Merge in v2.6.14 by hand
[linux-2.6] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/systemcfg.h>
53 #endif
54
55 #ifdef DEBUG
56 #define DBG(fmt...) printk(KERN_ERR fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60
61 struct pci_reg_property {
62         struct pci_address addr;
63         u32 size_hi;
64         u32 size_lo;
65 };
66
67 struct isa_reg_property {
68         u32 space;
69         u32 address;
70         u32 size;
71 };
72
73
74 typedef int interpret_func(struct device_node *, unsigned long *,
75                            int, int, int);
76
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
80
81 static unsigned long memory_limit;
82
83 static int __initdata dt_root_addr_cells;
84 static int __initdata dt_root_size_cells;
85
86 #ifdef CONFIG_PPC64
87 static int __initdata iommu_is_off;
88 int __initdata iommu_force_on;
89 extern unsigned long tce_alloc_start, tce_alloc_end;
90 #endif
91
92 typedef u32 cell_t;
93
94 #if 0
95 static struct boot_param_header *initial_boot_params __initdata;
96 #else
97 struct boot_param_header *initial_boot_params;
98 #endif
99
100 static struct device_node *allnodes = NULL;
101
102 /* use when traversing tree through the allnext, child, sibling,
103  * or parent members of struct device_node.
104  */
105 static DEFINE_RWLOCK(devtree_lock);
106
107 /* export that to outside world */
108 struct device_node *of_chosen;
109
110 struct device_node *dflt_interrupt_controller;
111 int num_interrupt_controllers;
112
113 /*
114  * Wrapper for allocating memory for various data that needs to be
115  * attached to device nodes as they are processed at boot or when
116  * added to the device tree later (e.g. DLPAR).  At boot there is
117  * already a region reserved so we just increment *mem_start by size;
118  * otherwise we call kmalloc.
119  */
120 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
121 {
122         unsigned long tmp;
123
124         if (!mem_start)
125                 return kmalloc(size, GFP_KERNEL);
126
127         tmp = *mem_start;
128         *mem_start += size;
129         return (void *)tmp;
130 }
131
132 /*
133  * Find the device_node with a given phandle.
134  */
135 static struct device_node * find_phandle(phandle ph)
136 {
137         struct device_node *np;
138
139         for (np = allnodes; np != 0; np = np->allnext)
140                 if (np->linux_phandle == ph)
141                         return np;
142         return NULL;
143 }
144
145 /*
146  * Find the interrupt parent of a node.
147  */
148 static struct device_node * __devinit intr_parent(struct device_node *p)
149 {
150         phandle *parp;
151
152         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
153         if (parp == NULL)
154                 return p->parent;
155         p = find_phandle(*parp);
156         if (p != NULL)
157                 return p;
158         /*
159          * On a powermac booted with BootX, we don't get to know the
160          * phandles for any nodes, so find_phandle will return NULL.
161          * Fortunately these machines only have one interrupt controller
162          * so there isn't in fact any ambiguity.  -- paulus
163          */
164         if (num_interrupt_controllers == 1)
165                 p = dflt_interrupt_controller;
166         return p;
167 }
168
169 /*
170  * Find out the size of each entry of the interrupts property
171  * for a node.
172  */
173 int __devinit prom_n_intr_cells(struct device_node *np)
174 {
175         struct device_node *p;
176         unsigned int *icp;
177
178         for (p = np; (p = intr_parent(p)) != NULL; ) {
179                 icp = (unsigned int *)
180                         get_property(p, "#interrupt-cells", NULL);
181                 if (icp != NULL)
182                         return *icp;
183                 if (get_property(p, "interrupt-controller", NULL) != NULL
184                     || get_property(p, "interrupt-map", NULL) != NULL) {
185                         printk("oops, node %s doesn't have #interrupt-cells\n",
186                                p->full_name);
187                         return 1;
188                 }
189         }
190 #ifdef DEBUG_IRQ
191         printk("prom_n_intr_cells failed for %s\n", np->full_name);
192 #endif
193         return 1;
194 }
195
196 /*
197  * Map an interrupt from a device up to the platform interrupt
198  * descriptor.
199  */
200 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
201                                    struct device_node *np, unsigned int *ints,
202                                    int nintrc)
203 {
204         struct device_node *p, *ipar;
205         unsigned int *imap, *imask, *ip;
206         int i, imaplen, match;
207         int newintrc = 0, newaddrc = 0;
208         unsigned int *reg;
209         int naddrc;
210
211         reg = (unsigned int *) get_property(np, "reg", NULL);
212         naddrc = prom_n_addr_cells(np);
213         p = intr_parent(np);
214         while (p != NULL) {
215                 if (get_property(p, "interrupt-controller", NULL) != NULL)
216                         /* this node is an interrupt controller, stop here */
217                         break;
218                 imap = (unsigned int *)
219                         get_property(p, "interrupt-map", &imaplen);
220                 if (imap == NULL) {
221                         p = intr_parent(p);
222                         continue;
223                 }
224                 imask = (unsigned int *)
225                         get_property(p, "interrupt-map-mask", NULL);
226                 if (imask == NULL) {
227                         printk("oops, %s has interrupt-map but no mask\n",
228                                p->full_name);
229                         return 0;
230                 }
231                 imaplen /= sizeof(unsigned int);
232                 match = 0;
233                 ipar = NULL;
234                 while (imaplen > 0 && !match) {
235                         /* check the child-interrupt field */
236                         match = 1;
237                         for (i = 0; i < naddrc && match; ++i)
238                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
239                         for (; i < naddrc + nintrc && match; ++i)
240                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
241                         imap += naddrc + nintrc;
242                         imaplen -= naddrc + nintrc;
243                         /* grab the interrupt parent */
244                         ipar = find_phandle((phandle) *imap++);
245                         --imaplen;
246                         if (ipar == NULL && num_interrupt_controllers == 1)
247                                 /* cope with BootX not giving us phandles */
248                                 ipar = dflt_interrupt_controller;
249                         if (ipar == NULL) {
250                                 printk("oops, no int parent %x in map of %s\n",
251                                        imap[-1], p->full_name);
252                                 return 0;
253                         }
254                         /* find the parent's # addr and intr cells */
255                         ip = (unsigned int *)
256                                 get_property(ipar, "#interrupt-cells", NULL);
257                         if (ip == NULL) {
258                                 printk("oops, no #interrupt-cells on %s\n",
259                                        ipar->full_name);
260                                 return 0;
261                         }
262                         newintrc = *ip;
263                         ip = (unsigned int *)
264                                 get_property(ipar, "#address-cells", NULL);
265                         newaddrc = (ip == NULL)? 0: *ip;
266                         imap += newaddrc + newintrc;
267                         imaplen -= newaddrc + newintrc;
268                 }
269                 if (imaplen < 0) {
270                         printk("oops, error decoding int-map on %s, len=%d\n",
271                                p->full_name, imaplen);
272                         return 0;
273                 }
274                 if (!match) {
275 #ifdef DEBUG_IRQ
276                         printk("oops, no match in %s int-map for %s\n",
277                                p->full_name, np->full_name);
278 #endif
279                         return 0;
280                 }
281                 p = ipar;
282                 naddrc = newaddrc;
283                 nintrc = newintrc;
284                 ints = imap - nintrc;
285                 reg = ints - naddrc;
286         }
287         if (p == NULL) {
288 #ifdef DEBUG_IRQ
289                 printk("hmmm, int tree for %s doesn't have ctrler\n",
290                        np->full_name);
291 #endif
292                 return 0;
293         }
294         *irq = ints;
295         *ictrler = p;
296         return nintrc;
297 }
298
299 static unsigned char map_isa_senses[4] = {
300         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
301         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
302         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
303         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
304 };
305
306 static unsigned char map_mpic_senses[4] = {
307         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
308         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
309         /* 2 seems to be used for the 8259 cascade... */
310         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
311         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
312 };
313
314 static int __devinit finish_node_interrupts(struct device_node *np,
315                                             unsigned long *mem_start,
316                                             int measure_only)
317 {
318         unsigned int *ints;
319         int intlen, intrcells, intrcount;
320         int i, j, n, sense;
321         unsigned int *irq, virq;
322         struct device_node *ic;
323
324         if (num_interrupt_controllers == 0) {
325                 /*
326                  * Old machines just have a list of interrupt numbers
327                  * and no interrupt-controller nodes.
