igb: remove redundant count set and err_hw_init
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134         .notifier_call  = igb_notify_dca,
135         .next           = NULL,
136         .priority       = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146                      pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151         .error_detected = igb_io_error_detected,
152         .slot_reset = igb_io_slot_reset,
153         .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158         .name     = igb_driver_name,
159         .id_table = igb_pci_tbl,
160         .probe    = igb_probe,
161         .remove   = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163         /* Power Managment Hooks */
164         .suspend  = igb_suspend,
165         .resume   = igb_resume,
166 #endif
167         .shutdown = igb_shutdown,
168         .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180  * igb_get_hw_dev_name - return device name string
181  * used by hardware layer to print debugging information
182  **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185         struct igb_adapter *adapter = hw->back;
186         return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191  * igb_init_module - Driver Registration Routine
192  *
193  * igb_init_module is the first routine called when the driver is
194  * loaded. All it does is register with the PCI subsystem.
195  **/
196 static int __init igb_init_module(void)
197 {
198         int ret;
199         printk(KERN_INFO "%s - version %s\n",
200                igb_driver_string, igb_driver_version);
201
202         printk(KERN_INFO "%s\n", igb_copyright);
203
204         global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207         dca_register_notify(&dca_notifier);
208 #endif
209
210         ret = pci_register_driver(&igb_driver);
211         return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217  * igb_exit_module - Driver Exit Cleanup Routine
218  *
219  * igb_exit_module is called just before the driver is removed
220  * from memory.
221  **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225         dca_unregister_notify(&dca_notifier);
226 #endif
227         pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234  * igb_cache_ring_register - Descriptor ring to register mapping
235  * @adapter: board private structure to initialize
236  *
237  * Once we know the feature-set enabled for the device, we'll cache
238  * the register offset the descriptor ring is assigned to.
239  **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242         int i;
243
244         switch (adapter->hw.mac.type) {
245         case e1000_82576:
246                 /* The queues are allocated for virtualization such that VF 0
247                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248                  * In order to avoid collision we start at the first free queue
249                  * and continue consuming queues in the same sequence
250                  */
251                 for (i = 0; i < adapter->num_rx_queues; i++)
252                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253                 for (i = 0; i < adapter->num_tx_queues; i++)
254                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255                 break;
256         case e1000_82575:
257         default:
258                 for (i = 0; i < adapter->num_rx_queues; i++)
259                         adapter->rx_ring[i].reg_idx = i;
260                 for (i = 0; i < adapter->num_tx_queues; i++)
261                         adapter->tx_ring[i].reg_idx = i;
262                 break;
263         }
264 }
265
266 /**
267  * igb_alloc_queues - Allocate memory for all rings
268  * @adapter: board private structure to initialize
269  *
270  * We allocate one ring per queue at run-time since we don't know the
271  * number of queues at compile-time.
272  **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275         int i;
276
277         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278                                    sizeof(struct igb_ring), GFP_KERNEL);
279         if (!adapter->tx_ring)
280                 return -ENOMEM;
281
282         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283                                    sizeof(struct igb_ring), GFP_KERNEL);
284         if (!adapter->rx_ring) {
285                 kfree(adapter->tx_ring);
286                 return -ENOMEM;
287         }
288
289         adapter->rx_ring->buddy = adapter->tx_ring;
290
291         for (i = 0; i < adapter->num_tx_queues; i++) {
292                 struct igb_ring *ring = &(adapter->tx_ring[i]);
293                 ring->count = adapter->tx_ring_count;
294                 ring->adapter = adapter;
295                 ring->queue_index = i;
296         }
297         for (i = 0; i < adapter->num_rx_queues; i++) {
298                 struct igb_ring *ring = &(adapter->rx_ring[i]);
299                 ring->count = adapter->rx_ring_count;
300                 ring->adapter = adapter;
301                 ring->queue_index = i;
302                 ring->itr_register = E1000_ITR;
303
304                 /* set a default napi handler for each rx_ring */
305                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306         }
307
308         igb_cache_ring_register(adapter);
309         return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314         int i;
315
316         for (i = 0; i < adapter->num_rx_queues; i++)
317                 netif_napi_del(&adapter->rx_ring[i].napi);
318
319         kfree(adapter->tx_ring);
320         kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325                               int tx_queue, int msix_vector)
326 {
327         u32 msixbm = 0;
328         struct e1000_hw *hw = &adapter->hw;
329         u32 ivar, index;
330
331         switch (hw->mac.type) {
332         case e1000_82575:
333                 /* The 82575 assigns vectors using a bitmask, which matches the
334                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
335                    or more queues to a vector, we write the appropriate bits
336                    into the MSIXBM register for that vector. */
337                 if (rx_queue > IGB_N0_QUEUE) {
338                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339                         adapter->rx_ring[rx_queue].eims_value = msixbm;
340                 }
341                 if (tx_queue > IGB_N0_QUEUE) {
342                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343                         adapter->tx_ring[tx_queue].eims_value =
344                                   E1000_EICR_TX_QUEUE0 << tx_queue;
345                 }
346                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347                 break;
348         case e1000_82576:
349                 /* 82576 uses a table-based method for assigning vectors.
350                    Each queue has a single entry in the table to which we write
351                    a vector number along with a "valid" bit.  Sadly, the layout
352                    of the table is somewhat counterintuitive. */
353                 if (rx_queue > IGB_N0_QUEUE) {
354                         index = (rx_queue >> 1);
355                         ivar = array_rd32(E1000_IVAR0, index);
356                         if (rx_queue & 0x1) {
357                                 /* vector goes into third byte of register */
358                                 ivar = ivar & 0xFF00FFFF;
359                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360                         } else {
361                                 /* vector goes into low byte of register */
362                                 ivar = ivar & 0xFFFFFF00;
363                                 ivar |= msix_vector | E1000_IVAR_VALID;
364                         }
365                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366                         array_wr32(E1000_IVAR0, index, ivar);
367                 }
368                 if (tx_queue > IGB_N0_QUEUE) {
369                         index = (tx_queue >> 1);
370                         ivar = array_rd32(E1000_IVAR0, index);
371                         if (tx_queue & 0x1) {
372                                 /* vector goes into high byte of register */
373                                 ivar = ivar & 0x00FFFFFF;
374                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375                         } else {
376                                 /* vector goes into second byte of register */
377                                 ivar = ivar & 0xFFFF00FF;
378                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379                         }
380                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381                         array_wr32(E1000_IVAR0, index, ivar);
382                 }
383                 break;
384         default:
385                 BUG();
386                 break;
387         }
388 }
389
390 /**
391  * igb_configure_msix - Configure MSI-X hardware
392  *
393  * igb_configure_msix sets up the hardware to properly
394  * generate MSI-X interrupts.
395  **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398         u32 tmp;
399         int i, vector = 0;
400         struct e1000_hw *hw = &adapter->hw;
401
402         adapter->eims_enable_mask = 0;
403         if (hw->mac.type == e1000_82576)
404                 /* Turn on MSI-X capability first, or our settings
405                  * won't stick.  And it will take days to debug. */
406                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
408                                    E1000_GPIE_NSICR);
409
410         for (i = 0; i < adapter->num_tx_queues; i++) {
411                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413                 adapter->eims_enable_mask |= tx_ring->eims_value;
414                 if (tx_ring->itr_val)
415                         writel(tx_ring->itr_val,
416                                hw->hw_addr + tx_ring->itr_register);
417                 else
418                         writel(1, hw->hw_addr + tx_ring->itr_register);
419         }
420
421         for (i = 0; i < adapter->num_rx_queues; i++) {
422                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423                 rx_ring->buddy = NULL;
424                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425                 adapter->eims_enable_mask |= rx_ring->eims_value;
426                 if (rx_ring->itr_val)
427                         writel(rx_ring->itr_val,
428                                hw->hw_addr + rx_ring->itr_register);
429                 else
430                         writel(1, hw->hw_addr + rx_ring->itr_register);
431         }
432
433
434         /* set vector for other causes, i.e. link changes */
435         switch (hw->mac.type) {
436         case e1000_82575:
437                 array_wr32(E1000_MSIXBM(0), vector++,
438                                       E1000_EIMS_OTHER);
439
440                 tmp = rd32(E1000_CTRL_EXT);
441                 /* enable MSI-X PBA support*/
442                 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444                 /* Auto-Mask interrupts upon ICR read. */
445                 tmp |= E1000_CTRL_EXT_EIAME;
446                 tmp |= E1000_CTRL_EXT_IRCA;
447
448                 wr32(E1000_CTRL_EXT, tmp);
449                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450                 adapter->eims_other = E1000_EIMS_OTHER;
451
452                 break;
453
454         case e1000_82576:
455                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456                 wr32(E1000_IVAR_MISC, tmp);
457
458                 adapter->eims_enable_mask = (1 << (vector)) - 1;
459                 adapter->eims_other = 1 << (vector - 1);
460                 break;
461         default:
462                 /* do nothing, since nothing else supports MSI-X */
463                 break;
464         } /* switch (hw->mac.type) */
465         wrfl();
466 }
467
468 /**
469  * igb_request_msix - Initialize MSI-X interrupts
470  *
471  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472  * kernel.
473  **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         int i, err = 0, vector = 0;
478
479         vector = 0;
480
481         for (i = 0; i < adapter->num_tx_queues; i++) {
482                 struct igb_ring *ring = &(adapter->tx_ring[i]);
483                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484                 err = request_irq(adapter->msix_entries[vector].vector,
485                                   &igb_msix_tx, 0, ring->name,
486                                   &(adapter->tx_ring[i]));
487                 if (err)
488                         goto out;
489                 ring->itr_register = E1000_EITR(0) + (vector << 2);
490                 ring->itr_val = 976; /* ~4000 ints/sec */
491                 vector++;
492         }
493         for (i = 0; i < adapter->num_rx_queues; i++) {
494                 struct igb_ring *ring = &(adapter->rx_ring[i]);
495                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497                 else
498                         memcpy(ring->name, netdev->name, IFNAMSIZ);
499                 err = request_irq(adapter->msix_entries[vector].vector,
500                                   &igb_msix_rx, 0, ring->name,
501                                   &(adapter->rx_ring[i]));
502                 if (err)
503                         goto out;
504                 ring->itr_register = E1000_EITR(0) + (vector << 2);
505                 ring->itr_val = adapter->itr;
506                 /* overwrite the poll routine for MSIX, we've already done
507                  * netif_napi_add */
508                 ring->napi.poll = &igb_clean_rx_ring_msix;
509                 vector++;
510         }
511
512         err = request_irq(adapter->msix_entries[vector].vector,
513                           &igb_msix_other, 0, netdev->name, netdev);
514         if (err)
515                 goto out;
516
517         igb_configure_msix(adapter);
518         return 0;
519 out:
520         return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525         if (adapter->msix_entries) {
526                 pci_disable_msix(adapter->pdev);
527                 kfree(adapter->msix_entries);
528                 adapter->msix_entries = NULL;
529         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530                 pci_disable_msi(adapter->pdev);
531         return;
532 }
533
534
535 /**
536  * igb_set_interrupt_capability - set MSI or MSI-X if supported
537  *
538  * Attempt to configure interrupts using the best available
539  * capabilities of the hardware and kernel.
540  **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543         int err;
544         int numvecs, i;
545
546         /* Number of supported queues. */
547         /* Having more queues than CPUs doesn't make sense. */
548         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553                                         GFP_KERNEL);
554         if (!adapter->msix_entries)
555                 goto msi_only;
556
557         for (i = 0; i < numvecs; i++)
558                 adapter->msix_entries[i].entry = i;
559
560         err = pci_enable_msix(adapter->pdev,
561                               adapter->msix_entries,
562                               numvecs);
563         if (err == 0)
564                 goto out;
565
566         igb_reset_interrupt_capability(adapter);
567
568         /* If we can't do MSI-X, try MSI */
569 msi_only:
570         adapter->num_rx_queues = 1;
571         adapter->num_tx_queues = 1;
572         if (!pci_enable_msi(adapter->pdev))
573                 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575         /* Notify the stack of the (possibly) reduced Tx Queue count. */
576         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577         return;
578 }
579
580 /**
581  * igb_request_irq - initialize interrupts
582  *
583  * Attempts to configure interrupts using the best available
584  * capabilities of the hardware and kernel.
585  **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588         struct net_device *netdev = adapter->netdev;
589         struct e1000_hw *hw = &adapter->hw;
590         int err = 0;
591
592         if (adapter->msix_entries) {
593                 err = igb_request_msix(adapter);
594                 if (!err)
595                         goto request_done;
596                 /* fall back to MSI */
597                 igb_reset_interrupt_capability(adapter);
598                 if (!pci_enable_msi(adapter->pdev))
599                         adapter->flags |= IGB_FLAG_HAS_MSI;
600                 igb_free_all_tx_resources(adapter);
601                 igb_free_all_rx_resources(adapter);
602                 adapter->num_rx_queues = 1;
603                 igb_alloc_queues(adapter);
604         } else {
605                 switch (hw->mac.type) {
606                 case e1000_82575:
607                         wr32(E1000_MSIXBM(0),
608                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609                         break;
610                 case e1000_82576:
611                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
612                         break;
613                 default:
614                         break;
615                 }
616         }
617
618         if (adapter->flags & IGB_FLAG_HAS_MSI) {
619                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620                                   netdev->name, netdev);
621                 if (!err)
622                         goto request_done;
623                 /* fall back to legacy interrupts */
624                 igb_reset_interrupt_capability(adapter);
625                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626         }
627
628         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629                           netdev->name, netdev);
630
631         if (err)
632                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633                         err);
634
635 request_done:
636         return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641         struct net_device *netdev = adapter->netdev;
642
643         if (adapter->msix_entries) {
644                 int vector = 0, i;
645
646                 for (i = 0; i < adapter->num_tx_queues; i++)
647                         free_irq(adapter->msix_entries[vector++].vector,
648                                 &(adapter->tx_ring[i]));
649                 for (i = 0; i < adapter->num_rx_queues; i++)
650                         free_irq(adapter->msix_entries[vector++].vector,
651                                 &(adapter->rx_ring[i]));
652
653                 free_irq(adapter->msix_entries[vector++].vector, netdev);
654                 return;
655         }
656
657         free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661  * igb_irq_disable - Mask off interrupt generation on the NIC
662  * @adapter: board private structure
663  **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666         struct e1000_hw *hw = &adapter->hw;
667
668         if (adapter->msix_entries) {
669                 wr32(E1000_EIAM, 0);
670                 wr32(E1000_EIMC, ~0);
671                 wr32(E1000_EIAC, 0);
672         }
673
674         wr32(E1000_IAM, 0);
675         wr32(E1000_IMC, ~0);
676         wrfl();
677         synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681  * igb_irq_enable - Enable default interrupt generation settings
682  * @adapter: board private structure
683  **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686         struct e1000_hw *hw = &adapter->hw;
687
688         if (adapter->msix_entries) {
689                 wr32(E1000_EIAC, adapter->eims_enable_mask);
690                 wr32(E1000_EIAM, adapter->eims_enable_mask);
691                 wr32(E1000_EIMS, adapter->eims_enable_mask);
692                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
693         } else {
694                 wr32(E1000_IMS, IMS_ENABLE_MASK);
695                 wr32(E1000_IAM, IMS_ENABLE_MASK);
696         }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701         struct net_device *netdev = adapter->netdev;
702         u16 vid = adapter->hw.mng_cookie.vlan_id;
703         u16 old_vid = adapter->mng_vlan_id;
704         if (adapter->vlgrp) {
705                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706                         if (adapter->hw.mng_cookie.status &
707                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708                                 igb_vlan_rx_add_vid(netdev, vid);
709                                 adapter->mng_vlan_id = vid;
710                         } else
711                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714                                         (vid != old_vid) &&
715                             !vlan_group_get_device(adapter->vlgrp, old_vid))
716                                 igb_vlan_rx_kill_vid(netdev, old_vid);
717                 } else
718                         adapter->mng_vlan_id = vid;
719         }
720 }
721
722 /**
723  * igb_release_hw_control - release control of the h/w to f/w
724  * @adapter: address of board private structure
725  *
726  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727  * For ASF and Pass Through versions of f/w this means that the
728  * driver is no longer loaded.
729  *
730  **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733         struct e1000_hw *hw = &adapter->hw;
734         u32 ctrl_ext;
735
736         /* Let firmware take over control of h/w */
737         ctrl_ext = rd32(E1000_CTRL_EXT);
738         wr32(E1000_CTRL_EXT,
739                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744  * igb_get_hw_control - get control of the h/w from f/w
745  * @adapter: address of board private structure
746  *
747  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748  * For ASF and Pass Through versions of f/w this means that
749  * the driver is loaded.
