Merge branch 'for-linus' of git://one.firstfloor.org/home/andi/git/linux-2.6
[linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/major.h>
27 #include <linux/root_dev.h>
28 #include <linux/kernel.h>
29
30 #include <asm/processor.h>
31 #include <asm/machdep.h>
32 #include <asm/page.h>
33 #include <asm/mmu.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cputable.h>
37 #include <asm/sections.h>
38 #include <asm/iommu.h>
39 #include <asm/firmware.h>
40 #include <asm/system.h>
41 #include <asm/time.h>
42 #include <asm/paca.h>
43 #include <asm/cache.h>
44 #include <asm/sections.h>
45 #include <asm/abs_addr.h>
46 #include <asm/iseries/hv_lp_config.h>
47 #include <asm/iseries/hv_call_event.h>
48 #include <asm/iseries/hv_call_xm.h>
49 #include <asm/iseries/it_lp_queue.h>
50 #include <asm/iseries/mf.h>
51 #include <asm/iseries/hv_lp_event.h>
52 #include <asm/iseries/lpar_map.h>
53 #include <asm/udbg.h>
54 #include <asm/irq.h>
55
56 #include "naca.h"
57 #include "setup.h"
58 #include "irq.h"
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "it_lp_naca.h"
62 #include "main_store.h"
63 #include "call_sm.h"
64 #include "call_hpt.h"
65
66 #ifdef DEBUG
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71
72 /* Function Prototypes */
73 static unsigned long build_iSeries_Memory_Map(void);
74 static void iseries_shared_idle(void);
75 static void iseries_dedicated_idle(void);
76 #ifdef CONFIG_PCI
77 extern void iSeries_pci_final_fixup(void);
78 #else
79 static void iSeries_pci_final_fixup(void) { }
80 #endif
81
82 extern unsigned long iSeries_recal_tb;
83 extern unsigned long iSeries_recal_titan;
84
85 struct MemoryBlock {
86         unsigned long absStart;
87         unsigned long absEnd;
88         unsigned long logicalStart;
89         unsigned long logicalEnd;
90 };
91
92 /*
93  * Process the main store vpd to determine where the holes in memory are
94  * and return the number of physical blocks and fill in the array of
95  * block data.
96  */
97 static unsigned long iSeries_process_Condor_mainstore_vpd(
98                 struct MemoryBlock *mb_array, unsigned long max_entries)
99 {
100         unsigned long holeFirstChunk, holeSizeChunks;
101         unsigned long numMemoryBlocks = 1;
102         struct IoHriMainStoreSegment4 *msVpd =
103                 (struct IoHriMainStoreSegment4 *)xMsVpd;
104         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
105         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
106         unsigned long holeSize = holeEnd - holeStart;
107
108         printk("Mainstore_VPD: Condor\n");
109         /*
110          * Determine if absolute memory has any
111          * holes so that we can interpret the
112          * access map we get back from the hypervisor
113          * correctly.
114          */
115         mb_array[0].logicalStart = 0;
116         mb_array[0].logicalEnd = 0x100000000;
117         mb_array[0].absStart = 0;
118         mb_array[0].absEnd = 0x100000000;
119
120         if (holeSize) {
121                 numMemoryBlocks = 2;
122                 holeStart = holeStart & 0x000fffffffffffff;
123                 holeStart = addr_to_chunk(holeStart);
124                 holeFirstChunk = holeStart;
125                 holeSize = addr_to_chunk(holeSize);
126                 holeSizeChunks = holeSize;
127                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
128                                 holeFirstChunk, holeSizeChunks );
129                 mb_array[0].logicalEnd = holeFirstChunk;
130                 mb_array[0].absEnd = holeFirstChunk;
131                 mb_array[1].logicalStart = holeFirstChunk;
132                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
133                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
134                 mb_array[1].absEnd = 0x100000000;
135         }
136         return numMemoryBlocks;
137 }
138
139 #define MaxSegmentAreas                 32
140 #define MaxSegmentAdrRangeBlocks        128
141 #define MaxAreaRangeBlocks              4
142
143 static unsigned long iSeries_process_Regatta_mainstore_vpd(
144                 struct MemoryBlock *mb_array, unsigned long max_entries)
145 {
146         struct IoHriMainStoreSegment5 *msVpdP =
147                 (struct IoHriMainStoreSegment5 *)xMsVpd;
148         unsigned long numSegmentBlocks = 0;
149         u32 existsBits = msVpdP->msAreaExists;
150         unsigned long area_num;
151
152         printk("Mainstore_VPD: Regatta\n");
153
154         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
155                 unsigned long numAreaBlocks;
156                 struct IoHriMainStoreArea4 *currentArea;
157
158                 if (existsBits & 0x80000000) {
159                         unsigned long block_num;
160
161                         currentArea = &msVpdP->msAreaArray[area_num];
162                         numAreaBlocks = currentArea->numAdrRangeBlocks;
163                         printk("ms_vpd: processing area %2ld  blocks=%ld",
164                                         area_num, numAreaBlocks);
165                         for (block_num = 0; block_num < numAreaBlocks;
166                                         ++block_num ) {
167                                 /* Process an address range block */
168                                 struct MemoryBlock tempBlock;
169                                 unsigned long i;
170
171                                 tempBlock.absStart =
172                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