328                  */
329                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
330                                                      &intlen);
331                 /* XXX old interpret_pci_props looked in parent too */
332                 /* XXX old interpret_macio_props looked for interrupts
333                    before AAPL,interrupts */
334                 if (ints == NULL)
335                         ints = (unsigned int *) get_property(np, "interrupts",
336                                                              &intlen);
337                 if (ints == NULL)
338                         return 0;
339
340                 np->n_intrs = intlen / sizeof(unsigned int);
341                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
342                                        mem_start);
343                 if (!np->intrs)
344                         return -ENOMEM;
345                 if (measure_only)
346                         return 0;
347
348                 for (i = 0; i < np->n_intrs; ++i) {
349                         np->intrs[i].line = *ints++;
350                         np->intrs[i].sense = IRQ_SENSE_LEVEL
351                                 | IRQ_POLARITY_NEGATIVE;
352                 }
353                 return 0;
354         }
355
356         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
357         if (ints == NULL)
358                 return 0;
359         intrcells = prom_n_intr_cells(np);
360         intlen /= intrcells * sizeof(unsigned int);
361
362         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
363         if (!np->intrs)
364                 return -ENOMEM;
365
366         if (measure_only)
367                 return 0;
368
369         intrcount = 0;
370         for (i = 0; i < intlen; ++i, ints += intrcells) {
371                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
372                 if (n <= 0)
373                         continue;
374
375                 /* don't map IRQ numbers under a cascaded 8259 controller */
376                 if (ic && device_is_compatible(ic, "chrp,iic")) {
377                         np->intrs[intrcount].line = irq[0];
378                         sense = (n > 1)? (irq[1] & 3): 3;
379                         np->intrs[intrcount].sense = map_isa_senses[sense];
380                 } else {
381                         virq = virt_irq_create_mapping(irq[0]);
382 #ifdef CONFIG_PPC64
383                         if (virq == NO_IRQ) {
384                                 printk(KERN_CRIT "Could not allocate interrupt"
385                                        " number for %s\n", np->full_name);
386                                 continue;
387                         }
388 #endif
389                         np->intrs[intrcount].line = irq_offset_up(virq);
390                         sense = (n > 1)? (irq[1] & 3): 1;
391                         np->intrs[intrcount].sense = map_mpic_senses[sense];
392                 }
393
394 #ifdef CONFIG_PPC64
395                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
396                 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
397                         char *name = get_property(ic->parent, "name", NULL);
398                         if (name && !strcmp(name, "u3"))
399                                 np->intrs[intrcount].line += 128;
400                         else if (!(name && !strcmp(name, "mac-io")))
401                                 /* ignore other cascaded controllers, such as
402                                    the k2-sata-root */
403                                 break;
404                 }
405 #endif
406                 if (n > 2) {
407                         printk("hmmm, got %d intr cells for %s:", n,
408                                np->full_name);
409                         for (j = 0; j < n; ++j)
410                                 printk(" %d", irq[j]);
411                         printk("\n");
412                 }
413                 ++intrcount;
414         }
415         np->n_intrs = intrcount;
416
417         return 0;
418 }
419
420 static int __devinit interpret_pci_props(struct device_node *np,
421                                          unsigned long *mem_start,
422                                          int naddrc, int nsizec,
423                                          int measure_only)
424 {
425         struct address_range *adr;
426         struct pci_reg_property *pci_addrs;
427         int i, l, n_addrs;
428
429         pci_addrs = (struct pci_reg_property *)
430                 get_property(np, "assigned-addresses", &l);
431         if (!pci_addrs)
432                 return 0;
433
434         n_addrs = l / sizeof(*pci_addrs);
435
436         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
437         if (!adr)
438                 return -ENOMEM;
439
440         if (measure_only)
441                 return 0;
442
443         np->addrs = adr;
444         np->n_addrs = n_addrs;
445
446         for (i = 0; i < n_addrs; i++) {
447                 adr[i].space = pci_addrs[i].addr.a_hi;
448                 adr[i].address = pci_addrs[i].addr.a_lo |
449                         ((u64)pci_addrs[i].addr.a_mid << 32);
450                 adr[i].size = pci_addrs[i].size_lo;
451         }
452
453         return 0;
454 }
455
456 static int __init interpret_dbdma_props(struct device_node *np,
457                                         unsigned long *mem_start,
458                                         int naddrc, int nsizec,
459                                         int measure_only)
460 {
461         struct reg_property32 *rp;
462         struct address_range *adr;
463         unsigned long base_address;
464         int i, l;
465         struct device_node *db;
466
467         base_address = 0;
468         if (!measure_only) {
469                 for (db = np->parent; db != NULL; db = db->parent) {
470                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
471                                 base_address = db->addrs[0].address;
472                                 break;
473                         }
474                 }
475         }
476
477         rp = (struct reg_property32 *) get_property(np, "reg", &l);
478         if (rp != 0 && l >= sizeof(struct reg_property32)) {
479                 i = 0;
480                 adr = (struct address_range *) (*mem_start);
481                 while ((l -= sizeof(struct reg_property32)) >= 0) {
482                         if (!measure_only) {
483                                 adr[i].space = 2;
484                                 adr[i].address = rp[i].address + base_address;
485                                 adr[i].size = rp[i].size;
486                         }
487                         ++i;
488                 }
489                 np->addrs = adr;
490                 np->n_addrs = i;
491                 (*mem_start) += i * sizeof(struct address_range);
492         }
493
494         return 0;
495 }
496
497 static int __init interpret_macio_props(struct device_node *np,
498                                         unsigned long *mem_start,
499                                         int naddrc, int nsizec,
500                                         int measure_only)
501 {
502         struct reg_property32 *rp;
503         struct address_range *adr;
504         unsigned long base_address;
505         int i, l;
506         struct device_node *db;
507
508         base_address = 0;
509         if (!measure_only) {
510                 for (db = np->parent; db != NULL; db = db->parent) {
511                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
512                                 base_address = db->addrs[0].address;
513                                 break;
514                         }
515                 }
516         }
517
518         rp = (struct reg_property32 *) get_property(np, "reg", &l);
519         if (rp != 0 && l >= sizeof(struct reg_property32)) {
520                 i = 0;
521                 adr = (struct address_range *) (*mem_start);
522                 while ((l -= sizeof(struct reg_property32)) >= 0) {
523                         if (!measure_only) {
524                                 adr[i].space = 2;
525                                 adr[i].address = rp[i].address + base_address;
526                                 adr[i].size = rp[i].size;
527                         }
528                         ++i;
529                 }
530                 np->addrs = adr;
531                 np->n_addrs = i;
532                 (*mem_start) += i * sizeof(struct address_range);
533         }
534
535         return 0;
536 }
537
538 static int __init interpret_isa_props(struct device_node *np,
539                                       unsigned long *mem_start,
540                                       int naddrc, int nsizec,
541                                       int measure_only)
542 {
543         struct isa_reg_property *rp;
544         struct address_range *adr;
545         int i, l;
546
547         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
548         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
549                 i = 0;
550                 adr = (struct address_range *) (*mem_start);
551                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
552                         if (!measure_only) {
553                                 adr[i].space = rp[i].space;
554                                 adr[i].address = rp[i].address;
555                                 adr[i].size = rp[i].size;
556                         }
557                         ++i;
558                 }
559                 np->addrs = adr;
560                 np->n_addrs = i;
561                 (*mem_start) += i * sizeof(struct address_range);
562         }
563
564         return 0;
565 }
566
567 static int __init interpret_root_props(struct device_node *np,
568                                        unsigned long *mem_start,
569                                        int naddrc, int nsizec,
570                                        int measure_only)
571 {
572         struct address_range *adr;
573         int i, l;
574         unsigned int *rp;
575         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
576
577         rp = (unsigned int *) get_property(np, "reg", &l);
578         if (rp != 0 && l >= rpsize) {
579                 i = 0;
580                 adr = (struct address_range *) (*mem_start);
581                 while ((l -= rpsize) >= 0) {
582                         if (!measure_only) {
583                                 adr[i].space = 0;
584                                 adr[i].address = rp[naddrc - 1];
585                                 adr[i].size = rp[naddrc + nsizec - 1];
