drivers/edac: drivers to use new PCI operation
[linux-2.6] / drivers / edac / i3000_edac.c
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  *      Intel D82875P Memory Controller kernel module
6  *      (C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include "edac_core.h"
18
19 #define I3000_REVISION          "1.1"
20
21 #define EDAC_MOD_STR            "i3000_edac"
22
23 #define I3000_RANKS             8
24 #define I3000_RANKS_PER_CHANNEL 4
25 #define I3000_CHANNELS          2
26
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29 #define I3000_MCHBAR            0x44    /* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK       0xffffc000
31 #define I3000_MMR_WINDOW_SIZE   16384
32
33 #define I3000_EDEAP             0x70    /* Extended DRAM Error Address Pointer (8b)
34                                          *
35                                          * 7:1   reserved
36                                          * 0     bit 32 of address
37                                          */
38 #define I3000_DEAP              0x58    /* DRAM Error Address Pointer (32b)
39                                          *
40                                          * 31:7  address
41                                          * 6:1   reserved
42                                          * 0     Error channel 0/1
43                                          */
44 #define I3000_DEAP_GRAIN        (1 << 7)
45 #define I3000_DEAP_PFN(edeap, deap)     ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46                                         ((deap) >> PAGE_SHIFT))
47 #define I3000_DEAP_OFFSET(deap)         ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48 #define I3000_DEAP_CHANNEL(deap)        ((deap) & 1)
49
50 #define I3000_DERRSYN           0x5c    /* DRAM Error Syndrome (8b)
51                                          *
52                                          *  7:0  DRAM ECC Syndrome
53                                          */
54
55 #define I3000_ERRSTS            0xc8    /* Error Status Register (16b)
56                                          *
57                                          * 15:12 reserved
58                                          * 11    MCH Thermal Sensor Event for SMI/SCI/SERR
59                                          * 10    reserved
60                                          *  9    LOCK to non-DRAM Memory Flag (LCKF)
61                                          *  8    Received Refresh Timeout Flag (RRTOF)
62                                          *  7:2  reserved
63                                          *  1    Multiple-bit DRAM ECC Error Flag (DMERR)
64                                          *  0    Single-bit DRAM ECC Error Flag (DSERR)
65                                          */
66 #define I3000_ERRSTS_BITS       0x0b03  /* bits which indicate errors */
67 #define I3000_ERRSTS_UE         0x0002
68 #define I3000_ERRSTS_CE         0x0001
69
70 #define I3000_ERRCMD            0xca    /* Error Command (16b)
71                                          *
72                                          * 15:12 reserved
73                                          * 11    SERR on MCH Thermal Sensor Event (TSESERR)
74                                          * 10    reserved
75                                          *  9    SERR on LOCK to non-DRAM Memory (LCKERR)
76                                          *  8    SERR on DRAM Refresh Timeout (DRTOERR)
77                                          *  7:2  reserved
78                                          *  1    SERR Multiple-Bit DRAM ECC Error (DMERR)
79                                          *  0    SERR on Single-Bit ECC Error (DSERR)
80                                          */
81
82 /* Intel  MMIO register space - device 0 function 0 - MMR space */
83
84 #define I3000_DRB_SHIFT 25      /* 32MiB grain */
85
86 #define I3000_C0DRB             0x100   /* Channel 0 DRAM Rank Boundary (8b x 4)
87                                          *
88                                          * 7:0   Channel 0 DRAM Rank Boundary Address
89                                          */
90 #define I3000_C1DRB             0x180   /* Channel 1 DRAM Rank Boundary (8b x 4)
91                                          *
92                                          * 7:0   Channel 1 DRAM Rank Boundary Address
93                                          */
94
95 #define I3000_C0DRA             0x108   /* Channel 0 DRAM Rank Attribute (8b x 2)
96                                          *
97                                          * 7     reserved
98                                          * 6:4   DRAM odd Rank Attribute
99                                          * 3     reserved
100                                          * 2:0   DRAM even Rank Attribute
101                                          *
102                                          * Each attribute defines the page
103                                          * size of the corresponding rank:
104                                          *     000: unpopulated
105                                          *     001: reserved
106                                          *     010: 4 KB
107                                          *     011: 8 KB
108                                          *     100: 16 KB
109                                          *     Others: reserved
110                                          */