173                                 tempBlock.absEnd =
174                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
175                                 tempBlock.logicalStart = 0;
176                                 tempBlock.logicalEnd   = 0;
177                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
178                                                 block_num, tempBlock.absStart,
179                                                 tempBlock.absEnd);
180
181                                 for (i = 0; i < numSegmentBlocks; ++i) {
182                                         if (mb_array[i].absStart ==
183                                                         tempBlock.absStart)
184                                                 break;
185                                 }
186                                 if (i == numSegmentBlocks) {
187                                         if (numSegmentBlocks == max_entries)
188                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
189                                         mb_array[numSegmentBlocks] = tempBlock;
190                                         ++numSegmentBlocks;
191                                 } else
192                                         printk(" (duplicate)");
193                         }
194                         printk("\n");
195                 }
196                 existsBits <<= 1;
197         }
198         /* Now sort the blocks found into ascending sequence */
199         if (numSegmentBlocks > 1) {
200                 unsigned long m, n;
201
202                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
203                         for (n = numSegmentBlocks - 1; m < n; --n) {
204                                 if (mb_array[n].absStart <
205                                                 mb_array[n-1].absStart) {
206                                         struct MemoryBlock tempBlock;
207
208                                         tempBlock = mb_array[n];
209                                         mb_array[n] = mb_array[n-1];
210                                         mb_array[n-1] = tempBlock;
211                                 }
212                         }
213                 }
214         }
215         /*
216          * Assign "logical" addresses to each block.  These
217          * addresses correspond to the hypervisor "bitmap" space.
218          * Convert all addresses into units of 256K chunks.
219          */
220         {
221         unsigned long i, nextBitmapAddress;
222
223         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
224         nextBitmapAddress = 0;
225         for (i = 0; i < numSegmentBlocks; ++i) {
226                 unsigned long length = mb_array[i].absEnd -
227                         mb_array[i].absStart;
228
229                 mb_array[i].logicalStart = nextBitmapAddress;
230                 mb_array[i].logicalEnd = nextBitmapAddress + length;
231                 nextBitmapAddress += length;
232                 printk("          Bitmap range: %016lx - %016lx\n"
233                                 "        Absolute range: %016lx - %016lx\n",
234                                 mb_array[i].logicalStart,
235                                 mb_array[i].logicalEnd,
236                                 mb_array[i].absStart, mb_array[i].absEnd);
237                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
238                                 0x000fffffffffffff);
239                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
240                                 0x000fffffffffffff);
241                 mb_array[i].logicalStart =
242                         addr_to_chunk(mb_array[i].logicalStart);
243                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
244         }
245         }
246
247         return numSegmentBlocks;
248 }
249
250 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
251                 unsigned long max_entries)
252 {
253         unsigned long i;
254         unsigned long mem_blocks = 0;
255
256         if (cpu_has_feature(CPU_FTR_SLB))
257                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
258                                 max_entries);
259         else
260                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
261                                 max_entries);
262
263         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
264         for (i = 0; i < mem_blocks; ++i) {
265                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
266                        "                             abs chunks %016lx - %016lx\n",
267                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
268                         mb_array[i].absStart, mb_array[i].absEnd);
269         }
270         return mem_blocks;
271 }
272
273 static void __init iSeries_get_cmdline(void)
274 {
275         char *p, *q;
276
277         /* copy the command line parameter from the primary VSP  */
278         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
279                         HvLpDma_Direction_RemoteToLocal);
280
281         p = cmd_line;
282         q = cmd_line + 255;
283         while(p < q) {
284                 if (!*p || *p == '\n')
285                         break;
286                 ++p;
287         }
288         *p = 0;
289 }
290
291 static void __init iSeries_init_early(void)
292 {
293         DBG(" -> iSeries_init_early()\n");