586                         }
587                         ++i;
588                         rp += naddrc + nsizec;
589                 }
590                 np->addrs = adr;
591                 np->n_addrs = i;
592                 (*mem_start) += i * sizeof(struct address_range);
593         }
594
595         return 0;
596 }
597
598 static int __devinit finish_node(struct device_node *np,
599                                  unsigned long *mem_start,
600                                  interpret_func *ifunc,
601                                  int naddrc, int nsizec,
602                                  int measure_only)
603 {
604         struct device_node *child;
605         int *ip, rc = 0;
606
607         /* get the device addresses and interrupts */
608         if (ifunc != NULL)
609                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
610         if (rc)
611                 goto out;
612
613         rc = finish_node_interrupts(np, mem_start, measure_only);
614         if (rc)
615                 goto out;
616
617         /* Look for #address-cells and #size-cells properties. */
618         ip = (int *) get_property(np, "#address-cells", NULL);
619         if (ip != NULL)
620                 naddrc = *ip;
621         ip = (int *) get_property(np, "#size-cells", NULL);
622         if (ip != NULL)
623                 nsizec = *ip;
624
625         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
626                 ifunc = interpret_root_props;
627         else if (np->type == 0)
628                 ifunc = NULL;
629         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
630                 ifunc = interpret_pci_props;
631         else if (!strcmp(np->type, "dbdma"))
632                 ifunc = interpret_dbdma_props;
633         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
634                 ifunc = interpret_macio_props;
635         else if (!strcmp(np->type, "isa"))
636                 ifunc = interpret_isa_props;
637         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
638                 ifunc = interpret_root_props;
639         else if (!((ifunc == interpret_dbdma_props
640                     || ifunc == interpret_macio_props)
641                    && (!strcmp(np->type, "escc")
642                        || !strcmp(np->type, "media-bay"))))
643                 ifunc = NULL;
644
645         for (child = np->child; child != NULL; child = child->sibling) {
646                 rc = finish_node(child, mem_start, ifunc,
647                                  naddrc, nsizec, measure_only);
648                 if (rc)
649                         goto out;
650         }
651 out:
652         return rc;
653 }
654
655 static void __init scan_interrupt_controllers(void)
656 {
657         struct device_node *np;
658         int n = 0;
659         char *name, *ic;
660         int iclen;
661
662         for (np = allnodes; np != NULL; np = np->allnext) {
663                 ic = get_property(np, "interrupt-controller", &iclen);
664                 name = get_property(np, "name", NULL);
665                 /* checking iclen makes sure we don't get a false
666                    match on /chosen.interrupt_controller */
667                 if ((name != NULL
668                      && strcmp(name, "interrupt-controller") == 0)
669                     || (ic != NULL && iclen == 0
670                         && strcmp(name, "AppleKiwi"))) {
671                         if (n == 0)
672                                 dflt_interrupt_controller = np;
673                         ++n;
674                 }
675         }
676         num_interrupt_controllers = n;
677 }
678
679 /**
680  * finish_device_tree is called once things are running normally
681  * (i.e. with text and data mapped to the address they were linked at).
682  * It traverses the device tree and fills in some of the additional,
683  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
684  * mapping is also initialized at this point.
685  */
686 void __init finish_device_tree(void)
687 {
688         unsigned long start, end, size = 0;
689
690         DBG(" -> finish_device_tree\n");
691
692 #ifdef CONFIG_PPC64
693         /* Initialize virtual IRQ map */
694         virt_irq_init();
695 #endif
696         scan_interrupt_controllers();
697
698         /*
699          * Finish device-tree (pre-parsing some properties etc...)
700          * We do this in 2 passes. One with "measure_only" set, which
701          * will only measure the amount of memory needed, then we can
702          * allocate that memory, and call finish_node again. However,
703          * we must be careful as most routines will fail nowadays when
704          * prom_alloc() returns 0, so we must make sure our first pass
705          * doesn't start at 0. We pre-initialize size to 16 for that
706          * reason and then remove those additional 16 bytes
707          */
708         size = 16;
709         finish_node(allnodes, &size, NULL, 0, 0, 1);
710         size -= 16;
711         end = start = (unsigned long) __va(lmb_alloc(size, 128));
712         finish_node(allnodes, &end, NULL, 0, 0, 0);
713         BUG_ON(end != start + size);
714
715         DBG(" <- finish_device_tree\n");
716 }
717
718 static inline char *find_flat_dt_string(u32 offset)
719 {
720         return ((char *)initial_boot_params) +
721                 initial_boot_params->off_dt_strings + offset;
722 }
723
724 /**
725  * This function is used to scan the flattened device-tree, it is
726  * used to extract the memory informations at boot before we can
727  * unflatten the tree
728  */
729 static int __init scan_flat_dt(int (*it)(unsigned long node,
730                                          const char *uname, int depth,
731                                          void *data),
732                                void *data)
733 {
734         unsigned long p = ((unsigned long)initial_boot_params) +
735                 initial_boot_params->off_dt_struct;
736         int rc = 0;
737         int depth = -1;
738
739         do {
740                 u32 tag = *((u32 *)p);
741                 char *pathp;
742                 
743                 p += 4;
744                 if (tag == OF_DT_END_NODE) {
745                         depth --;
746                         continue;
747                 }
748                 if (tag == OF_DT_NOP)
749                         continue;
750                 if (tag == OF_DT_END)
751                         break;
752                 if (tag == OF_DT_PROP) {
753                         u32 sz = *((u32 *)p);
754                         p += 8;
755                         if (initial_boot_params->version < 0x10)
756                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
757                         p += sz;
758                         p = _ALIGN(p, 4);
759                         continue;
760                 }
761                 if (tag != OF_DT_BEGIN_NODE) {
762                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
763                                " device tree !\n", tag);
764                         return -EINVAL;
765                 }
766                 depth++;
767                 pathp = (char *)p;
768                 p = _ALIGN(p + strlen(pathp) + 1, 4);
769                 if ((*pathp) == '/') {
770                         char *lp, *np;
771                         for (lp = NULL, np = pathp; *np; np++)
772                                 if ((*np) == '/')
773                                         lp = np+1;
774                         if (lp != NULL)
775                                 pathp = lp;
776                 }
777                 rc = it(p, pathp, depth, data);
778                 if (rc != 0)
779                         break;          
780         } while(1);
781
782         return rc;
783 }
784
785 /**
786  * This  function can be used within scan_flattened_dt callback to get
787  * access to properties
788  */
789 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
790                                      unsigned long *size)
791 {
792         unsigned long p = node;
793
794         do {
795                 u32 tag = *((u32 *)p);
796                 u32 sz, noff;
797                 const char *nstr;
798
799                 p += 4;
800                 if (tag == OF_DT_NOP)
801                         continue;
802                 if (tag != OF_DT_PROP)
803                         return NULL;
804
805                 sz = *((u32 *)p);
806                 noff = *((u32 *)(p + 4));
807                 p += 8;
808                 if (initial_boot_params->version < 0x10)
809                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
810
811                 nstr = find_flat_dt_string(noff);
812                 if (nstr == NULL) {
813                         printk(KERN_WARNING "Can't find property index"
814                                " name !\n");
815                         return NULL;
816                 }
817                 if (strcmp(name, nstr) == 0) {
818                         if (size)
819                                 *size = sz;
820                         return (void *)p;
821                 }
822                 p += sz;
823                 p = _ALIGN(p, 4);
824         } while(1);
825 }
826
827 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
828                                        unsigned long align)
829 {
830         void *res;
831
832         *mem = _ALIGN(*mem, align);
833         res = (void *)*mem;
834         *mem += size;
835
836         return res;
837 }
838
839 static unsigned long __init unflatten_dt_node(unsigned long mem,
840                                               unsigned long *p,
841                                               struct device_node *dad,
842                                               struct device_node ***allnextpp,
843                                               unsigned long fpsize)
844 {
845         struct device_node *np;
846         struct property *pp, **prev_pp = NULL;
847         char *pathp;
848         u32 tag;
849         unsigned int l, allocl;
850         int has_name = 0;
851         int new_format = 0;
852
853         tag = *((u32 *)(*p));
854         if (tag != OF_DT_BEGIN_NODE) {
855                 printk("Weird tag at start of node: %x\n", tag);
856                 return mem;
857         }
858         *p += 4;
859         pathp = (char *)*p;
860         l = allocl = strlen(pathp) + 1;
861         *p = _ALIGN(*p + l, 4);
862
863         /* version 0x10 has a more compact unit name here instead of the full
864          * path. we accumulate the full path size using "fpsize", we'll rebuild
865          * it later. We detect this because the first character of the name is
866          * not '/'.