111 #define I3000_C1DRA             0x188   /* Channel 1 DRAM Rank Attribute (8b x 2) */
112 #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113 #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
114
115 #define I3000_C0DRC0            0x120   /* DRAM Controller Mode 0 (32b)
116                                          *
117                                          * 31:30 reserved
118                                          * 29    Initialization Complete (IC)
119                                          * 28:11 reserved
120                                          * 10:8  Refresh Mode Select (RMS)
121                                          * 7     reserved
122                                          * 6:4   Mode Select (SMS)
123                                          * 3:2   reserved
124                                          * 1:0   DRAM Type (DT)
125                                          */
126
127 #define I3000_C0DRC1            0x124   /* DRAM Controller Mode 1 (32b)
128                                          *
129                                          * 31    Enhanced Addressing Enable (ENHADE)
130                                          * 30:0  reserved
131                                          */
132
133 enum i3000p_chips {
134         I3000 = 0,
135 };
136
137 struct i3000_dev_info {
138         const char *ctl_name;
139 };
140
141 struct i3000_error_info {
142         u16 errsts;
143         u8 derrsyn;
144         u8 edeap;
145         u32 deap;
146         u16 errsts2;
147 };
148
149 static const struct i3000_dev_info i3000_devs[] = {
150         [I3000] = {
151                    .ctl_name = "i3000"},
152 };
153
154 static struct pci_dev *mci_pdev = NULL;
155 static int i3000_registered = 1;
156 static struct edac_pci_ctl_info *i3000_pci;
157
158 static void i3000_get_error_info(struct mem_ctl_info *mci,
159                                  struct i3000_error_info *info)
160 {
161         struct pci_dev *pdev;
162
163         pdev = to_pci_dev(mci->dev);
164
165         /*
166          * This is a mess because there is no atomic way to read all the
167          * registers at once and the registers can transition from CE being
168          * overwritten by UE.
169          */
170         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
171         if (!(info->errsts & I3000_ERRSTS_BITS))
172                 return;
173         pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
174         pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
175         pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
176         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
177
178         /*
179          * If the error is the same for both reads then the first set
180          * of reads is valid.  If there is a change then there is a CE
181          * with no info and the second set of reads is valid and
182          * should be UE info.
183          */
184         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
185                 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
186                 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
187                 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
188         }
189
190         /* Clear any error bits.
191          * (Yes, we really clear bits by writing 1 to them.)
192          */
193         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
194                          I3000_ERRSTS_BITS);
195 }
196
197 static int i3000_process_error_info(struct mem_ctl_info *mci,
198                                     struct i3000_error_info *info,
199                                     int handle_errors)
200 {
201         int row, multi_chan;
202         int pfn, offset, channel;
203
204         multi_chan = mci->csrows[0].nr_channels - 1;
205
206         if (!(info->errsts & I3000_ERRSTS_BITS))
207                 return 0;
208
209         if (!handle_errors)
210                 return 1;
211
212         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
213                 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
214                 info->errsts = info->errsts2;
215         }
216
217         pfn = I3000_DEAP_PFN(info->edeap, info->deap);
218         offset = I3000_DEAP_OFFSET(info->deap);
219         channel = I3000_DEAP_CHANNEL(info->deap);
220
221         row = edac_mc_find_csrow_by_page(mci, pfn);
222
223         if (info->errsts & I3000_ERRSTS_UE)
224                 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
225         else
226                 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
227                                   multi_chan ? channel : 0, "i3000 CE");
228
229         return 1;
230 }
231
232 static void i3000_check(struct mem_ctl_info *mci)
233 {
234         struct i3000_error_info info;
235
236         debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
237         i3000_get_error_info(mci, &info);
238         i3000_process_error_info(mci, &info, 1);
239 }
240
241 static int i3000_is_interleaved(const unsigned char *c0dra,
242                                 const unsigned char *c1dra,
243                                 const unsigned char *c0drb,
244                                 const unsigned char *c1drb)
245 {
246         int i;
247
248         /* If the channels aren't populated identically then
249          * we're not interleaved.
