #ifndef CONFIG_X86_64
1738 /* guests cmpxchg8b have to be emulated atomically */
1745 down_read(¤t->mm->mmap_sem);
1746 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1748 if (gpa == UNMAPPED_GVA ||
1749 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1752 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1756 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1757 addr = kmap_atomic(page, KM_USER0);
1758 set_64bit((u64 *)(addr + offset_in_page(gpa)), val);
1759 kunmap_atomic(addr, KM_USER0);
1760 kvm_release_page_dirty(page);
1762 up_read(¤t->mm->mmap_sem);
1766 return emulator_write_emulated(addr, new, bytes, vcpu);
1769 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1771 return kvm_x86_ops->get_segment_base(vcpu, seg);
1774 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1776 return X86EMUL_CONTINUE;
1779 int emulate_clts(struct kvm_vcpu *vcpu)
1781 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1782 return X86EMUL_CONTINUE;
1785 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1787 struct kvm_vcpu *vcpu = ctxt->vcpu;
1791 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1792 return X86EMUL_CONTINUE;
1794 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1795 return X86EMUL_UNHANDLEABLE;
1799 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1801 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1804 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1806 /* FIXME: better handling */
1807 return X86EMUL_UNHANDLEABLE;
1809 return X86EMUL_CONTINUE;
1812 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1814 static int reported;
1816 unsigned long rip = vcpu->arch.rip;
1817 unsigned long rip_linear;
1819 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1824 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1826 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1827 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1830 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1832 struct x86_emulate_ops emulate_ops = {
1833 .read_std = emulator_read_std,
1834 .read_emulated = emulator_read_emulated,
1835 .write_emulated = emulator_write_emulated,
1836 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1839 int emulate_instruction(struct kvm_vcpu *vcpu,
1840 struct kvm_run *run,
1846 struct decode_cache *c;
1848 vcpu->arch.mmio_fault_cr2 = cr2;
1849 kvm_x86_ops->cache_regs(vcpu);
1851 vcpu->mmio_is_write = 0;
1852 vcpu->arch.pio.string = 0;
1854 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
1856 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1858 vcpu->arch.emulate_ctxt.vcpu = vcpu;
1859 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1860 vcpu->arch.emulate_ctxt.mode =
1861 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
1862 ? X86EMUL_MODE_REAL : cs_l
1863 ? X86EMUL_MODE_PROT64 : cs_db
1864 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1866 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1867 vcpu->arch.emulate_ctxt.cs_base = 0;
1868 vcpu->arch.emulate_ctxt.ds_base = 0;
1869 vcpu->arch.emulate_ctxt.es_base = 0;
1870 vcpu->arch.emulate_ctxt.ss_base = 0;
1872 vcpu->arch.emulate_ctxt.cs_base =
1873 get_segment_base(vcpu, VCPU_SREG_CS);
1874 vcpu->arch.emulate_ctxt.ds_base =
1875 get_segment_base(vcpu, VCPU_SREG_DS);
1876 vcpu->arch.emulate_ctxt.es_base =
1877 get_segment_base(vcpu, VCPU_SREG_ES);
1878 vcpu->arch.emulate_ctxt.ss_base =
1879 get_segment_base(vcpu, VCPU_SREG_SS);
1882 vcpu->arch.emulate_ctxt.gs_base =
1883 get_segment_base(vcpu, VCPU_SREG_GS);
1884 vcpu->arch.emulate_ctxt.fs_base =
1885 get_segment_base(vcpu, VCPU_SREG_FS);
1887 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1889 /* Reject the instructions other than VMCALL/VMMCALL when
1890 * try to emulate invalid opcode */
1891 c = &vcpu->arch.emulate_ctxt.decode;
1892 if ((emulation_type & EMULTYPE_TRAP_UD) &&
1893 (!(c->twobyte && c->b == 0x01 &&
1894 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
1895 c->modrm_mod == 3 && c->modrm_rm == 1)))