867          */
868         if ((*pathp) != '/') {
869                 new_format = 1;
870                 if (fpsize == 0) {
871                         /* root node: special case. fpsize accounts for path
872                          * plus terminating zero. root node only has '/', so
873                          * fpsize should be 2, but we want to avoid the first
874                          * level nodes to have two '/' so we use fpsize 1 here
875                          */
876                         fpsize = 1;
877                         allocl = 2;
878                 } else {
879                         /* account for '/' and path size minus terminal 0
880                          * already in 'l'
881                          */
882                         fpsize += l;
883                         allocl = fpsize;
884                 }
885         }
886
887
888         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
889                                 __alignof__(struct device_node));
890         if (allnextpp) {
891                 memset(np, 0, sizeof(*np));
892                 np->full_name = ((char*)np) + sizeof(struct device_node);
893                 if (new_format) {
894                         char *p = np->full_name;
895                         /* rebuild full path for new format */
896                         if (dad && dad->parent) {
897                                 strcpy(p, dad->full_name);
898 #ifdef DEBUG
899                                 if ((strlen(p) + l + 1) != allocl) {
900                                         DBG("%s: p: %d, l: %d, a: %d\n",
901                                             pathp, strlen(p), l, allocl);
902                                 }
903 #endif
904                                 p += strlen(p);
905                         }
906                         *(p++) = '/';
907                         memcpy(p, pathp, l);
908                 } else
909                         memcpy(np->full_name, pathp, l);
910                 prev_pp = &np->properties;
911                 **allnextpp = np;
912                 *allnextpp = &np->allnext;
913                 if (dad != NULL) {
914                         np->parent = dad;
915                         /* we temporarily use the next field as `last_child'*/
916                         if (dad->next == 0)
917                                 dad->child = np;
918                         else
919                                 dad->next->sibling = np;
920                         dad->next = np;
921                 }
922                 kref_init(&np->kref);
923         }
924         while(1) {
925                 u32 sz, noff;
926                 char *pname;
927
928                 tag = *((u32 *)(*p));
929                 if (tag == OF_DT_NOP) {
930                         *p += 4;
931                         continue;
932                 }
933                 if (tag != OF_DT_PROP)
934                         break;
935                 *p += 4;
936                 sz = *((u32 *)(*p));
937                 noff = *((u32 *)((*p) + 4));
938                 *p += 8;
939                 if (initial_boot_params->version < 0x10)
940                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
941
942                 pname = find_flat_dt_string(noff);
943                 if (pname == NULL) {
944                         printk("Can't find property name in list !\n");
945                         break;
946                 }
947                 if (strcmp(pname, "name") == 0)
948                         has_name = 1;
949                 l = strlen(pname) + 1;
950                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
951                                         __alignof__(struct property));
952                 if (allnextpp) {
953                         if (strcmp(pname, "linux,phandle") == 0) {
954                                 np->node = *((u32 *)*p);
955                                 if (np->linux_phandle == 0)
956                                         np->linux_phandle = np->node;
957                         }
958                         if (strcmp(pname, "ibm,phandle") == 0)
959                                 np->linux_phandle = *((u32 *)*p);
960                         pp->name = pname;
961                         pp->length = sz;
962                         pp->value = (void *)*p;
963                         *prev_pp = pp;
964                         prev_pp = &pp->next;
965                 }
966                 *p = _ALIGN((*p) + sz, 4);
967         }
968         /* with version 0x10 we may not have the name property, recreate
969          * it here from the unit name if absent
970          */
971         if (!has_name) {
972                 char *p = pathp, *ps = pathp, *pa = NULL;
973                 int sz;
974
975                 while (*p) {
976                         if ((*p) == '@')
977                                 pa = p;
978                         if ((*p) == '/')
979                                 ps = p + 1;
980                         p++;
981                 }
982                 if (pa < ps)
983                         pa = p;
984                 sz = (pa - ps) + 1;
985                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
986                                         __alignof__(struct property));
987                 if (allnextpp) {
988                         pp->name = "name";
989                         pp->length = sz;
990                         pp->value = (unsigned char *)(pp + 1);
991                         *prev_pp = pp;
992                         prev_pp = &pp->next;
993                         memcpy(pp->value, ps, sz - 1);
994                         ((char *)pp->value)[sz - 1] = 0;
995                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
996                 }
997         }
998         if (allnextpp) {
999                 *prev_pp = NULL;
1000                 np->name = get_property(np, "name", NULL);
1001                 np->type = get_property(np, "device_type", NULL);
1002
1003                 if (!np->name)
1004                         np->name = "<NULL>";
1005                 if (!np->type)
1006                         np->type = "<NULL>";
1007         }
1008         while (tag == OF_DT_BEGIN_NODE) {
1009                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1010                 tag = *((u32 *)(*p));
1011         }
1012         if (tag != OF_DT_END_NODE) {
1013                 printk("Weird tag at end of node: %x\n", tag);
1014                 return mem;
1015         }
1016         *p += 4;
1017         return mem;
1018 }
1019
1020
1021 /**
1022  * unflattens the device-tree passed by the firmware, creating the
1023  * tree of struct device_node. It also fills the "name" and "type"
1024  * pointers of the nodes so the normal device-tree walking functions
1025  * can be used (this used to be done by finish_device_tree)
1026  */
1027 void __init unflatten_device_tree(void)
1028 {
1029         unsigned long start, mem, size;
1030         struct device_node **allnextp = &allnodes;
1031         char *p = NULL;
1032         int l = 0;
1033
1034         DBG(" -> unflatten_device_tree()\n");
1035
1036         /* First pass, scan for size */
1037         start = ((unsigned long)initial_boot_params) +
1038                 initial_boot_params->off_dt_struct;
1039         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1040         size = (size | 3) + 1;
1041
1042         DBG("  size is %lx, allocating...\n", size);
1043
1044         /* Allocate memory for the expanded device tree */
1045         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1046         if (!mem) {
1047                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1048                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1049         }
1050         mem = (unsigned long) __va(mem);
1051
1052         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1053
1054         DBG("  unflattening %lx...\n", mem);
1055
1056         /* Second pass, do actual unflattening */
1057         start = ((unsigned long)initial_boot_params) +
1058                 initial_boot_params->off_dt_struct;
1059         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1060         if (*((u32 *)start) != OF_DT_END)
1061                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1062         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1063                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1064                        ((u32 *)mem)[size / 4] );
1065         *allnextp = NULL;
1066
1067         /* Get pointer to OF "/chosen" node for use everywhere */
1068         of_chosen = of_find_node_by_path("/chosen");
1069         if (of_chosen == NULL)
1070                 of_chosen = of_find_node_by_path("/chosen@0");
1071
1072         /* Retreive command line */
1073         if (of_chosen != NULL) {
1074                 p = (char *)get_property(of_chosen, "bootargs", &l);
1075                 if (p != NULL && l > 0)
1076                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1077         }
1078 #ifdef CONFIG_CMDLINE
1079         if (l == 0 || (l == 1 && (*p) == 0))
1080                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1081 #endif /* CONFIG_CMDLINE */
1082
1083         DBG("Command line is: %s\n", cmd_line);
1084
1085         DBG(" <- unflatten_device_tree()\n");
1086 }
1087
1088
1089 static int __init early_init_dt_scan_cpus(unsigned long node,
1090                                           const char *uname, int depth, void *data)
1091 {
1092         char *type = get_flat_dt_prop(node, "device_type", NULL);
1093         u32 *prop;
1094         unsigned long size = 0;
1095
1096         /* We are scanning "cpu" nodes only */
1097         if (type == NULL || strcmp(type, "cpu") != 0)
1098                 return 0;
1099
1100 #ifdef CONFIG_PPC_PSERIES
1101         /* On LPAR, look for the first ibm,pft-size property for the  hash table size
1102          */
1103         if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1104                 u32 *pft_size;
1105                 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1106                 if (pft_size != NULL) {
1107                         /* pft_size[0] is the NUMA CEC cookie */
1108                         ppc64_pft_size = pft_size[1];
1109                 }
1110         }
1111 #endif
1112
1113         boot_cpuid = 0;
1114         boot_cpuid_phys = 0;
1115         if (initial_boot_params && initial_boot_params->version >= 2) {
1116                 /* version 2 of the kexec param format adds the phys cpuid
1117                  * of booted proc.
