Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild...
[linux-2.6] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2  * Performance counter x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *
10  *  For licencing details see kernel-base/COPYING
11  */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
26
27 static u64 perf_counter_mask __read_mostly;
28
29 struct cpu_hw_counters {
30         struct perf_counter     *counters[X86_PMC_IDX_MAX];
31         unsigned long           used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33         unsigned long           interrupts;
34         int                     enabled;
35 };
36
37 /*
38  * struct x86_pmu - generic x86 pmu
39  */
40 struct x86_pmu {
41         const char      *name;
42         int             version;
43         int             (*handle_irq)(struct pt_regs *);
44         void            (*disable_all)(void);
45         void            (*enable_all)(void);
46         void            (*enable)(struct hw_perf_counter *, int);
47         void            (*disable)(struct hw_perf_counter *, int);
48         unsigned        eventsel;
49         unsigned        perfctr;
50         u64             (*event_map)(int);
51         u64             (*raw_event)(u64);
52         int             max_events;
53         int             num_counters;
54         int             num_counters_fixed;
55         int             counter_bits;
56         u64             counter_mask;
57         u64             max_period;
58         u64             intel_ctrl;
59 };
60
61 static struct x86_pmu x86_pmu __read_mostly;
62
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64         .enabled = 1,
65 };
66
67 /*
68  * Intel PerfMon v3. Used on Core2 and later.
69  */
70 static const u64 intel_perfmon_event_map[] =
71 {
72   [PERF_COUNT_HW_CPU_CYCLES]            = 0x003c,
73   [PERF_COUNT_HW_INSTRUCTIONS]          = 0x00c0,
74   [PERF_COUNT_HW_CACHE_REFERENCES]      = 0x4f2e,
75   [PERF_COUNT_HW_CACHE_MISSES]          = 0x412e,
76   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]   = 0x00c4,
77   [PERF_COUNT_HW_BRANCH_MISSES]         = 0x00c5,
78   [PERF_COUNT_HW_BUS_CYCLES]            = 0x013c,
79 };
80
81 static u64 intel_pmu_event_map(int event)
82 {
83         return intel_perfmon_event_map[event];
84 }
85
86 /*
87  * Generalized hw caching related event table, filled
88  * in on a per model basis. A value of 0 means
89  * 'not supported', -1 means 'event makes no sense on
90  * this CPU', any other value means the raw event
91  * ID.
92  */
93
94 #define C(x) PERF_COUNT_HW_CACHE_##x
95
96 static u64 __read_mostly hw_cache_event_ids
97                                 [PERF_COUNT_HW_CACHE_MAX]
98                                 [PERF_COUNT_HW_CACHE_OP_MAX]
99                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
100
101 static const u64 nehalem_hw_cache_event_ids
102                                 [PERF_COUNT_HW_CACHE_MAX]
103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
105 {
106  [ C(L1D) ] = {
107         [ C(OP_READ) ] = {
108                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI            */
109                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE         */
110         },
111         [ C(OP_WRITE) ] = {
112                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI            */
113                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE         */
114         },
115         [ C(OP_PREFETCH) ] = {
116                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
117                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
118         },
119  },
120  [ C(L1I ) ] = {
121         [ C(OP_READ) ] = {
122                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
123                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
124         },
125         [ C(OP_WRITE) ] = {
126                 [ C(RESULT_ACCESS) ] = -1,
127                 [ C(RESULT_MISS)   ] = -1,
128         },
129         [ C(OP_PREFETCH) ] = {
130                 [ C(RESULT_ACCESS) ] = 0x0,
131                 [ C(RESULT_MISS)   ] = 0x0,
132         },
133  },
134  [ C(LL  ) ] = {
135         [ C(OP_READ) ] = {
136                 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS               */
137                 [ C(RESULT_MISS)   ] = 0x0224, /* L2_RQSTS.LD_MISS             */
138         },
139         [ C(OP_WRITE) ] = {
140                 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS                */
141                 [ C(RESULT_MISS)   ] = 0x0824, /* L2_RQSTS.RFO_MISS            */
142         },
143         [ C(OP_PREFETCH) ] = {
144                 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference                */
145                 [ C(RESULT_MISS)   ] = 0x412e, /* LLC Misses                   */
146         },
147  },
148  [ C(DTLB) ] = {
149         [ C(OP_READ) ] = {
150                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
151                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
152         },
153         [ C(OP_WRITE) ] = {
154                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
155                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
156         },
157         [ C(OP_PREFETCH) ] = {
158                 [ C(RESULT_ACCESS) ] = 0x0,
159                 [ C(RESULT_MISS)   ] = 0x0,
160         },
161  },
162  [ C(ITLB) ] = {