294
295         iSeries_recal_tb = get_tb();
296         iSeries_recal_titan = HvCallXm_loadTod();
297
298         /*
299          * Initialize the DMA/TCE management
300          */
301         iommu_init_early_iSeries();
302
303         /* Initialize machine-dependency vectors */
304 #ifdef CONFIG_SMP
305         smp_init_iSeries();
306 #endif
307
308         /* Associate Lp Event Queue 0 with processor 0 */
309         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
310
311         mf_init();
312
313         DBG(" <- iSeries_init_early()\n");
314 }
315
316 struct mschunks_map mschunks_map = {
317         /* XXX We don't use these, but Piranha might need them. */
318         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
319         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
320         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
321 };
322 EXPORT_SYMBOL(mschunks_map);
323
324 void mschunks_alloc(unsigned long num_chunks)
325 {
326         klimit = _ALIGN(klimit, sizeof(u32));
327         mschunks_map.mapping = (u32 *)klimit;
328         klimit += num_chunks * sizeof(u32);
329         mschunks_map.num_chunks = num_chunks;
330 }
331
332 /*
333  * The iSeries may have very large memories ( > 128 GB ) and a partition
334  * may get memory in "chunks" that may be anywhere in the 2**52 real
335  * address space.  The chunks are 256K in size.  To map this to the
336  * memory model Linux expects, the AS/400 specific code builds a
337  * translation table to translate what Linux thinks are "physical"
338  * addresses to the actual real addresses.  This allows us to make
339  * it appear to Linux that we have contiguous memory starting at
340  * physical address zero while in fact this could be far from the truth.
341  * To avoid confusion, I'll let the words physical and/or real address
342  * apply to the Linux addresses while I'll use "absolute address" to
343  * refer to the actual hardware real address.
344  *
345  * build_iSeries_Memory_Map gets information from the Hypervisor and
346  * looks at the Main Store VPD to determine the absolute addresses
347  * of the memory that has been assigned to our partition and builds
348  * a table used to translate Linux's physical addresses to these
349  * absolute addresses.  Absolute addresses are needed when
350  * communicating with the hypervisor (e.g. to build HPT entries)
351  *
352  * Returns the physical memory size
353  */
354
355 static unsigned long __init build_iSeries_Memory_Map(void)
356 {
357         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
358         u32 nextPhysChunk;
359         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
360         u32 totalChunks,moreChunks;
361         u32 currChunk, thisChunk, absChunk;
362         u32 currDword;
363         u32 chunkBit;
364         u64 map;
365         struct MemoryBlock mb[32];
366         unsigned long numMemoryBlocks, curBlock;
367
368         /* Chunk size on iSeries is 256K bytes */
369         totalChunks = (u32)HvLpConfig_getMsChunks();
370         mschunks_alloc(totalChunks);
371
372         /*
373          * Get absolute address of our load area
374          * and map it to physical address 0
375          * This guarantees that the loadarea ends up at physical 0
376          * otherwise, it might not be returned by PLIC as the first
377          * chunks
378          */
379
380         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
381         loadAreaSize =  itLpNaca.xLoadAreaChunks;
382
383         /*
384          * Only add the pages already mapped here.
385          * Otherwise we might add the hpt pages
386          * The rest of the pages of the load area
387          * aren't in the HPT yet and can still
388          * be assigned an arbitrary physical address
389          */
390         if ((loadAreaSize * 64) > HvPagesToMap)
391                 loadAreaSize = HvPagesToMap / 64;
392
393         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
394
395         /*
396          * TODO Do we need to do something if the HPT is in the 64MB load area?
397          * This would be required if the itLpNaca.xLoadAreaChunks includes
398          * the HPT size
399          */
400
401         printk("Mapping load area - physical addr = 0000000000000000\n"
402                 "                    absolute addr = %016lx\n",
403                 chunk_to_addr(loadAreaFirstChunk));
404         printk("Load area size %dK\n", loadAreaSize * 256);
405
406         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
407                 mschunks_map.mapping[nextPhysChunk] =
408                         loadAreaFirstChunk + nextPhysChunk;
409
410         /*
411          * Get absolute address of our HPT and remember it so
412          * we won't map it to any physical address
413          */
414         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
415         hptSizePages = (u32)HvCallHpt_getHptPages();
416         hptSizeChunks = hptSizePages >>
417                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
418         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
419
420         printk("HPT absolute addr = %016lx, size = %dK\n",
421                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
422
423         /*
424          * Determine if absolute memory has any
425          * holes so that we can interpret the
426          * access map we get back from the hypervisor
427          * correctly.
