Merge branch 'topic/sc6000' into for-linus
[linux-2.6] / arch / x86 / kernel / apic / io_apic.c
1 /*
2  *      Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *      Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *      Many thanks to Stig Venaas for trying out countless experimental
7  *      patches and reporting/debugging problems patiently!
8  *
9  *      (c) 1999, Multiple IO-APIC support, developed by
10  *      Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *      further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *      and Ingo Molnar <mingo@redhat.com>
14  *
15  *      Fixes
16  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs;
17  *                                      thanks to Eric Gilmore
18  *                                      and Rolf G. Tews
19  *                                      for testing these extensively
20  *      Paul Diefenbaugh        :       Added full ACPI support
21  */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>      /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
64
65 #include <asm/apic.h>
66
67 #define __apicdebuginit(type) static type __init
68
69 /*
70  *      Is the SiS APIC rmw bug present ?
71  *      -1 = don't know, 0 = no, 1 = yes
72  */
73 int sis_apic_bug = -1;
74
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
77
78 /*
79  * # of IRQ routing registers
80  */
81 int nr_ioapic_registers[MAX_IO_APICS];
82
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
86
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
89
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
92
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
96
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
98
99 int skip_ioapic_setup;
100
101 void arch_disable_smp_support(void)
102 {
103 #ifdef CONFIG_PCI
104         noioapicquirk = 1;
105         noioapicreroute = -1;
106 #endif
107         skip_ioapic_setup = 1;
108 }
109
110 static int __init parse_noapic(char *str)
111 {
112         /* disable IO-APIC */
113         arch_disable_smp_support();
114         return 0;
115 }
116 early_param("noapic", parse_noapic);
117
118 struct irq_pin_list;
119
120 /*
121  * This is performance-critical, we want to do it O(1)
122  *
123  * the indexing order of this array favors 1:1 mappings
124  * between pins and IRQs.
125  */
126
127 struct irq_pin_list {
128         int apic, pin;
129         struct irq_pin_list *next;
130 };
131
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
133 {
134         struct irq_pin_list *pin;
135         int node;
136
137         node = cpu_to_node(cpu);
138
139         pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140
141         return pin;
142 }
143
144 struct irq_cfg {
145         struct irq_pin_list *irq_2_pin;
146         cpumask_var_t domain;
147         cpumask_var_t old_domain;
148         unsigned move_cleanup_count;
149         u8 vector;
150         u8 move_in_progress : 1;
151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
152         u8 move_desc_pending : 1;
153 #endif
154 };
155
156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
157 #ifdef CONFIG_SPARSE_IRQ
158 static struct irq_cfg irq_cfgx[] = {
159 #else
160 static struct irq_cfg irq_cfgx[NR_IRQS] = {
161 #endif
162         [0]  = { .vector = IRQ0_VECTOR,  },
163         [1]  = { .vector = IRQ1_VECTOR,  },
164         [2]  = { .vector = IRQ2_VECTOR,  },
165         [3]  = { .vector = IRQ3_VECTOR,  },
166         [4]  = { .vector = IRQ4_VECTOR,  },
167         [5]  = { .vector = IRQ5_VECTOR,  },
168         [6]  = { .vector = IRQ6_VECTOR,  },
169         [7]  = { .vector = IRQ7_VECTOR,  },
170         [8]  = { .vector = IRQ8_VECTOR,  },
171         [9]  = { .vector = IRQ9_VECTOR,  },
172         [10] = { .vector = IRQ10_VECTOR, },
173         [11] = { .vector = IRQ11_VECTOR, },
174         [12] = { .vector = IRQ12_VECTOR, },
175         [13] = { .vector = IRQ13_VECTOR, },
176         [14] = { .vector = IRQ14_VECTOR, },
177         [15] = { .vector = IRQ15_VECTOR, },
178 };
179
180 int __init arch_early_irq_init(void)
181 {
182         struct irq_cfg *cfg;
183         struct irq_desc *desc;
184         int count;
185         int i;
186
187         cfg = irq_cfgx;
188         count = ARRAY_SIZE(irq_cfgx);
189
190         for (i = 0; i < count; i++) {
191                 desc = irq_to_desc(i);
192                 desc->chip_data = &cfg[i];
193                 alloc_bootmem_cpumask_var(&cfg[i].domain);
194                 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
195                 if (i < NR_IRQS_LEGACY)
196                         cpumask_setall(cfg[i].domain);
197         }
198
199         return 0;
200 }
201
202 #ifdef CONFIG_SPARSE_IRQ
203 static struct irq_cfg *irq_cfg(unsigned int irq)
204 {
205         struct irq_cfg *cfg = NULL;
206         struct irq_desc *desc;
207
208         desc = irq_to_desc(irq);
209         if (desc)
210                 cfg = desc->chip_data;
211
212         return cfg;
213 }
214
215 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
216 {
217         struct irq_cfg *cfg;
218         int node;
219
220         node = cpu_to_node(cpu);
221
222         cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
223         if (cfg) {
224                 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
225                         kfree(cfg);
226                         cfg = NULL;
227                 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
228                                                           GFP_ATOMIC, node)) {
229                         free_cpumask_var(cfg->domain);
230                         kfree(cfg);
231                         cfg = NULL;
232                 } else {
233                         cpumask_clear(cfg->domain);
234                         cpumask_clear(cfg->old_domain);
235                 }
236         }
237
238         return cfg;
239 }
240
241 int arch_init_chip_data(struct irq_desc *desc, int cpu)
242 {
243         struct irq_cfg *cfg;
244
245         cfg = desc->chip_data;
246         if (!cfg) {
247                 desc->chip_data = get_one_free_irq_cfg(cpu);
248                 if (!desc->chip_data) {
249                         printk(KERN_ERR "can not alloc irq_cfg\n");
250                         BUG_ON(1);
251                 }
252         }
253
254         return 0;
255 }
256
257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
258
259 static void
260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
261 {
262         struct irq_pin_list *old_entry, *head, *tail, *entry;
263
264         cfg->irq_2_pin = NULL;
265         old_entry = old_cfg->irq_2_pin;
266         if (!old_entry)
267                 return;
268
269         entry = get_one_free_irq_2_pin(cpu);
270         if (!entry)
271                 return;
272
273         entry->apic     = old_entry->apic;
274         entry->pin      = old_entry->pin;
275         head            = entry;
276         tail            = entry;
277         old_entry       = old_entry->next;
278         while (old_entry) {
279                 entry = get_one_free_irq_2_pin(cpu);
280                 if (!entry) {
281                         entry = head;
282                         while (entry) {
283                                 head = entry->next;
284                                 kfree(entry);
285                                 entry = head;
286                         }
287                         /* still use the old one */
288                         return;
289                 }
290                 entry->apic     = old_entry->apic;
291                 entry->pin      = old_entry->pin;
292                 tail->next      = entry;
293                 tail            = entry;
294                 old_entry       = old_entry->next;
295         }
296
297         tail->next = NULL;
298         cfg->irq_2_pin = head;
299 }
300
301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
302 {
303         struct irq_pin_list *entry, *next;
304
305         if (old_cfg->irq_2_pin == cfg->irq_2_pin)
306                 return;
307
308         entry = old_cfg->irq_2_pin;
309
310         while (entry) {
311                 next = entry->next;
312                 kfree(entry);
313                 entry = next;
314         }
315         old_cfg->irq_2_pin = NULL;
316 }
317
318 void arch_init_copy_chip_data(struct irq_desc *old_desc,
319                                  struct irq_desc *desc, int cpu)
320 {
321         struct irq_cfg *cfg;
322         struct irq_cfg *old_cfg;
323
324         cfg = get_one_free_irq_cfg(cpu);
325
326         if (!cfg)
327                 return;
328
329         desc->chip_data = cfg;
330
331         old_cfg = old_desc->chip_data;
332
333         memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
334
335         init_copy_irq_2_pin(old_cfg, cfg, cpu);
336 }
337
338 static void free_irq_cfg(struct irq_cfg *old_cfg)
339 {
340         kfree(old_cfg);
341 }
342
343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
344 {
345         struct irq_cfg *old_cfg, *cfg;
346
347         old_cfg = old_desc->chip_data;
348         cfg = desc->chip_data;
349
350         if (old_cfg == cfg)
351                 return;
352
353         if (old_cfg) {
354                 free_irq_2_pin(old_cfg, cfg);
355                 free_irq_cfg(old_cfg);
356                 old_desc->chip_data = NULL;
357         }
358 }
359
360 static void
361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
362 {
363         struct irq_cfg *cfg = desc->chip_data;
364
365         if (!cfg->move_in_progress) {
366                 /* it means that domain is not changed */
367                 if (!cpumask_intersects(desc->affinity, mask))
368                         cfg->move_desc_pending = 1;
369         }
370 }
371 #endif
372
373 #else
374 static struct irq_cfg *irq_cfg(unsigned int irq)
375 {
376         return irq < nr_irqs ? irq_cfgx + irq : NULL;
377 }
378
379 #endif
380
381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
382 static inline void
383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
384 {
385 }
386 #endif
387
388 struct io_apic {
389         unsigned int index;
390         unsigned int unused[3];
391         unsigned int data;
392         unsigned int unused2[11];
393         unsigned int eoi;
394 };
395
396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
397 {
398         return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
399                 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
400 }
401
402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
403 {
404         struct io_apic __iomem *io_apic = io_apic_base(apic);
405         writel(vector, &io_apic->eoi);
406 }
407
408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
409 {
410         struct io_apic __iomem *io_apic = io_apic_base(apic);
411         writel(reg, &io_apic->index);
412         return readl(&io_apic->data);
413 }
414
415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
416 {
417         struct io_apic __iomem *io_apic = io_apic_base(apic);
418         writel(reg, &io_apic->index);
419         writel(value, &io_apic->data);
420 }
421
422 /*
423  * Re-write a value: to be used for read-modify-write
424  * cycles where the read already set up the index register.
425  *
426  * Older SiS APIC requires we rewrite the index register
427  */
428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
429 {
430         struct io_apic __iomem *io_apic = io_apic_base(apic);
431
432         if (sis_apic_bug)
433                 writel(reg, &io_apic->index);
434         writel(value, &io_apic->data);
435 }
436
437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
438 {
439         struct irq_pin_list *entry;
440         unsigned long flags;
441
442         spin_lock_irqsave(&ioapic_lock, flags);
443         entry = cfg->irq_2_pin;
444         for (;;) {
445                 unsigned int reg;
446                 int pin;
447
448                 if (!entry)
449                         break;
450                 pin = entry->pin;
451                 reg = io_apic_read(entry->apic, 0x10 + pin*2);
452                 /* Is the remote IRR bit set? */
453                 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
454                         spin_unlock_irqrestore(&ioapic_lock, flags);
455                         return true;
456                 }
457                 if (!entry->next)
458                         break;
459                 entry = entry->next;
460         }
461         spin_unlock_irqrestore(&ioapic_lock, flags);
462
463         return false;
464 }
465
466 union entry_union {
467         struct { u32 w1, w2; };
468         struct IO_APIC_route_entry entry;
469 };
470
471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
472 {
473         union entry_union eu;
474         unsigned long flags;
475         spin_lock_irqsave(&ioapic_lock, flags);
476         eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
477         eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
478         spin_unlock_irqrestore(&ioapic_lock, flags);
479         return eu.entry;
480 }
481
482 /*
483  * When we write a new IO APIC routing entry, we need to write the high
484  * word first! If the mask bit in the low word is clear, we will enable
485  * the interrupt, and we need to make sure the entry is fully populated
486  * before that happens.
487  */
488 static void
489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
490 {
491         union entry_union eu;
492         eu.entry = e;
493         io_apic_write(apic, 0x11 + 2*pin, eu.w2);
494         io_apic_write(apic, 0x10 + 2*pin, eu.w1);
495 }
496
497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
498 {
499         unsigned long flags;
500         spin_lock_irqsave(&ioapic_lock, flags);
501         __ioapic_write_entry(apic, pin, e);
502         spin_unlock_irqrestore(&ioapic_lock, flags);
503 }
504
505 /*
506  * When we mask an IO APIC routing entry, we need to write the low
507  * word first, in order to set the mask bit before we change the
508  * high bits!
509  */
510 static void ioapic_mask_entry(int apic, int pin)
511 {
512         unsigned long flags;
513         union entry_union eu = { .entry.mask = 1 };
514
515         spin_lock_irqsave(&ioapic_lock, flags);
516         io_apic_write(apic, 0x10 + 2*pin, eu.w1);
517         io_apic_write(apic, 0x11 + 2*pin, eu.w2);
518         spin_unlock_irqrestore(&ioapic_lock, flags);
519 }
520
521 #ifdef CONFIG_SMP
522 static void send_cleanup_vector(struct irq_cfg *cfg)
523 {
524         cpumask_var_t cleanup_mask;
525
526         if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
527                 unsigned int i;
528                 cfg->move_cleanup_count = 0;
529                 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
530                         cfg->move_cleanup_count++;
531                 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
532                         apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
533         } else {
534                 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
535                 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
536                 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
537                 free_cpumask_var(cleanup_mask);
538         }
539         cfg->move_in_progress = 0;
540 }
541
542 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
543 {
544         int apic, pin;
545         struct irq_pin_list *entry;
546         u8 vector = cfg->vector;
547
548         entry = cfg->irq_2_pin;
549         for (;;) {
550                 unsigned int reg;
551
552                 if (!entry)
553                         break;
554
555                 apic = entry->apic;
556                 pin = entry->pin;
557                 /*
558                  * With interrupt-remapping, destination information comes
559                  * from interrupt-remapping table entry.
560                  */
561                 if (!irq_remapped(irq))
562                         io_apic_write(apic, 0x11 + pin*2, dest);
563                 reg = io_apic_read(apic, 0x10 + pin*2);
564                 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
565                 reg |= vector;
566                 io_apic_modify(apic, 0x10 + pin*2, reg);
567                 if (!entry->next)
568                         break;
569                 entry = entry->next;
570         }
571 }
572
573 static int
574 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
575
576 /*
577  * Either sets desc->affinity to a valid value, and returns
578  * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
579  * leaves desc->affinity untouched.
580  */
581 static unsigned int
582 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
583 {
584         struct irq_cfg *cfg;
585         unsigned int irq;
586
587         if (!cpumask_intersects(mask, cpu_online_mask))
588                 return BAD_APICID;
589
590         irq = desc->irq;
591         cfg = desc->chip_data;
592         if (assign_irq_vector(irq, cfg, mask))
593                 return BAD_APICID;
594
595         /* check that before desc->addinity get updated */
596         set_extra_move_desc(desc, mask);
597
598         cpumask_copy(desc->affinity, mask);
599
600         return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
601 }
602
603 static void
604 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
605 {
606         struct irq_cfg *cfg;
607         unsigned long flags;
608         unsigned int dest;
609         unsigned int irq;
610
611         irq = desc->irq;
612         cfg = desc->chip_data;
613
614         spin_lock_irqsave(&ioapic_lock, flags);
615         dest = set_desc_affinity(desc, mask);
616         if (dest != BAD_APICID) {
617                 /* Only the high 8 bits are valid. */
618                 dest = SET_APIC_LOGICAL_ID(dest);
619                 __target_IO_APIC_irq(irq, dest, cfg);
620         }
621         spin_unlock_irqrestore(&ioapic_lock, flags);
622 }
623
624 static void
625 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
626 {
627         struct irq_desc *desc;
628
629         desc = irq_to_desc(irq);
630
631         set_ioapic_affinity_irq_desc(desc, mask);
632 }
633 #endif /* CONFIG_SMP */
634
635 /*
636  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
637  * shared ISA-space IRQs, so we have to support them. We are super
638  * fast in the common case, and fast for shared ISA-space IRQs.