1896 return EMULATE_FAIL;
1898 ++vcpu->stat.insn_emulation;
1900 ++vcpu->stat.insn_emulation_fail;
1901 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1902 return EMULATE_DONE;
1903 return EMULATE_FAIL;
1907 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1909 if (vcpu->arch.pio.string)
1910 return EMULATE_DO_MMIO;
1912 if ((r || vcpu->mmio_is_write) && run) {
1913 run->exit_reason = KVM_EXIT_MMIO;
1914 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1915 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1916 run->mmio.len = vcpu->mmio_size;
1917 run->mmio.is_write = vcpu->mmio_is_write;
1921 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1922 return EMULATE_DONE;
1923 if (!vcpu->mmio_needed) {
1924 kvm_report_emulation_failure(vcpu, "mmio");
1925 return EMULATE_FAIL;
1927 return EMULATE_DO_MMIO;
1930 kvm_x86_ops->decache_regs(vcpu);
1931 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
1933 if (vcpu->mmio_is_write) {
1934 vcpu->mmio_needed = 0;
1935 return EMULATE_DO_MMIO;
1938 return EMULATE_DONE;
1940 EXPORT_SYMBOL_GPL(emulate_instruction);
1942 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
1946 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
1947 if (vcpu->arch.pio.guest_pages[i]) {
1948 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
1949 vcpu->arch.pio.guest_pages[i] = NULL;
1953 static int pio_copy_data(struct kvm_vcpu *vcpu)
1955 void *p = vcpu->arch.pio_data;
1958 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
1960 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1963 free_pio_guest_pages(vcpu);
1966 q += vcpu->arch.pio.guest_page_offset;
1967 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
1968 if (vcpu->arch.pio.in)
1969 memcpy(q, p, bytes);
1971 memcpy(p, q, bytes);
1972 q -= vcpu->arch.pio.guest_page_offset;
1974 free_pio_guest_pages(vcpu);
1978 int complete_pio(struct kvm_vcpu *vcpu)
1980 struct kvm_pio_request *io = &vcpu->arch.pio;
1984 kvm_x86_ops->cache_regs(vcpu);
1988 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
1992 r = pio_copy_data(vcpu);
1994 kvm_x86_ops->cache_regs(vcpu);
2001 delta *= io->cur_count;
2003 * The size of the register should really depend on
2004 * current address size.
2006 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2012 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2014 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2017 kvm_x86_ops->decache_regs(vcpu);
2019 io->count -= io->cur_count;
2025 static void kernel_pio(struct kvm_io_device *pio_dev,
2026 struct kvm_vcpu *vcpu,
2029 /* TODO: String I/O for in kernel device */
2031 mutex_lock(&vcpu->kvm->lock);
2032 if (vcpu->arch.pio.in)
2033 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2034 vcpu->arch.pio.size,
2037 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2038 vcpu->arch.pio.size,
2040 mutex_unlock(&vcpu->kvm->lock);
2043 static void pio_string_write(struct kvm_io_device *pio_dev,
2044 struct kvm_vcpu *vcpu)
2046 struct kvm_pio_request *io = &vcpu->arch.pio;
2047 void *pd = vcpu->arch.pio_data;
2050 mutex_lock(&vcpu->kvm->lock);
2051 for (i = 0; i < io->cur_count; i++) {
2052 kvm_iodevice_write(pio_dev, io->port,
2057 mutex_unlock(&vcpu->kvm->lock);
2060 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2063 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2066 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2067 int size, unsigned port)
2069 struct kvm_io_device *pio_dev;
2071 vcpu->run->exit_reason = KVM_EXIT_IO;
2072 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2073 vcpu->run->io.size = vcpu->arch.pio.size = size;
2074 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2075 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2076 vcpu->run->io.port = vcpu->arch.pio.port = port;
2077 vcpu->arch.pio.in = in;
2078 vcpu->arch.pio.string = 0;
2079 vcpu->arch.pio.down = 0;
2080 vcpu->arch.pio.guest_page_offset = 0;
2081 vcpu->arch.pio.rep = 0;
2083 kvm_x86_ops->cache_regs(vcpu);