428          */
429         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
430
431         /*
432          * Process the main store access map from the hypervisor
433          * to build up our physical -> absolute translation table
434          */
435         curBlock = 0;
436         currChunk = 0;
437         currDword = 0;
438         moreChunks = totalChunks;
439
440         while (moreChunks) {
441                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
442                                 currDword);
443                 thisChunk = currChunk;
444                 while (map) {
445                         chunkBit = map >> 63;
446                         map <<= 1;
447                         if (chunkBit) {
448                                 --moreChunks;
449                                 while (thisChunk >= mb[curBlock].logicalEnd) {
450                                         ++curBlock;
451                                         if (curBlock >= numMemoryBlocks)
452                                                 panic("out of memory blocks");
453                                 }
454                                 if (thisChunk < mb[curBlock].logicalStart)
455                                         panic("memory block error");
456
457                                 absChunk = mb[curBlock].absStart +
458                                         (thisChunk - mb[curBlock].logicalStart);
459                                 if (((absChunk < hptFirstChunk) ||
460                                      (absChunk > hptLastChunk)) &&
461                                     ((absChunk < loadAreaFirstChunk) ||
462                                      (absChunk > loadAreaLastChunk))) {
463                                         mschunks_map.mapping[nextPhysChunk] =
464                                                 absChunk;
465                                         ++nextPhysChunk;
466                                 }
467                         }
468                         ++thisChunk;
469                 }
470                 ++currDword;
471                 currChunk += 64;
472         }
473
474         /*
475          * main store size (in chunks) is
476          *   totalChunks - hptSizeChunks
477          * which should be equal to
478          *   nextPhysChunk
479          */
480         return chunk_to_addr(nextPhysChunk);
481 }
482
483 /*
484  * Document me.
485  */
486 static void __init iSeries_setup_arch(void)
487 {
488         if (get_lppaca()->shared_proc) {
489                 ppc_md.idle_loop = iseries_shared_idle;
490                 printk(KERN_DEBUG "Using shared processor idle loop\n");
491         } else {
492                 ppc_md.idle_loop = iseries_dedicated_idle;
493                 printk(KERN_DEBUG "Using dedicated idle loop\n");
494         }
495
496         /* Setup the Lp Event Queue */
497         setup_hvlpevent_queue();
498
499         printk("Max  logical processors = %d\n",
500                         itVpdAreas.xSlicMaxLogicalProcs);
501         printk("Max physical processors = %d\n",
502                         itVpdAreas.xSlicMaxPhysicalProcs);
503 }
504
505 static void iSeries_show_cpuinfo(struct seq_file *m)
506 {
507         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
508 }
509
510 static void __init iSeries_progress(char * st, unsigned short code)
511 {
512         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
513         mf_display_progress(code);
514 }
515
516 static void __init iSeries_fixup_klimit(void)
517 {
518         /*
519          * Change klimit to take into account any ram disk
520          * that may be included
521          */
522         if (naca.xRamDisk)
523                 klimit = KERNELBASE + (u64)naca.xRamDisk +
524                         (naca.xRamDiskSize * HW_PAGE_SIZE);
525 }
526
527 static int __init iSeries_src_init(void)
528 {
529         /* clear the progress line */
530         ppc_md.progress(" ", 0xffff);
531         return 0;
532 }
533
534 late_initcall(iSeries_src_init);
535
536 static inline void process_iSeries_events(void)
537 {
538         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
539 }
540
541 static void yield_shared_processor(void)
542 {
543         unsigned long tb;
544
545         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
546                                     HvCall_MaskLpEvent |
547                                     HvCall_MaskLpProd |
548                                     HvCall_MaskTimeout);
549
550         tb = get_tb();
551         /* Compute future tb value when yield should expire */
552         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
553
554         /*
555          * The decrementer stops during the yield.  Force a fake decrementer
556          * here and let the timer_interrupt code sort out the actual time.