163         [ C(OP_READ) ] = {
164                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
165                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
166         },
167         [ C(OP_WRITE) ] = {
168                 [ C(RESULT_ACCESS) ] = -1,
169                 [ C(RESULT_MISS)   ] = -1,
170         },
171         [ C(OP_PREFETCH) ] = {
172                 [ C(RESULT_ACCESS) ] = -1,
173                 [ C(RESULT_MISS)   ] = -1,
174         },
175  },
176  [ C(BPU ) ] = {
177         [ C(OP_READ) ] = {
178                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
179                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
180         },
181         [ C(OP_WRITE) ] = {
182                 [ C(RESULT_ACCESS) ] = -1,
183                 [ C(RESULT_MISS)   ] = -1,
184         },
185         [ C(OP_PREFETCH) ] = {
186                 [ C(RESULT_ACCESS) ] = -1,
187                 [ C(RESULT_MISS)   ] = -1,
188         },
189  },
190 };
191
192 static const u64 core2_hw_cache_event_ids
193                                 [PERF_COUNT_HW_CACHE_MAX]
194                                 [PERF_COUNT_HW_CACHE_OP_MAX]
195                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
196 {
197  [ C(L1D) ] = {
198         [ C(OP_READ) ] = {
199                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
200                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
201         },
202         [ C(OP_WRITE) ] = {
203                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
204                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
205         },
206         [ C(OP_PREFETCH) ] = {
207                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
208                 [ C(RESULT_MISS)   ] = 0,
209         },
210  },
211  [ C(L1I ) ] = {
212         [ C(OP_READ) ] = {
213                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
214                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
215         },
216         [ C(OP_WRITE) ] = {
217                 [ C(RESULT_ACCESS) ] = -1,
218                 [ C(RESULT_MISS)   ] = -1,
219         },
220         [ C(OP_PREFETCH) ] = {
221                 [ C(RESULT_ACCESS) ] = 0,
222                 [ C(RESULT_MISS)   ] = 0,
223         },
224  },
225  [ C(LL  ) ] = {
226         [ C(OP_READ) ] = {
227                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
228                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
229         },
230         [ C(OP_WRITE) ] = {
231                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
232                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
233         },
234         [ C(OP_PREFETCH) ] = {
235                 [ C(RESULT_ACCESS) ] = 0,
236                 [ C(RESULT_MISS)   ] = 0,
237         },
238  },
239  [ C(DTLB) ] = {
240         [ C(OP_READ) ] = {
241                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
242                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
243         },
244         [ C(OP_WRITE) ] = {
245                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
246                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
247         },
248         [ C(OP_PREFETCH) ] = {
249                 [ C(RESULT_ACCESS) ] = 0,
250                 [ C(RESULT_MISS)   ] = 0,
251         },
252  },
253  [ C(ITLB) ] = {
254         [ C(OP_READ) ] = {
255                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
256                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
257         },
258         [ C(OP_WRITE) ] = {
259                 [ C(RESULT_ACCESS) ] = -1,
260                 [ C(RESULT_MISS)   ] = -1,
261         },
262         [ C(OP_PREFETCH) ] = {
263                 [ C(RESULT_ACCESS) ] = -1,
264                 [ C(RESULT_MISS)   ] = -1,
265         },
266  },
267  [ C(BPU ) ] = {
268         [ C(OP_READ) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
270                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
271         },
272         [ C(OP_WRITE) ] = {
273                 [ C(RESULT_ACCESS) ] = -1,
274                 [ C(RESULT_MISS)   ] = -1,
275         },
276         [ C(OP_PREFETCH) ] = {
277                 [ C(RESULT_ACCESS) ] = -1,
278                 [ C(RESULT_MISS)   ] = -1,
279         },
280  },
281 };
282
283 static const u64 atom_hw_cache_event_ids
284                                 [PERF_COUNT_HW_CACHE_MAX]
285                                 [PERF_COUNT_HW_CACHE_OP_MAX]
286                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
287 {
288  [ C(L1D) ] = {
289         [ C(OP_READ) ] = {
290                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
291                 [ C(RESULT_MISS)   ] = 0,
292         },
293         [ C(OP_WRITE) ] = {
294                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
295                 [ C(RESULT_MISS)   ] = 0,
296         },
297         [ C(OP_PREFETCH) ] = {
298                 [ C(RESULT_ACCESS) ] = 0x0,
299                 [ C(RESULT_MISS)   ] = 0,
300         },
301  },
302  [ C(L1I ) ] = {
303         [ C(OP_READ) ] = {
304                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
305                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
306         },
307         [ C(OP_WRITE) ] = {
308                 [ C(RESULT_ACCESS) ] = -1,