2084 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2085 kvm_x86_ops->decache_regs(vcpu);
2087 kvm_x86_ops->skip_emulated_instruction(vcpu);
2089 pio_dev = vcpu_find_pio_dev(vcpu, port);
2091 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2097 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2099 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2100 int size, unsigned long count, int down,
2101 gva_t address, int rep, unsigned port)
2103 unsigned now, in_page;
2107 struct kvm_io_device *pio_dev;
2109 vcpu->run->exit_reason = KVM_EXIT_IO;
2110 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2111 vcpu->run->io.size = vcpu->arch.pio.size = size;
2112 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2113 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2114 vcpu->run->io.port = vcpu->arch.pio.port = port;
2115 vcpu->arch.pio.in = in;
2116 vcpu->arch.pio.string = 1;
2117 vcpu->arch.pio.down = down;
2118 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2119 vcpu->arch.pio.rep = rep;
2122 kvm_x86_ops->skip_emulated_instruction(vcpu);
2127 in_page = PAGE_SIZE - offset_in_page(address);
2129 in_page = offset_in_page(address) + size;
2130 now = min(count, (unsigned long)in_page / size);
2133 * String I/O straddles page boundary. Pin two guest pages
2134 * so that we satisfy atomicity constraints. Do just one
2135 * transaction to avoid complexity.
2142 * String I/O in reverse. Yuck. Kill the guest, fix later.
2144 pr_unimpl(vcpu, "guest string pio down\n");
2145 kvm_inject_gp(vcpu, 0);
2148 vcpu->run->io.count = now;
2149 vcpu->arch.pio.cur_count = now;
2151 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2152 kvm_x86_ops->skip_emulated_instruction(vcpu);
2154 for (i = 0; i < nr_pages; ++i) {
2155 down_read(¤t->mm->mmap_sem);
2156 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2157 vcpu->arch.pio.guest_pages[i] = page;
2158 up_read(¤t->mm->mmap_sem);
2160 kvm_inject_gp(vcpu, 0);
2161 free_pio_guest_pages(vcpu);
2166 pio_dev = vcpu_find_pio_dev(vcpu, port);
2167 if (!vcpu->arch.pio.in) {
2168 /* string PIO write */
2169 ret = pio_copy_data(vcpu);
2170 if (ret >= 0 && pio_dev) {
2171 pio_string_write(pio_dev, vcpu);
2173 if (vcpu->arch.pio.count == 0)
2177 pr_unimpl(vcpu, "no string pio read support yet, "
2178 "port %x size %d count %ld\n",
2183 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2185 int kvm_arch_init(void *opaque)
2188 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2191 printk(KERN_ERR "kvm: already loaded the other module\n");
2196 if (!ops->cpu_has_kvm_support()) {
2197 printk(KERN_ERR "kvm: no hardware support\n");
2201 if (ops->disabled_by_bios()) {
2202 printk(KERN_ERR "kvm: disabled by bios\n");
2207 r = kvm_mmu_module_init();
2211 kvm_init_msr_list();
2214 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2221 void kvm_arch_exit(void)
2224 kvm_mmu_module_exit();
2227 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2229 ++vcpu->stat.halt_exits;
2230 if (irqchip_in_kernel(vcpu->kvm)) {
2231 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2232 kvm_vcpu_block(vcpu);
2233 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2237 vcpu->run->exit_reason = KVM_EXIT_HLT;
2241 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2243 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2245 unsigned long nr, a0, a1, a2, a3, ret;
2247 kvm_x86_ops->cache_regs(vcpu);
2249 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2250 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2251 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2252 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2253 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2255 if (!is_long_mode(vcpu)) {
2264 case KVM_HC_VAPIC_POLL_IRQ:
2271 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2272 kvm_x86_ops->decache_regs(vcpu);
2275 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2277 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2279 char instruction[3];