639  */
640 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
641 {
642         struct irq_pin_list *entry;
643
644         entry = cfg->irq_2_pin;
645         if (!entry) {
646                 entry = get_one_free_irq_2_pin(cpu);
647                 if (!entry) {
648                         printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
649                                         apic, pin);
650                         return;
651                 }
652                 cfg->irq_2_pin = entry;
653                 entry->apic = apic;
654                 entry->pin = pin;
655                 return;
656         }
657
658         while (entry->next) {
659                 /* not again, please */
660                 if (entry->apic == apic && entry->pin == pin)
661                         return;
662
663                 entry = entry->next;
664         }
665
666         entry->next = get_one_free_irq_2_pin(cpu);
667         entry = entry->next;
668         entry->apic = apic;
669         entry->pin = pin;
670 }
671
672 /*
673  * Reroute an IRQ to a different pin.
674  */
675 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
676                                       int oldapic, int oldpin,
677                                       int newapic, int newpin)
678 {
679         struct irq_pin_list *entry = cfg->irq_2_pin;
680         int replaced = 0;
681
682         while (entry) {
683                 if (entry->apic == oldapic && entry->pin == oldpin) {
684                         entry->apic = newapic;
685                         entry->pin = newpin;
686                         replaced = 1;
687                         /* every one is different, right? */
688                         break;
689                 }
690                 entry = entry->next;
691         }
692
693         /* why? call replace before add? */
694         if (!replaced)
695                 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
696 }
697
698 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
699                                 int mask_and, int mask_or,
700                                 void (*final)(struct irq_pin_list *entry))
701 {
702         int pin;
703         struct irq_pin_list *entry;
704
705         for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
706                 unsigned int reg;
707                 pin = entry->pin;
708                 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
709                 reg &= mask_and;
710                 reg |= mask_or;
711                 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
712                 if (final)
713                         final(entry);
714         }
715 }
716
717 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
718 {
719         io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
720 }
721
722 #ifdef CONFIG_X86_64
723 static void io_apic_sync(struct irq_pin_list *entry)
724 {
725         /*
726          * Synchronize the IO-APIC and the CPU by doing
727          * a dummy read from the IO-APIC
728          */
729         struct io_apic __iomem *io_apic;
730         io_apic = io_apic_base(entry->apic);
731         readl(&io_apic->data);
732 }
733
734 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
735 {
736         io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
737 }
738 #else /* CONFIG_X86_32 */
739 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
740 {
741         io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
742 }
743
744 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
745 {
746         io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
747                         IO_APIC_REDIR_MASKED, NULL);
748 }
749
750 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
751 {
752         io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
753                         IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
754 }
755 #endif /* CONFIG_X86_32 */
756
757 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
758 {
759         struct irq_cfg *cfg = desc->chip_data;
760         unsigned long flags;
761
762         BUG_ON(!cfg);
763
764         spin_lock_irqsave(&ioapic_lock, flags);
765         __mask_IO_APIC_irq(cfg);
766         spin_unlock_irqrestore(&ioapic_lock, flags);
767 }
768
769 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
770 {
771         struct irq_cfg *cfg = desc->chip_data;
772         unsigned long flags;
773
774         spin_lock_irqsave(&ioapic_lock, flags);
775         __unmask_IO_APIC_irq(cfg);
776         spin_unlock_irqrestore(&ioapic_lock, flags);
777 }
778
779 static void mask_IO_APIC_irq(unsigned int irq)
780 {
781         struct irq_desc *desc = irq_to_desc(irq);
782
783         mask_IO_APIC_irq_desc(desc);
784 }
785 static void unmask_IO_APIC_irq(unsigned int irq)
786 {
787         struct irq_desc *desc = irq_to_desc(irq);
788
789         unmask_IO_APIC_irq_desc(desc);
790 }
791
792 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
793 {
794         struct IO_APIC_route_entry entry;
795
796         /* Check delivery_mode to be sure we're not clearing an SMI pin */
797         entry = ioapic_read_entry(apic, pin);
798         if (entry.delivery_mode == dest_SMI)
799                 return;
800         /*
801          * Disable it in the IO-APIC irq-routing table:
802          */
803         ioapic_mask_entry(apic, pin);
804 }
805
806 static void clear_IO_APIC (void)
807 {
808         int apic, pin;
809
810         for (apic = 0; apic < nr_ioapics; apic++)
811                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
812                         clear_IO_APIC_pin(apic, pin);
813 }
814
815 #ifdef CONFIG_X86_32
816 /*
817  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
818  * specific CPU-side IRQs.
819  */
820
821 #define MAX_PIRQS 8
822 static int pirq_entries[MAX_PIRQS] = {
823         [0 ... MAX_PIRQS - 1] = -1
824 };
825
826 static int __init ioapic_pirq_setup(char *str)
827 {
828         int i, max;
829         int ints[MAX_PIRQS+1];
830
831         get_options(str, ARRAY_SIZE(ints), ints);
832
833         apic_printk(APIC_VERBOSE, KERN_INFO
834                         "PIRQ redirection, working around broken MP-BIOS.\n");
835         max = MAX_PIRQS;
836         if (ints[0] < MAX_PIRQS)
837                 max = ints[0];
838
839         for (i = 0; i < max; i++) {
840                 apic_printk(APIC_VERBOSE, KERN_DEBUG
841                                 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
842                 /*
843                  * PIRQs are mapped upside down, usually.
844                  */
845                 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
846         }
847         return 1;
848 }
849
850 __setup("pirq=", ioapic_pirq_setup);
851 #endif /* CONFIG_X86_32 */
852
853 #ifdef CONFIG_INTR_REMAP
854 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
855 {
856         int apic;
857         struct IO_APIC_route_entry **ioapic_entries;
858
859         ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
860                                 GFP_ATOMIC);
861         if (!ioapic_entries)
862                 return 0;
863
864         for (apic = 0; apic < nr_ioapics; apic++) {
865                 ioapic_entries[apic] =
866                         kzalloc(sizeof(struct IO_APIC_route_entry) *
867                                 nr_ioapic_registers[apic], GFP_ATOMIC);
868                 if (!ioapic_entries[apic])
869                         goto nomem;
870         }
871
872         return ioapic_entries;
873
874 nomem:
875         while (--apic >= 0)
876                 kfree(ioapic_entries[apic]);
877         kfree(ioapic_entries);
878
879         return 0;
880 }
881
882 /*
883  * Saves all the IO-APIC RTE's
884  */
885 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
886 {
887         int apic, pin;
888
889         if (!ioapic_entries)
890                 return -ENOMEM;
891
892         for (apic = 0; apic < nr_ioapics; apic++) {
893                 if (!ioapic_entries[apic])
894                         return -ENOMEM;
895
896                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
897                         ioapic_entries[apic][pin] =
898                                 ioapic_read_entry(apic, pin);
899         }
900
901         return 0;
902 }
903
904 /*
905  * Mask all IO APIC entries.
906  */
907 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
908 {
909         int apic, pin;
910
911         if (!ioapic_entries)
912                 return;
913
914         for (apic = 0; apic < nr_ioapics; apic++) {
915                 if (!ioapic_entries[apic])
916                         break;
917
918                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
919                         struct IO_APIC_route_entry entry;
920
921                         entry = ioapic_entries[apic][pin];
922                         if (!entry.mask) {
923                                 entry.mask = 1;
924                                 ioapic_write_entry(apic, pin, entry);
925                         }
926                 }
927         }
928 }
929
930 /*
931  * Restore IO APIC entries which was saved in ioapic_entries.
932  */
933 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
934 {
935         int apic, pin;
936
937         if (!ioapic_entries)
938                 return -ENOMEM;
939
940         for (apic = 0; apic < nr_ioapics; apic++) {
941                 if (!ioapic_entries[apic])
942                         return -ENOMEM;
943
944                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
945                         ioapic_write_entry(apic, pin,
946                                         ioapic_entries[apic][pin]);
947         }
948         return 0;
949 }
950
951 void reinit_intr_remapped_IO_APIC(int intr_remapping,
952         struct IO_APIC_route_entry **ioapic_entries)
953
954 {
955         /*
956          * for now plain restore of previous settings.
957          * TBD: In the case of OS enabling interrupt-remapping,
958          * IO-APIC RTE's need to be setup to point to interrupt-remapping
959          * table entries. for now, do a plain restore, and wait for
960          * the setup_IO_APIC_irqs() to do proper initialization.
961          */
962         restore_IO_APIC_setup(ioapic_entries);
963 }
964
965 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
966 {
967         int apic;
968
969         for (apic = 0; apic < nr_ioapics; apic++)
970                 kfree(ioapic_entries[apic]);
971
972         kfree(ioapic_entries);
973 }
974 #endif
975
976 /*
977  * Find the IRQ entry number of a certain pin.
978  */
979 static int find_irq_entry(int apic, int pin, int type)
980 {
981         int i;
982
983         for (i = 0; i < mp_irq_entries; i++)
984                 if (mp_irqs[i].irqtype == type &&
985                     (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
986                      mp_irqs[i].dstapic == MP_APIC_ALL) &&
987                     mp_irqs[i].dstirq == pin)
988                         return i;
989
990         return -1;
991 }
992
993 /*
994  * Find the pin to which IRQ[irq] (ISA) is connected
995  */
996 static int __init find_isa_irq_pin(int irq, int type)
997 {
998         int i;
999
1000         for (i = 0; i < mp_irq_entries; i++) {
1001                 int lbus = mp_irqs[i].srcbus;
1002
1003                 if (test_bit(lbus, mp_bus_not_pci) &&
1004                     (mp_irqs[i].irqtype == type) &&
1005                     (mp_irqs[i].srcbusirq == irq))
1006
1007                         return mp_irqs[i].dstirq;
1008         }
1009         return -1;
1010 }
1011
1012 static int __init find_isa_irq_apic(int irq, int type)
1013 {
1014         int i;
1015
1016         for (i = 0; i < mp_irq_entries; i++) {
1017                 int lbus = mp_irqs[i].srcbus;
1018
1019                 if (test_bit(lbus, mp_bus_not_pci) &&
1020                     (mp_irqs[i].irqtype == type) &&
1021                     (mp_irqs[i].srcbusirq == irq))
1022                         break;
1023         }
1024         if (i < mp_irq_entries) {
1025                 int apic;
1026                 for(apic = 0; apic < nr_ioapics; apic++) {
1027                         if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
1028                                 return apic;
1029                 }
1030         }
1031
1032         return -1;
1033 }
1034
1035 /*
1036  * Find a specific PCI IRQ entry.
1037  * Not an __init, possibly needed by modules
1038  */
1039 static int pin_2_irq(int idx, int apic, int pin);
1040
1041 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1042 {
1043         int apic, i, best_guess = -1;
1044
1045         apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1046                 bus, slot, pin);
1047         if (test_bit(bus, mp_bus_not_pci)) {
1048                 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1049                 return -1;
1050         }
1051         for (i = 0; i < mp_irq_entries; i++) {
1052                 int lbus = mp_irqs[i].srcbus;
1053
1054                 for (apic = 0; apic < nr_ioapics; apic++)
1055                         if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1056                             mp_irqs[i].dstapic == MP_APIC_ALL)
1057                                 break;
1058
1059                 if (!test_bit(lbus, mp_bus_not_pci) &&
1060                     !mp_irqs[i].irqtype &&
1061                     (bus == lbus) &&
1062                     (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1063                         int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1064
1065                         if (!(apic || IO_APIC_IRQ(irq)))
1066                                 continue;
1067
1068                         if (pin == (mp_irqs[i].srcbusirq & 3))
1069                                 return irq;
1070                         /*
1071                          * Use the first all-but-pin matching entry as a
1072                          * best-guess fuzzy result for broken mptables.
1073                          */
1074                         if (best_guess < 0)
1075                                 best_guess = irq;
1076                 }
1077         }
1078         return best_guess;
1079 }
1080
1081 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1082
1083 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1084 /*
1085  * EISA Edge/Level control register, ELCR
1086  */
1087 static int EISA_ELCR(unsigned int irq)
1088 {
1089         if (irq < NR_IRQS_LEGACY) {
1090                 unsigned int port = 0x4d0 + (irq >> 3);
1091                 return (inb(port) >> (irq & 7)) & 1;
1092         }
1093         apic_printk(APIC_VERBOSE, KERN_INFO
1094                         "Broken MPtable reports ISA irq %d\n", irq);
1095         return 0;
1096 }
1097
1098 #endif
1099
1100 /* ISA interrupts are always polarity zero edge triggered,
1101  * when listed as conforming in the MP table. */
1102
1103 #define default_ISA_trigger(idx)        (0)
1104 #define default_ISA_polarity(idx)       (0)
1105
1106 /* EISA interrupts are always polarity zero and can be edge or level
1107  * trigger depending on the ELCR value.  If an interrupt is listed as
1108  * EISA conforming in the MP table, that means its trigger type must
1109  * be read in from the ELCR */
1110
1111 #define default_EISA_trigger(idx)       (EISA_ELCR(mp_irqs[idx].srcbusirq))
1112 #define default_EISA_polarity(idx)      default_ISA_polarity(idx)
1113
1114 /* PCI interrupts are always polarity one level triggered,
1115  * when listed as conforming in the MP table. */
1116
1117 #define default_PCI_trigger(idx)        (1)
1118 #define default_PCI_polarity(idx)       (1)
1119
1120 /* MCA interrupts are always polarity zero level triggered,
1121  * when listed as conforming in the MP table. */
1122
1123 #define default_MCA_trigger(idx)        (1)
1124 #define default_MCA_polarity(idx)       default_ISA_polarity(idx)
1125
1126 static int MPBIOS_polarity(int idx)
1127 {
1128         int bus = mp_irqs[idx].srcbus;
1129         int polarity;
1130
1131         /*
1132          * Determine IRQ line polarity (high active or low active):
1133          */
1134         switch (mp_irqs[idx].irqflag & 3)
1135         {
1136                 case 0: /* conforms, ie. bus-type dependent polarity */
1137                         if (test_bit(bus, mp_bus_not_pci))
1138                                 polarity = default_ISA_polarity(idx);
1139                         else
1140                                 polarity = default_PCI_polarity(idx);
1141                         break;
1142                 case 1: /* high active */
1143                 {
1144                         polarity = 0;
1145                         break;
1146                 }
1147                 case 2: /* reserved */
1148                 {
1149                         printk(KERN_WARNING "broken BIOS!!\n");
1150                         polarity = 1;
1151                         break;
1152                 }
1153                 case 3: /* low active */
1154                 {
1155                         polarity = 1;
1156                         break;
1157                 }
1158                 default: /* invalid */
1159                 {
1160                         printk(KERN_WARNING "broken BIOS!!\n");
1161                         polarity = 1;
1162                         break;
1163                 }
1164         }
1165         return polarity;
1166 }
1167
1168 static int MPBIOS_trigger(int idx)
1169 {
1170         int bus = mp_irqs[idx].srcbus;
1171         int trigger;
1172
1173         /*
1174          * Determine IRQ trigger mode (edge or level sensitive):
1175          */
1176         switch ((mp_irqs[idx].irqflag>>2) & 3)
1177         {
1178                 case 0: /* conforms, ie. bus-type dependent */
1179                         if (test_bit(bus, mp_bus_not_pci))
1180                                 trigger = default_ISA_trigger(idx);
1181                         else
1182                                 trigger = default_PCI_trigger(idx);
1183 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1184                         switch (mp_bus_id_to_type[bus]) {
1185                                 case MP_BUS_ISA: /* ISA pin */
1186                                 {
1187                                         /* set before the switch */
1188                                         break;
1189                                 }
1190                                 case MP_BUS_EISA: /* EISA pin */
1191                                 {
1192                                         trigger = default_EISA_trigger(idx);
1193                                         break;
1194                                 }
1195                                 case MP_BUS_PCI: /* PCI pin */
1196                                 {
1197                                         /* set before the switch */
1198                                         break;
1199                                 }
1200                                 case MP_BUS_MCA: /* MCA pin */
1201                                 {
1202                                         trigger = default_MCA_trigger(idx);
1203                                         break;
1204                                 }
1205                                 default:
1206                                 {
1207                                         printk(KERN_WARNING "broken BIOS!!\n");
1208                                         trigger = 1;
1209                                         break;
1210                                 }
1211                         }
1212 #endif
1213                         break;
1214                 case 1: /* edge */
1215                 {
1216                         trigger = 0;
1217                         break;
1218                 }
1219                 case 2: /* reserved */
1220                 {
1221                         printk(KERN_WARNING "broken BIOS!!\n");
1222                         trigger = 1;
1223                         break;
1224                 }
1225                 case 3: /* level */
1226                 {
1227                         trigger = 1;
1228                         break;
1229                 }
1230                 default: /* invalid */
1231                 {
1232                         printk(KERN_WARNING "broken BIOS!!\n");
1233                         trigger = 0;
1234                         break;
1235                 }
1236         }
1237         return trigger;
1238 }
1239
1240 static inline int irq_polarity(int idx)
1241 {
1242         return MPBIOS_polarity(idx);
1243 }
1244
1245 static inline int irq_trigger(int idx)
1246 {
1247         return MPBIOS_trigger(idx);
1248 }
1249
1250 int (*ioapic_renumber_irq)(int ioapic, int irq);
1251 static int pin_2_irq(int idx, int apic, int pin)
1252 {
1253         int irq, i;
1254         int bus = mp_irqs[idx].srcbus;
1255
1256         /*
1257          * Debugging check, we are in big trouble if this message pops up!