309                 [ C(RESULT_MISS)   ] = -1,
310         },
311         [ C(OP_PREFETCH) ] = {
312                 [ C(RESULT_ACCESS) ] = 0,
313                 [ C(RESULT_MISS)   ] = 0,
314         },
315  },
316  [ C(LL  ) ] = {
317         [ C(OP_READ) ] = {
318                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
319                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
320         },
321         [ C(OP_WRITE) ] = {
322                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
323                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
324         },
325         [ C(OP_PREFETCH) ] = {
326                 [ C(RESULT_ACCESS) ] = 0,
327                 [ C(RESULT_MISS)   ] = 0,
328         },
329  },
330  [ C(DTLB) ] = {
331         [ C(OP_READ) ] = {
332                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
333                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
334         },
335         [ C(OP_WRITE) ] = {
336                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
337                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
338         },
339         [ C(OP_PREFETCH) ] = {
340                 [ C(RESULT_ACCESS) ] = 0,
341                 [ C(RESULT_MISS)   ] = 0,
342         },
343  },
344  [ C(ITLB) ] = {
345         [ C(OP_READ) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
347                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
348         },
349         [ C(OP_WRITE) ] = {
350                 [ C(RESULT_ACCESS) ] = -1,
351                 [ C(RESULT_MISS)   ] = -1,
352         },
353         [ C(OP_PREFETCH) ] = {
354                 [ C(RESULT_ACCESS) ] = -1,
355                 [ C(RESULT_MISS)   ] = -1,
356         },
357  },
358  [ C(BPU ) ] = {
359         [ C(OP_READ) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
361                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
362         },
363         [ C(OP_WRITE) ] = {
364                 [ C(RESULT_ACCESS) ] = -1,
365                 [ C(RESULT_MISS)   ] = -1,
366         },
367         [ C(OP_PREFETCH) ] = {
368                 [ C(RESULT_ACCESS) ] = -1,
369                 [ C(RESULT_MISS)   ] = -1,
370         },
371  },
372 };
373
374 static u64 intel_pmu_raw_event(u64 event)
375 {
376 #define CORE_EVNTSEL_EVENT_MASK         0x000000FFULL
377 #define CORE_EVNTSEL_UNIT_MASK          0x0000FF00ULL
378 #define CORE_EVNTSEL_EDGE_MASK          0x00040000ULL
379 #define CORE_EVNTSEL_INV_MASK           0x00800000ULL
380 #define CORE_EVNTSEL_COUNTER_MASK       0xFF000000ULL
381
382 #define CORE_EVNTSEL_MASK               \
383         (CORE_EVNTSEL_EVENT_MASK |      \
384          CORE_EVNTSEL_UNIT_MASK  |      \
385          CORE_EVNTSEL_EDGE_MASK  |      \
386          CORE_EVNTSEL_INV_MASK  |       \
387          CORE_EVNTSEL_COUNTER_MASK)
388
389         return event & CORE_EVNTSEL_MASK;
390 }
391
392 static const u64 amd_0f_hw_cache_event_ids
393                                 [PERF_COUNT_HW_CACHE_MAX]
394                                 [PERF_COUNT_HW_CACHE_OP_MAX]
395                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
396 {
397  [ C(L1D) ] = {
398         [ C(OP_READ) ] = {
399                 [ C(RESULT_ACCESS) ] = 0,
400                 [ C(RESULT_MISS)   ] = 0,
401         },
402         [ C(OP_WRITE) ] = {
403                 [ C(RESULT_ACCESS) ] = 0,
404                 [ C(RESULT_MISS)   ] = 0,
405         },
406         [ C(OP_PREFETCH) ] = {
407                 [ C(RESULT_ACCESS) ] = 0,
408                 [ C(RESULT_MISS)   ] = 0,
409         },
410  },
411  [ C(L1I ) ] = {
412         [ C(OP_READ) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
414                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
415         },
416         [ C(OP_WRITE) ] = {
417                 [ C(RESULT_ACCESS) ] = -1,
418                 [ C(RESULT_MISS)   ] = -1,
419         },
420         [ C(OP_PREFETCH) ] = {
421                 [ C(RESULT_ACCESS) ] = 0,
422                 [ C(RESULT_MISS)   ] = 0,
423         },
424  },
425  [ C(LL  ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0,
428                 [ C(RESULT_MISS)   ] = 0,
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0,
432                 [ C(RESULT_MISS)   ] = 0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0,
436                 [ C(RESULT_MISS)   ] = 0,
437         },
438  },
439  [ C(DTLB) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0,
442                 [ C(RESULT_MISS)   ] = 0,
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = 0,
446                 [ C(RESULT_MISS)   ] = 0,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0,
450                 [ C(RESULT_MISS)   ] = 0,
451         },
452  },
453  [ C(ITLB) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
456                 [ C(RESULT_MISS)   ] = 0x0085, /* Instr. fetch ITLB misses   */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = -1,
464                 [ C(RESULT_MISS)   ] = -1,
465         },
466  },
467  [ C(BPU ) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
470                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = -1,
474                 [ C(RESULT_MISS)   ] = -1,
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = -1,
478                 [ C(RESULT_MISS)   ] = -1,
479         },
480  },
481 };
482
483 /*
484  * AMD Performance Monitor K7 and later.