750  *
751  **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755         u32 ctrl_ext;
756
757         /* Let firmware know the driver has taken over */
758         ctrl_ext = rd32(E1000_CTRL_EXT);
759         wr32(E1000_CTRL_EXT,
760                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764  * igb_configure - configure the hardware for RX and TX
765  * @adapter: private board structure
766  **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769         struct net_device *netdev = adapter->netdev;
770         int i;
771
772         igb_get_hw_control(adapter);
773         igb_set_multi(netdev);
774
775         igb_restore_vlan(adapter);
776
777         igb_configure_tx(adapter);
778         igb_setup_rctl(adapter);
779         igb_configure_rx(adapter);
780
781         igb_rx_fifo_flush_82575(&adapter->hw);
782
783         /* call IGB_DESC_UNUSED which always leaves
784          * at least 1 descriptor unused to make sure
785          * next_to_use != next_to_clean */
786         for (i = 0; i < adapter->num_rx_queues; i++) {
787                 struct igb_ring *ring = &adapter->rx_ring[i];
788                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789         }
790
791
792         adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797  * igb_up - Open the interface and prepare it to handle traffic
798  * @adapter: board private structure
799  **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         int i;
805
806         /* hardware has been reset, we need to reload some things */
807         igb_configure(adapter);
808
809         clear_bit(__IGB_DOWN, &adapter->state);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_enable(&adapter->rx_ring[i].napi);
813         if (adapter->msix_entries)
814                 igb_configure_msix(adapter);
815
816         /* Clear any pending interrupts. */
817         rd32(E1000_ICR);
818         igb_irq_enable(adapter);
819
820         /* Fire a link change interrupt to start the watchdog. */
821         wr32(E1000_ICS, E1000_ICS_LSC);
822         return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         struct net_device *netdev = adapter->netdev;
829         u32 tctl, rctl;
830         int i;
831
832         /* signal that we're down so the interrupt handler does not
833          * reschedule our watchdog timer */
834         set_bit(__IGB_DOWN, &adapter->state);
835
836         /* disable receives in the hardware */
837         rctl = rd32(E1000_RCTL);
838         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839         /* flush and sleep below */
840
841         netif_tx_stop_all_queues(netdev);
842
843         /* disable transmits in the hardware */
844         tctl = rd32(E1000_TCTL);
845         tctl &= ~E1000_TCTL_EN;
846         wr32(E1000_TCTL, tctl);
847         /* flush both disables and wait for them to finish */
848         wrfl();
849         msleep(10);
850
851         for (i = 0; i < adapter->num_rx_queues; i++)
852                 napi_disable(&adapter->rx_ring[i].napi);
853
854         igb_irq_disable(adapter);
855
856         del_timer_sync(&adapter->watchdog_timer);
857         del_timer_sync(&adapter->phy_info_timer);
858
859         netdev->tx_queue_len = adapter->tx_queue_len;
860         netif_carrier_off(netdev);
861         adapter->link_speed = 0;
862         adapter->link_duplex = 0;
863
864         if (!pci_channel_offline(adapter->pdev))
865                 igb_reset(adapter);
866         igb_clean_all_tx_rings(adapter);
867         igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872         WARN_ON(in_interrupt());
873         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874                 msleep(1);
875         igb_down(adapter);
876         igb_up(adapter);
877         clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882         struct e1000_hw *hw = &adapter->hw;
883         struct e1000_mac_info *mac = &hw->mac;
884         struct e1000_fc_info *fc = &hw->fc;
885         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886         u16 hwm;
887
888         /* Repartition Pba for greater than 9k mtu
889          * To take effect CTRL.RST is required.
890          */
891         switch (mac->type) {
892         case e1000_82576:
893                 pba = E1000_PBA_64K;
894                 break;
895         case e1000_82575:
896         default:
897                 pba = E1000_PBA_34K;
898                 break;
899         }
900
901         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
902             (mac->type < e1000_82576)) {
903                 /* adjust PBA for jumbo frames */
904                 wr32(E1000_PBA, pba);
905
906                 /* To maintain wire speed transmits, the Tx FIFO should be
907                  * large enough to accommodate two full transmit packets,
908                  * rounded up to the next 1KB and expressed in KB.  Likewise,
909                  * the Rx FIFO should be large enough to accommodate at least
910                  * one full receive packet and is similarly rounded up and
911                  * expressed in KB. */
912                 pba = rd32(E1000_PBA);
913                 /* upper 16 bits has Tx packet buffer allocation size in KB */
914                 tx_space = pba >> 16;
915                 /* lower 16 bits has Rx packet buffer allocation size in KB */
916                 pba &= 0xffff;
917                 /* the tx fifo also stores 16 bytes of information about the tx
918                  * but don't include ethernet FCS because hardware appends it */
919                 min_tx_space = (adapter->max_frame_size +
920                                 sizeof(struct e1000_tx_desc) -
921                                 ETH_FCS_LEN) * 2;
922                 min_tx_space = ALIGN(min_tx_space, 1024);
923                 min_tx_space >>= 10;
924                 /* software strips receive CRC, so leave room for it */
925                 min_rx_space = adapter->max_frame_size;
926                 min_rx_space = ALIGN(min_rx_space, 1024);
927                 min_rx_space >>= 10;
928
929                 /* If current Tx allocation is less than the min Tx FIFO size,
930                  * and the min Tx FIFO size is less than the current Rx FIFO
931                  * allocation, take space away from current Rx allocation */
932                 if (tx_space < min_tx_space &&
933                     ((min_tx_space - tx_space) < pba)) {
934                         pba = pba - (min_tx_space - tx_space);
935
936                         /* if short on rx space, rx wins and must trump tx
937                          * adjustment */
938                         if (pba < min_rx_space)
939                                 pba = min_rx_space;
940                 }
941                 wr32(E1000_PBA, pba);
942         }
943
944         /* flow control settings */
945         /* The high water mark must be low enough to fit one full frame
946          * (or the size used for early receive) above it in the Rx FIFO.
947          * Set it to the lower of:
948          * - 90% of the Rx FIFO size, or
949          * - the full Rx FIFO size minus one full frame */
950         hwm = min(((pba << 10) * 9 / 10),
951                         ((pba << 10) - 2 * adapter->max_frame_size));
952
953         if (mac->type < e1000_82576) {
954                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
955                 fc->low_water = fc->high_water - 8;
956         } else {
957                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
958                 fc->low_water = fc->high_water - 16;
959         }
960         fc->pause_time = 0xFFFF;
961         fc->send_xon = 1;
962         fc->type = fc->original_type;
963
964         /* Allow time for pending master requests to run */
965         adapter->hw.mac.ops.reset_hw(&adapter->hw);
966         wr32(E1000_WUC, 0);
967
968         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
969                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
970
971         igb_update_mng_vlan(adapter);
972
973         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
974         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
975
976         igb_reset_adaptive(&adapter->hw);
977         igb_get_phy_info(&adapter->hw);
978 }
979
980 static const struct net_device_ops igb_netdev_ops = {
981         .ndo_open               = igb_open,
982         .ndo_stop               = igb_close,
983         .ndo_start_xmit         = igb_xmit_frame_adv,
984         .ndo_get_stats          = igb_get_stats,
985         .ndo_set_multicast_list = igb_set_multi,
986         .ndo_set_mac_address    = igb_set_mac,
987         .ndo_change_mtu         = igb_change_mtu,
988         .ndo_do_ioctl           = igb_ioctl,
989         .ndo_tx_timeout         = igb_tx_timeout,
990         .ndo_validate_addr      = eth_validate_addr,
991         .ndo_vlan_rx_register   = igb_vlan_rx_register,
992         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
993         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
994 #ifdef CONFIG_NET_POLL_CONTROLLER
995         .ndo_poll_controller    = igb_netpoll,
996 #endif
997 };
998
999 /**
1000  * igb_probe - Device Initialization Routine
1001  * @pdev: PCI device information struct
1002  * @ent: entry in igb_pci_tbl
1003  *
1004  * Returns 0 on success, negative on failure
1005  *
1006  * igb_probe initializes an adapter identified by a pci_dev structure.
1007  * The OS initialization, configuring of the adapter private structure,
1008  * and a hardware reset occur.
1009  **/
1010 static int __devinit igb_probe(struct pci_dev *pdev,
1011                                const struct pci_device_id *ent)
1012 {
1013         struct net_device *netdev;
1014         struct igb_adapter *adapter;
1015         struct e1000_hw *hw;
1016         struct pci_dev *us_dev;
1017         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1018         unsigned long mmio_start, mmio_len;
1019         int err, pci_using_dac, pos;
1020         u16 eeprom_data = 0, state = 0;
1021         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1022         u32 part_num;
1023
1024         err = pci_enable_device_mem(pdev);
1025         if (err)
1026                 return err;
1027
1028         pci_using_dac = 0;
1029         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1030         if (!err) {
1031                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1032                 if (!err)
1033                         pci_using_dac = 1;
1034         } else {
1035                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1036                 if (err) {
1037                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1038                         if (err) {
1039                                 dev_err(&pdev->dev, "No usable DMA "
1040                                         "configuration, aborting\n");
1041                                 goto err_dma;
1042                         }
1043                 }
1044         }
1045
1046         /* 82575 requires that the pci-e link partner disable the L0s state */
1047         switch (pdev->device) {
1048         case E1000_DEV_ID_82575EB_COPPER:
1049         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1050         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1051                 us_dev = pdev->bus->self;
1052                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1053                 if (pos) {
1054                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055                                              &state);
1056                         state &= ~PCIE_LINK_STATE_L0S;
1057                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1058                                               state);
1059                         dev_info(&pdev->dev,
1060                                  "Disabling ASPM L0s upstream switch port %s\n",
1061                                  pci_name(us_dev));
1062                 }
1063         default:
1064                 break;
1065         }
1066
1067         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1068                                            IORESOURCE_MEM),
1069                                            igb_driver_name);
1070         if (err)
1071                 goto err_pci_reg;
1072
1073         err = pci_enable_pcie_error_reporting(pdev);
1074         if (err) {
1075                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1076                         "0x%x\n", err);
1077                 /* non-fatal, continue */
1078         }
1079
1080         pci_set_master(pdev);
1081         pci_save_state(pdev);
1082
1083         err = -ENOMEM;
1084         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1085         if (!netdev)
1086                 goto err_alloc_etherdev;
1087
1088         SET_NETDEV_DEV(netdev, &pdev->dev);
1089
1090         pci_set_drvdata(pdev, netdev);
1091         adapter = netdev_priv(netdev);
1092         adapter->netdev = netdev;
1093         adapter->pdev = pdev;
1094         hw = &adapter->hw;
1095         hw->back = adapter;
1096         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1097
1098         mmio_start = pci_resource_start(pdev, 0);
1099         mmio_len = pci_resource_len(pdev, 0);
1100
1101         err = -EIO;
1102         hw->hw_addr = ioremap(mmio_start, mmio_len);
1103         if (!hw->hw_addr)
1104                 goto err_ioremap;
1105
1106         netdev->netdev_ops = &igb_netdev_ops;
1107         igb_set_ethtool_ops(netdev);
1108         netdev->watchdog_timeo = 5 * HZ;
1109
1110         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1111
1112         netdev->mem_start = mmio_start;
1113         netdev->mem_end = mmio_start + mmio_len;
1114
1115         /* PCI config space info */
1116         hw->vendor_id = pdev->vendor;
1117         hw->device_id = pdev->device;
1118         hw->revision_id = pdev->revision;
1119         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1120         hw->subsystem_device_id = pdev->subsystem_device;
1121
1122         /* setup the private structure */
1123         hw->back = adapter;
1124         /* Copy the default MAC, PHY and NVM function pointers */
1125         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1126         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1127         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1128         /* Initialize skew-specific constants */
1129         err = ei->get_invariants(hw);
1130         if (err)
1131                 goto err_sw_init;
1132
1133         /* setup the private structure */
1134         err = igb_sw_init(adapter);
1135         if (err)
1136                 goto err_sw_init;
1137
1138         igb_get_bus_info_pcie(hw);
1139
1140         /* set flags */
1141         switch (hw->mac.type) {
1142         case e1000_82575:
1143                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1144                 break;
1145         case e1000_82576:
1146         default:
1147                 break;
1148         }
1149
1150         hw->phy.autoneg_wait_to_complete = false;
1151         hw->mac.adaptive_ifs = true;
1152
1153         /* Copper options */
1154         if (hw->phy.media_type == e1000_media_type_copper) {
1155                 hw->phy.mdix = AUTO_ALL_MODES;
1156                 hw->phy.disable_polarity_correction = false;
1157                 hw->phy.ms_type = e1000_ms_hw_default;
1158         }
1159
1160         if (igb_check_reset_block(hw))
1161                 dev_info(&pdev->dev,
1162                         "PHY reset is blocked due to SOL/IDER session.\n");
1163
1164         netdev->features = NETIF_F_SG |
1165                            NETIF_F_IP_CSUM |
1166                            NETIF_F_HW_VLAN_TX |
1167                            NETIF_F_HW_VLAN_RX |
1168                            NETIF_F_HW_VLAN_FILTER;
1169
1170         netdev->features |= NETIF_F_IPV6_CSUM;
1171         netdev->features |= NETIF_F_TSO;
1172         netdev->features |= NETIF_F_TSO6;
1173
1174 #ifdef CONFIG_IGB_LRO
1175         netdev->features |= NETIF_F_GRO;
1176 #endif
1177
1178         netdev->vlan_features |= NETIF_F_TSO;
1179         netdev->vlan_features |= NETIF_F_TSO6;
1180         netdev->vlan_features |= NETIF_F_IP_CSUM;
1181         netdev->vlan_features |= NETIF_F_SG;
1182
1183         if (pci_using_dac)
1184                 netdev->features |= NETIF_F_HIGHDMA;
1185
1186         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1187
1188         /* before reading the NVM, reset the controller to put the device in a
1189          * known good starting state */
1190         hw->mac.ops.reset_hw(hw);
1191
1192         /* make sure the NVM is good */
1193         if (igb_validate_nvm_checksum(hw) < 0) {
1194                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1195                 err = -EIO;
1196                 goto err_eeprom;
1197         }
1198
1199         /* copy the MAC address out of the NVM */
1200         if (hw->mac.ops.read_mac_addr(hw))
1201                 dev_err(&pdev->dev, "NVM Read Error\n");
1202
1203         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1204         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1205
1206         if (!is_valid_ether_addr(netdev->perm_addr)) {
1207                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1208                 err = -EIO;
1209                 goto err_eeprom;
1210         }
1211
1212         init_timer(&adapter->watchdog_timer);
1213         adapter->watchdog_timer.function = &igb_watchdog;
1214         adapter->watchdog_timer.data = (unsigned long) adapter;
1215
1216         init_timer(&adapter->phy_info_timer);
1217         adapter->phy_info_timer.function = &igb_update_phy_info;
1218         adapter->phy_info_timer.data = (unsigned long) adapter;
1219
1220         INIT_WORK(&adapter->reset_task, igb_reset_task);
1221         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1222
1223         /* Initialize link properties that are user-changeable */
1224         adapter->fc_autoneg = true;
1225         hw->mac.autoneg = true;
1226         hw->phy.autoneg_advertised = 0x2f;
1227
1228         hw->fc.original_type = e1000_fc_default;
1229         hw->fc.type = e1000_fc_default;
1230
1231         adapter->itr_setting = 3;
1232         adapter->itr = IGB_START_ITR;
1233
1234         igb_validate_mdi_setting(hw);
1235
1236         adapter->rx_csum = 1;
1237
1238         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1239          * enable the ACPI Magic Packet filter
1240          */
1241
1242         if (hw->bus.func == 0 ||
1243             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1244                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1245
1246         if (eeprom_data & eeprom_apme_mask)
1247                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1248
1249         /* now that we have the eeprom settings, apply the special cases where
1250          * the eeprom may be wrong or the board simply won't support wake on
1251          * lan on a particular port */
1252         switch (pdev->device) {
1253         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1254                 adapter->eeprom_wol = 0;
1255                 break;
1256         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1257         case E1000_DEV_ID_82576_FIBER:
1258         case E1000_DEV_ID_82576_SERDES:
1259                 /* Wake events only supported on port A for dual fiber
1260                  * regardless of eeprom setting */
1261                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1262                         adapter->eeprom_wol = 0;
1263                 break;
1264         }
1265
1266         /* initialize the wol settings based on the eeprom settings */
1267         adapter->wol = adapter->eeprom_wol;
1268         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1269
1270         /* reset the hardware with the new settings */
1271         igb_reset(adapter);
1272
1273         /* let the f/w know that the h/w is now under the control of the
1274          * driver. */
1275         igb_get_hw_control(adapter);
1276
1277         /* tell the stack to leave us alone until igb_open() is called */
1278         netif_carrier_off(netdev);
1279         netif_tx_stop_all_queues(netdev);
1280
1281         strcpy(netdev->name, "eth%d");
1282         err = register_netdev(netdev);
1283         if (err)
1284                 goto err_register;
1285
1286 #ifdef CONFIG_IGB_DCA
1287         if (dca_add_requester(&pdev->dev) == 0) {
1288                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1289                 dev_info(&pdev->dev, "DCA enabled\n");
1290                 /* Always use CB2 mode, difference is masked
1291                  * in the CB driver. */
1292                 wr32(E1000_DCA_CTRL, 2);
1293                 igb_setup_dca(adapter);
1294         }
1295 #endif
1296
1297         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1298         /* print bus type/speed/width info */
1299         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1300                  netdev->name,
1301                  ((hw->bus.speed == e1000_bus_speed_2500)
1302                   ? "2.5Gb/s" : "unknown"),
1303                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1304                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1305                   ? "Width x1" : "unknown"),
1306                  netdev->dev_addr);
1307
1308         igb_read_part_num(hw, &part_num);
1309         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1310                 (part_num >> 8), (part_num & 0xff));
1311
1312         dev_info(&pdev->dev,
1313                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1314                 adapter->msix_entries ? "MSI-X" :
1315                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1316                 adapter->num_rx_queues, adapter->num_tx_queues);
1317
1318         return 0;
1319
1320 err_register:
1321         igb_release_hw_control(adapter);
1322 err_eeprom:
1323         if (!igb_check_reset_block(hw))
1324                 igb_reset_phy(hw);
1325
1326         if (hw->flash_address)
1327                 iounmap(hw->flash_address);
1328
1329         igb_free_queues(adapter);
1330 err_sw_init:
1331         iounmap(hw->hw_addr);
1332 err_ioremap:
1333         free_netdev(netdev);
1334 err_alloc_etherdev:
1335         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1336                                      IORESOURCE_MEM));
1337 err_pci_reg:
1338 err_dma:
1339         pci_disable_device(pdev);
1340         return err;
1341 }
1342
1343 /**
1344  * igb_remove - Device Removal Routine
1345  * @pdev: PCI device information struct
1346  *
1347  * igb_remove is called by the PCI subsystem to alert the driver
1348  * that it should release a PCI device.  The could be caused by a
1349  * Hot-Plug event, or because the driver is going to be removed from
1350  * memory.