1258          */
1259         if (mp_irqs[idx].dstirq != pin)
1260                 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1261
1262         if (test_bit(bus, mp_bus_not_pci)) {
1263                 irq = mp_irqs[idx].srcbusirq;
1264         } else {
1265                 /*
1266                  * PCI IRQs are mapped in order
1267                  */
1268                 i = irq = 0;
1269                 while (i < apic)
1270                         irq += nr_ioapic_registers[i++];
1271                 irq += pin;
1272                 /*
1273                  * For MPS mode, so far only needed by ES7000 platform
1274                  */
1275                 if (ioapic_renumber_irq)
1276                         irq = ioapic_renumber_irq(apic, irq);
1277         }
1278
1279 #ifdef CONFIG_X86_32
1280         /*
1281          * PCI IRQ command line redirection. Yes, limits are hardcoded.
1282          */
1283         if ((pin >= 16) && (pin <= 23)) {
1284                 if (pirq_entries[pin-16] != -1) {
1285                         if (!pirq_entries[pin-16]) {
1286                                 apic_printk(APIC_VERBOSE, KERN_DEBUG
1287                                                 "disabling PIRQ%d\n", pin-16);
1288                         } else {
1289                                 irq = pirq_entries[pin-16];
1290                                 apic_printk(APIC_VERBOSE, KERN_DEBUG
1291                                                 "using PIRQ%d -> IRQ %d\n",
1292                                                 pin-16, irq);
1293                         }
1294                 }
1295         }
1296 #endif
1297
1298         return irq;
1299 }
1300
1301 void lock_vector_lock(void)
1302 {
1303         /* Used to the online set of cpus does not change
1304          * during assign_irq_vector.
1305          */
1306         spin_lock(&vector_lock);
1307 }
1308
1309 void unlock_vector_lock(void)
1310 {
1311         spin_unlock(&vector_lock);
1312 }
1313
1314 static int
1315 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1316 {
1317         /*
1318          * NOTE! The local APIC isn't very good at handling
1319          * multiple interrupts at the same interrupt level.
1320          * As the interrupt level is determined by taking the
1321          * vector number and shifting that right by 4, we
1322          * want to spread these out a bit so that they don't
1323          * all fall in the same interrupt level.
1324          *
1325          * Also, we've got to be careful not to trash gate
1326          * 0x80, because int 0x80 is hm, kind of importantish. ;)
1327          */
1328         static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1329         unsigned int old_vector;
1330         int cpu, err;
1331         cpumask_var_t tmp_mask;
1332
1333         if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1334                 return -EBUSY;
1335
1336         if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1337                 return -ENOMEM;
1338
1339         old_vector = cfg->vector;
1340         if (old_vector) {
1341                 cpumask_and(tmp_mask, mask, cpu_online_mask);
1342                 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1343                 if (!cpumask_empty(tmp_mask)) {
1344                         free_cpumask_var(tmp_mask);
1345                         return 0;
1346                 }
1347         }
1348
1349         /* Only try and allocate irqs on cpus that are present */
1350         err = -ENOSPC;
1351         for_each_cpu_and(cpu, mask, cpu_online_mask) {
1352                 int new_cpu;
1353                 int vector, offset;
1354
1355                 apic->vector_allocation_domain(cpu, tmp_mask);
1356
1357                 vector = current_vector;
1358                 offset = current_offset;
1359 next:
1360                 vector += 8;
1361                 if (vector >= first_system_vector) {
1362                         /* If out of vectors on large boxen, must share them. */
1363                         offset = (offset + 1) % 8;
1364                         vector = FIRST_DEVICE_VECTOR + offset;
1365                 }
1366                 if (unlikely(current_vector == vector))
1367                         continue;
1368
1369                 if (test_bit(vector, used_vectors))
1370                         goto next;
1371
1372                 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1373                         if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1374                                 goto next;
1375                 /* Found one! */
1376                 current_vector = vector;
1377                 current_offset = offset;
1378                 if (old_vector) {
1379                         cfg->move_in_progress = 1;
1380                         cpumask_copy(cfg->old_domain, cfg->domain);
1381                 }
1382                 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1383                         per_cpu(vector_irq, new_cpu)[vector] = irq;
1384                 cfg->vector = vector;
1385                 cpumask_copy(cfg->domain, tmp_mask);
1386                 err = 0;
1387                 break;
1388         }
1389         free_cpumask_var(tmp_mask);
1390         return err;
1391 }
1392
1393 static int
1394 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1395 {
1396         int err;
1397         unsigned long flags;
1398
1399         spin_lock_irqsave(&vector_lock, flags);
1400         err = __assign_irq_vector(irq, cfg, mask);
1401         spin_unlock_irqrestore(&vector_lock, flags);
1402         return err;
1403 }
1404
1405 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1406 {
1407         int cpu, vector;
1408
1409         BUG_ON(!cfg->vector);
1410
1411         vector = cfg->vector;
1412         for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1413                 per_cpu(vector_irq, cpu)[vector] = -1;
1414
1415         cfg->vector = 0;
1416         cpumask_clear(cfg->domain);
1417
1418         if (likely(!cfg->move_in_progress))
1419                 return;
1420         for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1421                 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1422                                                                 vector++) {
1423                         if (per_cpu(vector_irq, cpu)[vector] != irq)
1424                                 continue;
1425                         per_cpu(vector_irq, cpu)[vector] = -1;
1426                         break;
1427                 }
1428         }
1429         cfg->move_in_progress = 0;
1430 }
1431
1432 void __setup_vector_irq(int cpu)
1433 {
1434         /* Initialize vector_irq on a new cpu */
1435         /* This function must be called with vector_lock held */
1436         int irq, vector;
1437         struct irq_cfg *cfg;
1438         struct irq_desc *desc;
1439
1440         /* Mark the inuse vectors */
1441         for_each_irq_desc(irq, desc) {
1442                 cfg = desc->chip_data;
1443                 if (!cpumask_test_cpu(cpu, cfg->domain))
1444                         continue;
1445                 vector = cfg->vector;
1446                 per_cpu(vector_irq, cpu)[vector] = irq;
1447         }
1448         /* Mark the free vectors */
1449         for (vector = 0; vector < NR_VECTORS; ++vector) {
1450                 irq = per_cpu(vector_irq, cpu)[vector];
1451                 if (irq < 0)
1452                         continue;
1453
1454                 cfg = irq_cfg(irq);
1455                 if (!cpumask_test_cpu(cpu, cfg->domain))
1456                         per_cpu(vector_irq, cpu)[vector] = -1;
1457         }
1458 }
1459
1460 static struct irq_chip ioapic_chip;
1461 static struct irq_chip ir_ioapic_chip;
1462
1463 #define IOAPIC_AUTO     -1
1464 #define IOAPIC_EDGE     0
1465 #define IOAPIC_LEVEL    1
1466
1467 #ifdef CONFIG_X86_32
1468 static inline int IO_APIC_irq_trigger(int irq)
1469 {
1470         int apic, idx, pin;
1471
1472         for (apic = 0; apic < nr_ioapics; apic++) {
1473                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1474                         idx = find_irq_entry(apic, pin, mp_INT);
1475                         if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1476                                 return irq_trigger(idx);
1477                 }
1478         }
1479         /*
1480          * nonexistent IRQs are edge default
1481          */
1482         return 0;
1483 }
1484 #else
1485 static inline int IO_APIC_irq_trigger(int irq)
1486 {
1487         return 1;
1488 }
1489 #endif
1490
1491 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1492 {
1493
1494         if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1495             trigger == IOAPIC_LEVEL)
1496                 desc->status |= IRQ_LEVEL;
1497         else
1498                 desc->status &= ~IRQ_LEVEL;
1499
1500         if (irq_remapped(irq)) {
1501                 desc->status |= IRQ_MOVE_PCNTXT;
1502                 if (trigger)
1503                         set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1504                                                       handle_fasteoi_irq,
1505                                                      "fasteoi");
1506                 else
1507                         set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1508                                                       handle_edge_irq, "edge");
1509                 return;
1510         }
1511
1512         if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1513             trigger == IOAPIC_LEVEL)
1514                 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1515                                               handle_fasteoi_irq,
1516                                               "fasteoi");
1517         else
1518                 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1519                                               handle_edge_irq, "edge");
1520 }
1521
1522 int setup_ioapic_entry(int apic_id, int irq,
1523                        struct IO_APIC_route_entry *entry,
1524                        unsigned int destination, int trigger,
1525                        int polarity, int vector, int pin)
1526 {
1527         /*
1528          * add it to the IO-APIC irq-routing table:
1529          */
1530         memset(entry,0,sizeof(*entry));
1531
1532         if (intr_remapping_enabled) {
1533                 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1534                 struct irte irte;
1535                 struct IR_IO_APIC_route_entry *ir_entry =
1536                         (struct IR_IO_APIC_route_entry *) entry;
1537                 int index;
1538
1539                 if (!iommu)
1540                         panic("No mapping iommu for ioapic %d\n", apic_id);
1541
1542                 index = alloc_irte(iommu, irq, 1);
1543                 if (index < 0)
1544                         panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1545
1546                 memset(&irte, 0, sizeof(irte));
1547
1548                 irte.present = 1;
1549                 irte.dst_mode = apic->irq_dest_mode;
1550                 /*
1551                  * Trigger mode in the IRTE will always be edge, and the
1552                  * actual level or edge trigger will be setup in the IO-APIC
1553                  * RTE. This will help simplify level triggered irq migration.
1554                  * For more details, see the comments above explainig IO-APIC
1555                  * irq migration in the presence of interrupt-remapping.
1556                  */
1557                 irte.trigger_mode = 0;
1558                 irte.dlvry_mode = apic->irq_delivery_mode;
1559                 irte.vector = vector;
1560                 irte.dest_id = IRTE_DEST(destination);
1561
1562                 modify_irte(irq, &irte);
1563
1564                 ir_entry->index2 = (index >> 15) & 0x1;
1565                 ir_entry->zero = 0;
1566                 ir_entry->format = 1;
1567                 ir_entry->index = (index & 0x7fff);
1568                 /*
1569                  * IO-APIC RTE will be configured with virtual vector.
1570                  * irq handler will do the explicit EOI to the io-apic.
1571                  */
1572                 ir_entry->vector = pin;
1573         } else {
1574                 entry->delivery_mode = apic->irq_delivery_mode;
1575                 entry->dest_mode = apic->irq_dest_mode;
1576                 entry->dest = destination;
1577                 entry->vector = vector;
1578         }
1579
1580         entry->mask = 0;                                /* enable IRQ */
1581         entry->trigger = trigger;
1582         entry->polarity = polarity;
1583
1584         /* Mask level triggered irqs.
1585          * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1586          */
1587         if (trigger)
1588                 entry->mask = 1;
1589         return 0;
1590 }
1591
1592 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1593                               int trigger, int polarity)
1594 {
1595         struct irq_cfg *cfg;
1596         struct IO_APIC_route_entry entry;
1597         unsigned int dest;
1598
1599         if (!IO_APIC_IRQ(irq))
1600                 return;
1601
1602         cfg = desc->chip_data;
1603
1604         if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1605                 return;
1606
1607         dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1608
1609         apic_printk(APIC_VERBOSE,KERN_DEBUG
1610                     "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1611                     "IRQ %d Mode:%i Active:%i)\n",
1612                     apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1613                     irq, trigger, polarity);
1614
1615
1616         if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1617                                dest, trigger, polarity, cfg->vector, pin)) {
1618                 printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1619                        mp_ioapics[apic_id].apicid, pin);
1620                 __clear_irq_vector(irq, cfg);
1621                 return;
1622         }
1623
1624         ioapic_register_intr(irq, desc, trigger);
1625         if (irq < NR_IRQS_LEGACY)
1626                 disable_8259A_irq(irq);
1627
1628         ioapic_write_entry(apic_id, pin, entry);
1629 }
1630
1631 static void __init setup_IO_APIC_irqs(void)
1632 {
1633         int apic_id, pin, idx, irq;
1634         int notcon = 0;
1635         struct irq_desc *desc;
1636         struct irq_cfg *cfg;
1637         int cpu = boot_cpu_id;
1638
1639         apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1640
1641         for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1642                 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1643
1644                         idx = find_irq_entry(apic_id, pin, mp_INT);
1645                         if (idx == -1) {
1646                                 if (!notcon) {
1647                                         notcon = 1;
1648                                         apic_printk(APIC_VERBOSE,
1649                                                 KERN_DEBUG " %d-%d",
1650                                                 mp_ioapics[apic_id].apicid, pin);
1651                                 } else
1652                                         apic_printk(APIC_VERBOSE, " %d-%d",
1653                                                 mp_ioapics[apic_id].apicid, pin);
1654                                 continue;
1655                         }
1656                         if (notcon) {
1657                                 apic_printk(APIC_VERBOSE,
1658                                         " (apicid-pin) not connected\n");
1659                                 notcon = 0;
1660                         }
1661
1662                         irq = pin_2_irq(idx, apic_id, pin);
1663
1664                         /*
1665                          * Skip the timer IRQ if there's a quirk handler
1666                          * installed and if it returns 1:
1667                          */
1668                         if (apic->multi_timer_check &&
1669                                         apic->multi_timer_check(apic_id, irq))
1670                                 continue;
1671
1672                         desc = irq_to_desc_alloc_cpu(irq, cpu);
1673                         if (!desc) {
1674                                 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1675                                 continue;
1676                         }
1677                         cfg = desc->chip_data;
1678                         add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1679
1680                         setup_IO_APIC_irq(apic_id, pin, irq, desc,
1681                                         irq_trigger(idx), irq_polarity(idx));
1682                 }
1683         }
1684
1685         if (notcon)
1686                 apic_printk(APIC_VERBOSE,
1687                         " (apicid-pin) not connected\n");
1688 }
1689
1690 /*
1691  * Set up the timer pin, possibly with the 8259A-master behind.
1692  */
1693 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1694                                         int vector)
1695 {
1696         struct IO_APIC_route_entry entry;
1697
1698         if (intr_remapping_enabled)
1699                 return;
1700
1701         memset(&entry, 0, sizeof(entry));
1702
1703         /*
1704          * We use logical delivery to get the timer IRQ
1705          * to the first CPU.
1706          */
1707         entry.dest_mode = apic->irq_dest_mode;
1708         entry.mask = 0;                 /* don't mask IRQ for edge */
1709         entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1710         entry.delivery_mode = apic->irq_delivery_mode;
1711         entry.polarity = 0;
1712         entry.trigger = 0;
1713         entry.vector = vector;
1714
1715         /*
1716          * The timer IRQ doesn't have to know that behind the
1717          * scene we may have a 8259A-master in AEOI mode ...