485  */
486 static const u64 amd_perfmon_event_map[] =
487 {
488   [PERF_COUNT_HW_CPU_CYCLES]            = 0x0076,
489   [PERF_COUNT_HW_INSTRUCTIONS]          = 0x00c0,
490   [PERF_COUNT_HW_CACHE_REFERENCES]      = 0x0080,
491   [PERF_COUNT_HW_CACHE_MISSES]          = 0x0081,
492   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]   = 0x00c4,
493   [PERF_COUNT_HW_BRANCH_MISSES]         = 0x00c5,
494 };
495
496 static u64 amd_pmu_event_map(int event)
497 {
498         return amd_perfmon_event_map[event];
499 }
500
501 static u64 amd_pmu_raw_event(u64 event)
502 {
503 #define K7_EVNTSEL_EVENT_MASK   0x7000000FFULL
504 #define K7_EVNTSEL_UNIT_MASK    0x00000FF00ULL
505 #define K7_EVNTSEL_EDGE_MASK    0x000040000ULL
506 #define K7_EVNTSEL_INV_MASK     0x000800000ULL
507 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
508
509 #define K7_EVNTSEL_MASK                 \
510         (K7_EVNTSEL_EVENT_MASK |        \
511          K7_EVNTSEL_UNIT_MASK  |        \
512          K7_EVNTSEL_EDGE_MASK  |        \
513          K7_EVNTSEL_INV_MASK   |        \
514          K7_EVNTSEL_COUNTER_MASK)
515
516         return event & K7_EVNTSEL_MASK;
517 }
518
519 /*
520  * Propagate counter elapsed time into the generic counter.
521  * Can only be executed on the CPU where the counter is active.
522  * Returns the delta events processed.
523  */
524 static u64
525 x86_perf_counter_update(struct perf_counter *counter,
526                         struct hw_perf_counter *hwc, int idx)
527 {
528         int shift = 64 - x86_pmu.counter_bits;
529         u64 prev_raw_count, new_raw_count;
530         s64 delta;
531
532         /*
533          * Careful: an NMI might modify the previous counter value.
534          *
535          * Our tactic to handle this is to first atomically read and
536          * exchange a new raw count - then add that new-prev delta
537          * count to the generic counter atomically:
538          */
539 again:
540         prev_raw_count = atomic64_read(&hwc->prev_count);
541         rdmsrl(hwc->counter_base + idx, new_raw_count);
542
543         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
544                                         new_raw_count) != prev_raw_count)
545                 goto again;
546
547         /*
548          * Now we have the new raw value and have updated the prev
549          * timestamp already. We can now calculate the elapsed delta
550          * (counter-)time and add that to the generic counter.
551          *
552          * Careful, not all hw sign-extends above the physical width
553          * of the count.