1351  **/
1352 static void __devexit igb_remove(struct pci_dev *pdev)
1353 {
1354         struct net_device *netdev = pci_get_drvdata(pdev);
1355         struct igb_adapter *adapter = netdev_priv(netdev);
1356         struct e1000_hw *hw = &adapter->hw;
1357         int err;
1358
1359         /* flush_scheduled work may reschedule our watchdog task, so
1360          * explicitly disable watchdog tasks from being rescheduled  */
1361         set_bit(__IGB_DOWN, &adapter->state);
1362         del_timer_sync(&adapter->watchdog_timer);
1363         del_timer_sync(&adapter->phy_info_timer);
1364
1365         flush_scheduled_work();
1366
1367 #ifdef CONFIG_IGB_DCA
1368         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1369                 dev_info(&pdev->dev, "DCA disabled\n");
1370                 dca_remove_requester(&pdev->dev);
1371                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1372                 wr32(E1000_DCA_CTRL, 1);
1373         }
1374 #endif
1375
1376         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1377          * would have already happened in close and is redundant. */
1378         igb_release_hw_control(adapter);
1379
1380         unregister_netdev(netdev);
1381
1382         if (!igb_check_reset_block(&adapter->hw))
1383                 igb_reset_phy(&adapter->hw);
1384
1385         igb_reset_interrupt_capability(adapter);
1386
1387         igb_free_queues(adapter);
1388
1389         iounmap(hw->hw_addr);
1390         if (hw->flash_address)
1391                 iounmap(hw->flash_address);
1392         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1393                                      IORESOURCE_MEM));
1394
1395         free_netdev(netdev);
1396
1397         err = pci_disable_pcie_error_reporting(pdev);
1398         if (err)
1399                 dev_err(&pdev->dev,
1400                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1401
1402         pci_disable_device(pdev);
1403 }
1404
1405 /**
1406  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1407  * @adapter: board private structure to initialize
1408  *
1409  * igb_sw_init initializes the Adapter private data structure.
1410  * Fields are initialized based on PCI device information and
1411  * OS network device settings (MTU size).
1412  **/
1413 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1414 {
1415         struct e1000_hw *hw = &adapter->hw;
1416         struct net_device *netdev = adapter->netdev;
1417         struct pci_dev *pdev = adapter->pdev;
1418
1419         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1420
1421         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1422         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1423         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1424         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1425         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1426         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1427
1428         /* This call may decrease the number of queues depending on
1429          * interrupt mode. */
1430         igb_set_interrupt_capability(adapter);
1431
1432         if (igb_alloc_queues(adapter)) {
1433                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1434                 return -ENOMEM;
1435         }
1436
1437         /* Explicitly disable IRQ since the NIC can be in any state. */
1438         igb_irq_disable(adapter);
1439
1440         set_bit(__IGB_DOWN, &adapter->state);
1441         return 0;
1442 }
1443
1444 /**
1445  * igb_open - Called when a network interface is made active
1446  * @netdev: network interface device structure
1447  *
1448  * Returns 0 on success, negative value on failure
1449  *
1450  * The open entry point is called when a network interface is made
1451  * active by the system (IFF_UP).  At this point all resources needed
1452  * for transmit and receive operations are allocated, the interrupt
1453  * handler is registered with the OS, the watchdog timer is started,
1454  * and the stack is notified that the interface is ready.
1455  **/
1456 static int igb_open(struct net_device *netdev)
1457 {
1458         struct igb_adapter *adapter = netdev_priv(netdev);
1459         struct e1000_hw *hw = &adapter->hw;
1460         int err;
1461         int i;
1462
1463         /* disallow open during test */
1464         if (test_bit(__IGB_TESTING, &adapter->state))
1465                 return -EBUSY;
1466
1467         /* allocate transmit descriptors */
1468         err = igb_setup_all_tx_resources(adapter);
1469         if (err)
1470                 goto err_setup_tx;
1471
1472         /* allocate receive descriptors */
1473         err = igb_setup_all_rx_resources(adapter);
1474         if (err)
1475                 goto err_setup_rx;
1476
1477         /* e1000_power_up_phy(adapter); */
1478
1479         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1480         if ((adapter->hw.mng_cookie.status &
1481              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1482                 igb_update_mng_vlan(adapter);
1483
1484         /* before we allocate an interrupt, we must be ready to handle it.
1485          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1486          * as soon as we call pci_request_irq, so we have to setup our
1487          * clean_rx handler before we do so.  */
1488         igb_configure(adapter);
1489
1490         err = igb_request_irq(adapter);
1491         if (err)
1492                 goto err_req_irq;
1493
1494         /* From here on the code is the same as igb_up() */
1495         clear_bit(__IGB_DOWN, &adapter->state);
1496
1497         for (i = 0; i < adapter->num_rx_queues; i++)
1498                 napi_enable(&adapter->rx_ring[i].napi);
1499
1500         /* Clear any pending interrupts. */
1501         rd32(E1000_ICR);
1502
1503         igb_irq_enable(adapter);
1504
1505         netif_tx_start_all_queues(netdev);
1506
1507         /* Fire a link status change interrupt to start the watchdog. */
1508         wr32(E1000_ICS, E1000_ICS_LSC);
1509
1510         return 0;
1511
1512 err_req_irq:
1513         igb_release_hw_control(adapter);
1514         /* e1000_power_down_phy(adapter); */
1515         igb_free_all_rx_resources(adapter);
1516 err_setup_rx:
1517         igb_free_all_tx_resources(adapter);
1518 err_setup_tx:
1519         igb_reset(adapter);
1520
1521         return err;
1522 }
1523
1524 /**
1525  * igb_close - Disables a network interface
1526  * @netdev: network interface device structure
1527  *
1528  * Returns 0, this is not allowed to fail
1529  *
1530  * The close entry point is called when an interface is de-activated
1531  * by the OS.  The hardware is still under the driver's control, but
1532  * needs to be disabled.  A global MAC reset is issued to stop the
1533  * hardware, and all transmit and receive resources are freed.
1534  **/
1535 static int igb_close(struct net_device *netdev)
1536 {
1537         struct igb_adapter *adapter = netdev_priv(netdev);
1538
1539         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1540         igb_down(adapter);
1541
1542         igb_free_irq(adapter);
1543
1544         igb_free_all_tx_resources(adapter);
1545         igb_free_all_rx_resources(adapter);
1546
1547         /* kill manageability vlan ID if supported, but not if a vlan with
1548          * the same ID is registered on the host OS (let 8021q kill it) */
1549         if ((adapter->hw.mng_cookie.status &
1550                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1551              !(adapter->vlgrp &&
1552                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1553                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1560  * @adapter: board private structure
1561  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565
1566 int igb_setup_tx_resources(struct igb_adapter *adapter,
1567                            struct igb_ring *tx_ring)
1568 {
1569         struct pci_dev *pdev = adapter->pdev;
1570         int size;
1571
1572         size = sizeof(struct igb_buffer) * tx_ring->count;
1573         tx_ring->buffer_info = vmalloc(size);
1574         if (!tx_ring->buffer_info)
1575                 goto err;
1576         memset(tx_ring->buffer_info, 0, size);
1577
1578         /* round up to nearest 4K */
1579         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1580         tx_ring->size = ALIGN(tx_ring->size, 4096);
1581
1582         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1583                                              &tx_ring->dma);
1584
1585         if (!tx_ring->desc)
1586                 goto err;
1587
1588         tx_ring->adapter = adapter;
1589         tx_ring->next_to_use = 0;
1590         tx_ring->next_to_clean = 0;
1591         return 0;
1592
1593 err:
1594         vfree(tx_ring->buffer_info);
1595         dev_err(&adapter->pdev->dev,
1596                 "Unable to allocate memory for the transmit descriptor ring\n");
1597         return -ENOMEM;
1598 }
1599
1600 /**
1601  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1602  *                                (Descriptors) for all queues
1603  * @adapter: board private structure
1604  *
1605  * Return 0 on success, negative on failure
1606  **/
1607 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1608 {
1609         int i, err = 0;
1610         int r_idx;
1611
1612         for (i = 0; i < adapter->num_tx_queues; i++) {
1613                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1614                 if (err) {
1615                         dev_err(&adapter->pdev->dev,
1616                                 "Allocation for Tx Queue %u failed\n", i);
1617                         for (i--; i >= 0; i--)
1618                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1619                         break;
1620                 }
1621         }
1622
1623         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1624                 r_idx = i % adapter->num_tx_queues;
1625                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1626         }
1627         return err;
1628 }
1629
1630 /**
1631  * igb_configure_tx - Configure transmit Unit after Reset
1632  * @adapter: board private structure
1633  *
1634  * Configure the Tx unit of the MAC after a reset.
1635  **/
1636 static void igb_configure_tx(struct igb_adapter *adapter)
1637 {
1638         u64 tdba;
1639         struct e1000_hw *hw = &adapter->hw;
1640         u32 tctl;
1641         u32 txdctl, txctrl;
1642         int i, j;
1643
1644         for (i = 0; i < adapter->num_tx_queues; i++) {
1645                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1646                 j = ring->reg_idx;
1647                 wr32(E1000_TDLEN(j),
1648                                 ring->count * sizeof(struct e1000_tx_desc));
1649                 tdba = ring->dma;
1650                 wr32(E1000_TDBAL(j),
1651                                 tdba & 0x00000000ffffffffULL);
1652                 wr32(E1000_TDBAH(j), tdba >> 32);
1653
1654                 ring->head = E1000_TDH(j);
1655                 ring->tail = E1000_TDT(j);
1656                 writel(0, hw->hw_addr + ring->tail);
1657                 writel(0, hw->hw_addr + ring->head);
1658                 txdctl = rd32(E1000_TXDCTL(j));
1659                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1660                 wr32(E1000_TXDCTL(j), txdctl);
1661
1662                 /* Turn off Relaxed Ordering on head write-backs.  The
1663                  * writebacks MUST be delivered in order or it will
1664                  * completely screw up our bookeeping.
1665                  */
1666                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1667                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1668                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1669         }
1670
1671
1672
1673         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1674
1675         /* Program the Transmit Control Register */
1676
1677         tctl = rd32(E1000_TCTL);
1678         tctl &= ~E1000_TCTL_CT;
1679         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1680                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1681
1682         igb_config_collision_dist(hw);
1683
1684         /* Setup Transmit Descriptor Settings for eop descriptor */
1685         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1686
1687         /* Enable transmits */
1688         tctl |= E1000_TCTL_EN;
1689
1690         wr32(E1000_TCTL, tctl);
1691 }
1692
1693 /**
1694  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1695  * @adapter: board private structure
1696  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1697  *
1698  * Returns 0 on success, negative on failure
1699  **/
1700
1701 int igb_setup_rx_resources(struct igb_adapter *adapter,
1702                            struct igb_ring *rx_ring)
1703 {
1704         struct pci_dev *pdev = adapter->pdev;
1705         int size, desc_len;
1706
1707         size = sizeof(struct igb_buffer) * rx_ring->count;
1708         rx_ring->buffer_info = vmalloc(size);
1709         if (!rx_ring->buffer_info)
1710                 goto err;
1711         memset(rx_ring->buffer_info, 0, size);
1712
1713         desc_len = sizeof(union e1000_adv_rx_desc);
1714
1715         /* Round up to nearest 4K */
1716         rx_ring->size = rx_ring->count * desc_len;
1717         rx_ring->size = ALIGN(rx_ring->size, 4096);
1718
1719         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1720                                              &rx_ring->dma);
1721
1722         if (!rx_ring->desc)
1723                 goto err;
1724
1725         rx_ring->next_to_clean = 0;
1726         rx_ring->next_to_use = 0;
1727
1728         rx_ring->adapter = adapter;
1729
1730         return 0;
1731
1732 err:
1733         vfree(rx_ring->buffer_info);
1734         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1735                 "the receive descriptor ring\n");
1736         return -ENOMEM;
1737 }
1738
1739 /**
1740  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1741  *                                (Descriptors) for all queues
1742  * @adapter: board private structure
1743  *
1744  * Return 0 on success, negative on failure
1745  **/
1746 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1747 {
1748         int i, err = 0;
1749
1750         for (i = 0; i < adapter->num_rx_queues; i++) {
1751                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1752                 if (err) {
1753                         dev_err(&adapter->pdev->dev,
1754                                 "Allocation for Rx Queue %u failed\n", i);
1755                         for (i--; i >= 0; i--)
1756                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1757                         break;
1758                 }
1759         }
1760
1761         return err;
1762 }
1763
1764 /**
1765  * igb_setup_rctl - configure the receive control registers
1766  * @adapter: Board private structure
1767  **/
1768 static void igb_setup_rctl(struct igb_adapter *adapter)
1769 {
1770         struct e1000_hw *hw = &adapter->hw;
1771         u32 rctl;
1772         u32 srrctl = 0;
1773         int i, j;
1774
1775         rctl = rd32(E1000_RCTL);
1776
1777         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1778         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1779
1780         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1781                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1782
1783         /*
1784          * enable stripping of CRC. It's unlikely this will break BMC
1785          * redirection as it did with e1000. Newer features require
1786          * that the HW strips the CRC.
1787         */
1788         rctl |= E1000_RCTL_SECRC;
1789
1790         /*
1791          * disable store bad packets and clear size bits.
1792          */
1793         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1794
1795         /* enable LPE when to prevent packets larger than max_frame_size */
1796                 rctl |= E1000_RCTL_LPE;
1797
1798         /* Setup buffer sizes */
1799         switch (adapter->rx_buffer_len) {
1800         case IGB_RXBUFFER_256:
1801                 rctl |= E1000_RCTL_SZ_256;
1802                 break;
1803         case IGB_RXBUFFER_512:
1804                 rctl |= E1000_RCTL_SZ_512;
1805                 break;
1806         default:
1807                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1808                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1809                 break;
1810         }
1811
1812         /* 82575 and greater support packet-split where the protocol
1813          * header is placed in skb->data and the packet data is
1814          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1815          * In the case of a non-split, skb->data is linearly filled,
1816          * followed by the page buffers.  Therefore, skb->data is
1817          * sized to hold the largest protocol header.
1818          */
1819         /* allocations using alloc_page take too long for regular MTU
1820          * so only enable packet split for jumbo frames */
1821         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1822                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1823                 srrctl |= adapter->rx_ps_hdr_size <<
1824                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1825                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1826         } else {
1827                 adapter->rx_ps_hdr_size = 0;
1828                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1829         }
1830
1831         for (i = 0; i < adapter->num_rx_queues; i++) {
1832                 j = adapter->rx_ring[i].reg_idx;
1833                 wr32(E1000_SRRCTL(j), srrctl);
1834         }
1835
1836         wr32(E1000_RCTL, rctl);
1837 }
1838
1839 /**
1840  * igb_configure_rx - Configure receive Unit after Reset
1841  * @adapter: board private structure
1842  *
1843  * Configure the Rx unit of the MAC after a reset.