1718          */
1719         set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1720
1721         /*
1722          * Add it to the IO-APIC irq-routing table:
1723          */
1724         ioapic_write_entry(apic_id, pin, entry);
1725 }
1726
1727
1728 __apicdebuginit(void) print_IO_APIC(void)
1729 {
1730         int apic, i;
1731         union IO_APIC_reg_00 reg_00;
1732         union IO_APIC_reg_01 reg_01;
1733         union IO_APIC_reg_02 reg_02;
1734         union IO_APIC_reg_03 reg_03;
1735         unsigned long flags;
1736         struct irq_cfg *cfg;
1737         struct irq_desc *desc;
1738         unsigned int irq;
1739
1740         if (apic_verbosity == APIC_QUIET)
1741                 return;
1742
1743         printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1744         for (i = 0; i < nr_ioapics; i++)
1745                 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1746                        mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1747
1748         /*
1749          * We are a bit conservative about what we expect.  We have to
1750          * know about every hardware change ASAP.
1751          */
1752         printk(KERN_INFO "testing the IO APIC.......................\n");
1753
1754         for (apic = 0; apic < nr_ioapics; apic++) {
1755
1756         spin_lock_irqsave(&ioapic_lock, flags);
1757         reg_00.raw = io_apic_read(apic, 0);
1758         reg_01.raw = io_apic_read(apic, 1);
1759         if (reg_01.bits.version >= 0x10)
1760                 reg_02.raw = io_apic_read(apic, 2);
1761         if (reg_01.bits.version >= 0x20)
1762                 reg_03.raw = io_apic_read(apic, 3);
1763         spin_unlock_irqrestore(&ioapic_lock, flags);
1764
1765         printk("\n");
1766         printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1767         printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1768         printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1769         printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1770         printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1771
1772         printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1773         printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1774
1775         printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1776         printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1777
1778         /*
1779          * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1780          * but the value of reg_02 is read as the previous read register
1781          * value, so ignore it if reg_02 == reg_01.
1782          */
1783         if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1784                 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1785                 printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1786         }
1787
1788         /*
1789          * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1790          * or reg_03, but the value of reg_0[23] is read as the previous read
1791          * register value, so ignore it if reg_03 == reg_0[12].
1792          */
1793         if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1794             reg_03.raw != reg_01.raw) {
1795                 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1796                 printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1797         }
1798
1799         printk(KERN_DEBUG ".... IRQ redirection table:\n");
1800
1801         printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1802                           " Stat Dmod Deli Vect:   \n");
1803
1804         for (i = 0; i <= reg_01.bits.entries; i++) {
1805                 struct IO_APIC_route_entry entry;
1806
1807                 entry = ioapic_read_entry(apic, i);
1808
1809                 printk(KERN_DEBUG " %02x %03X ",
1810                         i,
1811                         entry.dest
1812                 );
1813
1814                 printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1815                         entry.mask,
1816                         entry.trigger,
1817                         entry.irr,
1818                         entry.polarity,
1819                         entry.delivery_status,
1820                         entry.dest_mode,
1821                         entry.delivery_mode,
1822                         entry.vector
1823                 );
1824         }
1825         }
1826         printk(KERN_DEBUG "IRQ to pin mappings:\n");
1827         for_each_irq_desc(irq, desc) {
1828                 struct irq_pin_list *entry;
1829
1830                 cfg = desc->chip_data;
1831                 entry = cfg->irq_2_pin;
1832                 if (!entry)
1833                         continue;
1834                 printk(KERN_DEBUG "IRQ%d ", irq);
1835                 for (;;) {
1836                         printk("-> %d:%d", entry->apic, entry->pin);
1837                         if (!entry->next)
1838                                 break;
1839                         entry = entry->next;
1840                 }
1841                 printk("\n");
1842         }
1843
1844         printk(KERN_INFO ".................................... done.\n");
1845
1846         return;
1847 }
1848
1849 __apicdebuginit(void) print_APIC_bitfield(int base)
1850 {
1851         unsigned int v;
1852         int i, j;
1853
1854         if (apic_verbosity == APIC_QUIET)
1855                 return;
1856
1857         printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1858         for (i = 0; i < 8; i++) {
1859                 v = apic_read(base + i*0x10);
1860                 for (j = 0; j < 32; j++) {
1861                         if (v & (1<<j))
1862                                 printk("1");
1863                         else
1864                                 printk("0");
1865                 }
1866                 printk("\n");
1867         }
1868 }
1869
1870 __apicdebuginit(void) print_local_APIC(void *dummy)
1871 {
1872         unsigned int v, ver, maxlvt;
1873         u64 icr;
1874
1875         if (apic_verbosity == APIC_QUIET)
1876                 return;
1877
1878         printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1879                 smp_processor_id(), hard_smp_processor_id());
1880         v = apic_read(APIC_ID);
1881         printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1882         v = apic_read(APIC_LVR);
1883         printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1884         ver = GET_APIC_VERSION(v);
1885         maxlvt = lapic_get_maxlvt();
1886
1887         v = apic_read(APIC_TASKPRI);
1888         printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1889
1890         if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1891                 if (!APIC_XAPIC(ver)) {
1892                         v = apic_read(APIC_ARBPRI);
1893                         printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1894                                v & APIC_ARBPRI_MASK);
1895                 }
1896                 v = apic_read(APIC_PROCPRI);
1897                 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1898         }
1899
1900         /*
1901          * Remote read supported only in the 82489DX and local APIC for
1902          * Pentium processors.
1903          */
1904         if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1905                 v = apic_read(APIC_RRR);
1906                 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1907         }
1908
1909         v = apic_read(APIC_LDR);
1910         printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1911         if (!x2apic_enabled()) {
1912                 v = apic_read(APIC_DFR);
1913                 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1914         }
1915         v = apic_read(APIC_SPIV);
1916         printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1917
1918         printk(KERN_DEBUG "... APIC ISR field:\n");
1919         print_APIC_bitfield(APIC_ISR);
1920         printk(KERN_DEBUG "... APIC TMR field:\n");
1921         print_APIC_bitfield(APIC_TMR);
1922         printk(KERN_DEBUG "... APIC IRR field:\n");
1923         print_APIC_bitfield(APIC_IRR);
1924
1925         if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1926                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1927                         apic_write(APIC_ESR, 0);
1928
1929                 v = apic_read(APIC_ESR);
1930                 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1931         }
1932
1933         icr = apic_icr_read();
1934         printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1935         printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1936
1937         v = apic_read(APIC_LVTT);
1938         printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1939
1940         if (maxlvt > 3) {                       /* PC is LVT#4. */
1941                 v = apic_read(APIC_LVTPC);
1942                 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1943         }
1944         v = apic_read(APIC_LVT0);
1945         printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1946         v = apic_read(APIC_LVT1);
1947         printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1948
1949         if (maxlvt > 2) {                       /* ERR is LVT#3. */
1950                 v = apic_read(APIC_LVTERR);
1951                 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1952         }
1953
1954         v = apic_read(APIC_TMICT);
1955         printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1956         v = apic_read(APIC_TMCCT);
1957         printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1958         v = apic_read(APIC_TDCR);
1959         printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1960         printk("\n");
1961 }
1962
1963 __apicdebuginit(void) print_all_local_APICs(void)
1964 {
1965         int cpu;
1966
1967         preempt_disable();
1968         for_each_online_cpu(cpu)
1969                 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1970         preempt_enable();
1971 }
1972
1973 __apicdebuginit(void) print_PIC(void)
1974 {
1975         unsigned int v;
1976         unsigned long flags;
1977
1978         if (apic_verbosity == APIC_QUIET)
1979                 return;
1980
1981         printk(KERN_DEBUG "\nprinting PIC contents\n");
1982
1983         spin_lock_irqsave(&i8259A_lock, flags);
1984
1985         v = inb(0xa1) << 8 | inb(0x21);
1986         printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1987
1988         v = inb(0xa0) << 8 | inb(0x20);
1989         printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1990
1991         outb(0x0b,0xa0);
1992         outb(0x0b,0x20);
1993         v = inb(0xa0) << 8 | inb(0x20);
1994         outb(0x0a,0xa0);
1995         outb(0x0a,0x20);
1996
1997         spin_unlock_irqrestore(&i8259A_lock, flags);
1998
1999         printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
2000
2001         v = inb(0x4d1) << 8 | inb(0x4d0);
2002         printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
2003 }
2004
2005 __apicdebuginit(int) print_all_ICs(void)
2006 {
2007         print_PIC();
2008         print_all_local_APICs();
2009         print_IO_APIC();
2010
2011         return 0;
2012 }
2013
2014 fs_initcall(print_all_ICs);
2015
2016
2017 /* Where if anywhere is the i8259 connect in external int mode */
2018 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
2019
2020 void __init enable_IO_APIC(void)
2021 {
2022         union IO_APIC_reg_01 reg_01;
2023         int i8259_apic, i8259_pin;
2024         int apic;
2025         unsigned long flags;
2026
2027         /*
2028          * The number of IO-APIC IRQ registers (== #pins):
2029          */
2030         for (apic = 0; apic < nr_ioapics; apic++) {
2031                 spin_lock_irqsave(&ioapic_lock, flags);
2032                 reg_01.raw = io_apic_read(apic, 1);
2033                 spin_unlock_irqrestore(&ioapic_lock, flags);
2034                 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2035         }
2036         for(apic = 0; apic < nr_ioapics; apic++) {
2037                 int pin;
2038                 /* See if any of the pins is in ExtINT mode */
2039                 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2040                         struct IO_APIC_route_entry entry;
2041                         entry = ioapic_read_entry(apic, pin);
2042
2043                         /* If the interrupt line is enabled and in ExtInt mode
2044                          * I have found the pin where the i8259 is connected.
2045                          */
2046                         if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2047                                 ioapic_i8259.apic = apic;
2048                                 ioapic_i8259.pin  = pin;
2049                                 goto found_i8259;
2050                         }
2051                 }
2052         }
2053  found_i8259:
2054         /* Look to see what if the MP table has reported the ExtINT */
2055         /* If we could not find the appropriate pin by looking at the ioapic
2056          * the i8259 probably is not connected the ioapic but give the
2057          * mptable a chance anyway.
2058          */
2059         i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
2060         i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2061         /* Trust the MP table if nothing is setup in the hardware */
2062         if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2063                 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2064                 ioapic_i8259.pin  = i8259_pin;
2065                 ioapic_i8259.apic = i8259_apic;
2066         }
2067         /* Complain if the MP table and the hardware disagree */
2068         if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2069                 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2070         {
2071                 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2072         }
2073
2074         /*
2075          * Do not trust the IO-APIC being empty at bootup
2076          */
2077         clear_IO_APIC();
2078 }
2079
2080 /*
2081  * Not an __init, needed by the reboot code
2082  */
2083 void disable_IO_APIC(void)
2084 {
2085         /*
2086          * Clear the IO-APIC before rebooting:
2087          */
2088         clear_IO_APIC();
2089
2090         /*
2091          * If the i8259 is routed through an IOAPIC
2092          * Put that IOAPIC in virtual wire mode
2093          * so legacy interrupts can be delivered.
2094          *
2095          * With interrupt-remapping, for now we will use virtual wire A mode,
2096          * as virtual wire B is little complex (need to configure both
2097          * IOAPIC RTE aswell as interrupt-remapping table entry).
2098          * As this gets called during crash dump, keep this simple for now.
2099          */
2100         if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2101                 struct IO_APIC_route_entry entry;
2102
2103                 memset(&entry, 0, sizeof(entry));
2104                 entry.mask            = 0; /* Enabled */
2105                 entry.trigger         = 0; /* Edge */
2106                 entry.irr             = 0;
2107                 entry.polarity        = 0; /* High */
2108                 entry.delivery_status = 0;
2109                 entry.dest_mode       = 0; /* Physical */
2110                 entry.delivery_mode   = dest_ExtINT; /* ExtInt */
2111                 entry.vector          = 0;
2112                 entry.dest            = read_apic_id();
2113
2114                 /*
2115                  * Add it to the IO-APIC irq-routing table:
2116                  */
2117                 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2118         }
2119
2120         /*
2121          * Use virtual wire A mode when interrupt remapping is enabled.
2122          */
2123         disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2124 }
2125
2126 #ifdef CONFIG_X86_32
2127 /*
2128  * function to set the IO-APIC physical IDs based on the
2129  * values stored in the MPC table.
2130  *
2131  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2132  */
2133
2134 static void __init setup_ioapic_ids_from_mpc(void)
2135 {
2136         union IO_APIC_reg_00 reg_00;
2137         physid_mask_t phys_id_present_map;
2138         int apic_id;
2139         int i;
2140         unsigned char old_id;
2141         unsigned long flags;
2142
2143         if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2144                 return;
2145
2146         /*
2147          * Don't check I/O APIC IDs for xAPIC systems.  They have
2148          * no meaning without the serial APIC bus.
2149          */
2150         if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2151                 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2152                 return;
2153         /*
2154          * This is broken; anything with a real cpu count has to
2155          * circumvent this idiocy regardless.
2156          */
2157         phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2158
2159         /*
2160          * Set the IOAPIC ID to the value stored in the MPC table.
2161          */
2162         for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2163
2164                 /* Read the register 0 value */
2165                 spin_lock_irqsave(&ioapic_lock, flags);
2166                 reg_00.raw = io_apic_read(apic_id, 0);
2167                 spin_unlock_irqrestore(&ioapic_lock, flags);
2168
2169                 old_id = mp_ioapics[apic_id].apicid;
2170
2171                 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2172                         printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2173                                 apic_id, mp_ioapics[apic_id].apicid);
2174                         printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2175                                 reg_00.bits.ID);
2176                         mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2177                 }
2178
2179                 /*
2180                  * Sanity check, is the ID really free? Every APIC in a
2181                  * system must have a unique ID or we get lots of nice
2182                  * 'stuck on smp_invalidate_needed IPI wait' messages.
2183                  */
2184                 if (apic->check_apicid_used(phys_id_present_map,
2185                                         mp_ioapics[apic_id].apicid)) {
2186                         printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2187                                 apic_id, mp_ioapics[apic_id].apicid);
2188                         for (i = 0; i < get_physical_broadcast(); i++)
2189                                 if (!physid_isset(i, phys_id_present_map))
2190                                         break;
2191                         if (i >= get_physical_broadcast())
2192                                 panic("Max APIC ID exceeded!\n");
2193                         printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2194                                 i);
2195                         physid_set(i, phys_id_present_map);
2196                         mp_ioapics[apic_id].apicid = i;
2197                 } else {
2198                         physid_mask_t tmp;
2199                         tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2200                         apic_printk(APIC_VERBOSE, "Setting %d in the "
2201                                         "phys_id_present_map\n",
2202                                         mp_ioapics[apic_id].apicid);
2203                         physids_or(phys_id_present_map, phys_id_present_map, tmp);
2204                 }
2205
2206
2207                 /*
2208                  * We need to adjust the IRQ routing table
2209                  * if the ID changed.
2210                  */
2211                 if (old_id != mp_ioapics[apic_id].apicid)
2212                         for (i = 0; i < mp_irq_entries; i++)
2213                                 if (mp_irqs[i].dstapic == old_id)
2214                                         mp_irqs[i].dstapic
2215                                                 = mp_ioapics[apic_id].apicid;
2216
2217                 /*
2218                  * Read the right value from the MPC table and
2219                  * write it into the ID register.