554          */
555         delta = (new_raw_count << shift) - (prev_raw_count << shift);
556         delta >>= shift;
557
558         atomic64_add(delta, &counter->count);
559         atomic64_sub(delta, &hwc->period_left);
560
561         return new_raw_count;
562 }
563
564 static atomic_t active_counters;
565 static DEFINE_MUTEX(pmc_reserve_mutex);
566
567 static bool reserve_pmc_hardware(void)
568 {
569         int i;
570
571         if (nmi_watchdog == NMI_LOCAL_APIC)
572                 disable_lapic_nmi_watchdog();
573
574         for (i = 0; i < x86_pmu.num_counters; i++) {
575                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
576                         goto perfctr_fail;
577         }
578
579         for (i = 0; i < x86_pmu.num_counters; i++) {
580                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
581                         goto eventsel_fail;
582         }
583
584         return true;
585
586 eventsel_fail:
587         for (i--; i >= 0; i--)
588                 release_evntsel_nmi(x86_pmu.eventsel + i);
589
590         i = x86_pmu.num_counters;
591
592 perfctr_fail:
593         for (i--; i >= 0; i--)
594                 release_perfctr_nmi(x86_pmu.perfctr + i);
595
596         if (nmi_watchdog == NMI_LOCAL_APIC)
597                 enable_lapic_nmi_watchdog();
598
599         return false;
600 }
601
602 static void release_pmc_hardware(void)
603 {
604         int i;
605
606         for (i = 0; i < x86_pmu.num_counters; i++) {
607                 release_perfctr_nmi(x86_pmu.perfctr + i);
608                 release_evntsel_nmi(x86_pmu.eventsel + i);
609         }
610
611         if (nmi_watchdog == NMI_LOCAL_APIC)
612                 enable_lapic_nmi_watchdog();
613 }
614
615 static void hw_perf_counter_destroy(struct perf_counter *counter)
616 {
617         if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
618                 release_pmc_hardware();
619                 mutex_unlock(&pmc_reserve_mutex);
620         }
621 }
622
623 static inline int x86_pmu_initialized(void)
624 {
625         return x86_pmu.handle_irq != NULL;
626 }
627
628 static inline int
629 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
630 {
631         unsigned int cache_type, cache_op, cache_result;
632         u64 config, val;
633
634         config = attr->config;
635
636         cache_type = (config >>  0) & 0xff;
637         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
638                 return -EINVAL;
639
640         cache_op = (config >>  8) & 0xff;
641         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
642                 return -EINVAL;
643
644         cache_result = (config >> 16) & 0xff;
645         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
646                 return -EINVAL;
647
648         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
649
650         if (val == 0)
651                 return -ENOENT;
652
653         if (val == -1)
654                 return -EINVAL;
655
656         hwc->config |= val;
657
658         return 0;
659 }
660
661 /*
662  * Setup the hardware configuration for a given attr_type
663  */
664 static int __hw_perf_counter_init(struct perf_counter *counter)
665 {
666         struct perf_counter_attr *attr = &counter->attr;
667         struct hw_perf_counter *hwc = &counter->hw;
668         int err;
669
670         if (!x86_pmu_initialized())
671                 return -ENODEV;
672
673         err = 0;
674         if (!atomic_inc_not_zero(&active_counters)) {
675                 mutex_lock(&pmc_reserve_mutex);
676                 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
677                         err = -EBUSY;
678                 else
679                         atomic_inc(&active_counters);
680                 mutex_unlock(&pmc_reserve_mutex);
681         }
682         if (err)
683                 return err;
684
685         /*
686          * Generate PMC IRQs:
687          * (keep 'enabled' bit clear for now)
688          */
689         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
690
691         /*
692          * Count user and OS events unless requested not to.
693          */
694         if (!attr->exclude_user)
695                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
696         if (!attr->exclude_kernel)
697                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
698
699         if (!hwc->sample_period) {
700                 hwc->sample_period = x86_pmu.max_period;
701                 hwc->last_period = hwc->sample_period;
702                 atomic64_set(&hwc->period_left, hwc->sample_period);
703         }
704
705         counter->destroy = hw_perf_counter_destroy;
706
707         /*
708          * Raw event type provide the config in the event structure
709          */
710         if (attr->type == PERF_TYPE_RAW) {
711                 hwc->config |= x86_pmu.raw_event(attr->config);
712                 return 0;
713         }
714
715         if (attr->type == PERF_TYPE_HW_CACHE)
716                 return set_ext_hw_attr(hwc, attr);
717
718         if (attr->config >= x86_pmu.max_events)
719                 return -EINVAL;
720         /*
721          * The generic map:
722          */
723         hwc->config |= x86_pmu.event_map(attr->config);
724
725         return 0;
726 }
727
728 static void intel_pmu_disable_all(void)
729 {
730         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
731 }
732
733 static void amd_pmu_disable_all(void)
734 {
735         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
736         int idx;
737
738         if (!cpuc->enabled)
739                 return;
740
741         cpuc->enabled = 0;
742         /*
743          * ensure we write the disable before we start disabling the
744          * counters proper, so that amd_pmu_enable_counter() does the
745          * right thing.