557          */
558         get_lppaca()->int_dword.fields.decr_int = 1;
559         ppc64_runlatch_on();
560         process_iSeries_events();
561 }
562
563 static void iseries_shared_idle(void)
564 {
565         while (1) {
566                 while (!need_resched() && !hvlpevent_is_pending()) {
567                         local_irq_disable();
568                         ppc64_runlatch_off();
569
570                         /* Recheck with irqs off */
571                         if (!need_resched() && !hvlpevent_is_pending())
572                                 yield_shared_processor();
573
574                         HMT_medium();
575                         local_irq_enable();
576                 }
577
578                 ppc64_runlatch_on();
579
580                 if (hvlpevent_is_pending())
581                         process_iSeries_events();
582
583                 preempt_enable_no_resched();
584                 schedule();
585                 preempt_disable();
586         }
587 }
588
589 static void iseries_dedicated_idle(void)
590 {
591         set_thread_flag(TIF_POLLING_NRFLAG);
592
593         while (1) {
594                 if (!need_resched()) {
595                         while (!need_resched()) {
596                                 ppc64_runlatch_off();
597                                 HMT_low();
598
599                                 if (hvlpevent_is_pending()) {
600                                         HMT_medium();
601                                         ppc64_runlatch_on();
602                                         process_iSeries_events();
603                                 }
604                         }
605
606                         HMT_medium();
607                 }
608
609                 ppc64_runlatch_on();
610                 preempt_enable_no_resched();
611                 schedule();
612                 preempt_disable();
613         }
614 }
615
616 #ifndef CONFIG_PCI
617 void __init iSeries_init_IRQ(void) { }
618 #endif
619
620 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
621                                      unsigned long flags)
622 {
623         return (void __iomem *)address;
624 }
625
626 static void iseries_iounmap(volatile void __iomem *token)
627 {
628 }
629
630 /*
631  * iSeries has no legacy IO, anything calling this function has to
632  * fail or bad things will happen
633  */
634 static int iseries_check_legacy_ioport(unsigned int baseport)
635 {
636         return -ENODEV;
637 }
638
639 static int __init iseries_probe(void)
640 {
641         unsigned long root = of_get_flat_dt_root();
642         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
643                 return 0;
644
645         hpte_init_iSeries();
646         /* iSeries does not support 16M pages */
647         cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
648
649         return 1;
650 }
651
652 define_machine(iseries) {
653         .name           = "iSeries",
654         .setup_arch     = iSeries_setup_arch,
655         .show_cpuinfo   = iSeries_show_cpuinfo,
656         .init_IRQ       = iSeries_init_IRQ,
657         .get_irq        = iSeries_get_irq,
658         .init_early     = iSeries_init_early,
659         .pcibios_fixup  = iSeries_pci_final_fixup,
660         .restart        = mf_reboot,
661         .power_off      = mf_power_off,
662         .halt           = mf_power_off,
663         .get_boot_time  = iSeries_get_boot_time,
664         .set_rtc_time   = iSeries_set_rtc_time,
665         .get_rtc_time   = iSeries_get_rtc_time,
666         .calibrate_decr = generic_calibrate_decr,
667         .progress       = iSeries_progress,
668         .probe          = iseries_probe,
669         .check_legacy_ioport    = iseries_check_legacy_ioport,
670         .ioremap        = iseries_ioremap,
671         .iounmap        = iseries_iounmap,
672         /* XXX Implement enable_pmcs for iSeries */
673 };
674
675 void * __init iSeries_early_setup(void)
676 {
677         unsigned long phys_mem_size;
678
679         /* Identify CPU type. This is done again by the common code later
680          * on but calling this function multiple times is fine.
681          */
682         identify_cpu(0, mfspr(SPRN_PVR));
683
684         powerpc_firmware_features |= FW_FEATURE_ISERIES;
685         powerpc_firmware_features |= FW_FEATURE_LPAR;
686
687         iSeries_fixup_klimit();
688
689         /*
690          * Initialize the table which translate Linux physical addresses to
691          * AS/400 absolute addresses
692          */
693         phys_mem_size = build_iSeries_Memory_Map();
694
695         iSeries_get_cmdline();
696
697         return (void *) __pa(build_flat_dt(phys_mem_size));
698 }
699
700 static void hvputc(char c)
701 {
702         if (c == '\n')
703                 hvputc('\r');
704
705         HvCall_writeLogBuffer(&c, 1);
706 }
707
708 void __init udbg_init_iseries(void)
709 {
710         udbg_putc = hvputc;
711 }