250          */
251         for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
252                 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
253                     EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
254                         return 0;
255
256         /* If the rank boundaries for the two channels are different
257          * then we're not interleaved.
258          */
259         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
260                 if (c0drb[i] != c1drb[i])
261                         return 0;
262
263         return 1;
264 }
265
266 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
267 {
268         int rc;
269         int i;
270         struct mem_ctl_info *mci = NULL;
271         unsigned long last_cumul_size;
272         int interleaved, nr_channels;
273         unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
274         unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
275         unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
276         unsigned long mchbar;
277         void *window;
278
279         debugf0("MC: %s()\n", __func__);
280
281         pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
282         mchbar &= I3000_MCHBAR_MASK;
283         window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
284         if (!window) {
285                 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
286                        mchbar);
287                 return -ENODEV;
288         }
289
290         c0dra[0] = readb(window + I3000_C0DRA + 0);     /* ranks 0,1 */
291         c0dra[1] = readb(window + I3000_C0DRA + 1);     /* ranks 2,3 */
292         c1dra[0] = readb(window + I3000_C1DRA + 0);     /* ranks 0,1 */
293         c1dra[1] = readb(window + I3000_C1DRA + 1);     /* ranks 2,3 */
294
295         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
296                 c0drb[i] = readb(window + I3000_C0DRB + i);
297                 c1drb[i] = readb(window + I3000_C1DRB + i);
298         }
299
300         iounmap(window);
301
302         /* Figure out how many channels we have.
303          *
304          * If we have what the datasheet calls "asymmetric channels"
305          * (essentially the same as what was called "virtual single
306          * channel mode" in the i82875) then it's a single channel as
307          * far as EDAC is concerned.
308          */
309         interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
310         nr_channels = interleaved ? 2 : 1;
311         mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
312         if (!mci)
313                 return -ENOMEM;
314
315         debugf3("MC: %s(): init mci\n", __func__);
316
317         mci->dev = &pdev->dev;
318         mci->mtype_cap = MEM_FLAG_DDR2;
319
320         mci->edac_ctl_cap = EDAC_FLAG_SECDED;
321         mci->edac_cap = EDAC_FLAG_SECDED;
322
323         mci->mod_name = EDAC_MOD_STR;
324         mci->mod_ver = I3000_REVISION;
325         mci->ctl_name = i3000_devs[dev_idx].ctl_name;
326         mci->dev_name = pci_name(pdev);
327         mci->edac_check = i3000_check;
328         mci->ctl_page_to_phys = NULL;
329
330         /*
331          * The dram rank boundary (DRB) reg values are boundary addresses
332          * for each DRAM rank with a granularity of 32MB.  DRB regs are
333          * cumulative; the last one will contain the total memory
334          * contained in all ranks.
335          *
336          * If we're in interleaved mode then we're only walking through
337          * the ranks of controller 0, so we double all the values we see.
338          */
339         for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
340                 u8 value;
341                 u32 cumul_size;
342                 struct csrow_info *csrow = &mci->csrows[i];
343
344                 value = drb[i];
345                 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
346                 if (interleaved)
347                         cumul_size <<= 1;
348                 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
349                         __func__, i, cumul_size);
350                 if (cumul_size == last_cumul_size) {
351                         csrow->mtype = MEM_EMPTY;
352                         continue;
353                 }
354
355                 csrow->first_page = last_cumul_size;
356                 csrow->last_page = cumul_size - 1;
357                 csrow->nr_pages = cumul_size - last_cumul_size;
358                 last_cumul_size = cumul_size;
359                 csrow->grain = I3000_DEAP_GRAIN;
360                 csrow->mtype = MEM_DDR2;
361                 csrow->dtype = DEV_UNKNOWN;
362                 csrow->edac_mode = EDAC_UNKNOWN;
363         }
364
365         /* Clear any error bits.