746          */
747         barrier();
748
749         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
750                 u64 val;
751
752                 if (!test_bit(idx, cpuc->active_mask))
753                         continue;
754                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
755                 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
756                         continue;
757                 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
758                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
759         }
760 }
761
762 void hw_perf_disable(void)
763 {
764         if (!x86_pmu_initialized())
765                 return;
766         return x86_pmu.disable_all();
767 }
768
769 static void intel_pmu_enable_all(void)
770 {
771         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
772 }
773
774 static void amd_pmu_enable_all(void)
775 {
776         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
777         int idx;
778
779         if (cpuc->enabled)
780                 return;
781
782         cpuc->enabled = 1;
783         barrier();
784
785         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
786                 u64 val;
787
788                 if (!test_bit(idx, cpuc->active_mask))
789                         continue;
790                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
791                 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
792                         continue;
793                 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
794                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
795         }
796 }
797
798 void hw_perf_enable(void)
799 {
800         if (!x86_pmu_initialized())
801                 return;
802         x86_pmu.enable_all();
803 }
804
805 static inline u64 intel_pmu_get_status(void)
806 {
807         u64 status;
808
809         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
810
811         return status;
812 }
813
814 static inline void intel_pmu_ack_status(u64 ack)
815 {
816         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
817 }
818
819 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
820 {
821         int err;
822         err = checking_wrmsrl(hwc->config_base + idx,
823                               hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
824 }
825
826 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
827 {
828         int err;
829         err = checking_wrmsrl(hwc->config_base + idx,
830                               hwc->config);
831 }
832
833 static inline void
834 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
835 {
836         int idx = __idx - X86_PMC_IDX_FIXED;
837         u64 ctrl_val, mask;
838         int err;
839
840         mask = 0xfULL << (idx * 4);
841
842         rdmsrl(hwc->config_base, ctrl_val);
843         ctrl_val &= ~mask;
844         err = checking_wrmsrl(hwc->config_base, ctrl_val);
845 }
846
847 static inline void
848 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
849 {
850         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
851                 intel_pmu_disable_fixed(hwc, idx);
852                 return;
853         }
854
855         x86_pmu_disable_counter(hwc, idx);
856 }
857
858 static inline void
859 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
860 {
861         x86_pmu_disable_counter(hwc, idx);
862 }
863
864 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
865
866 /*
867  * Set the next IRQ period, based on the hwc->period_left value.
868  * To be called with the counter disabled in hw:
869  */
870 static int
871 x86_perf_counter_set_period(struct perf_counter *counter,
872                              struct hw_perf_counter *hwc, int idx)
873 {
874         s64 left = atomic64_read(&hwc->period_left);
875         s64 period = hwc->sample_period;
876         int err, ret = 0;
877
878         /*
879          * If we are way outside a reasoable range then just skip forward:
880          */
881         if (unlikely(left <= -period)) {
882                 left = period;
883                 atomic64_set(&hwc->period_left, left);
884                 hwc->last_period = period;
885                 ret = 1;
886         }
887
888         if (unlikely(left <= 0)) {
889                 left += period;
890                 atomic64_set(&hwc->period_left, left);
891                 hwc->last_period = period;
892                 ret = 1;
893         }
894         /*
895          * Quirk: certain CPUs dont like it if just 1 event is left:
896          */
897         if (unlikely(left < 2))
898                 left = 2;
899
900         if (left > x86_pmu.max_period)
901                 left = x86_pmu.max_period;
902
903         per_cpu(prev_left[idx], smp_processor_id()) = left;
904
905         /*
906          * The hw counter starts counting from this counter offset,
907          * mark it to be able to extra future deltas:
908          */
909         atomic64_set(&hwc->prev_count, (u64)-left);
910
911         err = checking_wrmsrl(hwc->counter_base + idx,
912                              (u64)(-left) & x86_pmu.counter_mask);
913
914         return ret;
915 }
916
917 static inline void
918 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
919 {
920         int idx = __idx - X86_PMC_IDX_FIXED;
921         u64 ctrl_val, bits, mask;
922         int err;
923
924         /*
925          * Enable IRQ generation (0x8),
926          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
927          * if requested:
928          */
929         bits = 0x8ULL;
930         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