1844  **/
1845 static void igb_configure_rx(struct igb_adapter *adapter)
1846 {
1847         u64 rdba;
1848         struct e1000_hw *hw = &adapter->hw;
1849         u32 rctl, rxcsum;
1850         u32 rxdctl;
1851         int i, j;
1852
1853         /* disable receives while setting up the descriptors */
1854         rctl = rd32(E1000_RCTL);
1855         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1856         wrfl();
1857         mdelay(10);
1858
1859         if (adapter->itr_setting > 3)
1860                 wr32(E1000_ITR, adapter->itr);
1861
1862         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1863          * the Base and Length of the Rx Descriptor Ring */
1864         for (i = 0; i < adapter->num_rx_queues; i++) {
1865                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1866                 j = ring->reg_idx;
1867                 rdba = ring->dma;
1868                 wr32(E1000_RDBAL(j),
1869                                 rdba & 0x00000000ffffffffULL);
1870                 wr32(E1000_RDBAH(j), rdba >> 32);
1871                 wr32(E1000_RDLEN(j),
1872                                ring->count * sizeof(union e1000_adv_rx_desc));
1873
1874                 ring->head = E1000_RDH(j);
1875                 ring->tail = E1000_RDT(j);
1876                 writel(0, hw->hw_addr + ring->tail);
1877                 writel(0, hw->hw_addr + ring->head);
1878
1879                 rxdctl = rd32(E1000_RXDCTL(j));
1880                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1881                 rxdctl &= 0xFFF00000;
1882                 rxdctl |= IGB_RX_PTHRESH;
1883                 rxdctl |= IGB_RX_HTHRESH << 8;
1884                 rxdctl |= IGB_RX_WTHRESH << 16;
1885                 wr32(E1000_RXDCTL(j), rxdctl);
1886         }
1887
1888         if (adapter->num_rx_queues > 1) {
1889                 u32 random[10];
1890                 u32 mrqc;
1891                 u32 j, shift;
1892                 union e1000_reta {
1893                         u32 dword;
1894                         u8  bytes[4];
1895                 } reta;
1896
1897                 get_random_bytes(&random[0], 40);
1898
1899                 if (hw->mac.type >= e1000_82576)
1900                         shift = 0;
1901                 else
1902                         shift = 6;
1903                 for (j = 0; j < (32 * 4); j++) {
1904                         reta.bytes[j & 3] =
1905                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1906                         if ((j & 3) == 3)
1907                                 writel(reta.dword,
1908                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1909                 }
1910                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1911
1912                 /* Fill out hash function seeds */
1913                 for (j = 0; j < 10; j++)
1914                         array_wr32(E1000_RSSRK(0), j, random[j]);
1915
1916                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1917                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1918                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1919                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1920                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1921                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1922                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1923                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1924
1925
1926                 wr32(E1000_MRQC, mrqc);
1927
1928                 /* Multiqueue and raw packet checksumming are mutually
1929                  * exclusive.  Note that this not the same as TCP/IP
1930                  * checksumming, which works fine. */
1931                 rxcsum = rd32(E1000_RXCSUM);
1932                 rxcsum |= E1000_RXCSUM_PCSD;
1933                 wr32(E1000_RXCSUM, rxcsum);
1934         } else {
1935                 /* Enable Receive Checksum Offload for TCP and UDP */
1936                 rxcsum = rd32(E1000_RXCSUM);
1937                 if (adapter->rx_csum) {
1938                         rxcsum |= E1000_RXCSUM_TUOFL;
1939
1940                         /* Enable IPv4 payload checksum for UDP fragments
1941                          * Must be used in conjunction with packet-split. */
1942                         if (adapter->rx_ps_hdr_size)
1943                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1944                 } else {
1945                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1946                         /* don't need to clear IPPCSE as it defaults to 0 */
1947                 }
1948                 wr32(E1000_RXCSUM, rxcsum);
1949         }
1950
1951         if (adapter->vlgrp)
1952                 wr32(E1000_RLPML,
1953                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1954         else
1955                 wr32(E1000_RLPML, adapter->max_frame_size);
1956
1957         /* Enable Receives */
1958         wr32(E1000_RCTL, rctl);
1959 }
1960
1961 /**
1962  * igb_free_tx_resources - Free Tx Resources per Queue
1963  * @tx_ring: Tx descriptor ring for a specific queue
1964  *
1965  * Free all transmit software resources
1966  **/
1967 void igb_free_tx_resources(struct igb_ring *tx_ring)
1968 {
1969         struct pci_dev *pdev = tx_ring->adapter->pdev;
1970
1971         igb_clean_tx_ring(tx_ring);
1972
1973         vfree(tx_ring->buffer_info);
1974         tx_ring->buffer_info = NULL;
1975
1976         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1977
1978         tx_ring->desc = NULL;
1979 }
1980
1981 /**
1982  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1983  * @adapter: board private structure
1984  *
1985  * Free all transmit software resources
1986  **/
1987 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1988 {
1989         int i;
1990
1991         for (i = 0; i < adapter->num_tx_queues; i++)
1992                 igb_free_tx_resources(&adapter->tx_ring[i]);
1993 }
1994
1995 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1996                                            struct igb_buffer *buffer_info)
1997 {
1998         if (buffer_info->dma) {
1999                 pci_unmap_page(adapter->pdev,
2000                                 buffer_info->dma,
2001                                 buffer_info->length,
2002                                 PCI_DMA_TODEVICE);
2003                 buffer_info->dma = 0;
2004         }
2005         if (buffer_info->skb) {
2006                 dev_kfree_skb_any(buffer_info->skb);
2007                 buffer_info->skb = NULL;
2008         }
2009         buffer_info->time_stamp = 0;
2010         /* buffer_info must be completely set up in the transmit path */
2011 }
2012
2013 /**
2014  * igb_clean_tx_ring - Free Tx Buffers
2015  * @tx_ring: ring to be cleaned
2016  **/
2017 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2018 {
2019         struct igb_adapter *adapter = tx_ring->adapter;
2020         struct igb_buffer *buffer_info;
2021         unsigned long size;
2022         unsigned int i;
2023
2024         if (!tx_ring->buffer_info)
2025                 return;
2026         /* Free all the Tx ring sk_buffs */
2027
2028         for (i = 0; i < tx_ring->count; i++) {
2029                 buffer_info = &tx_ring->buffer_info[i];
2030                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2031         }
2032
2033         size = sizeof(struct igb_buffer) * tx_ring->count;
2034         memset(tx_ring->buffer_info, 0, size);
2035
2036         /* Zero out the descriptor ring */
2037
2038         memset(tx_ring->desc, 0, tx_ring->size);
2039
2040         tx_ring->next_to_use = 0;
2041         tx_ring->next_to_clean = 0;
2042
2043         writel(0, adapter->hw.hw_addr + tx_ring->head);
2044         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2045 }
2046
2047 /**
2048  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2049  * @adapter: board private structure
2050  **/
2051 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2052 {
2053         int i;
2054
2055         for (i = 0; i < adapter->num_tx_queues; i++)
2056                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2057 }
2058
2059 /**
2060  * igb_free_rx_resources - Free Rx Resources
2061  * @rx_ring: ring to clean the resources from
2062  *
2063  * Free all receive software resources
2064  **/
2065 void igb_free_rx_resources(struct igb_ring *rx_ring)
2066 {
2067         struct pci_dev *pdev = rx_ring->adapter->pdev;
2068
2069         igb_clean_rx_ring(rx_ring);
2070
2071         vfree(rx_ring->buffer_info);
2072         rx_ring->buffer_info = NULL;
2073
2074         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2075
2076         rx_ring->desc = NULL;
2077 }
2078
2079 /**
2080  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2081  * @adapter: board private structure
2082  *
2083  * Free all receive software resources
2084  **/
2085 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2086 {
2087         int i;
2088
2089         for (i = 0; i < adapter->num_rx_queues; i++)
2090                 igb_free_rx_resources(&adapter->rx_ring[i]);
2091 }
2092
2093 /**
2094  * igb_clean_rx_ring - Free Rx Buffers per Queue
2095  * @rx_ring: ring to free buffers from
2096  **/
2097 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2098 {
2099         struct igb_adapter *adapter = rx_ring->adapter;
2100         struct igb_buffer *buffer_info;
2101         struct pci_dev *pdev = adapter->pdev;
2102         unsigned long size;
2103         unsigned int i;
2104
2105         if (!rx_ring->buffer_info)
2106                 return;
2107         /* Free all the Rx ring sk_buffs */
2108         for (i = 0; i < rx_ring->count; i++) {
2109                 buffer_info = &rx_ring->buffer_info[i];
2110                 if (buffer_info->dma) {
2111                         if (adapter->rx_ps_hdr_size)
2112                                 pci_unmap_single(pdev, buffer_info->dma,
2113                                                  adapter->rx_ps_hdr_size,
2114                                                  PCI_DMA_FROMDEVICE);
2115                         else
2116                                 pci_unmap_single(pdev, buffer_info->dma,
2117                                                  adapter->rx_buffer_len,
2118                                                  PCI_DMA_FROMDEVICE);
2119                         buffer_info->dma = 0;
2120                 }
2121
2122                 if (buffer_info->skb) {
2123                         dev_kfree_skb(buffer_info->skb);
2124                         buffer_info->skb = NULL;
2125                 }
2126                 if (buffer_info->page) {
2127                         if (buffer_info->page_dma)
2128                                 pci_unmap_page(pdev, buffer_info->page_dma,
2129                                                PAGE_SIZE / 2,
2130                                                PCI_DMA_FROMDEVICE);
2131                         put_page(buffer_info->page);
2132                         buffer_info->page = NULL;
2133                         buffer_info->page_dma = 0;
2134                         buffer_info->page_offset = 0;
2135                 }
2136         }
2137
2138         size = sizeof(struct igb_buffer) * rx_ring->count;
2139         memset(rx_ring->buffer_info, 0, size);
2140
2141         /* Zero out the descriptor ring */
2142         memset(rx_ring->desc, 0, rx_ring->size);
2143
2144         rx_ring->next_to_clean = 0;
2145         rx_ring->next_to_use = 0;
2146
2147         writel(0, adapter->hw.hw_addr + rx_ring->head);
2148         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2149 }
2150
2151 /**
2152  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2153  * @adapter: board private structure
2154  **/
2155 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2156 {
2157         int i;
2158
2159         for (i = 0; i < adapter->num_rx_queues; i++)
2160                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2161 }
2162
2163 /**
2164  * igb_set_mac - Change the Ethernet Address of the NIC
2165  * @netdev: network interface device structure
2166  * @p: pointer to an address structure
2167  *
2168  * Returns 0 on success, negative on failure
2169  **/
2170 static int igb_set_mac(struct net_device *netdev, void *p)
2171 {
2172         struct igb_adapter *adapter = netdev_priv(netdev);
2173         struct e1000_hw *hw = &adapter->hw;
2174         struct sockaddr *addr = p;
2175
2176         if (!is_valid_ether_addr(addr->sa_data))
2177                 return -EADDRNOTAVAIL;
2178
2179         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2180         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2181
2182         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2183
2184         return 0;
2185 }
2186
2187 /**
2188  * igb_set_multi - Multicast and Promiscuous mode set
2189  * @netdev: network interface device structure
2190  *
2191  * The set_multi entry point is called whenever the multicast address
2192  * list or the network interface flags are updated.  This routine is
2193  * responsible for configuring the hardware for proper multicast,
2194  * promiscuous mode, and all-multi behavior.
2195  **/
2196 static void igb_set_multi(struct net_device *netdev)
2197 {
2198         struct igb_adapter *adapter = netdev_priv(netdev);
2199         struct e1000_hw *hw = &adapter->hw;
2200         struct e1000_mac_info *mac = &hw->mac;
2201         struct dev_mc_list *mc_ptr;
2202         u8  *mta_list;
2203         u32 rctl;
2204         int i;
2205
2206         /* Check for Promiscuous and All Multicast modes */
2207
2208         rctl = rd32(E1000_RCTL);
2209
2210         if (netdev->flags & IFF_PROMISC) {
2211                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2212                 rctl &= ~E1000_RCTL_VFE;
2213         } else {
2214                 if (netdev->flags & IFF_ALLMULTI) {
2215                         rctl |= E1000_RCTL_MPE;
2216                         rctl &= ~E1000_RCTL_UPE;
2217                 } else
2218                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2219                 rctl |= E1000_RCTL_VFE;
2220         }
2221         wr32(E1000_RCTL, rctl);
2222
2223         if (!netdev->mc_count) {
2224                 /* nothing to program, so clear mc list */
2225                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2226                                         mac->rar_entry_count);
2227                 return;
2228         }
2229
2230         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2231         if (!mta_list)
2232                 return;
2233
2234         /* The shared function expects a packed array of only addresses. */
2235         mc_ptr = netdev->mc_list;
2236
2237         for (i = 0; i < netdev->mc_count; i++) {
2238                 if (!mc_ptr)
2239                         break;
2240                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2241                 mc_ptr = mc_ptr->next;
2242         }
2243         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2244         kfree(mta_list);
2245 }
2246
2247 /* Need to wait a few seconds after link up to get diagnostic information from
2248  * the phy */
2249 static void igb_update_phy_info(unsigned long data)
2250 {
2251         struct igb_adapter *adapter = (struct igb_adapter *) data;
2252         igb_get_phy_info(&adapter->hw);
2253 }
2254
2255 /**
2256  * igb_has_link - check shared code for link and determine up/down
2257  * @adapter: pointer to driver private info
2258  **/
2259 static bool igb_has_link(struct igb_adapter *adapter)
2260 {
2261         struct e1000_hw *hw = &adapter->hw;
2262         bool link_active = false;
2263         s32 ret_val = 0;
2264
2265         /* get_link_status is set on LSC (link status) interrupt or
2266          * rx sequence error interrupt.  get_link_status will stay
2267          * false until the e1000_check_for_link establishes link
2268          * for copper adapters ONLY
2269          */
2270         switch (hw->phy.media_type) {
2271         case e1000_media_type_copper:
2272                 if (hw->mac.get_link_status) {
2273                         ret_val = hw->mac.ops.check_for_link(hw);
2274                         link_active = !hw->mac.get_link_status;
2275                 } else {
2276                         link_active = true;
2277                 }
2278                 break;
2279         case e1000_media_type_fiber:
2280                 ret_val = hw->mac.ops.check_for_link(hw);
2281                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2282                 break;
2283         case e1000_media_type_internal_serdes:
2284                 ret_val = hw->mac.ops.check_for_link(hw);
2285                 link_active = hw->mac.serdes_has_link;
2286                 break;
2287         default:
2288         case e1000_media_type_unknown:
2289                 break;
2290         }
2291
2292         return link_active;
2293 }
2294
2295 /**
2296  * igb_watchdog - Timer Call-back
2297  * @data: pointer to adapter cast into an unsigned long
2298  **/
2299 static void igb_watchdog(unsigned long data)
2300 {
2301         struct igb_adapter *adapter = (struct igb_adapter *)data;
2302         /* Do the rest outside of interrupt context */
2303         schedule_work(&adapter->watchdog_task);
2304 }
2305
2306 static void igb_watchdog_task(struct work_struct *work)
2307 {
2308         struct igb_adapter *adapter = container_of(work,
2309                                         struct igb_adapter, watchdog_task);
2310         struct e1000_hw *hw = &adapter->hw;
2311         struct net_device *netdev = adapter->netdev;
2312         struct igb_ring *tx_ring = adapter->tx_ring;
2313         u32 link;
2314         u32 eics = 0;
2315         int i;
2316
2317         link = igb_has_link(adapter);
2318         if ((netif_carrier_ok(netdev)) && link)
2319                 goto link_up;
2320
2321         if (link) {
2322                 if (!netif_carrier_ok(netdev)) {
2323                         u32 ctrl;
2324                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2325                                                    &adapter->link_speed,
2326                                                    &adapter->link_duplex);
2327
2328                         ctrl = rd32(E1000_CTRL);
2329                         /* Links status message must follow this format */
2330                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2331                                  "Flow Control: %s\n",
2332                                  netdev->name,
2333                                  adapter->link_speed,
2334                                  adapter->link_duplex == FULL_DUPLEX ?
2335                                  "Full Duplex" : "Half Duplex",
2336                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2337                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2338                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2339                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2340
2341                         /* tweak tx_queue_len according to speed/duplex and
2342                          * adjust the timeout factor */
2343                         netdev->tx_queue_len = adapter->tx_queue_len;
2344                         adapter->tx_timeout_factor = 1;
2345                         switch (adapter->link_speed) {
2346                         case SPEED_10:
2347                                 netdev->tx_queue_len = 10;
2348                                 adapter->tx_timeout_factor = 14;
2349                                 break;
2350                         case SPEED_100:
2351                                 netdev->tx_queue_len = 100;
2352                                 /* maybe add some timeout factor ? */
2353                                 break;
2354                         }
2355
2356                         netif_carrier_on(netdev);
2357                         netif_tx_wake_all_queues(netdev);
2358
2359                         /* link state has changed, schedule phy info update */
2360                         if (!test_bit(__IGB_DOWN, &adapter->state))
2361                                 mod_timer(&adapter->phy_info_timer,
2362                                           round_jiffies(jiffies + 2 * HZ));
2363                 }
2364         } else {
2365                 if (netif_carrier_ok(netdev)) {
2366                         adapter->link_speed = 0;
2367                         adapter->link_duplex = 0;
2368                         /* Links status message must follow this format */
2369                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2370                                netdev->name);
2371                         netif_carrier_off(netdev);
2372                         netif_tx_stop_all_queues(netdev);
2373
2374                         /* link state has changed, schedule phy info update */
2375                         if (!test_bit(__IGB_DOWN, &adapter->state))
2376                                 mod_timer(&adapter->phy_info_timer,
2377                                           round_jiffies(jiffies + 2 * HZ));
2378                 }
2379         }
2380
2381 link_up:
2382         igb_update_stats(adapter);
2383
2384         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2385         adapter->tpt_old = adapter->stats.tpt;
2386         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2387         adapter->colc_old = adapter->stats.colc;
2388
2389         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2390         adapter->gorc_old = adapter->stats.gorc;
2391         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2392         adapter->gotc_old = adapter->stats.gotc;
2393
2394         igb_update_adaptive(&adapter->hw);
2395
2396         if (!netif_carrier_ok(netdev)) {
2397                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2398                         /* We've lost link, so the controller stops DMA,
2399                          * but we've got queued Tx work that's never going
2400                          * to get done, so reset controller to flush Tx.