366          * (Yes, we really clear bits by writing 1 to them.)
367          */
368         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
369                          I3000_ERRSTS_BITS);
370
371         rc = -ENODEV;
372         if (edac_mc_add_mc(mci, 0)) {
373                 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
374                 goto fail;
375         }
376
377         /* allocating generic PCI control info */
378         i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
379         if (!i3000_pci) {
380                 printk(KERN_WARNING
381                         "%s(): Unable to create PCI control\n",
382                         __func__);
383                 printk(KERN_WARNING
384                         "%s(): PCI error report via EDAC not setup\n",
385                         __func__);
386         }
387
388         /* get this far and it's successful */
389         debugf3("MC: %s(): success\n", __func__);
390         return 0;
391
392       fail:
393         if (mci)
394                 edac_mc_free(mci);
395
396         return rc;
397 }
398
399 /* returns count (>= 0), or negative on error */
400 static int __devinit i3000_init_one(struct pci_dev *pdev,
401                                     const struct pci_device_id *ent)
402 {
403         int rc;
404
405         debugf0("MC: %s()\n", __func__);
406
407         if (pci_enable_device(pdev) < 0)
408                 return -EIO;
409
410         rc = i3000_probe1(pdev, ent->driver_data);
411         if (mci_pdev == NULL)
412                 mci_pdev = pci_dev_get(pdev);
413
414         return rc;
415 }
416
417 static void __devexit i3000_remove_one(struct pci_dev *pdev)
418 {
419         struct mem_ctl_info *mci;
420
421         debugf0("%s()\n", __func__);
422
423         if (i3000_pci)
424                 edac_pci_release_generic_ctl(i3000_pci);
425
426         if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
427                 return;
428
429         edac_mc_free(mci);
430 }
431
432 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
433         {
434          PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
435          I3000},
436         {
437          0,
438          }                      /* 0 terminated list. */
439 };
440
441 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
442
443 static struct pci_driver i3000_driver = {
444         .name = EDAC_MOD_STR,
445         .probe = i3000_init_one,
446         .remove = __devexit_p(i3000_remove_one),
447         .id_table = i3000_pci_tbl,
448 };
449
450 static int __init i3000_init(void)
451 {
452         int pci_rc;
453
454         debugf3("MC: %s()\n", __func__);
455         pci_rc = pci_register_driver(&i3000_driver);
456         if (pci_rc < 0)
457                 goto fail0;
458
459         if (mci_pdev == NULL) {
460                 i3000_registered = 0;
461                 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
462                                           PCI_DEVICE_ID_INTEL_3000_HB, NULL);
463                 if (!mci_pdev) {
464                         debugf0("i3000 pci_get_device fail\n");
465                         pci_rc = -ENODEV;
466                         goto fail1;
467                 }
468
469                 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
470                 if (pci_rc < 0) {
471                         debugf0("i3000 init fail\n");
472                         pci_rc = -ENODEV;
473                         goto fail1;
474                 }
475         }
476
477         return 0;
478
479       fail1:
480         pci_unregister_driver(&i3000_driver);
481
482       fail0:
483         if (mci_pdev)
484                 pci_dev_put(mci_pdev);
485
486         return pci_rc;
487 }
488
489 static void __exit i3000_exit(void)
490 {
491         debugf3("MC: %s()\n", __func__);
492
493         pci_unregister_driver(&i3000_driver);
494         if (!i3000_registered) {
495                 i3000_remove_one(mci_pdev);
496                 pci_dev_put(mci_pdev);
497         }
498 }
499
500 module_init(i3000_init);
501 module_exit(i3000_exit);
502
503 MODULE_LICENSE("GPL");
504 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
505 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");