1118                  */
1119                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1120         } else {
1121                 /* Check if it's the boot-cpu, set it's hw index now */
1122                 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1123                         prop = get_flat_dt_prop(node, "reg", NULL);
1124                         if (prop != NULL)
1125                                 boot_cpuid_phys = *prop;
1126                 }
1127         }
1128         set_hard_smp_processor_id(0, boot_cpuid_phys);
1129
1130 #ifdef CONFIG_ALTIVEC
1131         /* Check if we have a VMX and eventually update CPU features */
1132         prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1133         if (prop && (*prop) > 0) {
1134                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1135                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1136         }
1137
1138         /* Same goes for Apple's "altivec" property */
1139         prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1140         if (prop) {
1141                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1142                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1143         }
1144 #endif /* CONFIG_ALTIVEC */
1145
1146 #ifdef CONFIG_PPC_PSERIES
1147         /*
1148          * Check for an SMT capable CPU and set the CPU feature. We do
1149          * this by looking at the size of the ibm,ppc-interrupt-server#s
1150          * property
1151          */
1152         prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1153                                        &size);
1154         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1155         if (prop && ((size / sizeof(u32)) > 1))
1156                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1157 #endif
1158
1159         return 0;
1160 }
1161
1162 static int __init early_init_dt_scan_chosen(unsigned long node,
1163                                             const char *uname, int depth, void *data)
1164 {
1165         u32 *prop;
1166         unsigned long *lprop;
1167
1168         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1169
1170         if (depth != 1 ||
1171             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1172                 return 0;
1173
1174         /* get platform type */
1175         prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1176         if (prop == NULL)
1177                 return 0;
1178 #ifdef CONFIG_PPC64
1179         systemcfg->platform = *prop;
1180 #else
1181 #ifdef CONFIG_PPC_MULTIPLATFORM
1182         _machine = *prop;
1183 #endif
1184 #endif
1185
1186 #ifdef CONFIG_PPC64
1187         /* check if iommu is forced on or off */
1188         if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1189                 iommu_is_off = 1;
1190         if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1191                 iommu_force_on = 1;
1192 #endif
1193
1194         lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1195         if (lprop)
1196                 memory_limit = *lprop;
1197
1198 #ifdef CONFIG_PPC64
1199         lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1200         if (lprop)
1201                 tce_alloc_start = *lprop;
1202         lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1203         if (lprop)
1204                 tce_alloc_end = *lprop;
1205 #endif
1206
1207 #ifdef CONFIG_PPC_RTAS
1208         /* To help early debugging via the front panel, we retreive a minimal
1209          * set of RTAS infos now if available
1210          */
1211         {
1212                 u64 *basep, *entryp;
1213
1214                 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1215                 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1216                 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1217                 if (basep && entryp && prop) {
1218                         rtas.base = *basep;
1219                         rtas.entry = *entryp;
1220                         rtas.size = *prop;
1221                 }
1222         }
1223 #endif /* CONFIG_PPC_RTAS */
1224
1225         /* break now */
1226         return 1;
1227 }
1228
1229 static int __init early_init_dt_scan_root(unsigned long node,
1230                                           const char *uname, int depth, void *data)
1231 {
1232         u32 *prop;
1233
1234         if (depth != 0)
1235                 return 0;
1236
1237         prop = get_flat_dt_prop(node, "#size-cells", NULL);
1238         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1239         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1240
1241         prop = get_flat_dt_prop(node, "#address-cells", NULL);
1242         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1243         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1244         
1245         /* break now */
1246         return 1;
1247 }
1248
1249 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1250 {
1251         cell_t *p = *cellp;
1252         unsigned long r;
1253
1254         /* Ignore more than 2 cells */
1255         while (s > sizeof(unsigned long) / 4) {
1256                 p++;
1257                 s--;
1258         }
1259         r = *p++;
1260 #ifdef CONFIG_PPC64
1261         if (s > 1) {
1262                 r <<= 32;
1263                 r |= *(p++);
1264                 s--;
1265         }
1266 #endif
1267
1268         *cellp = p;
1269         return r;
1270 }
1271
1272
1273 static int __init early_init_dt_scan_memory(unsigned long node,
1274                                             const char *uname, int depth, void *data)
1275 {
1276         char *type = get_flat_dt_prop(node, "device_type", NULL);
1277         cell_t *reg, *endp;
1278         unsigned long l;
1279
1280         /* We are scanning "memory" nodes only */
1281         if (type == NULL || strcmp(type, "memory") != 0)
1282                 return 0;
1283
1284         reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1285         if (reg == NULL)
1286                 return 0;
1287
1288         endp = reg + (l / sizeof(cell_t));
1289
1290         DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1291             uname, l, reg[0], reg[1], reg[2], reg[3]);
1292
1293         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1294                 unsigned long base, size;
1295
1296                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1297                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1298
1299                 if (size == 0)
1300                         continue;
1301                 DBG(" - %lx ,  %lx\n", base, size);
1302 #ifdef CONFIG_PPC64
1303                 if (iommu_is_off) {
1304                         if (base >= 0x80000000ul)
1305                                 continue;
1306                         if ((base + size) > 0x80000000ul)
1307                                 size = 0x80000000ul - base;
1308                 }
1309 #endif
1310                 lmb_add(base, size);
1311         }
1312         return 0;
1313 }
1314
1315 static void __init early_reserve_mem(void)
1316 {
1317         unsigned long base, size;
1318         unsigned long *reserve_map;
1319
1320         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1321                                         initial_boot_params->off_mem_rsvmap);
1322         while (1) {
1323                 base = *(reserve_map++);
1324                 size = *(reserve_map++);
1325                 if (size == 0)
1326                         break;
1327                 DBG("reserving: %lx -> %lx\n", base, size);
1328                 lmb_reserve(base, size);
1329         }
1330
1331 #if 0
1332         DBG("memory reserved, lmbs :\n");
1333         lmb_dump_all();
1334 #endif
1335 }
1336
1337 void __init early_init_devtree(void *params)
1338 {
1339         DBG(" -> early_init_devtree()\n");
1340
1341         /* Setup flat device-tree pointer */
1342         initial_boot_params = params;
1343
1344         /* Retrieve various informations from the /chosen node of the
1345          * device-tree, including the platform type, initrd location and
1346          * size, TCE reserve, and more ...
1347          */
1348         scan_flat_dt(early_init_dt_scan_chosen, NULL);
1349
1350         /* Scan memory nodes and rebuild LMBs */
1351         lmb_init();
1352         scan_flat_dt(early_init_dt_scan_root, NULL);
1353         scan_flat_dt(early_init_dt_scan_memory, NULL);
1354         lmb_enforce_memory_limit(memory_limit);
1355         lmb_analyze();
1356 #ifdef CONFIG_PPC64
1357         systemcfg->physicalMemorySize = lmb_phys_mem_size();
1358 #endif
1359         lmb_reserve(0, __pa(klimit));
1360
1361         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1362
1363         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1364         early_reserve_mem();
1365
1366         DBG("Scanning CPUs ...\n");
1367
1368         /* Retreive hash table size from flattened tree plus other
1369          * CPU related informations (altivec support, boot CPU ID, ...)