2401                          * (Do the reset outside of interrupt context). */
2402                         adapter->tx_timeout_count++;
2403                         schedule_work(&adapter->reset_task);
2404                 }
2405         }
2406
2407         /* Cause software interrupt to ensure rx ring is cleaned */
2408         if (adapter->msix_entries) {
2409                 for (i = 0; i < adapter->num_rx_queues; i++)
2410                         eics |= adapter->rx_ring[i].eims_value;
2411                 wr32(E1000_EICS, eics);
2412         } else {
2413                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2414         }
2415
2416         /* Force detection of hung controller every watchdog period */
2417         tx_ring->detect_tx_hung = true;
2418
2419         /* Reset the timer */
2420         if (!test_bit(__IGB_DOWN, &adapter->state))
2421                 mod_timer(&adapter->watchdog_timer,
2422                           round_jiffies(jiffies + 2 * HZ));
2423 }
2424
2425 enum latency_range {
2426         lowest_latency = 0,
2427         low_latency = 1,
2428         bulk_latency = 2,
2429         latency_invalid = 255
2430 };
2431
2432
2433 /**
2434  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2435  *
2436  *      Stores a new ITR value based on strictly on packet size.  This
2437  *      algorithm is less sophisticated than that used in igb_update_itr,
2438  *      due to the difficulty of synchronizing statistics across multiple
2439  *      receive rings.  The divisors and thresholds used by this fuction
2440  *      were determined based on theoretical maximum wire speed and testing
2441  *      data, in order to minimize response time while increasing bulk
2442  *      throughput.
2443  *      This functionality is controlled by the InterruptThrottleRate module
2444  *      parameter (see igb_param.c)
2445  *      NOTE:  This function is called only when operating in a multiqueue
2446  *             receive environment.
2447  * @rx_ring: pointer to ring
2448  **/
2449 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2450 {
2451         int new_val = rx_ring->itr_val;
2452         int avg_wire_size = 0;
2453         struct igb_adapter *adapter = rx_ring->adapter;
2454
2455         if (!rx_ring->total_packets)
2456                 goto clear_counts; /* no packets, so don't do anything */
2457
2458         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2459          * ints/sec - ITR timer value of 120 ticks.
2460          */
2461         if (adapter->link_speed != SPEED_1000) {
2462                 new_val = 120;
2463                 goto set_itr_val;
2464         }
2465         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2466
2467         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2468         avg_wire_size += 24;
2469
2470         /* Don't starve jumbo frames */
2471         avg_wire_size = min(avg_wire_size, 3000);
2472
2473         /* Give a little boost to mid-size frames */
2474         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2475                 new_val = avg_wire_size / 3;
2476         else
2477                 new_val = avg_wire_size / 2;
2478
2479 set_itr_val:
2480         if (new_val != rx_ring->itr_val) {
2481                 rx_ring->itr_val = new_val;
2482                 rx_ring->set_itr = 1;
2483         }
2484 clear_counts:
2485         rx_ring->total_bytes = 0;
2486         rx_ring->total_packets = 0;
2487 }
2488
2489 /**
2490  * igb_update_itr - update the dynamic ITR value based on statistics
2491  *      Stores a new ITR value based on packets and byte
2492  *      counts during the last interrupt.  The advantage of per interrupt
2493  *      computation is faster updates and more accurate ITR for the current
2494  *      traffic pattern.  Constants in this function were computed
2495  *      based on theoretical maximum wire speed and thresholds were set based
2496  *      on testing data as well as attempting to minimize response time
2497  *      while increasing bulk throughput.
2498  *      this functionality is controlled by the InterruptThrottleRate module
2499  *      parameter (see igb_param.c)
2500  *      NOTE:  These calculations are only valid when operating in a single-
2501  *             queue environment.
2502  * @adapter: pointer to adapter
2503  * @itr_setting: current adapter->itr
2504  * @packets: the number of packets during this measurement interval
2505  * @bytes: the number of bytes during this measurement interval
2506  **/
2507 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2508                                    int packets, int bytes)
2509 {
2510         unsigned int retval = itr_setting;
2511
2512         if (packets == 0)
2513                 goto update_itr_done;
2514
2515         switch (itr_setting) {
2516         case lowest_latency:
2517                 /* handle TSO and jumbo frames */
2518                 if (bytes/packets > 8000)
2519                         retval = bulk_latency;
2520                 else if ((packets < 5) && (bytes > 512))
2521                         retval = low_latency;
2522                 break;
2523         case low_latency:  /* 50 usec aka 20000 ints/s */
2524                 if (bytes > 10000) {
2525                         /* this if handles the TSO accounting */
2526                         if (bytes/packets > 8000) {
2527                                 retval = bulk_latency;
2528                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2529                                 retval = bulk_latency;
2530                         } else if ((packets > 35)) {
2531                                 retval = lowest_latency;
2532                         }
2533                 } else if (bytes/packets > 2000) {
2534                         retval = bulk_latency;
2535                 } else if (packets <= 2 && bytes < 512) {
2536                         retval = lowest_latency;
2537                 }
2538                 break;
2539         case bulk_latency: /* 250 usec aka 4000 ints/s */
2540                 if (bytes > 25000) {
2541                         if (packets > 35)
2542                                 retval = low_latency;
2543                 } else if (bytes < 6000) {
2544                         retval = low_latency;
2545                 }
2546                 break;
2547         }
2548
2549 update_itr_done:
2550         return retval;
2551 }
2552
2553 static void igb_set_itr(struct igb_adapter *adapter)
2554 {
2555         u16 current_itr;
2556         u32 new_itr = adapter->itr;
2557
2558         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559         if (adapter->link_speed != SPEED_1000) {
2560                 current_itr = 0;
2561                 new_itr = 4000;
2562                 goto set_itr_now;
2563         }
2564
2565         adapter->rx_itr = igb_update_itr(adapter,
2566                                     adapter->rx_itr,
2567                                     adapter->rx_ring->total_packets,
2568                                     adapter->rx_ring->total_bytes);
2569
2570         if (adapter->rx_ring->buddy) {
2571                 adapter->tx_itr = igb_update_itr(adapter,
2572                                             adapter->tx_itr,
2573                                             adapter->tx_ring->total_packets,
2574                                             adapter->tx_ring->total_bytes);
2575
2576                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2577         } else {
2578                 current_itr = adapter->rx_itr;
2579         }
2580
2581         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2582         if (adapter->itr_setting == 3 &&
2583             current_itr == lowest_latency)
2584                 current_itr = low_latency;
2585
2586         switch (current_itr) {
2587         /* counts and packets in update_itr are dependent on these numbers */
2588         case lowest_latency:
2589                 new_itr = 70000;
2590                 break;
2591         case low_latency:
2592                 new_itr = 20000; /* aka hwitr = ~200 */
2593                 break;
2594         case bulk_latency:
2595                 new_itr = 4000;
2596                 break;
2597         default:
2598                 break;
2599         }
2600
2601 set_itr_now:
2602         adapter->rx_ring->total_bytes = 0;
2603         adapter->rx_ring->total_packets = 0;
2604         if (adapter->rx_ring->buddy) {
2605                 adapter->rx_ring->buddy->total_bytes = 0;
2606                 adapter->rx_ring->buddy->total_packets = 0;
2607         }
2608
2609         if (new_itr != adapter->itr) {
2610                 /* this attempts to bias the interrupt rate towards Bulk
2611                  * by adding intermediate steps when interrupt rate is
2612                  * increasing */
2613                 new_itr = new_itr > adapter->itr ?
2614                              min(adapter->itr + (new_itr >> 2), new_itr) :
2615                              new_itr;
2616                 /* Don't write the value here; it resets the adapter's
2617                  * internal timer, and causes us to delay far longer than
2618                  * we should between interrupts.  Instead, we write the ITR
2619                  * value at the beginning of the next interrupt so the timing
2620                  * ends up being correct.
2621                  */
2622                 adapter->itr = new_itr;
2623                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2624                 adapter->rx_ring->set_itr = 1;
2625         }
2626
2627         return;
2628 }
2629
2630
2631 #define IGB_TX_FLAGS_CSUM               0x00000001
2632 #define IGB_TX_FLAGS_VLAN               0x00000002
2633 #define IGB_TX_FLAGS_TSO                0x00000004
2634 #define IGB_TX_FLAGS_IPV4               0x00000008
2635 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2636 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2637
2638 static inline int igb_tso_adv(struct igb_adapter *adapter,
2639                               struct igb_ring *tx_ring,
2640                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2641 {
2642         struct e1000_adv_tx_context_desc *context_desc;
2643         unsigned int i;
2644         int err;
2645         struct igb_buffer *buffer_info;
2646         u32 info = 0, tu_cmd = 0;
2647         u32 mss_l4len_idx, l4len;
2648         *hdr_len = 0;
2649
2650         if (skb_header_cloned(skb)) {
2651                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2652                 if (err)
2653                         return err;
2654         }
2655
2656         l4len = tcp_hdrlen(skb);
2657         *hdr_len += l4len;
2658
2659         if (skb->protocol == htons(ETH_P_IP)) {
2660                 struct iphdr *iph = ip_hdr(skb);
2661                 iph->tot_len = 0;
2662                 iph->check = 0;
2663                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2664                                                          iph->daddr, 0,
2665                                                          IPPROTO_TCP,
2666                                                          0);
2667         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2668                 ipv6_hdr(skb)->payload_len = 0;
2669                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2670                                                        &ipv6_hdr(skb)->daddr,
2671                                                        0, IPPROTO_TCP, 0);
2672         }
2673
2674         i = tx_ring->next_to_use;
2675
2676         buffer_info = &tx_ring->buffer_info[i];
2677         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2678         /* VLAN MACLEN IPLEN */
2679         if (tx_flags & IGB_TX_FLAGS_VLAN)
2680                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2681         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2682         *hdr_len += skb_network_offset(skb);
2683         info |= skb_network_header_len(skb);
2684         *hdr_len += skb_network_header_len(skb);
2685         context_desc->vlan_macip_lens = cpu_to_le32(info);
2686
2687         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2688         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2689
2690         if (skb->protocol == htons(ETH_P_IP))
2691                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2692         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2693
2694         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2695
2696         /* MSS L4LEN IDX */
2697         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2698         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2699
2700         /* Context index must be unique per ring. */
2701         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2702                 mss_l4len_idx |= tx_ring->queue_index << 4;
2703
2704         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2705         context_desc->seqnum_seed = 0;
2706
2707         buffer_info->time_stamp = jiffies;
2708         buffer_info->next_to_watch = i;
2709         buffer_info->dma = 0;
2710         i++;
2711         if (i == tx_ring->count)
2712                 i = 0;
2713
2714         tx_ring->next_to_use = i;
2715
2716         return true;
2717 }
2718
2719 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2720                                         struct igb_ring *tx_ring,
2721                                         struct sk_buff *skb, u32 tx_flags)
2722 {
2723         struct e1000_adv_tx_context_desc *context_desc;
2724         unsigned int i;
2725         struct igb_buffer *buffer_info;
2726         u32 info = 0, tu_cmd = 0;
2727
2728         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2729             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2730                 i = tx_ring->next_to_use;
2731                 buffer_info = &tx_ring->buffer_info[i];
2732                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2733
2734                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2735                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2736                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2737                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2738                         info |= skb_network_header_len(skb);
2739
2740                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2741
2742                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2743
2744                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2745                         switch (skb->protocol) {
2746                         case cpu_to_be16(ETH_P_IP):
2747                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2748                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2749                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2750                                 break;
2751                         case cpu_to_be16(ETH_P_IPV6):
2752                                 /* XXX what about other V6 headers?? */
2753                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2754                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755                                 break;
2756                         default:
2757                                 if (unlikely(net_ratelimit()))
2758                                         dev_warn(&adapter->pdev->dev,
2759                                             "partial checksum but proto=%x!\n",
2760                                             skb->protocol);
2761                                 break;
2762                         }
2763                 }
2764
2765                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2766                 context_desc->seqnum_seed = 0;
2767                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2768                         context_desc->mss_l4len_idx =
2769                                 cpu_to_le32(tx_ring->queue_index << 4);
2770
2771                 buffer_info->time_stamp = jiffies;
2772                 buffer_info->next_to_watch = i;
2773                 buffer_info->dma = 0;
2774
2775                 i++;
2776                 if (i == tx_ring->count)
2777                         i = 0;
2778                 tx_ring->next_to_use = i;
2779
2780                 return true;
2781         }
2782
2783
2784         return false;
2785 }
2786
2787 #define IGB_MAX_TXD_PWR 16
2788 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2789
2790 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2791                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2792                                  unsigned int first)
2793 {
2794         struct igb_buffer *buffer_info;
2795         unsigned int len = skb_headlen(skb);
2796         unsigned int count = 0, i;
2797         unsigned int f;
2798
2799         i = tx_ring->next_to_use;
2800
2801         buffer_info = &tx_ring->buffer_info[i];
2802         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2803         buffer_info->length = len;
2804         /* set time_stamp *before* dma to help avoid a possible race */
2805         buffer_info->time_stamp = jiffies;
2806         buffer_info->next_to_watch = i;
2807         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2808                                           PCI_DMA_TODEVICE);
2809         count++;
2810         i++;
2811         if (i == tx_ring->count)
2812                 i = 0;
2813
2814         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2815                 struct skb_frag_struct *frag;
2816
2817                 frag = &skb_shinfo(skb)->frags[f];
2818                 len = frag->size;
2819
2820                 buffer_info = &tx_ring->buffer_info[i];
2821                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2822                 buffer_info->length = len;
2823                 buffer_info->time_stamp = jiffies;
2824                 buffer_info->next_to_watch = i;
2825                 buffer_info->dma = pci_map_page(adapter->pdev,
2826                                                 frag->page,
2827                                                 frag->page_offset,
2828                                                 len,
2829                                                 PCI_DMA_TODEVICE);
2830
2831                 count++;
2832                 i++;
2833                 if (i == tx_ring->count)
2834                         i = 0;
2835         }
2836
2837         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2838         tx_ring->buffer_info[i].skb = skb;
2839         tx_ring->buffer_info[first].next_to_watch = i;
2840
2841         return count;
2842 }
2843
2844 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2845                                     struct igb_ring *tx_ring,
2846                                     int tx_flags, int count, u32 paylen,
2847                                     u8 hdr_len)
2848 {
2849         union e1000_adv_tx_desc *tx_desc = NULL;
2850         struct igb_buffer *buffer_info;
2851         u32 olinfo_status = 0, cmd_type_len;
2852         unsigned int i;
2853
2854         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2855                         E1000_ADVTXD_DCMD_DEXT);
2856
2857         if (tx_flags & IGB_TX_FLAGS_VLAN)
2858                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2859
2860         if (tx_flags & IGB_TX_FLAGS_TSO) {
2861                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2862
2863                 /* insert tcp checksum */
2864                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2865
2866                 /* insert ip checksum */
2867                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2868                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2869
2870         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2871                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2872         }
2873
2874         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2875             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2876                          IGB_TX_FLAGS_VLAN)))
2877                 olinfo_status |= tx_ring->queue_index << 4;
2878
2879         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2880
2881         i = tx_ring->next_to_use;
2882         while (count--) {
2883                 buffer_info = &tx_ring->buffer_info[i];
2884                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2885                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2886                 tx_desc->read.cmd_type_len =
2887                         cpu_to_le32(cmd_type_len | buffer_info->length);
2888                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2889                 i++;
2890                 if (i == tx_ring->count)
2891                         i = 0;
2892         }
2893
2894         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2895         /* Force memory writes to complete before letting h/w
2896          * know there are new descriptors to fetch.  (Only
2897          * applicable for weak-ordered memory model archs,
2898          * such as IA-64). */
2899         wmb();
2900
2901         tx_ring->next_to_use = i;
2902         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2903         /* we need this if more than one processor can write to our tail
2904          * at a time, it syncronizes IO on IA64/Altix systems */
2905         mmiowb();
2906 }
2907
2908 static int __igb_maybe_stop_tx(struct net_device *netdev,
2909                                struct igb_ring *tx_ring, int size)
2910 {
2911         struct igb_adapter *adapter = netdev_priv(netdev);
2912
2913         netif_stop_subqueue(netdev, tx_ring->queue_index);
2914
2915         /* Herbert's original patch had:
2916          *  smp_mb__after_netif_stop_queue();
2917          * but since that doesn't exist yet, just open code it. */
2918         smp_mb();
2919
2920         /* We need to check again in a case another CPU has just
2921          * made room available. */
2922         if (IGB_DESC_UNUSED(tx_ring) < size)
2923                 return -EBUSY;
2924
2925         /* A reprieve! */
2926         netif_wake_subqueue(netdev, tx_ring->queue_index);
2927         ++adapter->restart_queue;
2928         return 0;
2929 }
2930
2931 static int igb_maybe_stop_tx(struct net_device *netdev,
2932                              struct igb_ring *tx_ring, int size)
2933 {
2934         if (IGB_DESC_UNUSED(tx_ring) >= size)
2935                 return 0;
2936         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2937 }
2938
2939 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2940
2941 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2942                                    struct net_device *netdev,
2943                                    struct igb_ring *tx_ring)
2944 {
2945         struct igb_adapter *adapter = netdev_priv(netdev);
2946         unsigned int first;
2947         unsigned int tx_flags = 0;
2948         unsigned int len;
2949         u8 hdr_len = 0;
2950         int tso = 0;
2951
2952         len = skb_headlen(skb);
2953
2954         if (test_bit(__IGB_DOWN, &adapter->state)) {
2955                 dev_kfree_skb_any(skb);
2956                 return NETDEV_TX_OK;
2957         }
2958
2959         if (skb->len <= 0) {
2960                 dev_kfree_skb_any(skb);
2961                 return NETDEV_TX_OK;
2962         }
2963
2964         /* need: 1 descriptor per page,
2965          *       + 2 desc gap to keep tail from touching head,
2966          *       + 1 desc for skb->data,
2967          *       + 1 desc for context descriptor,
2968          * otherwise try next time */
2969         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2970                 /* this is a hard error */
2971                 return NETDEV_TX_BUSY;
2972         }
2973         skb_orphan(skb);
2974
2975         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2976                 tx_flags |= IGB_TX_FLAGS_VLAN;
2977                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2978         }
2979
2980         if (skb->protocol == htons(ETH_P_IP))
2981                 tx_flags |= IGB_TX_FLAGS_IPV4;
2982
2983         first = tx_ring->next_to_use;
2984
2985         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2986                                               &hdr_len) : 0;
2987
2988         if (tso < 0) {
2989                 dev_kfree_skb_any(skb);
2990                 return NETDEV_TX_OK;
2991         }
2992
2993         if (tso)
2994                 tx_flags |= IGB_TX_FLAGS_TSO;
2995         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2996                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2997                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2998
2999         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3000                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3001                          skb->len, hdr_len);
3002
3003         netdev->trans_start = jiffies;
3004
3005         /* Make sure there is space in the ring for the next send. */
3006         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3007
3008         return NETDEV_TX_OK;
3009 }
3010
3011 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3012 {
3013         struct igb_adapter *adapter = netdev_priv(netdev);
3014         struct igb_ring *tx_ring;
3015
3016         int r_idx = 0;
3017         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3018         tx_ring = adapter->multi_tx_table[r_idx];
3019
3020         /* This goes back to the question of how to logically map a tx queue
3021          * to a flow.  Right now, performance is impacted slightly negatively
3022          * if using multiple tx queues.  If the stack breaks away from a
3023          * single qdisc implementation, we can look at this again. */
3024         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3025 }
3026
3027 /**
3028  * igb_tx_timeout - Respond to a Tx Hang
3029  * @netdev: network interface device structure
3030  **/
3031 static void igb_tx_timeout(struct net_device *netdev)
3032 {
3033         struct igb_adapter *adapter = netdev_priv(netdev);
3034         struct e1000_hw *hw = &adapter->hw;
3035
3036         /* Do the reset outside of interrupt context */
3037         adapter->tx_timeout_count++;
3038         schedule_work(&adapter->reset_task);
3039         wr32(E1000_EICS, adapter->eims_enable_mask &
3040                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3041 }
3042
3043 static void igb_reset_task(struct work_struct *work)
3044 {
3045         struct igb_adapter *adapter;
3046         adapter = container_of(work, struct igb_adapter, reset_task);
3047
3048         igb_reinit_locked(adapter);
3049 }
3050
3051 /**
3052  * igb_get_stats - Get System Network Statistics
3053  * @netdev: network interface device structure
3054  *
3055  * Returns the address of the device statistics structure.