2284 * Blow out the MMU to ensure that no other VCPU has an active mapping
2285 * to ensure that the updated hypercall appears atomically across all
2288 kvm_mmu_zap_all(vcpu->kvm);
2290 kvm_x86_ops->cache_regs(vcpu);
2291 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2292 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2293 != X86EMUL_CONTINUE)
2299 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2301 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2304 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2306 struct descriptor_table dt = { limit, base };
2308 kvm_x86_ops->set_gdt(vcpu, &dt);
2311 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2313 struct descriptor_table dt = { limit, base };
2315 kvm_x86_ops->set_idt(vcpu, &dt);
2318 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2319 unsigned long *rflags)
2322 *rflags = kvm_x86_ops->get_rflags(vcpu);
2325 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2327 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2330 return vcpu->arch.cr0;
2332 return vcpu->arch.cr2;
2334 return vcpu->arch.cr3;
2336 return vcpu->arch.cr4;
2338 return get_cr8(vcpu);
2340 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2345 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2346 unsigned long *rflags)
2350 set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2351 *rflags = kvm_x86_ops->get_rflags(vcpu);
2354 vcpu->arch.cr2 = val;
2360 set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2363 set_cr8(vcpu, val & 0xfUL);
2366 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2370 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2372 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2373 int j, nent = vcpu->arch.cpuid_nent;
2375 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2376 /* when no next entry is found, the current entry[i] is reselected */
2377 for (j = i + 1; j == i; j = (j + 1) % nent) {
2378 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2379 if (ej->function == e->function) {
2380 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2384 return 0; /* silence gcc, even though control never reaches here */
2387 /* find an entry with matching function, matching index (if needed), and that
2388 * should be read next (if it's stateful) */
2389 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2390 u32 function, u32 index)
2392 if (e->function != function)
2394 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2396 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2397 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2402 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2405 u32 function, index;
2406 struct kvm_cpuid_entry2 *e, *best;
2408 kvm_x86_ops->cache_regs(vcpu);
2409 function = vcpu->arch.regs[VCPU_REGS_RAX];
2410 index = vcpu->arch.regs[VCPU_REGS_RCX];
2411 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2412 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2413 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2414 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2416 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2417 e = &vcpu->arch.cpuid_entries[i];
2418 if (is_matching_cpuid_entry(e, function, index)) {
2419 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2420 move_to_next_stateful_cpuid_entry(vcpu, i);
2425 * Both basic or both extended?
2427 if (((e->function ^ function) & 0x80000000) == 0)
2428 if (!best || e->function > best->function)
2432 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2433 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2434 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2435 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2437 kvm_x86_ops->decache_regs(vcpu);
2438 kvm_x86_ops->skip_emulated_instruction(vcpu);
2440 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2443 * Check if userspace requested an interrupt window, and that the
2444 * interrupt window is open.
2446 * No need to exit to userspace if we already have an interrupt queued.