1370          */
1371         scan_flat_dt(early_init_dt_scan_cpus, NULL);
1372
1373         DBG(" <- early_init_devtree()\n");
1374 }
1375
1376 #undef printk
1377
1378 int
1379 prom_n_addr_cells(struct device_node* np)
1380 {
1381         int* ip;
1382         do {
1383                 if (np->parent)
1384                         np = np->parent;
1385                 ip = (int *) get_property(np, "#address-cells", NULL);
1386                 if (ip != NULL)
1387                         return *ip;
1388         } while (np->parent);
1389         /* No #address-cells property for the root node, default to 1 */
1390         return 1;
1391 }
1392
1393 int
1394 prom_n_size_cells(struct device_node* np)
1395 {
1396         int* ip;
1397         do {
1398                 if (np->parent)
1399                         np = np->parent;
1400                 ip = (int *) get_property(np, "#size-cells", NULL);
1401                 if (ip != NULL)
1402                         return *ip;
1403         } while (np->parent);
1404         /* No #size-cells property for the root node, default to 1 */
1405         return 1;
1406 }
1407
1408 /**
1409  * Work out the sense (active-low level / active-high edge)
1410  * of each interrupt from the device tree.
1411  */
1412 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1413 {
1414         struct device_node *np;
1415         int i, j;
1416
1417         /* default to level-triggered */
1418         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1419
1420         for (np = allnodes; np != 0; np = np->allnext) {
1421                 for (j = 0; j < np->n_intrs; j++) {
1422                         i = np->intrs[j].line;
1423                         if (i >= off && i < max)
1424                                 senses[i-off] = np->intrs[j].sense;
1425                 }
1426         }
1427 }
1428
1429 /**
1430  * Construct and return a list of the device_nodes with a given name.
1431  */
1432 struct device_node *find_devices(const char *name)
1433 {
1434         struct device_node *head, **prevp, *np;
1435
1436         prevp = &head;
1437         for (np = allnodes; np != 0; np = np->allnext) {
1438                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1439                         *prevp = np;
1440                         prevp = &np->next;
1441                 }
1442         }
1443         *prevp = NULL;
1444         return head;
1445 }
1446 EXPORT_SYMBOL(find_devices);
1447
1448 /**
1449  * Construct and return a list of the device_nodes with a given type.
1450  */
1451 struct device_node *find_type_devices(const char *type)
1452 {
1453         struct device_node *head, **prevp, *np;
1454
1455         prevp = &head;
1456         for (np = allnodes; np != 0; np = np->allnext) {
1457                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1458                         *prevp = np;
1459                         prevp = &np->next;
1460                 }
1461         }
1462         *prevp = NULL;
1463         return head;
1464 }
1465 EXPORT_SYMBOL(find_type_devices);
1466
1467 /**
1468  * Returns all nodes linked together
1469  */
1470 struct device_node *find_all_nodes(void)
1471 {
1472         struct device_node *head, **prevp, *np;
1473
1474         prevp = &head;
1475         for (np = allnodes; np != 0; np = np->allnext) {
1476                 *prevp = np;
1477                 prevp = &np->next;
1478         }
1479         *prevp = NULL;
1480         return head;
1481 }
1482 EXPORT_SYMBOL(find_all_nodes);
1483
1484 /** Checks if the given "compat" string matches one of the strings in
1485  * the device's "compatible" property
1486  */
1487 int device_is_compatible(struct device_node *device, const char *compat)
1488 {
1489         const char* cp;
1490         int cplen, l;
1491
1492         cp = (char *) get_property(device, "compatible", &cplen);
1493         if (cp == NULL)
1494                 return 0;
1495         while (cplen > 0) {
1496                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1497                         return 1;
1498                 l = strlen(cp) + 1;
1499                 cp += l;
1500                 cplen -= l;
1501         }
1502
1503         return 0;
1504 }
1505 EXPORT_SYMBOL(device_is_compatible);
1506
1507
1508 /**
1509  * Indicates whether the root node has a given value in its
1510  * compatible property.
1511  */
1512 int machine_is_compatible(const char *compat)
1513 {
1514         struct device_node *root;
1515         int rc = 0;
1516
1517         root = of_find_node_by_path("/");
1518         if (root) {
1519                 rc = device_is_compatible(root, compat);
1520                 of_node_put(root);
1521         }
1522         return rc;
1523 }
1524 EXPORT_SYMBOL(machine_is_compatible);
1525
1526 /**
1527  * Construct and return a list of the device_nodes with a given type
1528  * and compatible property.
1529  */
1530 struct device_node *find_compatible_devices(const char *type,
1531                                             const char *compat)
1532 {
1533         struct device_node *head, **prevp, *np;
1534
1535         prevp = &head;
1536         for (np = allnodes; np != 0; np = np->allnext) {
1537                 if (type != NULL
1538                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1539                         continue;
1540                 if (device_is_compatible(np, compat)) {
1541                         *prevp = np;
1542                         prevp = &np->next;
1543                 }
1544         }
1545         *prevp = NULL;
1546         return head;
1547 }
1548 EXPORT_SYMBOL(find_compatible_devices);
1549
1550 /**
1551  * Find the device_node with a given full_name.
1552  */
1553 struct device_node *find_path_device(const char *path)
1554 {
1555         struct device_node *np;
1556
1557         for (np = allnodes; np != 0; np = np->allnext)
1558                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1559                         return np;
1560         return NULL;
1561 }
1562 EXPORT_SYMBOL(find_path_device);
1563
1564 /*******
1565  *
1566  * New implementation of the OF "find" APIs, return a refcounted
1567  * object, call of_node_put() when done.  The device tree and list
1568  * are protected by a rw_lock.
1569  *
1570  * Note that property management will need some locking as well,
1571  * this isn't dealt with yet.
1572  *
1573  *******/
1574
1575 /**
1576  *      of_find_node_by_name - Find a node by its "name" property
1577  *      @from:  The node to start searching from or NULL, the node
1578  *              you pass will not be searched, only the next one
1579  *              will; typically, you pass what the previous call
1580  *              returned. of_node_put() will be called on it
1581  *      @name:  The name string to match against
1582  *
1583  *      Returns a node pointer with refcount incremented, use
1584  *      of_node_put() on it when done.
1585  */
1586 struct device_node *of_find_node_by_name(struct device_node *from,
1587         const char *name)
1588 {
1589         struct device_node *np;
1590
1591         read_lock(&devtree_lock);
1592         np = from ? from->allnext : allnodes;
1593         for (; np != 0; np = np->allnext)
1594                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1595                     && of_node_get(np))
1596                         break;
1597         if (from)
1598                 of_node_put(from);
1599         read_unlock(&devtree_lock);
1600         return np;
1601 }
1602 EXPORT_SYMBOL(of_find_node_by_name);
1603
1604 /**
1605  *      of_find_node_by_type - Find a node by its "device_type" property
1606  *      @from:  The node to start searching from or NULL, the node
1607  *              you pass will not be searched, only the next one
1608  *              will; typically, you pass what the previous call
1609  *              returned. of_node_put() will be called on it
1610  *      @name:  The type string to match against
1611  *
1612  *      Returns a node pointer with refcount incremented, use
1613  *      of_node_put() on it when done.
1614  */
1615 struct device_node *of_find_node_by_type(struct device_node *from,
1616         const char *type)
1617 {
1618         struct device_node *np;
1619
1620         read_lock(&devtree_lock);
1621         np = from ? from->allnext : allnodes;
1622         for (; np != 0; np = np->allnext)
1623                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1624                     && of_node_get(np))
1625                         break;
1626         if (from)
1627                 of_node_put(from);
1628         read_unlock(&devtree_lock);
1629         return np;
1630 }
1631 EXPORT_SYMBOL(of_find_node_by_type);
1632
1633 /**
1634  *      of_find_compatible_node - Find a node based on type and one of the
1635  *                                tokens in its "compatible" property
1636  *      @from:          The node to start searching from or NULL, the node
1637  *                      you pass will not be searched, only the next one
1638  *                      will; typically, you pass what the previous call
1639  *                      returned. of_node_put() will be called on it
1640  *      @type:          The type string to match "device_type" or NULL to ignore
1641  *      @compatible:    The string to match to one of the tokens in the device
1642  *                      "compatible" list.
