3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
36 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
48 #include <asm/sections.h>
55 #ifndef CPU_FTR_COHERENT_ICACHE
56 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
57 #define CPU_FTR_NOEXECUTE 0
60 int init_bootmem_done;
64 * This is called by /dev/mem to know if a given address has to
65 * be mapped non-cacheable or not
67 int page_is_ram(unsigned long pfn)
69 unsigned long paddr = (pfn << PAGE_SHIFT);
71 #ifndef CONFIG_PPC64 /* XXX for now */
72 return paddr < __pa(high_memory);
75 for (i=0; i < lmb.memory.cnt; i++) {
78 base = lmb.memory.region[i].base;
80 if ((paddr >= base) &&
81 (paddr < (base + lmb.memory.region[i].size))) {
89 EXPORT_SYMBOL(page_is_ram);
91 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
92 unsigned long size, pgprot_t vma_prot)
94 if (ppc_md.phys_mem_access_prot)
95 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
97 if (!page_is_ram(addr >> PAGE_SHIFT))
98 vma_prot = __pgprot(pgprot_val(vma_prot)
99 | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 EXPORT_SYMBOL(phys_mem_access_prot);
106 unsigned long total = 0, reserved = 0;
107 unsigned long shared = 0, cached = 0;
108 unsigned long highmem = 0;
113 printk("Mem-info:\n");
115 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
116 for_each_pgdat(pgdat) {
117 for (i = 0; i < pgdat->node_spanned_pages; i++) {
118 page = pgdat_page_nr(pgdat, i);
120 if (PageHighMem(page))
122 if (PageReserved(page))
124 else if (PageSwapCache(page))
126 else if (page_count(page))
127 shared += page_count(page) - 1;
130 printk("%ld pages of RAM\n", total);
131 #ifdef CONFIG_HIGHMEM
132 printk("%ld pages of HIGHMEM\n", highmem);
134 printk("%ld reserved pages\n", reserved);
135 printk("%ld pages shared\n", shared);
136 printk("%ld pages swap cached\n", cached);
140 * Initialize the bootmem system and give it all the memory we
141 * have available. If we are using highmem, we only put the
142 * lowmem into the bootmem system.
144 #ifndef CONFIG_NEED_MULTIPLE_NODES
145 void __init do_init_bootmem(void)
148 unsigned long start, bootmap_pages;
149 unsigned long total_pages;
152 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
153 #ifdef CONFIG_HIGHMEM
154 total_pages = total_lowmem >> PAGE_SHIFT;
158 * Find an area to use for the bootmem bitmap. Calculate the size of
159 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
160 * Add 1 additional page in case the address isn't page-aligned.
162 bootmap_pages = bootmem_bootmap_pages(total_pages);
164 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
167 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
169 /* Add all physical memory to the bootmem map, mark each area
172 for (i = 0; i < lmb.memory.cnt; i++) {
173 unsigned long base = lmb.memory.region[i].base;
174 unsigned long size = lmb_size_bytes(&lmb.memory, i);
175 #ifdef CONFIG_HIGHMEM
176 if (base >= total_lowmem)
178 if (base + size > total_lowmem)
179 size = total_lowmem - base;
181 free_bootmem(base, size);
184 /* reserve the sections we're already using */
185 for (i = 0; i < lmb.reserved.cnt; i++)
186 reserve_bootmem(lmb.reserved.region[i].base,
187 lmb_size_bytes(&lmb.reserved, i));
189 /* XXX need to clip this if using highmem? */
190 for (i = 0; i < lmb.memory.cnt; i++)
191 memory_present(0, lmb_start_pfn(&lmb.memory, i),
192 lmb_end_pfn(&lmb.memory, i));
193 init_bootmem_done = 1;
197 * paging_init() sets up the page tables - in fact we've already done this.
199 void __init paging_init(void)
201 unsigned long zones_size[MAX_NR_ZONES];
202 unsigned long zholes_size[MAX_NR_ZONES];
203 unsigned long total_ram = lmb_phys_mem_size();
204 unsigned long top_of_ram = lmb_end_of_DRAM();
206 #ifdef CONFIG_HIGHMEM
207 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
208 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
209 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
210 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
211 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
212 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
213 kmap_prot = PAGE_KERNEL;
214 #endif /* CONFIG_HIGHMEM */
216 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
217 top_of_ram, total_ram);
218 printk(KERN_INFO "Memory hole size: %ldMB\n",
219 (top_of_ram - total_ram) >> 20);
221 * All pages are DMA-able so we put them all in the DMA zone.