2448 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2449 struct kvm_run *kvm_run)
2451 return (!vcpu->arch.irq_summary &&
2452 kvm_run->request_interrupt_window &&
2453 vcpu->arch.interrupt_window_open &&
2454 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2457 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2458 struct kvm_run *kvm_run)
2460 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2461 kvm_run->cr8 = get_cr8(vcpu);
2462 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2463 if (irqchip_in_kernel(vcpu->kvm))
2464 kvm_run->ready_for_interrupt_injection = 1;
2466 kvm_run->ready_for_interrupt_injection =
2467 (vcpu->arch.interrupt_window_open &&
2468 vcpu->arch.irq_summary == 0);
2471 static void vapic_enter(struct kvm_vcpu *vcpu)
2473 struct kvm_lapic *apic = vcpu->arch.apic;
2476 if (!apic || !apic->vapic_addr)
2479 down_read(¤t->mm->mmap_sem);
2480 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2481 vcpu->arch.apic->vapic_page = page;
2482 up_read(¤t->mm->mmap_sem);
2485 static void vapic_exit(struct kvm_vcpu *vcpu)
2487 struct kvm_lapic *apic = vcpu->arch.apic;
2489 if (!apic || !apic->vapic_addr)
2492 kvm_release_page_dirty(apic->vapic_page);
2493 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2496 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2500 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2501 pr_debug("vcpu %d received sipi with vector # %x\n",
2502 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2503 kvm_lapic_reset(vcpu);
2504 r = kvm_x86_ops->vcpu_reset(vcpu);
2507 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2513 if (vcpu->guest_debug.enabled)
2514 kvm_x86_ops->guest_debug_pre(vcpu);
2517 r = kvm_mmu_reload(vcpu);
2521 if (vcpu->requests) {
2522 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2523 __kvm_migrate_apic_timer(vcpu);
2524 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2526 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2532 kvm_inject_pending_timer_irqs(vcpu);
2536 kvm_x86_ops->prepare_guest_switch(vcpu);
2537 kvm_load_guest_fpu(vcpu);
2539 local_irq_disable();
2541 if (need_resched()) {
2548 if (signal_pending(current)) {
2552 kvm_run->exit_reason = KVM_EXIT_INTR;
2553 ++vcpu->stat.signal_exits;
2557 if (vcpu->arch.exception.pending)
2558 __queue_exception(vcpu);
2559 else if (irqchip_in_kernel(vcpu->kvm))
2560 kvm_x86_ops->inject_pending_irq(vcpu);
2562 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2564 kvm_lapic_sync_to_vapic(vcpu);
2566 vcpu->guest_mode = 1;
2570 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2571 kvm_x86_ops->tlb_flush(vcpu);
2573 kvm_x86_ops->run(vcpu, kvm_run);
2575 vcpu->guest_mode = 0;
2581 * We must have an instruction between local_irq_enable() and
2582 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2583 * the interrupt shadow. The stat.exits increment will do nicely.
2584 * But we need to prevent reordering, hence this barrier():
2593 * Profile KVM exit RIPs:
2595 if (unlikely(prof_on == KVM_PROFILING)) {
2596 kvm_x86_ops->cache_regs(vcpu);
2597 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2600 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2601 vcpu->arch.exception.pending = false;
2603 kvm_lapic_sync_from_vapic(vcpu);
2605 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2608 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2610 kvm_run->exit_reason = KVM_EXIT_INTR;
2611 ++vcpu->stat.request_irq_exits;
2614 if (!need_resched())
2624 post_kvm_run_save(vcpu, kvm_run);
2631 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2638 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2639 kvm_vcpu_block(vcpu);
2644 if (vcpu->sigset_active)
2645 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2647 /* re-sync apic's tpr */
2648 if (!irqchip_in_kernel(vcpu->kvm))
2649 set_cr8(vcpu, kvm_run->cr8);
2651 if (vcpu->arch.pio.cur_count) {
2652 r = complete_pio(vcpu);
2656 #if CONFIG_HAS_IOMEM
2657 if (vcpu->mmio_needed) {
2658 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2659 vcpu->mmio_read_completed = 1;
2660 vcpu->mmio_needed = 0;
2661 r = emulate_instruction(vcpu, kvm_run,
2662 vcpu->arch.mmio_fault_cr2, 0,
2663 EMULTYPE_NO_DECODE);
2664 if (r == EMULATE_DO_MMIO) {
2666 * Read-modify-write. Back to userspace.