3056  * The statistics are actually updated from the timer callback.
3057  **/
3058 static struct net_device_stats *
3059 igb_get_stats(struct net_device *netdev)
3060 {
3061         struct igb_adapter *adapter = netdev_priv(netdev);
3062
3063         /* only return the current stats */
3064         return &adapter->net_stats;
3065 }
3066
3067 /**
3068  * igb_change_mtu - Change the Maximum Transfer Unit
3069  * @netdev: network interface device structure
3070  * @new_mtu: new value for maximum frame size
3071  *
3072  * Returns 0 on success, negative on failure
3073  **/
3074 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3075 {
3076         struct igb_adapter *adapter = netdev_priv(netdev);
3077         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3078
3079         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3080             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3081                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3082                 return -EINVAL;
3083         }
3084
3085 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3086         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3087                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3088                 return -EINVAL;
3089         }
3090
3091         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3092                 msleep(1);
3093         /* igb_down has a dependency on max_frame_size */
3094         adapter->max_frame_size = max_frame;
3095         if (netif_running(netdev))
3096                 igb_down(adapter);
3097
3098         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3099          * means we reserve 2 more, this pushes us to allocate from the next
3100          * larger slab size.
3101          * i.e. RXBUFFER_2048 --> size-4096 slab
3102          */
3103
3104         if (max_frame <= IGB_RXBUFFER_256)
3105                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3106         else if (max_frame <= IGB_RXBUFFER_512)
3107                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3108         else if (max_frame <= IGB_RXBUFFER_1024)
3109                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3110         else if (max_frame <= IGB_RXBUFFER_2048)
3111                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3112         else
3113 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3114                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3115 #else
3116                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3117 #endif
3118         /* adjust allocation if LPE protects us, and we aren't using SBP */
3119         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3120              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3121                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3122
3123         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3124                  netdev->mtu, new_mtu);
3125         netdev->mtu = new_mtu;
3126
3127         if (netif_running(netdev))
3128                 igb_up(adapter);
3129         else
3130                 igb_reset(adapter);
3131
3132         clear_bit(__IGB_RESETTING, &adapter->state);
3133
3134         return 0;
3135 }
3136
3137 /**
3138  * igb_update_stats - Update the board statistics counters
3139  * @adapter: board private structure
3140  **/
3141
3142 void igb_update_stats(struct igb_adapter *adapter)
3143 {
3144         struct e1000_hw *hw = &adapter->hw;
3145         struct pci_dev *pdev = adapter->pdev;
3146         u16 phy_tmp;
3147
3148 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3149
3150         /*
3151          * Prevent stats update while adapter is being reset, or if the pci
3152          * connection is down.
3153          */
3154         if (adapter->link_speed == 0)
3155                 return;
3156         if (pci_channel_offline(pdev))
3157                 return;
3158
3159         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3160         adapter->stats.gprc += rd32(E1000_GPRC);
3161         adapter->stats.gorc += rd32(E1000_GORCL);
3162         rd32(E1000_GORCH); /* clear GORCL */
3163         adapter->stats.bprc += rd32(E1000_BPRC);
3164         adapter->stats.mprc += rd32(E1000_MPRC);
3165         adapter->stats.roc += rd32(E1000_ROC);
3166
3167         adapter->stats.prc64 += rd32(E1000_PRC64);
3168         adapter->stats.prc127 += rd32(E1000_PRC127);
3169         adapter->stats.prc255 += rd32(E1000_PRC255);
3170         adapter->stats.prc511 += rd32(E1000_PRC511);
3171         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3172         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3173         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3174         adapter->stats.sec += rd32(E1000_SEC);
3175
3176         adapter->stats.mpc += rd32(E1000_MPC);
3177         adapter->stats.scc += rd32(E1000_SCC);
3178         adapter->stats.ecol += rd32(E1000_ECOL);
3179         adapter->stats.mcc += rd32(E1000_MCC);
3180         adapter->stats.latecol += rd32(E1000_LATECOL);
3181         adapter->stats.dc += rd32(E1000_DC);
3182         adapter->stats.rlec += rd32(E1000_RLEC);
3183         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3184         adapter->stats.xontxc += rd32(E1000_XONTXC);
3185         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3186         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3187         adapter->stats.fcruc += rd32(E1000_FCRUC);
3188         adapter->stats.gptc += rd32(E1000_GPTC);
3189         adapter->stats.gotc += rd32(E1000_GOTCL);
3190         rd32(E1000_GOTCH); /* clear GOTCL */
3191         adapter->stats.rnbc += rd32(E1000_RNBC);
3192         adapter->stats.ruc += rd32(E1000_RUC);
3193         adapter->stats.rfc += rd32(E1000_RFC);
3194         adapter->stats.rjc += rd32(E1000_RJC);
3195         adapter->stats.tor += rd32(E1000_TORH);
3196         adapter->stats.tot += rd32(E1000_TOTH);
3197         adapter->stats.tpr += rd32(E1000_TPR);
3198
3199         adapter->stats.ptc64 += rd32(E1000_PTC64);
3200         adapter->stats.ptc127 += rd32(E1000_PTC127);
3201         adapter->stats.ptc255 += rd32(E1000_PTC255);
3202         adapter->stats.ptc511 += rd32(E1000_PTC511);
3203         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3204         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3205
3206         adapter->stats.mptc += rd32(E1000_MPTC);
3207         adapter->stats.bptc += rd32(E1000_BPTC);
3208
3209         /* used for adaptive IFS */
3210
3211         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3212         adapter->stats.tpt += hw->mac.tx_packet_delta;
3213         hw->mac.collision_delta = rd32(E1000_COLC);
3214         adapter->stats.colc += hw->mac.collision_delta;
3215
3216         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3217         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3218         adapter->stats.tncrs += rd32(E1000_TNCRS);
3219         adapter->stats.tsctc += rd32(E1000_TSCTC);
3220         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3221
3222         adapter->stats.iac += rd32(E1000_IAC);
3223         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3224         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3225         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3226         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3227         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3228         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3229         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3230         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3231
3232         /* Fill out the OS statistics structure */
3233         adapter->net_stats.multicast = adapter->stats.mprc;
3234         adapter->net_stats.collisions = adapter->stats.colc;
3235
3236         /* Rx Errors */
3237
3238         /* RLEC on some newer hardware can be incorrect so build
3239         * our own version based on RUC and ROC */
3240         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3241                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3242                 adapter->stats.ruc + adapter->stats.roc +
3243                 adapter->stats.cexterr;
3244         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3245                                               adapter->stats.roc;
3246         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3247         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3248         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3249
3250         /* Tx Errors */
3251         adapter->net_stats.tx_errors = adapter->stats.ecol +
3252                                        adapter->stats.latecol;
3253         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3254         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3255         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3256
3257         /* Tx Dropped needs to be maintained elsewhere */
3258
3259         /* Phy Stats */
3260         if (hw->phy.media_type == e1000_media_type_copper) {
3261                 if ((adapter->link_speed == SPEED_1000) &&
3262                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3263                                               &phy_tmp))) {
3264                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3265                         adapter->phy_stats.idle_errors += phy_tmp;
3266                 }
3267         }
3268
3269         /* Management Stats */
3270         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3271         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3272         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3273 }
3274
3275
3276 static irqreturn_t igb_msix_other(int irq, void *data)
3277 {
3278         struct net_device *netdev = data;
3279         struct igb_adapter *adapter = netdev_priv(netdev);
3280         struct e1000_hw *hw = &adapter->hw;
3281         u32 icr = rd32(E1000_ICR);
3282
3283         /* reading ICR causes bit 31 of EICR to be cleared */
3284
3285         if(icr & E1000_ICR_DOUTSYNC) {
3286                 /* HW is reporting DMA is out of sync */
3287                 adapter->stats.doosync++;
3288         }
3289         if (!(icr & E1000_ICR_LSC))
3290                 goto no_link_interrupt;
3291         hw->mac.get_link_status = 1;
3292         /* guard against interrupt when we're going down */
3293         if (!test_bit(__IGB_DOWN, &adapter->state))
3294                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3295
3296 no_link_interrupt:
3297         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3298         wr32(E1000_EIMS, adapter->eims_other);
3299
3300         return IRQ_HANDLED;
3301 }
3302
3303 static irqreturn_t igb_msix_tx(int irq, void *data)
3304 {
3305         struct igb_ring *tx_ring = data;
3306         struct igb_adapter *adapter = tx_ring->adapter;
3307         struct e1000_hw *hw = &adapter->hw;
3308
3309 #ifdef CONFIG_IGB_DCA
3310         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3311                 igb_update_tx_dca(tx_ring);
3312 #endif
3313         tx_ring->total_bytes = 0;
3314         tx_ring->total_packets = 0;
3315
3316         /* auto mask will automatically reenable the interrupt when we write
3317          * EICS */
3318         if (!igb_clean_tx_irq(tx_ring))
3319                 /* Ring was not completely cleaned, so fire another interrupt */
3320                 wr32(E1000_EICS, tx_ring->eims_value);
3321         else
3322                 wr32(E1000_EIMS, tx_ring->eims_value);
3323
3324         return IRQ_HANDLED;
3325 }
3326
3327 static void igb_write_itr(struct igb_ring *ring)
3328 {
3329         struct e1000_hw *hw = &ring->adapter->hw;
3330         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3331                 switch (hw->mac.type) {
3332                 case e1000_82576:
3333                         wr32(ring->itr_register,
3334                              ring->itr_val |
3335                              0x80000000);
3336                         break;
3337                 default:
3338                         wr32(ring->itr_register,
3339                              ring->itr_val |
3340                              (ring->itr_val << 16));
3341                         break;
3342                 }
3343                 ring->set_itr = 0;
3344         }
3345 }
3346
3347 static irqreturn_t igb_msix_rx(int irq, void *data)
3348 {
3349         struct igb_ring *rx_ring = data;
3350
3351         /* Write the ITR value calculated at the end of the
3352          * previous interrupt.