223 memset(zones_size, 0, sizeof(zones_size));
224 memset(zholes_size, 0, sizeof(zholes_size));
226 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
227 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
229 #ifdef CONFIG_HIGHMEM
230 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
231 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
232 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
234 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
235 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
236 #endif /* CONFIG_HIGHMEM */
238 free_area_init_node(0, NODE_DATA(0), zones_size,
239 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
241 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
243 void __init mem_init(void)
245 #ifdef CONFIG_NEED_MULTIPLE_NODES
251 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
253 num_physpages = max_pfn; /* RAM is assumed contiguous */
254 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
256 #ifdef CONFIG_NEED_MULTIPLE_NODES
257 for_each_online_node(nid) {
258 if (NODE_DATA(nid)->node_spanned_pages != 0) {
259 printk("freeing bootmem node %x\n", nid);
261 free_all_bootmem_node(NODE_DATA(nid));
265 max_mapnr = num_physpages;
266 totalram_pages += free_all_bootmem();
268 for_each_pgdat(pgdat) {
269 for (i = 0; i < pgdat->node_spanned_pages; i++) {
270 page = pgdat_page_nr(pgdat, i);
271 if (PageReserved(page))
276 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
277 datasize = (unsigned long)&__init_begin - (unsigned long)&_sdata;
278 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
279 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
281 #ifdef CONFIG_HIGHMEM
283 unsigned long pfn, highmem_mapnr;
285 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
286 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
287 struct page *page = pfn_to_page(pfn);
289 ClearPageReserved(page);
290 set_page_count(page, 1);
294 totalram_pages += totalhigh_pages;
295 printk(KERN_INFO "High memory: %luk\n",
296 totalhigh_pages << (PAGE_SHIFT-10));
298 #endif /* CONFIG_HIGHMEM */
300 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
301 "%luk reserved, %luk data, %luk bss, %luk init)\n",
302 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
303 num_physpages << (PAGE_SHIFT-10),
305 reservedpages << (PAGE_SHIFT-10),
313 /* Initialize the vDSO */
319 * This is called when a page has been modified by the kernel.
320 * It just marks the page as not i-cache clean. We do the i-cache
321 * flush later when the page is given to a user process, if necessary.
323 void flush_dcache_page(struct page *page)
325 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
327 /* avoid an atomic op if possible */
328 if (test_bit(PG_arch_1, &page->flags))
329 clear_bit(PG_arch_1, &page->flags);
331 EXPORT_SYMBOL(flush_dcache_page);
333 void flush_dcache_icache_page(struct page *page)
336 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
337 __flush_dcache_icache(start);
338 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
339 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
340 /* On 8xx there is no need to kmap since highmem is not supported */
341 __flush_dcache_icache(page_address(page));
343 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
347 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
351 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
354 * We shouldnt have to do this, but some versions of glibc
355 * require it (ld.so assumes zero filled pages are icache clean)
359 /* avoid an atomic op if possible */
360 if (test_bit(PG_arch_1, &pg->flags))
361 clear_bit(PG_arch_1, &pg->flags);
363 EXPORT_SYMBOL(clear_user_page);
365 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
368 copy_page(vto, vfrom);
371 * We should be able to use the following optimisation, however
372 * there are two problems.
373 * Firstly a bug in some versions of binutils meant PLT sections
374 * were not marked executable.
375 * Secondly the first word in the GOT section is blrl, used
376 * to establish the GOT address. Until recently the GOT was
377 * not marked executable.
381 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
385 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
388 /* avoid an atomic op if possible */
389 if (test_bit(PG_arch_1, &pg->flags))
390 clear_bit(PG_arch_1, &pg->flags);
393 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
394 unsigned long addr, int len)
398 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
399 flush_icache_range(maddr, maddr + len);
402 EXPORT_SYMBOL(flush_icache_user_range);
405 * This is called at the end of handling a user page fault, when the
406 * fault has been handled by updating a PTE in the linux page tables.
407 * We use it to preload an HPTE into the hash table corresponding to
408 * the updated linux PTE.
410 * This must always be called with the mm->page_table_lock held
412 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
415 /* handle i-cache coherency */
416 unsigned long pfn = pte_pfn(pte);
428 /* handle i-cache coherency */
429 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
430 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
432 struct page *page = pfn_to_page(pfn);
433 if (!PageReserved(page)
434 && !test_bit(PG_arch_1, &page->flags)) {
435 if (vma->vm_mm == current->active_mm) {
437 /* On 8xx, cache control instructions (particularly
438 * "dcbst" from flush_dcache_icache) fault as write
439 * operation if there is an unpopulated TLB entry
440 * for the address in question. To workaround that,
441 * we invalidate the TLB here, thus avoiding dcbst
446 __flush_dcache_icache((void *) address);
448 flush_dcache_icache_page(page);
449 set_bit(PG_arch_1, &page->flags);
453 #ifdef CONFIG_PPC_STD_MMU
454 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
455 if (!pte_young(pte) || address >= TASK_SIZE)
460 pmd = pmd_offset(pgd_offset(vma->vm_mm, address), address);
462 add_hash_page(vma->vm_mm->context, address, pmd_val(*pmd));
464 pgdir = vma->vm_mm->pgd;
468 ptep = find_linux_pte(pgdir, address);
472 vsid = get_vsid(vma->vm_mm->context.id, address);
474 local_irq_save(flags);
475 tmp = cpumask_of_cpu(smp_processor_id());
476 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
479 __hash_page(address, 0, vsid, ptep, 0x300, local);
480 local_irq_restore(flags);