2673 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2674 kvm_x86_ops->cache_regs(vcpu);
2675 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2676 kvm_x86_ops->decache_regs(vcpu);
2679 r = __vcpu_run(vcpu, kvm_run);
2682 if (vcpu->sigset_active)
2683 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2689 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2693 kvm_x86_ops->cache_regs(vcpu);
2695 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2696 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2697 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2698 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2699 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2700 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2701 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2702 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2703 #ifdef CONFIG_X86_64
2704 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2705 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2706 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2707 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2708 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2709 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2710 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2711 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2714 regs->rip = vcpu->arch.rip;
2715 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2718 * Don't leak debug flags in case they were set for guest debugging
2720 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2721 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2728 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2732 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2733 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2734 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2735 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2736 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2737 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2738 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2739 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2740 #ifdef CONFIG_X86_64
2741 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2742 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2743 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2744 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2745 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2746 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2747 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2748 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2751 vcpu->arch.rip = regs->rip;
2752 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2754 kvm_x86_ops->decache_regs(vcpu);
2761 static void get_segment(struct kvm_vcpu *vcpu,
2762 struct kvm_segment *var, int seg)
2764 return kvm_x86_ops->get_segment(vcpu, var, seg);
2767 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2769 struct kvm_segment cs;
2771 get_segment(vcpu, &cs, VCPU_SREG_CS);
2775 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2777 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2778 struct kvm_sregs *sregs)
2780 struct descriptor_table dt;
2785 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2786 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2787 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2788 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2789 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2790 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2792 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2793 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2795 kvm_x86_ops->get_idt(vcpu, &dt);
2796 sregs->idt.limit = dt.limit;
2797 sregs->idt.base = dt.base;
2798 kvm_x86_ops->get_gdt(vcpu, &dt);
2799 sregs->gdt.limit = dt.limit;
2800 sregs->gdt.base = dt.base;
2802 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2803 sregs->cr0 = vcpu->arch.cr0;
2804 sregs->cr2 = vcpu->arch.cr2;
2805 sregs->cr3 = vcpu->arch.cr3;
2806 sregs->cr4 = vcpu->arch.cr4;
2807 sregs->cr8 = get_cr8(vcpu);
2808 sregs->efer = vcpu->arch.shadow_efer;
2809 sregs->apic_base = kvm_get_apic_base(vcpu);
2811 if (irqchip_in_kernel(vcpu->kvm)) {
2812 memset(sregs->interrupt_bitmap, 0,
2813 sizeof sregs->interrupt_bitmap);
2814 pending_vec = kvm_x86_ops->get_irq(vcpu);
2815 if (pending_vec >= 0)
2816 set_bit(pending_vec,
2817 (unsigned long *)sregs->interrupt_bitmap);
2819 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2820 sizeof sregs->interrupt_bitmap);
2827 static void set_segment(struct kvm_vcpu *vcpu,
2828 struct kvm_segment *var, int seg)
2830 return kvm_x86_ops->set_segment(vcpu, var, seg);