3353          */
3354
3355         igb_write_itr(rx_ring);
3356
3357         if (napi_schedule_prep(&rx_ring->napi))
3358                 __napi_schedule(&rx_ring->napi);
3359
3360 #ifdef CONFIG_IGB_DCA
3361         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3362                 igb_update_rx_dca(rx_ring);
3363 #endif
3364                 return IRQ_HANDLED;
3365 }
3366
3367 #ifdef CONFIG_IGB_DCA
3368 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3369 {
3370         u32 dca_rxctrl;
3371         struct igb_adapter *adapter = rx_ring->adapter;
3372         struct e1000_hw *hw = &adapter->hw;
3373         int cpu = get_cpu();
3374         int q = rx_ring->reg_idx;
3375
3376         if (rx_ring->cpu != cpu) {
3377                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3378                 if (hw->mac.type == e1000_82576) {
3379                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3380                         dca_rxctrl |= dca_get_tag(cpu) <<
3381                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3382                 } else {
3383                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3384                         dca_rxctrl |= dca_get_tag(cpu);
3385                 }
3386                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3387                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3388                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3389                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3390                 rx_ring->cpu = cpu;
3391         }
3392         put_cpu();
3393 }
3394
3395 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3396 {
3397         u32 dca_txctrl;
3398         struct igb_adapter *adapter = tx_ring->adapter;
3399         struct e1000_hw *hw = &adapter->hw;
3400         int cpu = get_cpu();
3401         int q = tx_ring->reg_idx;
3402
3403         if (tx_ring->cpu != cpu) {
3404                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3405                 if (hw->mac.type == e1000_82576) {
3406                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3407                         dca_txctrl |= dca_get_tag(cpu) <<
3408                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3409                 } else {
3410                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3411                         dca_txctrl |= dca_get_tag(cpu);
3412                 }
3413                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3414                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3415                 tx_ring->cpu = cpu;
3416         }
3417         put_cpu();
3418 }
3419
3420 static void igb_setup_dca(struct igb_adapter *adapter)
3421 {
3422         int i;
3423
3424         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3425                 return;
3426
3427         for (i = 0; i < adapter->num_tx_queues; i++) {
3428                 adapter->tx_ring[i].cpu = -1;
3429                 igb_update_tx_dca(&adapter->tx_ring[i]);
3430         }
3431         for (i = 0; i < adapter->num_rx_queues; i++) {
3432                 adapter->rx_ring[i].cpu = -1;
3433                 igb_update_rx_dca(&adapter->rx_ring[i]);
3434         }
3435 }
3436
3437 static int __igb_notify_dca(struct device *dev, void *data)
3438 {
3439         struct net_device *netdev = dev_get_drvdata(dev);
3440         struct igb_adapter *adapter = netdev_priv(netdev);
3441         struct e1000_hw *hw = &adapter->hw;
3442         unsigned long event = *(unsigned long *)data;
3443
3444         switch (event) {
3445         case DCA_PROVIDER_ADD:
3446                 /* if already enabled, don't do it again */
3447                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3448                         break;
3449                 /* Always use CB2 mode, difference is masked
3450                  * in the CB driver. */
3451                 wr32(E1000_DCA_CTRL, 2);
3452                 if (dca_add_requester(dev) == 0) {
3453                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3454                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3455                         igb_setup_dca(adapter);
3456                         break;
3457                 }
3458                 /* Fall Through since DCA is disabled. */
3459         case DCA_PROVIDER_REMOVE:
3460                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3461                         /* without this a class_device is left
3462                          * hanging around in the sysfs model */
3463                         dca_remove_requester(dev);
3464                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3465                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3466                         wr32(E1000_DCA_CTRL, 1);
3467                 }
3468                 break;
3469         }
3470
3471         return 0;
3472 }
3473
3474 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3475                           void *p)
3476 {
3477         int ret_val;
3478
3479         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3480                                          __igb_notify_dca);
3481
3482         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3483 }
3484 #endif /* CONFIG_IGB_DCA */
3485
3486 /**
3487  * igb_intr_msi - Interrupt Handler
3488  * @irq: interrupt number
3489  * @data: pointer to a network interface device structure
3490  **/
3491 static irqreturn_t igb_intr_msi(int irq, void *data)
3492 {
3493         struct net_device *netdev = data;
3494         struct igb_adapter *adapter = netdev_priv(netdev);
3495         struct e1000_hw *hw = &adapter->hw;
3496         /* read ICR disables interrupts using IAM */
3497         u32 icr = rd32(E1000_ICR);
3498
3499         igb_write_itr(adapter->rx_ring);
3500
3501         if(icr & E1000_ICR_DOUTSYNC) {
3502                 /* HW is reporting DMA is out of sync */
3503                 adapter->stats.doosync++;
3504         }
3505
3506         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3507                 hw->mac.get_link_status = 1;
3508                 if (!test_bit(__IGB_DOWN, &adapter->state))
3509                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3510         }
3511
3512         napi_schedule(&adapter->rx_ring[0].napi);
3513
3514         return IRQ_HANDLED;
3515 }
3516
3517 /**
3518  * igb_intr - Legacy Interrupt Handler
3519  * @irq: interrupt number
3520  * @data: pointer to a network interface device structure
3521  **/
3522 static irqreturn_t igb_intr(int irq, void *data)
3523 {
3524         struct net_device *netdev = data;
3525         struct igb_adapter *adapter = netdev_priv(netdev);
3526         struct e1000_hw *hw = &adapter->hw;
3527         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3528          * need for the IMC write */
3529         u32 icr = rd32(E1000_ICR);
3530         if (!icr)
3531                 return IRQ_NONE;  /* Not our interrupt */
3532
3533         igb_write_itr(adapter->rx_ring);
3534
3535         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3536          * not set, then the adapter didn't send an interrupt */
3537         if (!(icr & E1000_ICR_INT_ASSERTED))
3538                 return IRQ_NONE;
3539
3540         if(icr & E1000_ICR_DOUTSYNC) {
3541                 /* HW is reporting DMA is out of sync */
3542                 adapter->stats.doosync++;
3543         }
3544
3545         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3546                 hw->mac.get_link_status = 1;
3547                 /* guard against interrupt when we're going down */
3548                 if (!test_bit(__IGB_DOWN, &adapter->state))
3549                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3550         }
3551
3552         napi_schedule(&adapter->rx_ring[0].napi);
3553
3554         return IRQ_HANDLED;
3555 }
3556
3557 /**
3558  * igb_poll - NAPI Rx polling callback
3559  * @napi: napi polling structure
3560  * @budget: count of how many packets we should handle
3561  **/
3562 static int igb_poll(struct napi_struct *napi, int budget)
3563 {
3564         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3565         struct igb_adapter *adapter = rx_ring->adapter;
3566         struct net_device *netdev = adapter->netdev;
3567         int tx_clean_complete, work_done = 0;
3568
3569         /* this poll routine only supports one tx and one rx queue */
3570 #ifdef CONFIG_IGB_DCA
3571         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3572                 igb_update_tx_dca(&adapter->tx_ring[0]);
3573 #endif
3574         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3575
3576 #ifdef CONFIG_IGB_DCA
3577         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3578                 igb_update_rx_dca(&adapter->rx_ring[0]);
3579 #endif
3580         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3581
3582         /* If no Tx and not enough Rx work done, exit the polling mode */
3583         if ((tx_clean_complete && (work_done < budget)) ||
3584             !netif_running(netdev)) {
3585                 if (adapter->itr_setting & 3)
3586                         igb_set_itr(adapter);
3587                 napi_complete(napi);
3588                 if (!test_bit(__IGB_DOWN, &adapter->state))
3589                         igb_irq_enable(adapter);
3590                 return 0;
3591         }
3592
3593         return 1;
3594 }
3595
3596 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3597 {
3598         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3599         struct igb_adapter *adapter = rx_ring->adapter;
3600         struct e1000_hw *hw = &adapter->hw;
3601         struct net_device *netdev = adapter->netdev;
3602         int work_done = 0;
3603
3604 #ifdef CONFIG_IGB_DCA
3605         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3606                 igb_update_rx_dca(rx_ring);
3607 #endif
3608         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3609
3610
3611         /* If not enough Rx work done, exit the polling mode */
3612         if ((work_done == 0) || !netif_running(netdev)) {
3613                 napi_complete(napi);
3614
3615                 if (adapter->itr_setting & 3) {
3616                         if (adapter->num_rx_queues == 1)
3617                                 igb_set_itr(adapter);
3618                         else
3619                                 igb_update_ring_itr(rx_ring);
3620                 }
3621
3622                 if (!test_bit(__IGB_DOWN, &adapter->state))
3623                         wr32(E1000_EIMS, rx_ring->eims_value);
3624
3625                 return 0;
3626         }
3627
3628         return 1;
3629 }
3630
3631 /**
3632  * igb_clean_tx_irq - Reclaim resources after transmit completes
3633  * @adapter: board private structure
3634  * returns true if ring is completely cleaned
3635  **/
3636 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3637 {
3638         struct igb_adapter *adapter = tx_ring->adapter;
3639         struct net_device *netdev = adapter->netdev;
3640         struct e1000_hw *hw = &adapter->hw;
3641         struct igb_buffer *buffer_info;
3642         struct sk_buff *skb;
3643         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3644         unsigned int total_bytes = 0, total_packets = 0;
3645         unsigned int i, eop, count = 0;
3646         bool cleaned = false;
3647
3648         i = tx_ring->next_to_clean;
3649         eop = tx_ring->buffer_info[i].next_to_watch;
3650         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3651
3652         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3653                (count < tx_ring->count)) {
3654                 for (cleaned = false; !cleaned; count++) {
3655                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3656                         buffer_info = &tx_ring->buffer_info[i];
3657                         cleaned = (i == eop);
3658                         skb = buffer_info->skb;
3659
3660                         if (skb) {
3661                                 unsigned int segs, bytecount;
3662                                 /* gso_segs is currently only valid for tcp */
3663                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3664                                 /* multiply data chunks by size of headers */
3665                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3666                                             skb->len;
3667                                 total_packets += segs;
3668                                 total_bytes += bytecount;
3669                         }
3670
3671                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3672                         tx_desc->wb.status = 0;
3673
3674                         i++;
3675                         if (i == tx_ring->count)
3676                                 i = 0;
3677                 }
3678
3679                 eop = tx_ring->buffer_info[i].next_to_watch;
3680                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3681         }
3682
3683         tx_ring->next_to_clean = i;
3684
3685         if (unlikely(count &&
3686                      netif_carrier_ok(netdev) &&
3687                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3688                 /* Make sure that anybody stopping the queue after this
3689                  * sees the new next_to_clean.
3690                  */
3691                 smp_mb();
3692                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3693                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3694                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3695                         ++adapter->restart_queue;
3696                 }
3697         }
3698
3699         if (tx_ring->detect_tx_hung) {
3700                 /* Detect a transmit hang in hardware, this serializes the
3701                  * check with the clearing of time_stamp and movement of i */
3702                 tx_ring->detect_tx_hung = false;
3703                 if (tx_ring->buffer_info[i].time_stamp &&
3704                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3705                                (adapter->tx_timeout_factor * HZ))
3706                     && !(rd32(E1000_STATUS) &
3707                          E1000_STATUS_TXOFF)) {
3708
3709                         /* detected Tx unit hang */
3710                         dev_err(&adapter->pdev->dev,
3711                                 "Detected Tx Unit Hang\n"
3712                                 "  Tx Queue             <%d>\n"
3713                                 "  TDH                  <%x>\n"
3714                                 "  TDT                  <%x>\n"
3715                                 "  next_to_use          <%x>\n"
3716                                 "  next_to_clean        <%x>\n"
3717                                 "buffer_info[next_to_clean]\n"
3718                                 "  time_stamp           <%lx>\n"
3719                                 "  next_to_watch        <%x>\n"
3720                                 "  jiffies              <%lx>\n"
3721                                 "  desc.status          <%x>\n",
3722                                 tx_ring->queue_index,
3723                                 readl(adapter->hw.hw_addr + tx_ring->head),
3724                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3725                                 tx_ring->next_to_use,
3726                                 tx_ring->next_to_clean,
3727                                 tx_ring->buffer_info[i].time_stamp,
3728                                 eop,
3729                                 jiffies,
3730                                 eop_desc->wb.status);
3731                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3732                 }
3733         }
3734         tx_ring->total_bytes += total_bytes;
3735         tx_ring->total_packets += total_packets;
3736         tx_ring->tx_stats.bytes += total_bytes;
3737         tx_ring->tx_stats.packets += total_packets;
3738         adapter->net_stats.tx_bytes += total_bytes;
3739         adapter->net_stats.tx_packets += total_packets;
3740         return (count < tx_ring->count);
3741 }
3742
3743 /**
3744  * igb_receive_skb - helper function to handle rx indications
3745  * @ring: pointer to receive ring receving this packet
3746  * @status: descriptor status field as written by hardware
3747  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3748  * @skb: pointer to sk_buff to be indicated to stack
3749  **/
3750 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3751                             union e1000_adv_rx_desc * rx_desc,
3752                             struct sk_buff *skb)
3753 {
3754         struct igb_adapter * adapter = ring->adapter;
3755         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3756
3757         skb_record_rx_queue(skb, ring->queue_index);
3758         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3759                 if (vlan_extracted)
3760                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3761                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3762                                          skb);
3763                 else
3764                         napi_gro_receive(&ring->napi, skb);
3765         } else {
3766                 if (vlan_extracted)
3767                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3768                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3769                 else
3770                         netif_receive_skb(skb);
3771         }
3772 }
3773
3774
3775 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3776                                        u32 status_err, struct sk_buff *skb)
3777 {
3778         skb->ip_summed = CHECKSUM_NONE;
3779
3780         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3781         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3782                 return;
3783         /* TCP/UDP checksum error bit is set */
3784         if (status_err &
3785             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3786                 /* let the stack verify checksum errors */
3787                 adapter->hw_csum_err++;
3788                 return;
3789         }
3790         /* It must be a TCP or UDP packet with a valid checksum */
3791         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3792                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3793
3794         adapter->hw_csum_good++;
3795 }
3796
3797 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3798                                  int *work_done, int budget)
3799 {
3800         struct igb_adapter *adapter = rx_ring->adapter;
3801         struct net_device *netdev = adapter->netdev;
3802         struct pci_dev *pdev = adapter->pdev;
3803         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3804         struct igb_buffer *buffer_info , *next_buffer;
3805         struct sk_buff *skb;
3806         unsigned int i;
3807         u32 length, hlen, staterr;
3808         bool cleaned = false;
3809         int cleaned_count = 0;
3810         unsigned int total_bytes = 0, total_packets = 0;
3811
3812         i = rx_ring->next_to_clean;
3813         buffer_info = &rx_ring->buffer_info[i];
3814         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3815         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3816
3817         while (staterr & E1000_RXD_STAT_DD) {
3818                 if (*work_done >= budget)
3819                         break;
3820                 (*work_done)++;
3821
3822                 skb = buffer_info->skb;
3823                 prefetch(skb->data - NET_IP_ALIGN);
3824                 buffer_info->skb = NULL;
3825
3826                 i++;
3827                 if (i == rx_ring->count)
3828                         i = 0;
3829                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3830                 prefetch(next_rxd);
3831                 next_buffer = &rx_ring->buffer_info[i];
3832
3833                 length = le16_to_cpu(rx_desc->wb.upper.length);
3834                 cleaned = true;
3835                 cleaned_count++;
3836
3837                 if (!adapter->rx_ps_hdr_size) {
3838                         pci_unmap_single(pdev, buffer_info->dma,
3839                                          adapter->rx_buffer_len +
3840                                            NET_IP_ALIGN,
3841                                          PCI_DMA_FROMDEVICE);
3842                         skb_put(skb, length);
3843                         goto send_up;
3844                 }
3845
3846                 /* HW will not DMA in data larger than the given buffer, even
3847                  * if it parses the (NFS, of course) header to be larger.  In
3848                  * that case, it fills the header buffer and spills the rest
3849                  * into the page.