2220                  */
2221                 apic_printk(APIC_VERBOSE, KERN_INFO
2222                         "...changing IO-APIC physical APIC ID to %d ...",
2223                         mp_ioapics[apic_id].apicid);
2224
2225                 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2226                 spin_lock_irqsave(&ioapic_lock, flags);
2227                 io_apic_write(apic_id, 0, reg_00.raw);
2228                 spin_unlock_irqrestore(&ioapic_lock, flags);
2229
2230                 /*
2231                  * Sanity check
2232                  */
2233                 spin_lock_irqsave(&ioapic_lock, flags);
2234                 reg_00.raw = io_apic_read(apic_id, 0);
2235                 spin_unlock_irqrestore(&ioapic_lock, flags);
2236                 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2237                         printk("could not set ID!\n");
2238                 else
2239                         apic_printk(APIC_VERBOSE, " ok.\n");
2240         }
2241 }
2242 #endif
2243
2244 int no_timer_check __initdata;
2245
2246 static int __init notimercheck(char *s)
2247 {
2248         no_timer_check = 1;
2249         return 1;
2250 }
2251 __setup("no_timer_check", notimercheck);
2252
2253 /*
2254  * There is a nasty bug in some older SMP boards, their mptable lies
2255  * about the timer IRQ. We do the following to work around the situation:
2256  *
2257  *      - timer IRQ defaults to IO-APIC IRQ
2258  *      - if this function detects that timer IRQs are defunct, then we fall
2259  *        back to ISA timer IRQs
2260  */
2261 static int __init timer_irq_works(void)
2262 {
2263         unsigned long t1 = jiffies;
2264         unsigned long flags;
2265
2266         if (no_timer_check)
2267                 return 1;
2268
2269         local_save_flags(flags);
2270         local_irq_enable();
2271         /* Let ten ticks pass... */
2272         mdelay((10 * 1000) / HZ);
2273         local_irq_restore(flags);
2274
2275         /*
2276          * Expect a few ticks at least, to be sure some possible
2277          * glue logic does not lock up after one or two first
2278          * ticks in a non-ExtINT mode.  Also the local APIC
2279          * might have cached one ExtINT interrupt.  Finally, at
2280          * least one tick may be lost due to delays.
2281          */
2282
2283         /* jiffies wrap? */
2284         if (time_after(jiffies, t1 + 4))
2285                 return 1;
2286         return 0;
2287 }
2288
2289 /*
2290  * In the SMP+IOAPIC case it might happen that there are an unspecified
2291  * number of pending IRQ events unhandled. These cases are very rare,
2292  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2293  * better to do it this way as thus we do not have to be aware of
2294  * 'pending' interrupts in the IRQ path, except at this point.
2295  */
2296 /*
2297  * Edge triggered needs to resend any interrupt
2298  * that was delayed but this is now handled in the device
2299  * independent code.
2300  */
2301
2302 /*
2303  * Starting up a edge-triggered IO-APIC interrupt is
2304  * nasty - we need to make sure that we get the edge.
2305  * If it is already asserted for some reason, we need
2306  * return 1 to indicate that is was pending.
2307  *
2308  * This is not complete - we should be able to fake
2309  * an edge even if it isn't on the 8259A...
2310  */
2311
2312 static unsigned int startup_ioapic_irq(unsigned int irq)
2313 {
2314         int was_pending = 0;
2315         unsigned long flags;
2316         struct irq_cfg *cfg;
2317
2318         spin_lock_irqsave(&ioapic_lock, flags);
2319         if (irq < NR_IRQS_LEGACY) {
2320                 disable_8259A_irq(irq);
2321                 if (i8259A_irq_pending(irq))
2322                         was_pending = 1;
2323         }
2324         cfg = irq_cfg(irq);
2325         __unmask_IO_APIC_irq(cfg);
2326         spin_unlock_irqrestore(&ioapic_lock, flags);
2327
2328         return was_pending;
2329 }
2330
2331 #ifdef CONFIG_X86_64
2332 static int ioapic_retrigger_irq(unsigned int irq)
2333 {
2334
2335         struct irq_cfg *cfg = irq_cfg(irq);
2336         unsigned long flags;
2337
2338         spin_lock_irqsave(&vector_lock, flags);
2339         apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2340         spin_unlock_irqrestore(&vector_lock, flags);
2341
2342         return 1;
2343 }
2344 #else
2345 static int ioapic_retrigger_irq(unsigned int irq)
2346 {
2347         apic->send_IPI_self(irq_cfg(irq)->vector);
2348
2349         return 1;
2350 }
2351 #endif
2352
2353 /*
2354  * Level and edge triggered IO-APIC interrupts need different handling,
2355  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2356  * handled with the level-triggered descriptor, but that one has slightly
2357  * more overhead. Level-triggered interrupts cannot be handled with the
2358  * edge-triggered handler, without risking IRQ storms and other ugly
2359  * races.
2360  */
2361
2362 #ifdef CONFIG_SMP
2363
2364 #ifdef CONFIG_INTR_REMAP
2365
2366 /*
2367  * Migrate the IO-APIC irq in the presence of intr-remapping.
2368  *
2369  * For both level and edge triggered, irq migration is a simple atomic
2370  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2371  *
2372  * For level triggered, we eliminate the io-apic RTE modification (with the
2373  * updated vector information), by using a virtual vector (io-apic pin number).
2374  * Real vector that is used for interrupting cpu will be coming from
2375  * the interrupt-remapping table entry.
2376  */
2377 static void
2378 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2379 {
2380         struct irq_cfg *cfg;
2381         struct irte irte;
2382         unsigned int dest;
2383         unsigned int irq;
2384
2385         if (!cpumask_intersects(mask, cpu_online_mask))
2386                 return;
2387
2388         irq = desc->irq;
2389         if (get_irte(irq, &irte))
2390                 return;
2391
2392         cfg = desc->chip_data;
2393         if (assign_irq_vector(irq, cfg, mask))
2394                 return;
2395
2396         set_extra_move_desc(desc, mask);
2397
2398         dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2399
2400         irte.vector = cfg->vector;
2401         irte.dest_id = IRTE_DEST(dest);
2402
2403         /*
2404          * Modified the IRTE and flushes the Interrupt entry cache.
2405          */
2406         modify_irte(irq, &irte);
2407
2408         if (cfg->move_in_progress)
2409                 send_cleanup_vector(cfg);
2410
2411         cpumask_copy(desc->affinity, mask);
2412 }
2413
2414 /*
2415  * Migrates the IRQ destination in the process context.
2416  */
2417 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2418                                             const struct cpumask *mask)
2419 {
2420         migrate_ioapic_irq_desc(desc, mask);
2421 }
2422 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2423                                        const struct cpumask *mask)
2424 {
2425         struct irq_desc *desc = irq_to_desc(irq);
2426
2427         set_ir_ioapic_affinity_irq_desc(desc, mask);
2428 }
2429 #else
2430 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2431                                                    const struct cpumask *mask)
2432 {
2433 }
2434 #endif
2435
2436 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2437 {
2438         unsigned vector, me;
2439
2440         ack_APIC_irq();
2441         exit_idle();
2442         irq_enter();
2443
2444         me = smp_processor_id();
2445         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2446                 unsigned int irq;
2447                 unsigned int irr;
2448                 struct irq_desc *desc;
2449                 struct irq_cfg *cfg;
2450                 irq = __get_cpu_var(vector_irq)[vector];
2451
2452                 if (irq == -1)
2453                         continue;
2454
2455                 desc = irq_to_desc(irq);
2456                 if (!desc)
2457                         continue;
2458
2459                 cfg = irq_cfg(irq);
2460                 spin_lock(&desc->lock);
2461                 if (!cfg->move_cleanup_count)
2462                         goto unlock;
2463
2464                 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2465                         goto unlock;
2466
2467                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2468                 /*
2469                  * Check if the vector that needs to be cleanedup is
2470                  * registered at the cpu's IRR. If so, then this is not
2471                  * the best time to clean it up. Lets clean it up in the
2472                  * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2473                  * to myself.
2474                  */
2475                 if (irr  & (1 << (vector % 32))) {
2476                         apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2477                         goto unlock;
2478                 }
2479                 __get_cpu_var(vector_irq)[vector] = -1;
2480                 cfg->move_cleanup_count--;
2481 unlock:
2482                 spin_unlock(&desc->lock);
2483         }
2484
2485         irq_exit();
2486 }
2487
2488 static void irq_complete_move(struct irq_desc **descp)
2489 {
2490         struct irq_desc *desc = *descp;
2491         struct irq_cfg *cfg = desc->chip_data;
2492         unsigned vector, me;
2493
2494         if (likely(!cfg->move_in_progress)) {
2495 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2496                 if (likely(!cfg->move_desc_pending))
2497                         return;
2498
2499                 /* domain has not changed, but affinity did */
2500                 me = smp_processor_id();
2501                 if (cpumask_test_cpu(me, desc->affinity)) {
2502                         *descp = desc = move_irq_desc(desc, me);
2503                         /* get the new one */
2504                         cfg = desc->chip_data;
2505                         cfg->move_desc_pending = 0;
2506                 }
2507 #endif
2508                 return;
2509         }
2510
2511         vector = ~get_irq_regs()->orig_ax;
2512         me = smp_processor_id();
2513
2514         if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2515 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2516                 *descp = desc = move_irq_desc(desc, me);
2517                 /* get the new one */
2518                 cfg = desc->chip_data;
2519 #endif
2520                 send_cleanup_vector(cfg);
2521         }
2522 }
2523 #else
2524 static inline void irq_complete_move(struct irq_desc **descp) {}
2525 #endif
2526
2527 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2528 {
2529         int apic, pin;
2530         struct irq_pin_list *entry;
2531
2532         entry = cfg->irq_2_pin;
2533         for (;;) {
2534
2535                 if (!entry)
2536                         break;
2537
2538                 apic = entry->apic;
2539                 pin = entry->pin;
2540                 io_apic_eoi(apic, pin);
2541                 entry = entry->next;
2542         }
2543 }
2544
2545 static void
2546 eoi_ioapic_irq(struct irq_desc *desc)
2547 {
2548         struct irq_cfg *cfg;
2549         unsigned long flags;
2550         unsigned int irq;
2551
2552         irq = desc->irq;
2553         cfg = desc->chip_data;
2554
2555         spin_lock_irqsave(&ioapic_lock, flags);
2556         __eoi_ioapic_irq(irq, cfg);
2557         spin_unlock_irqrestore(&ioapic_lock, flags);
2558 }
2559
2560 #ifdef CONFIG_X86_X2APIC
2561 static void ack_x2apic_level(unsigned int irq)
2562 {
2563         struct irq_desc *desc = irq_to_desc(irq);
2564         ack_x2APIC_irq();
2565         eoi_ioapic_irq(desc);
2566 }
2567
2568 static void ack_x2apic_edge(unsigned int irq)
2569 {
2570         ack_x2APIC_irq();
2571 }
2572 #endif
2573
2574 static void ack_apic_edge(unsigned int irq)
2575 {
2576         struct irq_desc *desc = irq_to_desc(irq);
2577
2578         irq_complete_move(&desc);
2579         move_native_irq(irq);
2580         ack_APIC_irq();
2581 }
2582
2583 atomic_t irq_mis_count;
2584
2585 static void ack_apic_level(unsigned int irq)
2586 {
2587         struct irq_desc *desc = irq_to_desc(irq);
2588
2589 #ifdef CONFIG_X86_32
2590         unsigned long v;
2591         int i;
2592 #endif
2593         struct irq_cfg *cfg;
2594         int do_unmask_irq = 0;
2595
2596         irq_complete_move(&desc);
2597 #ifdef CONFIG_GENERIC_PENDING_IRQ
2598         /* If we are moving the irq we need to mask it */
2599         if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2600                 do_unmask_irq = 1;
2601                 mask_IO_APIC_irq_desc(desc);
2602         }
2603 #endif
2604
2605 #ifdef CONFIG_X86_32
2606         /*
2607         * It appears there is an erratum which affects at least version 0x11
2608         * of I/O APIC (that's the 82093AA and cores integrated into various
2609         * chipsets).  Under certain conditions a level-triggered interrupt is
2610         * erroneously delivered as edge-triggered one but the respective IRR
2611         * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2612         * message but it will never arrive and further interrupts are blocked
2613         * from the source.  The exact reason is so far unknown, but the
2614         * phenomenon was observed when two consecutive interrupt requests
2615         * from a given source get delivered to the same CPU and the source is
2616         * temporarily disabled in between.
2617         *
2618         * A workaround is to simulate an EOI message manually.  We achieve it
2619         * by setting the trigger mode to edge and then to level when the edge
2620         * trigger mode gets detected in the TMR of a local APIC for a
2621         * level-triggered interrupt.  We mask the source for the time of the
2622         * operation to prevent an edge-triggered interrupt escaping meanwhile.
2623         * The idea is from Manfred Spraul.  --macro
2624         */
2625         cfg = desc->chip_data;
2626         i = cfg->vector;
2627
2628         v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2629 #endif
2630
2631         /*
2632          * We must acknowledge the irq before we move it or the acknowledge will
2633          * not propagate properly.
2634          */
2635         ack_APIC_irq();
2636
2637         if (irq_remapped(irq))
2638                 eoi_ioapic_irq(desc);
2639
2640         /* Now we can move and renable the irq */
2641         if (unlikely(do_unmask_irq)) {
2642                 /* Only migrate the irq if the ack has been received.
2643                  *
2644                  * On rare occasions the broadcast level triggered ack gets
2645                  * delayed going to ioapics, and if we reprogram the
2646                  * vector while Remote IRR is still set the irq will never
2647                  * fire again.
2648                  *
2649                  * To prevent this scenario we read the Remote IRR bit
2650                  * of the ioapic.  This has two effects.
2651                  * - On any sane system the read of the ioapic will
2652                  *   flush writes (and acks) going to the ioapic from
2653                  *   this cpu.
2654                  * - We get to see if the ACK has actually been delivered.
2655                  *
2656                  * Based on failed experiments of reprogramming the
2657                  * ioapic entry from outside of irq context starting
2658                  * with masking the ioapic entry and then polling until
2659                  * Remote IRR was clear before reprogramming the
2660                  * ioapic I don't trust the Remote IRR bit to be
2661                  * completey accurate.
2662                  *
2663                  * However there appears to be no other way to plug
2664                  * this race, so if the Remote IRR bit is not
2665                  * accurate and is causing problems then it is a hardware bug
2666                  * and you can go talk to the chipset vendor about it.
2667                  */
2668                 cfg = desc->chip_data;
2669                 if (!io_apic_level_ack_pending(cfg))
2670                         move_masked_irq(irq);
2671                 unmask_IO_APIC_irq_desc(desc);
2672         }
2673
2674 #ifdef CONFIG_X86_32
2675         if (!(v & (1 << (i & 0x1f)))) {
2676                 atomic_inc(&irq_mis_count);
2677                 spin_lock(&ioapic_lock);
2678                 __mask_and_edge_IO_APIC_irq(cfg);
2679                 __unmask_and_level_IO_APIC_irq(cfg);
2680                 spin_unlock(&ioapic_lock);
2681         }
2682 #endif
2683 }
2684
2685 #ifdef CONFIG_INTR_REMAP
2686 static void ir_ack_apic_edge(unsigned int irq)
2687 {
2688 #ifdef CONFIG_X86_X2APIC
2689        if (x2apic_enabled())
2690                return ack_x2apic_edge(irq);
2691 #endif
2692        return ack_apic_edge(irq);
2693 }
2694
2695 static void ir_ack_apic_level(unsigned int irq)
2696 {
2697 #ifdef CONFIG_X86_X2APIC
2698        if (x2apic_enabled())
2699                return ack_x2apic_level(irq);
2700 #endif
2701        return ack_apic_level(irq);
2702 }
2703 #endif /* CONFIG_INTR_REMAP */
2704
2705 static struct irq_chip ioapic_chip __read_mostly = {
2706         .name           = "IO-APIC",
2707         .startup        = startup_ioapic_irq,
2708         .mask           = mask_IO_APIC_irq,
2709         .unmask         = unmask_IO_APIC_irq,
2710         .ack            = ack_apic_edge,
2711         .eoi            = ack_apic_level,
2712 #ifdef CONFIG_SMP
2713         .set_affinity   = set_ioapic_affinity_irq,
2714 #endif
2715         .retrigger      = ioapic_retrigger_irq,
2716 };
2717
2718 static struct irq_chip ir_ioapic_chip __read_mostly = {
2719         .name           = "IR-IO-APIC",
2720         .startup        = startup_ioapic_irq,
2721         .mask           = mask_IO_APIC_irq,
2722         .unmask         = unmask_IO_APIC_irq,
2723 #ifdef CONFIG_INTR_REMAP
2724         .ack            = ir_ack_apic_edge,
2725         .eoi            = ir_ack_apic_level,
2726 #ifdef CONFIG_SMP
2727         .set_affinity   = set_ir_ioapic_affinity_irq,
2728 #endif
2729 #endif
2730         .retrigger      = ioapic_retrigger_irq,
2731 };
2732
2733 static inline void init_IO_APIC_traps(void)
2734 {
2735         int irq;
2736         struct irq_desc *desc;
2737         struct irq_cfg *cfg;
2738
2739         /*
2740          * NOTE! The local APIC isn't very good at handling
2741          * multiple interrupts at the same interrupt level.