931                 bits |= 0x2;
932         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
933                 bits |= 0x1;
934         bits <<= (idx * 4);
935         mask = 0xfULL << (idx * 4);
936
937         rdmsrl(hwc->config_base, ctrl_val);
938         ctrl_val &= ~mask;
939         ctrl_val |= bits;
940         err = checking_wrmsrl(hwc->config_base, ctrl_val);
941 }
942
943 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
944 {
945         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
946                 intel_pmu_enable_fixed(hwc, idx);
947                 return;
948         }
949
950         x86_pmu_enable_counter(hwc, idx);
951 }
952
953 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
954 {
955         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
956
957         if (cpuc->enabled)
958                 x86_pmu_enable_counter(hwc, idx);
959         else
960                 x86_pmu_disable_counter(hwc, idx);
961 }
962
963 static int
964 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
965 {
966         unsigned int event;
967
968         if (!x86_pmu.num_counters_fixed)
969                 return -1;
970
971         /*
972          * Quirk, IA32_FIXED_CTRs do not work on current Atom processors:
973          */
974         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
975                                         boot_cpu_data.x86_model == 28)
976                 return -1;
977
978         event = hwc->config & ARCH_PERFMON_EVENT_MASK;
979
980         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
981                 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
982         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
983                 return X86_PMC_IDX_FIXED_CPU_CYCLES;
984         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
985                 return X86_PMC_IDX_FIXED_BUS_CYCLES;
986
987         return -1;
988 }
989
990 /*
991  * Find a PMC slot for the freshly enabled / scheduled in counter:
992  */
993 static int x86_pmu_enable(struct perf_counter *counter)
994 {
995         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
996         struct hw_perf_counter *hwc = &counter->hw;
997         int idx;
998
999         idx = fixed_mode_idx(counter, hwc);
1000         if (idx >= 0) {
1001                 /*
1002                  * Try to get the fixed counter, if that is already taken
1003                  * then try to get a generic counter:
1004                  */
1005                 if (test_and_set_bit(idx, cpuc->used_mask))
1006                         goto try_generic;
1007
1008                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1009                 /*
1010                  * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1011                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1012                  */
1013                 hwc->counter_base =
1014                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1015                 hwc->idx = idx;
1016         } else {
1017                 idx = hwc->idx;
1018                 /* Try to get the previous generic counter again */
1019                 if (test_and_set_bit(idx, cpuc->used_mask)) {
1020 try_generic:
1021                         idx = find_first_zero_bit(cpuc->used_mask,
1022                                                   x86_pmu.num_counters);
1023                         if (idx == x86_pmu.num_counters)
1024                                 return -EAGAIN;
1025
1026                         set_bit(idx, cpuc->used_mask);
1027                         hwc->idx = idx;
1028                 }
1029                 hwc->config_base  = x86_pmu.eventsel;
1030                 hwc->counter_base = x86_pmu.perfctr;
1031         }
1032
1033         perf_counters_lapic_init();
1034
1035         x86_pmu.disable(hwc, idx);
1036
1037         cpuc->counters[idx] = counter;
1038         set_bit(idx, cpuc->active_mask);
1039
1040         x86_perf_counter_set_period(counter, hwc, idx);
1041         x86_pmu.enable(hwc, idx);
1042
1043         return 0;
1044 }
1045
1046 static void x86_pmu_unthrottle(struct perf_counter *counter)
1047 {
1048         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1049         struct hw_perf_counter *hwc = &counter->hw;
1050
1051         if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1052                                 cpuc->counters[hwc->idx] != counter))
1053                 return;
1054
1055         x86_pmu.enable(hwc, hwc->idx);
1056 }
1057
1058 void perf_counter_print_debug(void)
1059 {
1060         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1061         struct cpu_hw_counters *cpuc;
1062         unsigned long flags;
1063         int cpu, idx;
1064
1065         if (!x86_pmu.num_counters)
1066                 return;
1067
1068         local_irq_save(flags);
1069
1070         cpu = smp_processor_id();
1071         cpuc = &per_cpu(cpu_hw_counters, cpu);
1072
1073         if (x86_pmu.version >= 2) {
1074                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1075                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1076                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1077                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1078
1079                 pr_info("\n");
1080                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1081                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1082                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1083                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1084         }