3850                  */
3851                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3852                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3853                 if (hlen > adapter->rx_ps_hdr_size)
3854                         hlen = adapter->rx_ps_hdr_size;
3855
3856                 if (!skb_shinfo(skb)->nr_frags) {
3857                         pci_unmap_single(pdev, buffer_info->dma,
3858                                          adapter->rx_ps_hdr_size +
3859                                            NET_IP_ALIGN,
3860                                          PCI_DMA_FROMDEVICE);
3861                         skb_put(skb, hlen);
3862                 }
3863
3864                 if (length) {
3865                         pci_unmap_page(pdev, buffer_info->page_dma,
3866                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3867                         buffer_info->page_dma = 0;
3868
3869                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3870                                                 buffer_info->page,
3871                                                 buffer_info->page_offset,
3872                                                 length);
3873
3874                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3875                             (page_count(buffer_info->page) != 1))
3876                                 buffer_info->page = NULL;
3877                         else
3878                                 get_page(buffer_info->page);
3879
3880                         skb->len += length;
3881                         skb->data_len += length;
3882
3883                         skb->truesize += length;
3884                 }
3885
3886                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3887                         buffer_info->skb = next_buffer->skb;
3888                         buffer_info->dma = next_buffer->dma;
3889                         next_buffer->skb = skb;
3890                         next_buffer->dma = 0;
3891                         goto next_desc;
3892                 }
3893 send_up:
3894                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3895                         dev_kfree_skb_irq(skb);
3896                         goto next_desc;
3897                 }
3898
3899                 total_bytes += skb->len;
3900                 total_packets++;
3901
3902                 igb_rx_checksum_adv(adapter, staterr, skb);
3903
3904                 skb->protocol = eth_type_trans(skb, netdev);
3905
3906                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3907
3908 next_desc:
3909                 rx_desc->wb.upper.status_error = 0;
3910
3911                 /* return some buffers to hardware, one at a time is too slow */
3912                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3913                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3914                         cleaned_count = 0;
3915                 }
3916
3917                 /* use prefetched values */
3918                 rx_desc = next_rxd;
3919                 buffer_info = next_buffer;
3920                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3921         }
3922
3923         rx_ring->next_to_clean = i;
3924         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3925
3926         if (cleaned_count)
3927                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3928
3929         rx_ring->total_packets += total_packets;
3930         rx_ring->total_bytes += total_bytes;
3931         rx_ring->rx_stats.packets += total_packets;
3932         rx_ring->rx_stats.bytes += total_bytes;
3933         adapter->net_stats.rx_bytes += total_bytes;
3934         adapter->net_stats.rx_packets += total_packets;
3935         return cleaned;
3936 }
3937
3938
3939 /**
3940  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3941  * @adapter: address of board private structure
3942  **/
3943 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3944                                      int cleaned_count)
3945 {
3946         struct igb_adapter *adapter = rx_ring->adapter;
3947         struct net_device *netdev = adapter->netdev;
3948         struct pci_dev *pdev = adapter->pdev;
3949         union e1000_adv_rx_desc *rx_desc;
3950         struct igb_buffer *buffer_info;
3951         struct sk_buff *skb;
3952         unsigned int i;
3953         int bufsz;
3954
3955         i = rx_ring->next_to_use;
3956         buffer_info = &rx_ring->buffer_info[i];
3957
3958         if (adapter->rx_ps_hdr_size)
3959                 bufsz = adapter->rx_ps_hdr_size;
3960         else
3961                 bufsz = adapter->rx_buffer_len;
3962         bufsz += NET_IP_ALIGN;
3963
3964         while (cleaned_count--) {
3965                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3966
3967                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3968                         if (!buffer_info->page) {
3969                                 buffer_info->page = alloc_page(GFP_ATOMIC);
3970                                 if (!buffer_info->page) {
3971                                         adapter->alloc_rx_buff_failed++;
3972                                         goto no_buffers;
3973                                 }
3974                                 buffer_info->page_offset = 0;
3975                         } else {
3976                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
3977                         }
3978                         buffer_info->page_dma =
3979                                 pci_map_page(pdev, buffer_info->page,
3980                                              buffer_info->page_offset,
3981                                              PAGE_SIZE / 2,
3982                                              PCI_DMA_FROMDEVICE);
3983                 }
3984
3985                 if (!buffer_info->skb) {
3986                         skb = netdev_alloc_skb(netdev, bufsz);
3987                         if (!skb) {
3988                                 adapter->alloc_rx_buff_failed++;
3989                                 goto no_buffers;
3990                         }
3991
3992                         /* Make buffer alignment 2 beyond a 16 byte boundary
3993                          * this will result in a 16 byte aligned IP header after
3994                          * the 14 byte MAC header is removed
3995                          */
3996                         skb_reserve(skb, NET_IP_ALIGN);
3997
3998                         buffer_info->skb = skb;
3999                         buffer_info->dma = pci_map_single(pdev, skb->data,
4000                                                           bufsz,
4001                                                           PCI_DMA_FROMDEVICE);
4002                 }
4003                 /* Refresh the desc even if buffer_addrs didn't change because
4004                  * each write-back erases this info. */
4005                 if (adapter->rx_ps_hdr_size) {
4006                         rx_desc->read.pkt_addr =
4007                              cpu_to_le64(buffer_info->page_dma);
4008                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4009                 } else {
4010                         rx_desc->read.pkt_addr =
4011                              cpu_to_le64(buffer_info->dma);
4012                         rx_desc->read.hdr_addr = 0;
4013                 }
4014
4015                 i++;
4016                 if (i == rx_ring->count)
4017                         i = 0;
4018                 buffer_info = &rx_ring->buffer_info[i];
4019         }
4020
4021 no_buffers:
4022         if (rx_ring->next_to_use != i) {
4023                 rx_ring->next_to_use = i;
4024                 if (i == 0)
4025                         i = (rx_ring->count - 1);
4026                 else
4027                         i--;
4028
4029                 /* Force memory writes to complete before letting h/w
4030                  * know there are new descriptors to fetch.  (Only
4031                  * applicable for weak-ordered memory model archs,
4032                  * such as IA-64). */
4033                 wmb();
4034                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4035         }
4036 }
4037
4038 /**
4039  * igb_mii_ioctl -
4040  * @netdev:
4041  * @ifreq:
4042  * @cmd:
4043  **/
4044 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4045 {
4046         struct igb_adapter *adapter = netdev_priv(netdev);
4047         struct mii_ioctl_data *data = if_mii(ifr);
4048
4049         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4050                 return -EOPNOTSUPP;
4051
4052         switch (cmd) {
4053         case SIOCGMIIPHY:
4054                 data->phy_id = adapter->hw.phy.addr;
4055                 break;
4056         case SIOCGMIIREG:
4057                 if (!capable(CAP_NET_ADMIN))
4058                         return -EPERM;
4059                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4060                                      &data->val_out))
4061                         return -EIO;
4062                 break;
4063         case SIOCSMIIREG:
4064         default:
4065                 return -EOPNOTSUPP;
4066         }
4067         return 0;
4068 }
4069
4070 /**
4071  * igb_ioctl -
4072  * @netdev:
4073  * @ifreq:
4074  * @cmd:
4075  **/
4076 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4077 {
4078         switch (cmd) {
4079         case SIOCGMIIPHY:
4080         case SIOCGMIIREG:
4081         case SIOCSMIIREG:
4082                 return igb_mii_ioctl(netdev, ifr, cmd);
4083         default:
4084                 return -EOPNOTSUPP;
4085         }
4086 }
4087
4088 static void igb_vlan_rx_register(struct net_device *netdev,
4089                                  struct vlan_group *grp)
4090 {
4091         struct igb_adapter *adapter = netdev_priv(netdev);
4092         struct e1000_hw *hw = &adapter->hw;
4093         u32 ctrl, rctl;
4094
4095         igb_irq_disable(adapter);
4096         adapter->vlgrp = grp;
4097
4098         if (grp) {
4099                 /* enable VLAN tag insert/strip */
4100                 ctrl = rd32(E1000_CTRL);
4101                 ctrl |= E1000_CTRL_VME;
4102                 wr32(E1000_CTRL, ctrl);
4103
4104                 /* enable VLAN receive filtering */
4105                 rctl = rd32(E1000_RCTL);
4106                 rctl &= ~E1000_RCTL_CFIEN;
4107                 wr32(E1000_RCTL, rctl);
4108                 igb_update_mng_vlan(adapter);
4109                 wr32(E1000_RLPML,
4110                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4111         } else {
4112                 /* disable VLAN tag insert/strip */
4113                 ctrl = rd32(E1000_CTRL);
4114                 ctrl &= ~E1000_CTRL_VME;
4115                 wr32(E1000_CTRL, ctrl);
4116
4117                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4118                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4119                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4120                 }
4121                 wr32(E1000_RLPML,
4122                                 adapter->max_frame_size);
4123         }
4124
4125         if (!test_bit(__IGB_DOWN, &adapter->state))
4126                 igb_irq_enable(adapter);
4127 }
4128
4129 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4130 {
4131         struct igb_adapter *adapter = netdev_priv(netdev);
4132         struct e1000_hw *hw = &adapter->hw;
4133         u32 vfta, index;
4134
4135         if ((hw->mng_cookie.status &
4136              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4137             (vid == adapter->mng_vlan_id))
4138                 return;
4139         /* add VID to filter table */
4140         index = (vid >> 5) & 0x7F;
4141         vfta = array_rd32(E1000_VFTA, index);
4142         vfta |= (1 << (vid & 0x1F));
4143         igb_write_vfta(&adapter->hw, index, vfta);
4144 }
4145
4146 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4147 {
4148         struct igb_adapter *adapter = netdev_priv(netdev);
4149         struct e1000_hw *hw = &adapter->hw;
4150         u32 vfta, index;
4151
4152         igb_irq_disable(adapter);
4153         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4154
4155         if (!test_bit(__IGB_DOWN, &adapter->state))
4156                 igb_irq_enable(adapter);
4157
4158         if ((adapter->hw.mng_cookie.status &
4159              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4160             (vid == adapter->mng_vlan_id)) {
4161                 /* release control to f/w */
4162                 igb_release_hw_control(adapter);
4163                 return;
4164         }
4165
4166         /* remove VID from filter table */
4167         index = (vid >> 5) & 0x7F;
4168         vfta = array_rd32(E1000_VFTA, index);
4169         vfta &= ~(1 << (vid & 0x1F));
4170         igb_write_vfta(&adapter->hw, index, vfta);
4171 }
4172
4173 static void igb_restore_vlan(struct igb_adapter *adapter)
4174 {
4175         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4176
4177         if (adapter->vlgrp) {
4178                 u16 vid;
4179                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4180                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4181                                 continue;
4182                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4183                 }
4184         }
4185 }
4186
4187 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4188 {
4189         struct e1000_mac_info *mac = &adapter->hw.mac;
4190
4191         mac->autoneg = 0;
4192
4193         /* Fiber NICs only allow 1000 gbps Full duplex */
4194         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4195                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4196                 dev_err(&adapter->pdev->dev,
4197                         "Unsupported Speed/Duplex configuration\n");
4198                 return -EINVAL;
4199         }
4200
4201         switch (spddplx) {
4202         case SPEED_10 + DUPLEX_HALF:
4203                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4204                 break;
4205         case SPEED_10 + DUPLEX_FULL:
4206                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4207                 break;
4208         case SPEED_100 + DUPLEX_HALF:
4209                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4210                 break;
4211         case SPEED_100 + DUPLEX_FULL:
4212                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4213                 break;
4214         case SPEED_1000 + DUPLEX_FULL:
4215                 mac->autoneg = 1;
4216                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4217                 break;
4218         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4219         default:
4220                 dev_err(&adapter->pdev->dev,
4221                         "Unsupported Speed/Duplex configuration\n");
4222                 return -EINVAL;
4223         }
4224         return 0;
4225 }
4226
4227
4228 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4229 {
4230         struct net_device *netdev = pci_get_drvdata(pdev);
4231         struct igb_adapter *adapter = netdev_priv(netdev);
4232         struct e1000_hw *hw = &adapter->hw;
4233         u32 ctrl, rctl, status;
4234         u32 wufc = adapter->wol;
4235 #ifdef CONFIG_PM
4236         int retval = 0;
4237 #endif
4238
4239         netif_device_detach(netdev);
4240
4241         if (netif_running(netdev))
4242                 igb_close(netdev);
4243
4244         igb_reset_interrupt_capability(adapter);
4245
4246         igb_free_queues(adapter);
4247
4248 #ifdef CONFIG_PM
4249         retval = pci_save_state(pdev);
4250         if (retval)
4251                 return retval;
4252 #endif
4253
4254         status = rd32(E1000_STATUS);
4255         if (status & E1000_STATUS_LU)
4256                 wufc &= ~E1000_WUFC_LNKC;
4257
4258         if (wufc) {
4259                 igb_setup_rctl(adapter);
4260                 igb_set_multi(netdev);
4261
4262                 /* turn on all-multi mode if wake on multicast is enabled */
4263                 if (wufc & E1000_WUFC_MC) {
4264                         rctl = rd32(E1000_RCTL);
4265                         rctl |= E1000_RCTL_MPE;
4266                         wr32(E1000_RCTL, rctl);
4267                 }
4268
4269                 ctrl = rd32(E1000_CTRL);
4270                 /* advertise wake from D3Cold */
4271                 #define E1000_CTRL_ADVD3WUC 0x00100000
4272                 /* phy power management enable */
4273                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4274                 ctrl |= E1000_CTRL_ADVD3WUC;
4275                 wr32(E1000_CTRL, ctrl);
4276
4277                 /* Allow time for pending master requests to run */
4278                 igb_disable_pcie_master(&adapter->hw);
4279
4280                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4281                 wr32(E1000_WUFC, wufc);
4282         } else {
4283                 wr32(E1000_WUC, 0);
4284                 wr32(E1000_WUFC, 0);
4285         }
4286
4287         /* make sure adapter isn't asleep if manageability/wol is enabled */
4288         if (wufc || adapter->en_mng_pt) {
4289                 pci_enable_wake(pdev, PCI_D3hot, 1);
4290                 pci_enable_wake(pdev, PCI_D3cold, 1);
4291         } else {
4292                 igb_shutdown_fiber_serdes_link_82575(hw);
4293                 pci_enable_wake(pdev, PCI_D3hot, 0);
4294                 pci_enable_wake(pdev, PCI_D3cold, 0);
4295         }
4296
4297         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4298          * would have already happened in close and is redundant. */
4299         igb_release_hw_control(adapter);
4300
4301         pci_disable_device(pdev);
4302
4303         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4304
4305         return 0;
4306 }
4307
4308 #ifdef CONFIG_PM
4309 static int igb_resume(struct pci_dev *pdev)
4310 {
4311         struct net_device *netdev = pci_get_drvdata(pdev);
4312         struct igb_adapter *adapter = netdev_priv(netdev);
4313         struct e1000_hw *hw = &adapter->hw;
4314         u32 err;
4315
4316         pci_set_power_state(pdev, PCI_D0);
4317         pci_restore_state(pdev);
4318
4319         err = pci_enable_device_mem(pdev);
4320         if (err) {
4321                 dev_err(&pdev->dev,
4322                         "igb: Cannot enable PCI device from suspend\n");
4323                 return err;
4324         }
4325         pci_set_master(pdev);
4326
4327         pci_enable_wake(pdev, PCI_D3hot, 0);
4328         pci_enable_wake(pdev, PCI_D3cold, 0);
4329
4330         igb_set_interrupt_capability(adapter);
4331
4332         if (igb_alloc_queues(adapter)) {
4333                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4334                 return -ENOMEM;
4335         }
4336
4337         /* e1000_power_up_phy(adapter); */
4338
4339         igb_reset(adapter);
4340
4341         /* let the f/w know that the h/w is now under the control of the
4342          * driver. */
4343         igb_get_hw_control(adapter);
4344
4345         wr32(E1000_WUS, ~0);
4346
4347         if (netif_running(netdev)) {
4348                 err = igb_open(netdev);
4349                 if (err)
4350                         return err;
4351         }
4352
4353         netif_device_attach(netdev);
4354
4355         return 0;
4356 }
4357 #endif
4358
4359 static void igb_shutdown(struct pci_dev *pdev)
4360 {
4361         igb_suspend(pdev, PMSG_SUSPEND);
4362 }
4363
4364 #ifdef CONFIG_NET_POLL_CONTROLLER
4365 /*
4366  * Polling 'interrupt' - used by things like netconsole to send skbs
4367  * without having to re-enable interrupts. It's not called while
4368  * the interrupt routine is executing.
4369  */
4370 static void igb_netpoll(struct net_device *netdev)
4371 {
4372         struct igb_adapter *adapter = netdev_priv(netdev);
4373         struct e1000_hw *hw = &adapter->hw;
4374         int i;
4375
4376         if (!adapter->msix_entries) {
4377                 igb_irq_disable(adapter);
4378                 napi_schedule(&adapter->rx_ring[0].napi);
4379                 return;
4380         }
4381
4382         for (i = 0; i < adapter->num_tx_queues; i++) {
4383                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4384                 wr32(E1000_EIMC, tx_ring->eims_value);
4385                 igb_clean_tx_irq(tx_ring);
4386                 wr32(E1000_EIMS, tx_ring->eims_value);
4387         }
4388
4389         for (i = 0; i < adapter->num_rx_queues; i++) {
4390                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4391                 wr32(E1000_EIMC, rx_ring->eims_value);
4392                 napi_schedule(&rx_ring->napi);
4393         }
4394 }
4395 #endif /* CONFIG_NET_POLL_CONTROLLER */
4396
4397 /**
4398  * igb_io_error_detected - called when PCI error is detected
4399  * @pdev: Pointer to PCI device
4400  * @state: The current pci connection state
4401  *
4402  * This function is called after a PCI bus error affecting
4403  * this device has been detected.
4404  */
4405 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4406                                               pci_channel_state_t state)
4407 {
4408         struct net_device *netdev = pci_get_drvdata(pdev);
4409         struct igb_adapter *adapter = netdev_priv(netdev);
4410
4411         netif_device_detach(netdev);
4412
4413         if (netif_running(netdev))
4414                 igb_down(adapter);
4415         pci_disable_device(pdev);
4416
4417         /* Request a slot slot reset. */
4418         return PCI_ERS_RESULT_NEED_RESET;
4419 }
4420
4421 /**
4422  * igb_io_slot_reset - called after the pci bus has been reset.
4423  * @pdev: Pointer to PCI device
4424  *
4425  * Restart the card from scratch, as if from a cold-boot. Implementation
4426  * resembles the first-half of the igb_resume routine.
4427  */
4428 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4429 {
4430         struct net_device *netdev = pci_get_drvdata(pdev);
4431         struct igb_adapter *adapter = netdev_priv(netdev);
4432         struct e1000_hw *hw = &adapter->hw;
4433         pci_ers_result_t result;
4434         int err;
4435
4436         if (pci_enable_device_mem(pdev)) {
4437                 dev_err(&pdev->dev,
4438                         "Cannot re-enable PCI device after reset.\n");
4439                 result = PCI_ERS_RESULT_DISCONNECT;
4440         } else {
4441                 pci_set_master(pdev);
4442                 pci_restore_state(pdev);
4443
4444                 pci_enable_wake(pdev, PCI_D3hot, 0);
4445                 pci_enable_wake(pdev, PCI_D3cold, 0);
4446
4447                 igb_reset(adapter);
4448                 wr32(E1000_WUS, ~0);
4449                 result = PCI_ERS_RESULT_RECOVERED;
4450         }
4451
4452         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4453         if (err) {
4454                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4455                         "failed 0x%0x\n", err);
4456                 /* non-fatal, continue */
4457         }
4458
4459         return result;
4460 }
4461
4462 /**
4463  * igb_io_resume - called when traffic can start flowing again.
4464  * @pdev: Pointer to PCI device
4465  *
4466  * This callback is called when the error recovery driver tells us that
4467  * its OK to resume normal operation. Implementation resembles the
4468  * second-half of the igb_resume routine.
4469  */
4470 static void igb_io_resume(struct pci_dev *pdev)
4471 {
4472         struct net_device *netdev = pci_get_drvdata(pdev);
4473         struct igb_adapter *adapter = netdev_priv(netdev);
4474
4475         if (netif_running(netdev)) {
4476                 if (igb_up(adapter)) {
4477                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4478                         return;
4479                 }
4480         }
4481
4482         netif_device_attach(netdev);
4483
4484         /* let the f/w know that the h/w is now under the control of the
4485          * driver. */
4486         igb_get_hw_control(adapter);
4487 }
4488
4489 /* igb_main.c */