1643  *
1644  *      Returns a node pointer with refcount incremented, use
1645  *      of_node_put() on it when done.
1646  */
1647 struct device_node *of_find_compatible_node(struct device_node *from,
1648         const char *type, const char *compatible)
1649 {
1650         struct device_node *np;
1651
1652         read_lock(&devtree_lock);
1653         np = from ? from->allnext : allnodes;
1654         for (; np != 0; np = np->allnext) {
1655                 if (type != NULL
1656                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1657                         continue;
1658                 if (device_is_compatible(np, compatible) && of_node_get(np))
1659                         break;
1660         }
1661         if (from)
1662                 of_node_put(from);
1663         read_unlock(&devtree_lock);
1664         return np;
1665 }
1666 EXPORT_SYMBOL(of_find_compatible_node);
1667
1668 /**
1669  *      of_find_node_by_path - Find a node matching a full OF path
1670  *      @path:  The full path to match
1671  *
1672  *      Returns a node pointer with refcount incremented, use
1673  *      of_node_put() on it when done.
1674  */
1675 struct device_node *of_find_node_by_path(const char *path)
1676 {
1677         struct device_node *np = allnodes;
1678
1679         read_lock(&devtree_lock);
1680         for (; np != 0; np = np->allnext) {
1681                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1682                     && of_node_get(np))
1683                         break;
1684         }
1685         read_unlock(&devtree_lock);
1686         return np;
1687 }
1688 EXPORT_SYMBOL(of_find_node_by_path);
1689
1690 /**
1691  *      of_find_node_by_phandle - Find a node given a phandle
1692  *      @handle:        phandle of the node to find
1693  *
1694  *      Returns a node pointer with refcount incremented, use
1695  *      of_node_put() on it when done.
1696  */
1697 struct device_node *of_find_node_by_phandle(phandle handle)
1698 {
1699         struct device_node *np;
1700
1701         read_lock(&devtree_lock);
1702         for (np = allnodes; np != 0; np = np->allnext)
1703                 if (np->linux_phandle == handle)
1704                         break;
1705         if (np)
1706                 of_node_get(np);
1707         read_unlock(&devtree_lock);
1708         return np;
1709 }
1710 EXPORT_SYMBOL(of_find_node_by_phandle);
1711
1712 /**
1713  *      of_find_all_nodes - Get next node in global list
1714  *      @prev:  Previous node or NULL to start iteration
1715  *              of_node_put() will be called on it
1716  *
1717  *      Returns a node pointer with refcount incremented, use
1718  *      of_node_put() on it when done.
1719  */
1720 struct device_node *of_find_all_nodes(struct device_node *prev)
1721 {
1722         struct device_node *np;
1723
1724         read_lock(&devtree_lock);
1725         np = prev ? prev->allnext : allnodes;
1726         for (; np != 0; np = np->allnext)
1727                 if (of_node_get(np))
1728                         break;
1729         if (prev)
1730                 of_node_put(prev);
1731         read_unlock(&devtree_lock);
1732         return np;
1733 }
1734 EXPORT_SYMBOL(of_find_all_nodes);
1735
1736 /**
1737  *      of_get_parent - Get a node's parent if any
1738  *      @node:  Node to get parent
1739  *
1740  *      Returns a node pointer with refcount incremented, use
1741  *      of_node_put() on it when done.
1742  */
1743 struct device_node *of_get_parent(const struct device_node *node)
1744 {
1745         struct device_node *np;
1746
1747         if (!node)
1748                 return NULL;
1749
1750         read_lock(&devtree_lock);
1751         np = of_node_get(node->parent);
1752         read_unlock(&devtree_lock);
1753         return np;
1754 }
1755 EXPORT_SYMBOL(of_get_parent);
1756
1757 /**
1758  *      of_get_next_child - Iterate a node childs
1759  *      @node:  parent node
1760  *      @prev:  previous child of the parent node, or NULL to get first
1761  *
1762  *      Returns a node pointer with refcount incremented, use
1763  *      of_node_put() on it when done.
1764  */
1765 struct device_node *of_get_next_child(const struct device_node *node,
1766         struct device_node *prev)
1767 {
1768         struct device_node *next;
1769
1770         read_lock(&devtree_lock);
1771         next = prev ? prev->sibling : node->child;
1772         for (; next != 0; next = next->sibling)
1773                 if (of_node_get(next))
1774                         break;
1775         if (prev)
1776                 of_node_put(prev);
1777         read_unlock(&devtree_lock);
1778         return next;
1779 }
1780 EXPORT_SYMBOL(of_get_next_child);
1781
1782 /**
1783  *      of_node_get - Increment refcount of a node
1784  *      @node:  Node to inc refcount, NULL is supported to
1785  *              simplify writing of callers
1786  *
1787  *      Returns node.
1788  */
1789 struct device_node *of_node_get(struct device_node *node)
1790 {
1791         if (node)
1792                 kref_get(&node->kref);
1793         return node;
1794 }
1795 EXPORT_SYMBOL(of_node_get);
1796
1797 static inline struct device_node * kref_to_device_node(struct kref *kref)
1798 {
1799         return container_of(kref, struct device_node, kref);
1800 }
1801
1802 /**
1803  *      of_node_release - release a dynamically allocated node
1804  *      @kref:  kref element of the node to be released
1805  *
1806  *      In of_node_put() this function is passed to kref_put()
1807  *      as the destructor.
1808  */
1809 static void of_node_release(struct kref *kref)
1810 {
1811         struct device_node *node = kref_to_device_node(kref);
1812         struct property *prop = node->properties;
1813
1814         if (!OF_IS_DYNAMIC(node))
1815                 return;
1816         while (prop) {
1817                 struct property *next = prop->next;
1818                 kfree(prop->name);
1819                 kfree(prop->value);
1820                 kfree(prop);
1821                 prop = next;
1822         }
1823         kfree(node->intrs);
1824         kfree(node->addrs);
1825         kfree(node->full_name);
1826         kfree(node->data);
1827         kfree(node);
1828 }
1829
1830 /**
1831  *      of_node_put - Decrement refcount of a node
1832  *      @node:  Node to dec refcount, NULL is supported to
1833  *              simplify writing of callers
1834  *
1835  */
1836 void of_node_put(struct device_node *node)
1837 {
1838         if (node)
1839                 kref_put(&node->kref, of_node_release);
1840 }
1841 EXPORT_SYMBOL(of_node_put);
1842
1843 /*
1844  * Plug a device node into the tree and global list.
1845  */
1846 void of_attach_node(struct device_node *np)
1847 {
1848         write_lock(&devtree_lock);
1849         np->sibling = np->parent->child;
1850         np->allnext = allnodes;
1851         np->parent->child = np;
1852         allnodes = np;
1853         write_unlock(&devtree_lock);
1854 }
1855
1856 /*
1857  * "Unplug" a node from the device tree.  The caller must hold
1858  * a reference to the node.  The memory associated with the node
1859  * is not freed until its refcount goes to zero.
1860  */
1861 void of_detach_node(const struct device_node *np)
1862 {
1863         struct device_node *parent;
1864
1865         write_lock(&devtree_lock);
1866
1867         parent = np->parent;
1868
1869         if (allnodes == np)
1870                 allnodes = np->allnext;
1871         else {
1872                 struct device_node *prev;
1873                 for (prev = allnodes;
1874                      prev->allnext != np;
1875                      prev = prev->allnext)
1876                         ;
1877                 prev->allnext = np->allnext;
1878         }
1879
1880         if (parent->child == np)
1881                 parent->child = np->sibling;
1882         else {
1883                 struct device_node *prevsib;
1884                 for (prevsib = np->parent->child;
1885                      prevsib->sibling != np;
1886                      prevsib = prevsib->sibling)
1887                         ;
1888                 prevsib->sibling = np->sibling;
1889         }
1890
1891         write_unlock(&devtree_lock);
1892 }
1893
1894 #ifdef CONFIG_PPC_PSERIES
1895 /*
1896  * Fix up the uninitialized fields in a new device node:
1897  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1898  *
1899  * A lot of boot-time code is duplicated here, because functions such
1900  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1901  * slab allocator.