2833 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2834 struct kvm_sregs *sregs)
2836 int mmu_reset_needed = 0;
2837 int i, pending_vec, max_bits;
2838 struct descriptor_table dt;
2842 dt.limit = sregs->idt.limit;
2843 dt.base = sregs->idt.base;
2844 kvm_x86_ops->set_idt(vcpu, &dt);
2845 dt.limit = sregs->gdt.limit;
2846 dt.base = sregs->gdt.base;
2847 kvm_x86_ops->set_gdt(vcpu, &dt);
2849 vcpu->arch.cr2 = sregs->cr2;
2850 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
2851 vcpu->arch.cr3 = sregs->cr3;
2853 set_cr8(vcpu, sregs->cr8);
2855 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
2856 #ifdef CONFIG_X86_64
2857 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2859 kvm_set_apic_base(vcpu, sregs->apic_base);
2861 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2863 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
2864 vcpu->arch.cr0 = sregs->cr0;
2865 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2867 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
2868 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2869 if (!is_long_mode(vcpu) && is_pae(vcpu))
2870 load_pdptrs(vcpu, vcpu->arch.cr3);
2872 if (mmu_reset_needed)
2873 kvm_mmu_reset_context(vcpu);
2875 if (!irqchip_in_kernel(vcpu->kvm)) {
2876 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
2877 sizeof vcpu->arch.irq_pending);
2878 vcpu->arch.irq_summary = 0;
2879 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
2880 if (vcpu->arch.irq_pending[i])
2881 __set_bit(i, &vcpu->arch.irq_summary);
2883 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2884 pending_vec = find_first_bit(
2885 (const unsigned long *)sregs->interrupt_bitmap,
2887 /* Only pending external irq is handled here */
2888 if (pending_vec < max_bits) {
2889 kvm_x86_ops->set_irq(vcpu, pending_vec);
2890 pr_debug("Set back pending irq %d\n",
2895 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2896 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2897 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2898 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2899 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2900 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2902 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2903 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2910 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2911 struct kvm_debug_guest *dbg)
2917 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2925 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2926 * we have asm/x86/processor.h
2937 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2938 #ifdef CONFIG_X86_64
2939 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2941 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2946 * Translate a guest virtual address to a guest physical address.
2948 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2949 struct kvm_translation *tr)
2951 unsigned long vaddr = tr->linear_address;
2955 down_read(¤t->mm->mmap_sem);
2956 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
2957 up_read(¤t->mm->mmap_sem);
2958 tr->physical_address = gpa;
2959 tr->valid = gpa != UNMAPPED_GVA;
2967 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2969 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2973 memcpy(fpu->fpr, fxsave->st_space, 128);
2974 fpu->fcw = fxsave->cwd;
2975 fpu->fsw = fxsave->swd;
2976 fpu->ftwx = fxsave->twd;
2977 fpu->last_opcode = fxsave->fop;
2978 fpu->last_ip = fxsave->rip;
2979 fpu->last_dp = fxsave->rdp;
2980 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2987 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2989 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2993 memcpy(fxsave->st_space, fpu->fpr, 128);
2994 fxsave->cwd = fpu->fcw;
2995 fxsave->swd = fpu->fsw;
2996 fxsave->twd = fpu->ftwx;
2997 fxsave->fop = fpu->last_opcode;
2998 fxsave->rip = fpu->last_ip;
2999 fxsave->rdp = fpu->last_dp;
3000 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3007 void fx_init(struct kvm_vcpu *vcpu)
3009 unsigned after_mxcsr_mask;
3011 /* Initialize guest FPU by resetting ours and saving into guest's */
3013 fx_save(&vcpu->arch.host_fx_image);
3015 fx_save(&vcpu->arch.guest_fx_image);
3016 fx_restore(&vcpu->arch.host_fx_image);
3019 vcpu->arch.cr0 |= X86_CR0_ET;
3020 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3021 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3022 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3023 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3025 EXPORT_SYMBOL_GPL(fx_init);
3027 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3029 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3032 vcpu->guest_fpu_loaded = 1;
3033 fx_save(&vcpu->arch.host_fx_image);
3034 fx_restore(&vcpu->arch.guest_fx_image);