2742          * As the interrupt level is determined by taking the
2743          * vector number and shifting that right by 4, we
2744          * want to spread these out a bit so that they don't
2745          * all fall in the same interrupt level.
2746          *
2747          * Also, we've got to be careful not to trash gate
2748          * 0x80, because int 0x80 is hm, kind of importantish. ;)
2749          */
2750         for_each_irq_desc(irq, desc) {
2751                 cfg = desc->chip_data;
2752                 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2753                         /*
2754                          * Hmm.. We don't have an entry for this,
2755                          * so default to an old-fashioned 8259
2756                          * interrupt if we can..
2757                          */
2758                         if (irq < NR_IRQS_LEGACY)
2759                                 make_8259A_irq(irq);
2760                         else
2761                                 /* Strange. Oh, well.. */
2762                                 desc->chip = &no_irq_chip;
2763                 }
2764         }
2765 }
2766
2767 /*
2768  * The local APIC irq-chip implementation:
2769  */
2770
2771 static void mask_lapic_irq(unsigned int irq)
2772 {
2773         unsigned long v;
2774
2775         v = apic_read(APIC_LVT0);
2776         apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2777 }
2778
2779 static void unmask_lapic_irq(unsigned int irq)
2780 {
2781         unsigned long v;
2782
2783         v = apic_read(APIC_LVT0);
2784         apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2785 }
2786
2787 static void ack_lapic_irq(unsigned int irq)
2788 {
2789         ack_APIC_irq();
2790 }
2791
2792 static struct irq_chip lapic_chip __read_mostly = {
2793         .name           = "local-APIC",
2794         .mask           = mask_lapic_irq,
2795         .unmask         = unmask_lapic_irq,
2796         .ack            = ack_lapic_irq,
2797 };
2798
2799 static void lapic_register_intr(int irq, struct irq_desc *desc)
2800 {
2801         desc->status &= ~IRQ_LEVEL;
2802         set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2803                                       "edge");
2804 }
2805
2806 static void __init setup_nmi(void)
2807 {
2808         /*
2809          * Dirty trick to enable the NMI watchdog ...
2810          * We put the 8259A master into AEOI mode and
2811          * unmask on all local APICs LVT0 as NMI.
2812          *
2813          * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2814          * is from Maciej W. Rozycki - so we do not have to EOI from
2815          * the NMI handler or the timer interrupt.
2816          */
2817         apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2818
2819         enable_NMI_through_LVT0();
2820
2821         apic_printk(APIC_VERBOSE, " done.\n");
2822 }
2823
2824 /*
2825  * This looks a bit hackish but it's about the only one way of sending
2826  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2827  * not support the ExtINT mode, unfortunately.  We need to send these
2828  * cycles as some i82489DX-based boards have glue logic that keeps the
2829  * 8259A interrupt line asserted until INTA.  --macro
2830  */
2831 static inline void __init unlock_ExtINT_logic(void)
2832 {
2833         int apic, pin, i;
2834         struct IO_APIC_route_entry entry0, entry1;
2835         unsigned char save_control, save_freq_select;
2836
2837         pin  = find_isa_irq_pin(8, mp_INT);
2838         if (pin == -1) {
2839                 WARN_ON_ONCE(1);
2840                 return;
2841         }
2842         apic = find_isa_irq_apic(8, mp_INT);
2843         if (apic == -1) {
2844                 WARN_ON_ONCE(1);
2845                 return;
2846         }
2847
2848         entry0 = ioapic_read_entry(apic, pin);
2849         clear_IO_APIC_pin(apic, pin);
2850
2851         memset(&entry1, 0, sizeof(entry1));
2852
2853         entry1.dest_mode = 0;                   /* physical delivery */
2854         entry1.mask = 0;                        /* unmask IRQ now */
2855         entry1.dest = hard_smp_processor_id();
2856         entry1.delivery_mode = dest_ExtINT;
2857         entry1.polarity = entry0.polarity;
2858         entry1.trigger = 0;
2859         entry1.vector = 0;
2860
2861         ioapic_write_entry(apic, pin, entry1);
2862
2863         save_control = CMOS_READ(RTC_CONTROL);
2864         save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2865         CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2866                    RTC_FREQ_SELECT);
2867         CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2868
2869         i = 100;
2870         while (i-- > 0) {
2871                 mdelay(10);
2872                 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2873                         i -= 10;
2874         }
2875
2876         CMOS_WRITE(save_control, RTC_CONTROL);
2877         CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2878         clear_IO_APIC_pin(apic, pin);
2879
2880         ioapic_write_entry(apic, pin, entry0);
2881 }
2882
2883 static int disable_timer_pin_1 __initdata;
2884 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2885 static int __init disable_timer_pin_setup(char *arg)
2886 {
2887         disable_timer_pin_1 = 1;
2888         return 0;
2889 }
2890 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2891
2892 int timer_through_8259 __initdata;
2893
2894 /*
2895  * This code may look a bit paranoid, but it's supposed to cooperate with
2896  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2897  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2898  * fanatically on his truly buggy board.
2899  *
2900  * FIXME: really need to revamp this for all platforms.
2901  */
2902 static inline void __init check_timer(void)
2903 {
2904         struct irq_desc *desc = irq_to_desc(0);
2905         struct irq_cfg *cfg = desc->chip_data;
2906         int cpu = boot_cpu_id;
2907         int apic1, pin1, apic2, pin2;
2908         unsigned long flags;
2909         int no_pin1 = 0;
2910
2911         local_irq_save(flags);
2912
2913         /*
2914          * get/set the timer IRQ vector:
2915          */
2916         disable_8259A_irq(0);
2917         assign_irq_vector(0, cfg, apic->target_cpus());
2918
2919         /*
2920          * As IRQ0 is to be enabled in the 8259A, the virtual
2921          * wire has to be disabled in the local APIC.  Also
2922          * timer interrupts need to be acknowledged manually in
2923          * the 8259A for the i82489DX when using the NMI
2924          * watchdog as that APIC treats NMIs as level-triggered.
2925          * The AEOI mode will finish them in the 8259A
2926          * automatically.
2927          */
2928         apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2929         init_8259A(1);
2930 #ifdef CONFIG_X86_32
2931         {
2932                 unsigned int ver;
2933
2934                 ver = apic_read(APIC_LVR);
2935                 ver = GET_APIC_VERSION(ver);
2936                 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2937         }
2938 #endif
2939
2940         pin1  = find_isa_irq_pin(0, mp_INT);
2941         apic1 = find_isa_irq_apic(0, mp_INT);
2942         pin2  = ioapic_i8259.pin;
2943         apic2 = ioapic_i8259.apic;
2944
2945         apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2946                     "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2947                     cfg->vector, apic1, pin1, apic2, pin2);
2948
2949         /*
2950          * Some BIOS writers are clueless and report the ExtINTA
2951          * I/O APIC input from the cascaded 8259A as the timer
2952          * interrupt input.  So just in case, if only one pin
2953          * was found above, try it both directly and through the
2954          * 8259A.
2955          */
2956         if (pin1 == -1) {
2957                 if (intr_remapping_enabled)
2958                         panic("BIOS bug: timer not connected to IO-APIC");
2959                 pin1 = pin2;
2960                 apic1 = apic2;
2961                 no_pin1 = 1;
2962         } else if (pin2 == -1) {
2963                 pin2 = pin1;
2964                 apic2 = apic1;
2965         }
2966
2967         if (pin1 != -1) {
2968                 /*
2969                  * Ok, does IRQ0 through the IOAPIC work?
2970                  */
2971                 if (no_pin1) {
2972                         add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2973                         setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2974                 } else {
2975                         /* for edge trigger, setup_IO_APIC_irq already
2976                          * leave it unmasked.
2977                          * so only need to unmask if it is level-trigger
2978                          * do we really have level trigger timer?
2979                          */
2980                         int idx;
2981                         idx = find_irq_entry(apic1, pin1, mp_INT);
2982                         if (idx != -1 && irq_trigger(idx))
2983                                 unmask_IO_APIC_irq_desc(desc);
2984                 }
2985                 if (timer_irq_works()) {
2986                         if (nmi_watchdog == NMI_IO_APIC) {
2987                                 setup_nmi();
2988                                 enable_8259A_irq(0);
2989                         }
2990                         if (disable_timer_pin_1 > 0)
2991                                 clear_IO_APIC_pin(0, pin1);
2992                         goto out;
2993                 }
2994                 if (intr_remapping_enabled)
2995                         panic("timer doesn't work through Interrupt-remapped IO-APIC");
2996                 local_irq_disable();
2997                 clear_IO_APIC_pin(apic1, pin1);
2998                 if (!no_pin1)
2999                         apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
3000                                     "8254 timer not connected to IO-APIC\n");
3001
3002                 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
3003                             "(IRQ0) through the 8259A ...\n");
3004                 apic_printk(APIC_QUIET, KERN_INFO
3005                             "..... (found apic %d pin %d) ...\n", apic2, pin2);
3006                 /*
3007                  * legacy devices should be connected to IO APIC #0
3008                  */
3009                 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
3010                 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
3011                 enable_8259A_irq(0);
3012                 if (timer_irq_works()) {
3013                         apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
3014                         timer_through_8259 = 1;
3015                         if (nmi_watchdog == NMI_IO_APIC) {
3016                                 disable_8259A_irq(0);
3017                                 setup_nmi();
3018                                 enable_8259A_irq(0);
3019                         }
3020                         goto out;
3021                 }
3022                 /*
3023                  * Cleanup, just in case ...
3024                  */
3025                 local_irq_disable();
3026                 disable_8259A_irq(0);
3027                 clear_IO_APIC_pin(apic2, pin2);
3028                 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3029         }
3030
3031         if (nmi_watchdog == NMI_IO_APIC) {
3032                 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3033                             "through the IO-APIC - disabling NMI Watchdog!\n");
3034                 nmi_watchdog = NMI_NONE;
3035         }
3036 #ifdef CONFIG_X86_32
3037         timer_ack = 0;
3038 #endif
3039
3040         apic_printk(APIC_QUIET, KERN_INFO
3041                     "...trying to set up timer as Virtual Wire IRQ...\n");
3042
3043         lapic_register_intr(0, desc);
3044         apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);     /* Fixed mode */
3045         enable_8259A_irq(0);
3046
3047         if (timer_irq_works()) {
3048                 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3049                 goto out;
3050         }
3051         local_irq_disable();
3052         disable_8259A_irq(0);
3053         apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3054         apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3055
3056         apic_printk(APIC_QUIET, KERN_INFO
3057                     "...trying to set up timer as ExtINT IRQ...\n");
3058
3059         init_8259A(0);
3060         make_8259A_irq(0);
3061         apic_write(APIC_LVT0, APIC_DM_EXTINT);
3062
3063         unlock_ExtINT_logic();
3064
3065         if (timer_irq_works()) {
3066                 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3067                 goto out;
3068         }
3069         local_irq_disable();
3070         apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3071         panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3072                 "report.  Then try booting with the 'noapic' option.\n");
3073 out:
3074         local_irq_restore(flags);
3075 }
3076
3077 /*
3078  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3079  * to devices.  However there may be an I/O APIC pin available for
3080  * this interrupt regardless.  The pin may be left unconnected, but
3081  * typically it will be reused as an ExtINT cascade interrupt for
3082  * the master 8259A.  In the MPS case such a pin will normally be
3083  * reported as an ExtINT interrupt in the MP table.  With ACPI
3084  * there is no provision for ExtINT interrupts, and in the absence
3085  * of an override it would be treated as an ordinary ISA I/O APIC
3086  * interrupt, that is edge-triggered and unmasked by default.  We
3087  * used to do this, but it caused problems on some systems because
3088  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3089  * the same ExtINT cascade interrupt to drive the local APIC of the
3090  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3091  * the I/O APIC in all cases now.  No actual device should request
3092  * it anyway.  --macro
3093  */
3094 #define PIC_IRQS        (1 << PIC_CASCADE_IR)
3095
3096 void __init setup_IO_APIC(void)
3097 {
3098
3099         /*
3100          * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3101          */
3102
3103         io_apic_irqs = ~PIC_IRQS;
3104
3105         apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3106         /*
3107          * Set up IO-APIC IRQ routing.