1902  *
1903  * This should probably be split up into smaller chunks.
1904  */
1905
1906 static int of_finish_dynamic_node(struct device_node *node,
1907                                   unsigned long *unused1, int unused2,
1908                                   int unused3, int unused4)
1909 {
1910         struct device_node *parent = of_get_parent(node);
1911         int err = 0;
1912         phandle *ibm_phandle;
1913
1914         node->name = get_property(node, "name", NULL);
1915         node->type = get_property(node, "device_type", NULL);
1916
1917         if (!parent) {
1918                 err = -ENODEV;
1919                 goto out;
1920         }
1921
1922         /* We don't support that function on PowerMac, at least
1923          * not yet
1924          */
1925         if (systemcfg->platform == PLATFORM_POWERMAC)
1926                 return -ENODEV;
1927
1928         /* fix up new node's linux_phandle field */
1929         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1930                 node->linux_phandle = *ibm_phandle;
1931
1932 out:
1933         of_node_put(parent);
1934         return err;
1935 }
1936
1937 static int prom_reconfig_notifier(struct notifier_block *nb,
1938                                   unsigned long action, void *node)
1939 {
1940         int err;
1941
1942         switch (action) {
1943         case PSERIES_RECONFIG_ADD:
1944                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1945                 if (err < 0) {
1946                         printk(KERN_ERR "finish_node returned %d\n", err);
1947                         err = NOTIFY_BAD;
1948                 }
1949                 break;
1950         default:
1951                 err = NOTIFY_DONE;
1952                 break;
1953         }
1954         return err;
1955 }
1956
1957 static struct notifier_block prom_reconfig_nb = {
1958         .notifier_call = prom_reconfig_notifier,
1959         .priority = 10, /* This one needs to run first */
1960 };
1961
1962 static int __init prom_reconfig_setup(void)
1963 {
1964         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1965 }
1966 __initcall(prom_reconfig_setup);
1967 #endif
1968
1969 /*
1970  * Find a property with a given name for a given node
1971  * and return the value.
1972  */
1973 unsigned char *get_property(struct device_node *np, const char *name,
1974                             int *lenp)
1975 {
1976         struct property *pp;
1977
1978         for (pp = np->properties; pp != 0; pp = pp->next)
1979                 if (strcmp(pp->name, name) == 0) {
1980                         if (lenp != 0)
1981                                 *lenp = pp->length;
1982                         return pp->value;
1983                 }
1984         return NULL;
1985 }
1986 EXPORT_SYMBOL(get_property);
1987
1988 /*
1989  * Add a property to a node
1990  */
1991 void prom_add_property(struct device_node* np, struct property* prop)
1992 {
1993         struct property **next = &np->properties;
1994
1995         prop->next = NULL;      
1996         while (*next)
1997                 next = &(*next)->next;
1998         *next = prop;
1999 }
2000
2001 /* I quickly hacked that one, check against spec ! */
2002 static inline unsigned long
2003 bus_space_to_resource_flags(unsigned int bus_space)
2004 {
2005         u8 space = (bus_space >> 24) & 0xf;
2006         if (space == 0)
2007                 space = 0x02;
2008         if (space == 0x02)
2009                 return IORESOURCE_MEM;
2010         else if (space == 0x01)
2011                 return IORESOURCE_IO;
2012         else {
2013                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2014                         bus_space);
2015                 return 0;
2016         }
2017 }
2018
2019 #ifdef CONFIG_PCI
2020 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2021                                                  struct address_range *range)
2022 {
2023         unsigned long mask;
2024         int i;
2025
2026         /* Check this one */
2027         mask = bus_space_to_resource_flags(range->space);
2028         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2029                 if ((pdev->resource[i].flags & mask) == mask &&
2030                         pdev->resource[i].start <= range->address &&
2031                         pdev->resource[i].end > range->address) {
2032                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2033                                         /* Add better message */
2034                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2035                                         return NULL;
2036                                 }
2037                                 break;
2038                         }
2039         }
2040         if (i == DEVICE_COUNT_RESOURCE)
2041                 return NULL;
2042         return &pdev->resource[i];
2043 }
2044
2045 /*
2046  * Request an OF device resource. Currently handles child of PCI devices,
2047  * or other nodes attached to the root node. Ultimately, put some
2048  * link to resources in the OF node.
2049  */
2050 struct resource *request_OF_resource(struct device_node* node, int index,
2051                                      const char* name_postfix)
2052 {
2053         struct pci_dev* pcidev;
2054         u8 pci_bus, pci_devfn;
2055         unsigned long iomask;
2056         struct device_node* nd;
2057         struct resource* parent;
2058         struct resource *res = NULL;
2059         int nlen, plen;
2060
2061         if (index >= node->n_addrs)
2062                 goto fail;
2063
2064         /* Sanity check on bus space */
2065         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2066         if (iomask & IORESOURCE_MEM)
2067                 parent = &iomem_resource;
2068         else if (iomask & IORESOURCE_IO)
2069                 parent = &ioport_resource;
2070         else
2071                 goto fail;
2072
2073         /* Find a PCI parent if any */
2074         nd = node;
2075         pcidev = NULL;
2076         while (nd) {
2077                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2078                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2079                 if (pcidev) break;
2080                 nd = nd->parent;
2081         }
2082         if (pcidev)
2083                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2084         if (!parent) {
2085                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2086                         node->name);
2087                 goto fail;
2088         }
2089
2090         res = __request_region(parent, node->addrs[index].address,
2091                                node->addrs[index].size, NULL);
2092         if (!res)
2093                 goto fail;
2094         nlen = strlen(node->name);
2095         plen = name_postfix ? strlen(name_postfix) : 0;
2096         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2097         if (res->name) {
2098                 strcpy((char *)res->name, node->name);
2099                 if (plen)
2100                         strcpy((char *)res->name+nlen, name_postfix);
2101         }
2102         return res;
2103 fail:
2104         return NULL;
2105 }
2106 EXPORT_SYMBOL(request_OF_resource);
2107
2108 int release_OF_resource(struct device_node *node, int index)
2109 {
2110         struct pci_dev* pcidev;
2111         u8 pci_bus, pci_devfn;
2112         unsigned long iomask, start, end;
2113         struct device_node* nd;
2114         struct resource* parent;
2115         struct resource *res = NULL;
2116
2117         if (index >= node->n_addrs)
2118                 return -EINVAL;
2119
2120         /* Sanity check on bus space */
2121         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2122         if (iomask & IORESOURCE_MEM)
2123                 parent = &iomem_resource;
2124         else if (iomask & IORESOURCE_IO)
2125                 parent = &ioport_resource;
2126         else
2127                 return -EINVAL;
2128
2129         /* Find a PCI parent if any */
2130         nd = node;
2131         pcidev = NULL;
2132         while(nd) {
2133                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2134                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2135                 if (pcidev) break;
2136                 nd = nd->parent;
2137         }
2138         if (pcidev)
2139                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2140         if (!parent) {
2141                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2142                         node->name);
2143                 return -ENODEV;
2144         }
2145
2146         /* Find us in the parent and its childs */
2147         res = parent->child;
2148         start = node->addrs[index].address;
2149         end = start + node->addrs[index].size - 1;
2150         while (res) {
2151                 if (res->start == start && res->end == end &&
2152                     (res->flags & IORESOURCE_BUSY))
2153                         break;
2154                 if (res->start <= start && res->end >= end)
2155                         res = res->child;
2156                 else
2157                         res = res->sibling;
2158         }
2159         if (!res)
2160                 return -ENODEV;
2161
2162         if (res->name) {
2163                 kfree(res->name);
2164                 res->name = NULL;
2165         }
2166         release_resource(res);
2167         kfree(res);
2168
2169         return 0;
2170 }
2171 EXPORT_SYMBOL(release_OF_resource);
2172 #endif /* CONFIG_PCI */