3036 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3038 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3040 if (!vcpu->guest_fpu_loaded)
3043 vcpu->guest_fpu_loaded = 0;
3044 fx_save(&vcpu->arch.guest_fx_image);
3045 fx_restore(&vcpu->arch.host_fx_image);
3046 ++vcpu->stat.fpu_reload;
3048 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3050 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3052 kvm_x86_ops->vcpu_free(vcpu);
3055 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3058 return kvm_x86_ops->vcpu_create(kvm, id);
3061 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3065 /* We do fxsave: this must be aligned. */
3066 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3069 r = kvm_arch_vcpu_reset(vcpu);
3071 r = kvm_mmu_setup(vcpu);
3078 kvm_x86_ops->vcpu_free(vcpu);
3082 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3085 kvm_mmu_unload(vcpu);
3088 kvm_x86_ops->vcpu_free(vcpu);
3091 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3093 return kvm_x86_ops->vcpu_reset(vcpu);
3096 void kvm_arch_hardware_enable(void *garbage)
3098 kvm_x86_ops->hardware_enable(garbage);
3101 void kvm_arch_hardware_disable(void *garbage)
3103 kvm_x86_ops->hardware_disable(garbage);
3106 int kvm_arch_hardware_setup(void)
3108 return kvm_x86_ops->hardware_setup();
3111 void kvm_arch_hardware_unsetup(void)
3113 kvm_x86_ops->hardware_unsetup();
3116 void kvm_arch_check_processor_compat(void *rtn)
3118 kvm_x86_ops->check_processor_compatibility(rtn);
3121 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3127 BUG_ON(vcpu->kvm == NULL);
3130 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3131 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3132 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3134 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3136 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3141 vcpu->arch.pio_data = page_address(page);
3143 r = kvm_mmu_create(vcpu);
3145 goto fail_free_pio_data;
3147 if (irqchip_in_kernel(kvm)) {
3148 r = kvm_create_lapic(vcpu);
3150 goto fail_mmu_destroy;
3156 kvm_mmu_destroy(vcpu);
3158 free_page((unsigned long)vcpu->arch.pio_data);
3163 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3165 kvm_free_lapic(vcpu);
3166 kvm_mmu_destroy(vcpu);
3167 free_page((unsigned long)vcpu->arch.pio_data);
3170 struct kvm *kvm_arch_create_vm(void)
3172 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3175 return ERR_PTR(-ENOMEM);
3177 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3182 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3185 kvm_mmu_unload(vcpu);
3189 static void kvm_free_vcpus(struct kvm *kvm)
3194 * Unpin any mmu pages first.
3196 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3198 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3199 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3200 if (kvm->vcpus[i]) {
3201 kvm_arch_vcpu_free(kvm->vcpus[i]);
3202 kvm->vcpus[i] = NULL;
3208 void kvm_arch_destroy_vm(struct kvm *kvm)
3210 kfree(kvm->arch.vpic);
3211 kfree(kvm->arch.vioapic);
3212 kvm_free_vcpus(kvm);
3213 kvm_free_physmem(kvm);
3217 int kvm_arch_set_memory_region(struct kvm *kvm,
3218 struct kvm_userspace_memory_region *mem,
3219 struct kvm_memory_slot old,
3222 int npages = mem->memory_size >> PAGE_SHIFT;
3223 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3225 /*To keep backward compatibility with older userspace,
3226 *x86 needs to hanlde !user_alloc case.
3229 if (npages && !old.rmap) {
3230 memslot->userspace_addr = do_mmap(NULL, 0,
3232 PROT_READ | PROT_WRITE,
3233 MAP_SHARED | MAP_ANONYMOUS,
3236 if (IS_ERR((void *)memslot->userspace_addr))
3237 return PTR_ERR((void *)memslot->userspace_addr);
3239 if (!old.user_alloc && old.rmap) {
3242 ret = do_munmap(current->mm, old.userspace_addr,
3243 old.npages * PAGE_SIZE);
3246 "kvm_vm_ioctl_set_memory_region: "
3247 "failed to munmap memory\n");
3252 if (!kvm->arch.n_requested_mmu_pages) {
3253 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3254 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3257 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3258 kvm_flush_remote_tlbs(kvm);
3263 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3265 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3266 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3269 static void vcpu_kick_intr(void *info)
3272 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3273 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3277 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3279 int ipi_pcpu = vcpu->cpu;
3281 if (waitqueue_active(&vcpu->wq)) {
3282 wake_up_interruptible(&vcpu->wq);
3283 ++vcpu->stat.halt_wakeup;
3285 if (vcpu->guest_mode)
3286 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);