3108          */
3109 #ifdef CONFIG_X86_32
3110         if (!acpi_ioapic)
3111                 setup_ioapic_ids_from_mpc();
3112 #endif
3113         sync_Arb_IDs();
3114         setup_IO_APIC_irqs();
3115         init_IO_APIC_traps();
3116         check_timer();
3117 }
3118
3119 /*
3120  *      Called after all the initialization is done. If we didnt find any
3121  *      APIC bugs then we can allow the modify fast path
3122  */
3123
3124 static int __init io_apic_bug_finalize(void)
3125 {
3126         if (sis_apic_bug == -1)
3127                 sis_apic_bug = 0;
3128         return 0;
3129 }
3130
3131 late_initcall(io_apic_bug_finalize);
3132
3133 struct sysfs_ioapic_data {
3134         struct sys_device dev;
3135         struct IO_APIC_route_entry entry[0];
3136 };
3137 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3138
3139 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3140 {
3141         struct IO_APIC_route_entry *entry;
3142         struct sysfs_ioapic_data *data;
3143         int i;
3144
3145         data = container_of(dev, struct sysfs_ioapic_data, dev);
3146         entry = data->entry;
3147         for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3148                 *entry = ioapic_read_entry(dev->id, i);
3149
3150         return 0;
3151 }
3152
3153 static int ioapic_resume(struct sys_device *dev)
3154 {
3155         struct IO_APIC_route_entry *entry;
3156         struct sysfs_ioapic_data *data;
3157         unsigned long flags;
3158         union IO_APIC_reg_00 reg_00;
3159         int i;
3160
3161         data = container_of(dev, struct sysfs_ioapic_data, dev);
3162         entry = data->entry;
3163
3164         spin_lock_irqsave(&ioapic_lock, flags);
3165         reg_00.raw = io_apic_read(dev->id, 0);
3166         if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3167                 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3168                 io_apic_write(dev->id, 0, reg_00.raw);
3169         }
3170         spin_unlock_irqrestore(&ioapic_lock, flags);
3171         for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3172                 ioapic_write_entry(dev->id, i, entry[i]);
3173
3174         return 0;
3175 }
3176
3177 static struct sysdev_class ioapic_sysdev_class = {
3178         .name = "ioapic",
3179         .suspend = ioapic_suspend,
3180         .resume = ioapic_resume,
3181 };
3182
3183 static int __init ioapic_init_sysfs(void)
3184 {
3185         struct sys_device * dev;
3186         int i, size, error;
3187
3188         error = sysdev_class_register(&ioapic_sysdev_class);
3189         if (error)
3190                 return error;
3191
3192         for (i = 0; i < nr_ioapics; i++ ) {
3193                 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3194                         * sizeof(struct IO_APIC_route_entry);
3195                 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3196                 if (!mp_ioapic_data[i]) {
3197                         printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3198                         continue;
3199                 }
3200                 dev = &mp_ioapic_data[i]->dev;
3201                 dev->id = i;
3202                 dev->cls = &ioapic_sysdev_class;
3203                 error = sysdev_register(dev);
3204                 if (error) {
3205                         kfree(mp_ioapic_data[i]);
3206                         mp_ioapic_data[i] = NULL;
3207                         printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3208                         continue;
3209                 }
3210         }
3211
3212         return 0;
3213 }
3214
3215 device_initcall(ioapic_init_sysfs);
3216
3217 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3218 /*
3219  * Dynamic irq allocate and deallocation
3220  */
3221 unsigned int create_irq_nr(unsigned int irq_want)
3222 {
3223         /* Allocate an unused irq */
3224         unsigned int irq;
3225         unsigned int new;
3226         unsigned long flags;
3227         struct irq_cfg *cfg_new = NULL;
3228         int cpu = boot_cpu_id;
3229         struct irq_desc *desc_new = NULL;
3230
3231         irq = 0;
3232         if (irq_want < nr_irqs_gsi)
3233                 irq_want = nr_irqs_gsi;
3234
3235         spin_lock_irqsave(&vector_lock, flags);
3236         for (new = irq_want; new < nr_irqs; new++) {
3237                 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3238                 if (!desc_new) {
3239                         printk(KERN_INFO "can not get irq_desc for %d\n", new);
3240                         continue;
3241                 }
3242                 cfg_new = desc_new->chip_data;
3243
3244                 if (cfg_new->vector != 0)
3245                         continue;
3246                 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3247                         irq = new;
3248                 break;
3249         }
3250         spin_unlock_irqrestore(&vector_lock, flags);
3251
3252         if (irq > 0) {
3253                 dynamic_irq_init(irq);
3254                 /* restore it, in case dynamic_irq_init clear it */
3255                 if (desc_new)
3256                         desc_new->chip_data = cfg_new;
3257         }
3258         return irq;
3259 }
3260
3261 int create_irq(void)
3262 {
3263         unsigned int irq_want;
3264         int irq;
3265
3266         irq_want = nr_irqs_gsi;
3267         irq = create_irq_nr(irq_want);
3268
3269         if (irq == 0)
3270                 irq = -1;
3271
3272         return irq;
3273 }
3274
3275 void destroy_irq(unsigned int irq)
3276 {
3277         unsigned long flags;
3278         struct irq_cfg *cfg;
3279         struct irq_desc *desc;
3280
3281         /* store it, in case dynamic_irq_cleanup clear it */
3282         desc = irq_to_desc(irq);
3283         cfg = desc->chip_data;
3284         dynamic_irq_cleanup(irq);
3285         /* connect back irq_cfg */
3286         if (desc)
3287                 desc->chip_data = cfg;
3288
3289         free_irte(irq);
3290         spin_lock_irqsave(&vector_lock, flags);
3291         __clear_irq_vector(irq, cfg);
3292         spin_unlock_irqrestore(&vector_lock, flags);
3293 }
3294
3295 /*
3296  * MSI message composition
3297  */
3298 #ifdef CONFIG_PCI_MSI
3299 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3300 {
3301         struct irq_cfg *cfg;
3302         int err;
3303         unsigned dest;
3304
3305         if (disable_apic)
3306                 return -ENXIO;
3307
3308         cfg = irq_cfg(irq);
3309         err = assign_irq_vector(irq, cfg, apic->target_cpus());
3310         if (err)
3311                 return err;
3312
3313         dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3314
3315         if (irq_remapped(irq)) {
3316                 struct irte irte;
3317                 int ir_index;
3318                 u16 sub_handle;
3319
3320                 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3321                 BUG_ON(ir_index == -1);
3322
3323                 memset (&irte, 0, sizeof(irte));
3324
3325                 irte.present = 1;
3326                 irte.dst_mode = apic->irq_dest_mode;
3327                 irte.trigger_mode = 0; /* edge */
3328                 irte.dlvry_mode = apic->irq_delivery_mode;
3329                 irte.vector = cfg->vector;
3330                 irte.dest_id = IRTE_DEST(dest);
3331
3332                 modify_irte(irq, &irte);
3333
3334                 msg->address_hi = MSI_ADDR_BASE_HI;
3335                 msg->data = sub_handle;
3336                 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3337                                   MSI_ADDR_IR_SHV |
3338                                   MSI_ADDR_IR_INDEX1(ir_index) |
3339                                   MSI_ADDR_IR_INDEX2(ir_index);
3340         } else {
3341                 if (x2apic_enabled())
3342                         msg->address_hi = MSI_ADDR_BASE_HI |
3343                                           MSI_ADDR_EXT_DEST_ID(dest);
3344                 else
3345                         msg->address_hi = MSI_ADDR_BASE_HI;
3346
3347                 msg->address_lo =
3348                         MSI_ADDR_BASE_LO |
3349                         ((apic->irq_dest_mode == 0) ?
3350                                 MSI_ADDR_DEST_MODE_PHYSICAL:
3351                                 MSI_ADDR_DEST_MODE_LOGICAL) |
3352                         ((apic->irq_delivery_mode != dest_LowestPrio) ?
3353                                 MSI_ADDR_REDIRECTION_CPU:
3354                                 MSI_ADDR_REDIRECTION_LOWPRI) |
3355                         MSI_ADDR_DEST_ID(dest);
3356
3357                 msg->data =
3358                         MSI_DATA_TRIGGER_EDGE |
3359                         MSI_DATA_LEVEL_ASSERT |
3360                         ((apic->irq_delivery_mode != dest_LowestPrio) ?
3361                                 MSI_DATA_DELIVERY_FIXED:
3362                                 MSI_DATA_DELIVERY_LOWPRI) |
3363                         MSI_DATA_VECTOR(cfg->vector);
3364         }
3365         return err;
3366 }
3367
3368 #ifdef CONFIG_SMP
3369 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3370 {
3371         struct irq_desc *desc = irq_to_desc(irq);
3372         struct irq_cfg *cfg;
3373         struct msi_msg msg;
3374         unsigned int dest;
3375
3376         dest = set_desc_affinity(desc, mask);
3377         if (dest == BAD_APICID)
3378                 return;
3379
3380         cfg = desc->chip_data;
3381
3382         read_msi_msg_desc(desc, &msg);
3383
3384         msg.data &= ~MSI_DATA_VECTOR_MASK;
3385         msg.data |= MSI_DATA_VECTOR(cfg->vector);
3386         msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3387         msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3388
3389         write_msi_msg_desc(desc, &msg);
3390 }
3391 #ifdef CONFIG_INTR_REMAP
3392 /*
3393  * Migrate the MSI irq to another cpumask. This migration is
3394  * done in the process context using interrupt-remapping hardware.
3395  */
3396 static void
3397 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3398 {
3399         struct irq_desc *desc = irq_to_desc(irq);
3400         struct irq_cfg *cfg = desc->chip_data;
3401         unsigned int dest;
3402         struct irte irte;
3403
3404         if (get_irte(irq, &irte))
3405                 return;
3406
3407         dest = set_desc_affinity(desc, mask);
3408         if (dest == BAD_APICID)
3409                 return;
3410
3411         irte.vector = cfg->vector;
3412         irte.dest_id = IRTE_DEST(dest);
3413
3414         /*
3415          * atomically update the IRTE with the new destination and vector.
3416          */
3417         modify_irte(irq, &irte);
3418
3419         /*
3420          * After this point, all the interrupts will start arriving
3421          * at the new destination. So, time to cleanup the previous
3422          * vector allocation.
3423          */
3424         if (cfg->move_in_progress)
3425                 send_cleanup_vector(cfg);
3426 }
3427
3428 #endif
3429 #endif /* CONFIG_SMP */
3430
3431 /*
3432  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3433  * which implement the MSI or MSI-X Capability Structure.
3434  */
3435 static struct irq_chip msi_chip = {
3436         .name           = "PCI-MSI",
3437         .unmask         = unmask_msi_irq,
3438         .mask           = mask_msi_irq,
3439         .ack            = ack_apic_edge,
3440 #ifdef CONFIG_SMP
3441         .set_affinity   = set_msi_irq_affinity,
3442 #endif
3443         .retrigger      = ioapic_retrigger_irq,
3444 };
3445
3446 static struct irq_chip msi_ir_chip = {
3447         .name           = "IR-PCI-MSI",
3448         .unmask         = unmask_msi_irq,
3449         .mask           = mask_msi_irq,
3450 #ifdef CONFIG_INTR_REMAP
3451         .ack            = ir_ack_apic_edge,
3452 #ifdef CONFIG_SMP
3453         .set_affinity   = ir_set_msi_irq_affinity,
3454 #endif
3455 #endif
3456         .retrigger      = ioapic_retrigger_irq,
3457 };
3458
3459 /*
3460  * Map the PCI dev to the corresponding remapping hardware unit
3461  * and allocate 'nvec' consecutive interrupt-remapping table entries
3462  * in it.
3463  */
3464 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3465 {
3466         struct intel_iommu *iommu;
3467         int index;
3468
3469         iommu = map_dev_to_ir(dev);
3470         if (!iommu) {
3471                 printk(KERN_ERR
3472                        "Unable to map PCI %s to iommu\n", pci_name(dev));
3473                 return -ENOENT;
3474         }
3475
3476         index = alloc_irte(iommu, irq, nvec);
3477         if (index < 0) {
3478                 printk(KERN_ERR
3479                        "Unable to allocate %d IRTE for PCI %s\n", nvec,
3480                        pci_name(dev));
3481                 return -ENOSPC;
3482         }
3483         return index;
3484 }
3485
3486 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3487 {
3488         int ret;
3489         struct msi_msg msg;
3490
3491         ret = msi_compose_msg(dev, irq, &msg);
3492         if (ret < 0)
3493                 return ret;
3494
3495         set_irq_msi(irq, msidesc);
3496         write_msi_msg(irq, &msg);
3497
3498         if (irq_remapped(irq)) {
3499                 struct irq_desc *desc = irq_to_desc(irq);
3500                 /*
3501                  * irq migration in process context
3502                  */
3503                 desc->status |= IRQ_MOVE_PCNTXT;
3504                 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3505         } else
3506                 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3507
3508         dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3509
3510         return 0;
3511 }
3512
3513 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3514 {
3515         unsigned int irq;
3516         int ret, sub_handle;
3517         struct msi_desc *msidesc;
3518         unsigned int irq_want;
3519         struct intel_iommu *iommu = NULL;
3520         int index = 0;
3521
3522         /* x86 doesn't support multiple MSI yet */
3523         if (type == PCI_CAP_ID_MSI && nvec > 1)
3524                 return 1;
3525
3526         irq_want = nr_irqs_gsi;
3527         sub_handle = 0;
3528         list_for_each_entry(msidesc, &dev->msi_list, list) {
3529                 irq = create_irq_nr(irq_want);
3530                 if (irq == 0)
3531                         return -1;
3532                 irq_want = irq + 1;
3533                 if (!intr_remapping_enabled)
3534                         goto no_ir;
3535
3536                 if (!sub_handle) {
3537                         /*
3538                          * allocate the consecutive block of IRTE's
3539                          * for 'nvec'
3540                          */
3541                         index = msi_alloc_irte(dev, irq, nvec);
3542                         if (index < 0) {
3543                                 ret = index;
3544                                 goto error;
3545                         }
3546                 } else {
3547                         iommu = map_dev_to_ir(dev);
3548                         if (!iommu) {
3549                                 ret = -ENOENT;
3550                                 goto error;
3551                         }
3552                         /*
3553                          * setup the mapping between the irq and the IRTE
3554                          * base index, the sub_handle pointing to the
3555                          * appropriate interrupt remap table entry.
3556                          */
3557                         set_irte_irq(irq, iommu, index, sub_handle);
3558                 }
3559 no_ir:
3560                 ret = setup_msi_irq(dev, msidesc, irq);
3561                 if (ret < 0)
3562                         goto error;
3563                 sub_handle++;
3564         }
3565         return 0;
3566
3567 error:
3568         destroy_irq(irq);
3569         return ret;
3570 }
3571
3572 void arch_teardown_msi_irq(unsigned int irq)
3573 {
3574         destroy_irq(irq);
3575 }
3576
3577 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3578 #ifdef CONFIG_SMP
3579 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3580 {
3581         struct irq_desc *desc = irq_to_desc(irq);
3582         struct irq_cfg *cfg;
3583         struct msi_msg msg;
3584         unsigned int dest;
3585
3586         dest = set_desc_affinity(desc, mask);
3587         if (dest == BAD_APICID)
3588                 return;
3589
3590         cfg = desc->chip_data;
3591
3592         dmar_msi_read(irq, &msg);
3593
3594         msg.data &= ~MSI_DATA_VECTOR_MASK;
3595         msg.data |= MSI_DATA_VECTOR(cfg->vector);
3596         msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3597         msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3598
3599         dmar_msi_write(irq, &msg);
3600 }
3601
3602 #endif /* CONFIG_SMP */
3603
3604 struct irq_chip dmar_msi_type = {
3605         .name = "DMAR_MSI",
3606         .unmask = dmar_msi_unmask,
3607         .mask = dmar_msi_mask,
3608         .ack = ack_apic_edge,
3609 #ifdef CONFIG_SMP
3610         .set_affinity = dmar_msi_set_affinity,
3611 #endif
3612         .retrigger = ioapic_retrigger_irq,
3613 };
3614
3615 int arch_setup_dmar_msi(unsigned int irq)
3616 {
3617         int ret;
3618         struct msi_msg msg;
3619
3620         ret = msi_compose_msg(NULL, irq, &msg);
3621         if (ret < 0)
3622                 return ret;
3623         dmar_msi_write(irq, &msg);
3624         set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3625                 "edge");
3626         return 0;
3627 }
3628 #endif
3629
3630 #ifdef CONFIG_HPET_TIMER
3631
3632 #ifdef CONFIG_SMP
3633 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3634 {
3635         struct irq_desc *desc = irq_to_desc(irq);
3636         struct irq_cfg *cfg;
3637         struct msi_msg msg;
3638         unsigned int dest;
3639
3640         dest = set_desc_affinity(desc, mask);
3641         if (dest == BAD_APICID)
3642                 return;
3643
3644         cfg = desc->chip_data;
3645
3646         hpet_msi_read(irq, &msg);
3647
3648         msg.data &= ~MSI_DATA_VECTOR_MASK;
3649         msg.data |= MSI_DATA_VECTOR(cfg->vector);
3650         msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3651         msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3652
3653         hpet_msi_write(irq, &msg);
3654 }
3655
3656 #endif /* CONFIG_SMP */
3657
3658 static struct irq_chip hpet_msi_type = {
3659         .name = "HPET_MSI",
3660         .unmask = hpet_msi_unmask,
3661         .mask = hpet_msi_mask,
3662         .ack = ack_apic_edge,
3663 #ifdef CONFIG_SMP
3664         .set_affinity = hpet_msi_set_affinity,
3665 #endif
3666         .retrigger = ioapic_retrigger_irq,
3667 };
3668
3669 int arch_setup_hpet_msi(unsigned int irq)
3670 {
3671         int ret;
3672         struct msi_msg msg;
3673         struct irq_desc *desc = irq_to_desc(irq);
3674
3675         ret = msi_compose_msg(NULL, irq, &msg);
3676         if (ret < 0)
3677                 return ret;
3678
3679         hpet_msi_write(irq, &msg);
3680         desc->status |= IRQ_MOVE_PCNTXT;
3681         set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3682                 "edge");
3683
3684         return 0;
3685 }
3686 #endif
3687
3688 #endif /* CONFIG_PCI_MSI */
3689 /*
3690  * Hypertransport interrupt support
3691  */
3692 #ifdef CONFIG_HT_IRQ
3693
3694 #ifdef CONFIG_SMP
3695
3696 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3697 {
3698         struct ht_irq_msg msg;
3699         fetch_ht_irq_msg(irq, &msg);
3700
3701         msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3702         msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3703
3704         msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3705         msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3706
3707         write_ht_irq_msg(irq, &msg);
3708 }
3709
3710 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3711 {
3712         struct irq_desc *desc = irq_to_desc(irq);
3713         struct irq_cfg *cfg;
3714         unsigned int dest;
3715
3716         dest = set_desc_affinity(desc, mask);
3717         if (dest == BAD_APICID)
3718                 return;
3719
3720         cfg = desc->chip_data;
3721
3722         target_ht_irq(irq, dest, cfg->vector);
3723 }
3724
3725 #endif
3726
3727 static struct irq_chip ht_irq_chip = {
3728         .name           = "PCI-HT",
3729         .mask           = mask_ht_irq,
3730         .unmask         = unmask_ht_irq,
3731         .ack            = ack_apic_edge,
3732 #ifdef CONFIG_SMP
3733         .set_affinity   = set_ht_irq_affinity,
3734 #endif
3735         .retrigger      = ioapic_retrigger_irq,
3736 };
3737
3738 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3739 {
3740         struct irq_cfg *cfg;
3741         int err;
3742
3743         if (disable_apic)
3744                 return -ENXIO;
3745
3746         cfg = irq_cfg(irq);
3747         err = assign_irq_vector(irq, cfg, apic->target_cpus());
3748         if (!err) {
3749                 struct ht_irq_msg msg;
3750                 unsigned dest;
3751
3752                 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3753                                                     apic->target_cpus());
3754
3755                 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3756
3757                 msg.address_lo =
3758                         HT_IRQ_LOW_BASE |
3759                         HT_IRQ_LOW_DEST_ID(dest) |
3760                         HT_IRQ_LOW_VECTOR(cfg->vector) |
3761                         ((apic->irq_dest_mode == 0) ?
3762                                 HT_IRQ_LOW_DM_PHYSICAL :
3763                                 HT_IRQ_LOW_DM_LOGICAL) |
3764                         HT_IRQ_LOW_RQEOI_EDGE |
3765                         ((apic->irq_delivery_mode != dest_LowestPrio) ?
3766                                 HT_IRQ_LOW_MT_FIXED :
3767                                 HT_IRQ_LOW_MT_ARBITRATED) |
3768                         HT_IRQ_LOW_IRQ_MASKED;
3769
3770                 write_ht_irq_msg(irq, &msg);
3771
3772                 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3773                                               handle_edge_irq, "edge");
3774
3775                 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3776         }
3777         return err;
3778 }
3779 #endif /* CONFIG_HT_IRQ */
3780
3781 #ifdef CONFIG_X86_UV
3782 /*
3783  * Re-target the irq to the specified CPU and enable the specified MMR located
3784  * on the specified blade to allow the sending of MSIs to the specified CPU.
3785  */
3786 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3787                        unsigned long mmr_offset)
3788 {
3789         const struct cpumask *eligible_cpu = cpumask_of(cpu);
3790         struct irq_cfg *cfg;
3791         int mmr_pnode;
3792         unsigned long mmr_value;
3793         struct uv_IO_APIC_route_entry *entry;
3794         unsigned long flags;
3795         int err;
3796
3797         cfg = irq_cfg(irq);
3798
3799         err = assign_irq_vector(irq, cfg, eligible_cpu);
3800         if (err != 0)
3801                 return err;
3802
3803         spin_lock_irqsave(&vector_lock, flags);
3804         set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3805                                       irq_name);
3806         spin_unlock_irqrestore(&vector_lock, flags);
3807
3808         mmr_value = 0;
3809         entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3810         BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3811
3812         entry->vector = cfg->vector;
3813         entry->delivery_mode = apic->irq_delivery_mode;
3814         entry->dest_mode = apic->irq_dest_mode;
3815         entry->polarity = 0;
3816         entry->trigger = 0;
3817         entry->mask = 0;
3818         entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3819
3820         mmr_pnode = uv_blade_to_pnode(mmr_blade);
3821         uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3822
3823         return irq;
3824 }
3825
3826 /*
3827  * Disable the specified MMR located on the specified blade so that MSIs are
3828  * longer allowed to be sent.
3829  */
3830 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3831 {
3832         unsigned long mmr_value;
3833         struct uv_IO_APIC_route_entry *entry;
3834         int mmr_pnode;
3835
3836         mmr_value = 0;
3837         entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3838         BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3839
3840         entry->mask = 1;
3841
3842         mmr_pnode = uv_blade_to_pnode(mmr_blade);
3843         uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3844 }
3845 #endif /* CONFIG_X86_64 */
3846
3847 int __init io_apic_get_redir_entries (int ioapic)
3848 {
3849         union IO_APIC_reg_01    reg_01;
3850         unsigned long flags;
3851
3852         spin_lock_irqsave(&ioapic_lock, flags);
3853         reg_01.raw = io_apic_read(ioapic, 1);
3854         spin_unlock_irqrestore(&ioapic_lock, flags);
3855
3856         return reg_01.bits.entries;
3857 }
3858
3859 void __init probe_nr_irqs_gsi(void)
3860 {
3861         int nr = 0;
3862
3863         nr = acpi_probe_gsi();
3864         if (nr > nr_irqs_gsi) {
3865                 nr_irqs_gsi = nr;
3866         } else {
3867                 /* for acpi=off or acpi is not compiled in */
3868                 int idx;
3869
3870                 nr = 0;
3871                 for (idx = 0; idx < nr_ioapics; idx++)
3872                         nr += io_apic_get_redir_entries(idx) + 1;
3873
3874                 if (nr > nr_irqs_gsi)
3875                         nr_irqs_gsi = nr;
3876         }
3877
3878         printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3879 }
3880
3881 #ifdef CONFIG_SPARSE_IRQ
3882 int __init arch_probe_nr_irqs(void)
3883 {
3884         int nr;
3885
3886         if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3887                 nr_irqs = NR_VECTORS * nr_cpu_ids;
3888
3889         nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3890 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3891         /*
3892          * for MSI and HT dyn irq
3893          */
3894         nr += nr_irqs_gsi * 16;
3895 #endif
3896         if (nr < nr_irqs)
3897                 nr_irqs = nr;
3898
3899         return 0;
3900 }
3901 #endif
3902
3903 /* --------------------------------------------------------------------------
3904                           ACPI-based IOAPIC Configuration
3905    -------------------------------------------------------------------------- */
3906
3907 #ifdef CONFIG_ACPI
3908
3909 #ifdef CONFIG_X86_32
3910 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3911 {
3912         union IO_APIC_reg_00 reg_00;
3913         static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3914         physid_mask_t tmp;
3915         unsigned long flags;
3916         int i = 0;
3917
3918         /*
3919          * The P4 platform supports up to 256 APIC IDs on two separate APIC
3920          * buses (one for LAPICs, one for IOAPICs), where predecessors only
3921          * supports up to 16 on one shared APIC bus.
3922          *
3923          * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3924          *      advantage of new APIC bus architecture.
3925          */
3926
3927         if (physids_empty(apic_id_map))
3928                 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3929
3930         spin_lock_irqsave(&ioapic_lock, flags);
3931         reg_00.raw = io_apic_read(ioapic, 0);
3932         spin_unlock_irqrestore(&ioapic_lock, flags);
3933
3934         if (apic_id >= get_physical_broadcast()) {
3935                 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3936                         "%d\n", ioapic, apic_id, reg_00.bits.ID);
3937                 apic_id = reg_00.bits.ID;
3938         }
3939
3940         /*
3941          * Every APIC in a system must have a unique ID or we get lots of nice
3942          * 'stuck on smp_invalidate_needed IPI wait' messages.
3943          */
3944         if (apic->check_apicid_used(apic_id_map, apic_id)) {
3945
3946                 for (i = 0; i < get_physical_broadcast(); i++) {
3947                         if (!apic->check_apicid_used(apic_id_map, i))
3948                                 break;
3949                 }
3950
3951                 if (i == get_physical_broadcast())
3952                         panic("Max apic_id exceeded!\n");
3953
3954                 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3955                         "trying %d\n", ioapic, apic_id, i);
3956
3957                 apic_id = i;
3958         }
3959
3960         tmp = apic->apicid_to_cpu_present(apic_id);
3961         physids_or(apic_id_map, apic_id_map, tmp);
3962
3963         if (reg_00.bits.ID != apic_id) {
3964                 reg_00.bits.ID = apic_id;
3965
3966                 spin_lock_irqsave(&ioapic_lock, flags);
3967                 io_apic_write(ioapic, 0, reg_00.raw);
3968                 reg_00.raw = io_apic_read(ioapic, 0);
3969                 spin_unlock_irqrestore(&ioapic_lock, flags);
3970
3971                 /* Sanity check */
3972                 if (reg_00.bits.ID != apic_id) {
3973                         printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3974                         return -1;
3975                 }
3976         }
3977
3978         apic_printk(APIC_VERBOSE, KERN_INFO
3979                         "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3980
3981         return apic_id;
3982 }
3983
3984 int __init io_apic_get_version(int ioapic)
3985 {
3986         union IO_APIC_reg_01    reg_01;
3987         unsigned long flags;
3988
3989         spin_lock_irqsave(&ioapic_lock, flags);
3990         reg_01.raw = io_apic_read(ioapic, 1);
3991         spin_unlock_irqrestore(&ioapic_lock, flags);
3992
3993         return reg_01.bits.version;
3994 }
3995 #endif
3996
3997 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3998 {
3999         struct irq_desc *desc;
4000         struct irq_cfg *cfg;
4001         int cpu = boot_cpu_id;
4002
4003         if (!IO_APIC_IRQ(irq)) {
4004                 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
4005                         ioapic);
4006                 return -EINVAL;
4007         }
4008
4009         desc = irq_to_desc_alloc_cpu(irq, cpu);
4010         if (!desc) {
4011                 printk(KERN_INFO "can not get irq_desc %d\n", irq);
4012                 return 0;
4013         }
4014
4015         /*
4016          * IRQs < 16 are already in the irq_2_pin[] map
4017          */
4018         if (irq >= NR_IRQS_LEGACY) {
4019                 cfg = desc->chip_data;
4020                 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
4021         }
4022
4023         setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
4024
4025         return 0;
4026 }
4027
4028
4029 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4030 {
4031         int i;
4032
4033         if (skip_ioapic_setup)
4034                 return -1;
4035
4036         for (i = 0; i < mp_irq_entries; i++)
4037                 if (mp_irqs[i].irqtype == mp_INT &&
4038                     mp_irqs[i].srcbusirq == bus_irq)
4039                         break;
4040         if (i >= mp_irq_entries)
4041                 return -1;
4042
4043         *trigger = irq_trigger(i);
4044         *polarity = irq_polarity(i);
4045         return 0;
4046 }
4047
4048 #endif /* CONFIG_ACPI */
4049
4050 /*
4051  * This function currently is only a helper for the i386 smp boot process where
4052  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4053  * so mask in all cases should simply be apic->target_cpus()
4054  */
4055 #ifdef CONFIG_SMP
4056 void __init setup_ioapic_dest(void)
4057 {
4058         int pin, ioapic, irq, irq_entry;
4059         struct irq_desc *desc;
4060         struct irq_cfg *cfg;
4061         const struct cpumask *mask;
4062
4063         if (skip_ioapic_setup == 1)
4064                 return;
4065
4066         for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4067                 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4068                         irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4069                         if (irq_entry == -1)
4070                                 continue;
4071                         irq = pin_2_irq(irq_entry, ioapic, pin);
4072
4073                         /* setup_IO_APIC_irqs could fail to get vector for some device
4074                          * when you have too many devices, because at that time only boot
4075                          * cpu is online.
4076                          */
4077                         desc = irq_to_desc(irq);
4078                         cfg = desc->chip_data;
4079                         if (!cfg->vector) {
4080                                 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4081                                                   irq_trigger(irq_entry),
4082                                                   irq_polarity(irq_entry));
4083                                 continue;
4084
4085                         }
4086
4087                         /*
4088                          * Honour affinities which have been set in early boot
4089                          */
4090                         if (desc->status &
4091                             (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4092                                 mask = desc->affinity;
4093                         else
4094                                 mask = apic->target_cpus();
4095
4096                         if (intr_remapping_enabled)
4097                                 set_ir_ioapic_affinity_irq_desc(desc, mask);
4098                         else
4099                                 set_ioapic_affinity_irq_desc(desc, mask);
4100                 }
4101
4102         }
4103 }
4104 #endif
4105
4106 #define IOAPIC_RESOURCE_NAME_SIZE 11
4107
4108 static struct resource *ioapic_resources;
4109
4110 static struct resource * __init ioapic_setup_resources(void)
4111 {
4112         unsigned long n;
4113         struct resource *res;
4114         char *mem;
4115         int i;
4116
4117         if (nr_ioapics <= 0)
4118                 return NULL;
4119
4120         n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4121         n *= nr_ioapics;
4122
4123         mem = alloc_bootmem(n);
4124         res = (void *)mem;
4125
4126         if (mem != NULL) {
4127                 mem += sizeof(struct resource) * nr_ioapics;
4128
4129                 for (i = 0; i < nr_ioapics; i++) {
4130                         res[i].name = mem;
4131                         res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4132                         sprintf(mem,  "IOAPIC %u", i);
4133                         mem += IOAPIC_RESOURCE_NAME_SIZE;
4134                 }
4135         }
4136
4137         ioapic_resources = res;
4138
4139         return res;
4140 }
4141
4142 void __init ioapic_init_mappings(void)
4143 {
4144         unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4145         struct resource *ioapic_res;
4146         int i;
4147
4148         ioapic_res = ioapic_setup_resources();
4149         for (i = 0; i < nr_ioapics; i++) {
4150                 if (smp_found_config) {
4151                         ioapic_phys = mp_ioapics[i].apicaddr;
4152 #ifdef CONFIG_X86_32
4153                         if (!ioapic_phys) {
4154                                 printk(KERN_ERR
4155                                        "WARNING: bogus zero IO-APIC "
4156                                        "address found in MPTABLE, "
4157                                        "disabling IO/APIC support!\n");
4158                                 smp_found_config = 0;
4159                                 skip_ioapic_setup = 1;
4160                                 goto fake_ioapic_page;
4161                         }
4162 #endif
4163                 } else {
4164 #ifdef CONFIG_X86_32
4165 fake_ioapic_page:
4166 #endif
4167                         ioapic_phys = (unsigned long)
4168                                 alloc_bootmem_pages(PAGE_SIZE);
4169                         ioapic_phys = __pa(ioapic_phys);
4170                 }
4171                 set_fixmap_nocache(idx, ioapic_phys);
4172                 apic_printk(APIC_VERBOSE,
4173                             "mapped IOAPIC to %08lx (%08lx)\n",
4174                             __fix_to_virt(idx), ioapic_phys);
4175                 idx++;
4176
4177                 if (ioapic_res != NULL) {
4178                         ioapic_res->start = ioapic_phys;
4179                         ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4180                         ioapic_res++;
4181                 }
4182         }
4183 }
4184
4185 static int __init ioapic_insert_resources(void)
4186 {
4187         int i;
4188         struct resource *r = ioapic_resources;
4189
4190         if (!r) {
4191                 if (nr_ioapics > 0) {
4192                         printk(KERN_ERR
4193                                 "IO APIC resources couldn't be allocated.\n");
4194                         return -1;
4195                 }
4196                 return 0;
4197         }
4198
4199         for (i = 0; i < nr_ioapics; i++) {
4200                 insert_resource(&iomem_resource, r);
4201                 r++;
4202         }
4203
4204         return 0;
4205 }
4206
4207 /* Insert the IO APIC resources after PCI initialization has occured to handle
4208  * IO APICS that are mapped in on a BAR in PCI space. */
4209 late_initcall(ioapic_insert_resources);