1085         pr_info("CPU#%d: used:       %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1086
1087         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1088                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1089                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1090
1091                 prev_left = per_cpu(prev_left[idx], cpu);
1092
1093                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1094                         cpu, idx, pmc_ctrl);
1095                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1096                         cpu, idx, pmc_count);
1097                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1098                         cpu, idx, prev_left);
1099         }
1100         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1101                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1102
1103                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1104                         cpu, idx, pmc_count);
1105         }
1106         local_irq_restore(flags);
1107 }
1108
1109 static void x86_pmu_disable(struct perf_counter *counter)
1110 {
1111         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1112         struct hw_perf_counter *hwc = &counter->hw;
1113         int idx = hwc->idx;
1114
1115         /*
1116          * Must be done before we disable, otherwise the nmi handler
1117          * could reenable again:
1118          */
1119         clear_bit(idx, cpuc->active_mask);
1120         x86_pmu.disable(hwc, idx);
1121
1122         /*
1123          * Make sure the cleared pointer becomes visible before we
1124          * (potentially) free the counter:
1125          */
1126         barrier();
1127
1128         /*
1129          * Drain the remaining delta count out of a counter
1130          * that we are disabling:
1131          */
1132         x86_perf_counter_update(counter, hwc, idx);
1133         cpuc->counters[idx] = NULL;
1134         clear_bit(idx, cpuc->used_mask);
1135 }
1136
1137 /*
1138  * Save and restart an expired counter. Called by NMI contexts,
1139  * so it has to be careful about preempting normal counter ops:
1140  */
1141 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1142 {
1143         struct hw_perf_counter *hwc = &counter->hw;
1144         int idx = hwc->idx;
1145         int ret;
1146
1147         x86_perf_counter_update(counter, hwc, idx);
1148         ret = x86_perf_counter_set_period(counter, hwc, idx);
1149
1150         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1151                 intel_pmu_enable_counter(hwc, idx);
1152
1153         return ret;
1154 }
1155
1156 static void intel_pmu_reset(void)
1157 {
1158         unsigned long flags;
1159         int idx;
1160
1161         if (!x86_pmu.num_counters)
1162                 return;
1163
1164         local_irq_save(flags);
1165
1166         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1167
1168         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1169                 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1170                 checking_wrmsrl(x86_pmu.perfctr  + idx, 0ull);
1171         }
1172         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1173                 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1174         }
1175
1176         local_irq_restore(flags);
1177 }
1178
1179
1180 /*
1181  * This handler is triggered by the local APIC, so the APIC IRQ handling
1182  * rules apply:
1183  */
1184 static int intel_pmu_handle_irq(struct pt_regs *regs)
1185 {
1186         struct perf_sample_data data;
1187         struct cpu_hw_counters *cpuc;
1188         int bit, cpu, loops;
1189         u64 ack, status;
1190
1191         data.regs = regs;
1192         data.addr = 0;
1193
1194         cpu = smp_processor_id();
1195         cpuc = &per_cpu(cpu_hw_counters, cpu);
1196
1197         perf_disable();
1198         status = intel_pmu_get_status();
1199         if (!status) {
1200                 perf_enable();
1201                 return 0;
1202         }
1203
1204         loops = 0;
1205 again:
1206         if (++loops > 100) {
1207                 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1208                 perf_counter_print_debug();
1209                 intel_pmu_reset();
1210                 perf_enable();
1211                 return 1;
1212         }
1213
1214         inc_irq_stat(apic_perf_irqs);
1215         ack = status;
1216         for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1217                 struct perf_counter *counter = cpuc->counters[bit];
1218
1219                 clear_bit(bit, (unsigned long *) &status);
1220                 if (!test_bit(bit, cpuc->active_mask))
1221                         continue;
1222
1223                 if (!intel_pmu_save_and_restart(counter))
1224                         continue;
1225
1226                 if (perf_counter_overflow(counter, 1, &data))
1227                         intel_pmu_disable_counter(&counter->hw, bit);
1228         }
1229
1230         intel_pmu_ack_status(ack);
1231
1232         /*
1233          * Repeat if there is more work to be done:
1234          */
1235         status = intel_pmu_get_status();
1236         if (status)
1237                 goto again;
1238
1239         perf_enable();
1240
1241         return 1;
1242 }
1243
1244 static int amd_pmu_handle_irq(struct pt_regs *regs)
1245 {
1246         struct perf_sample_data data;
1247         struct cpu_hw_counters *cpuc;
1248         struct perf_counter *counter;
1249         struct hw_perf_counter *hwc;
1250         int cpu, idx, handled = 0;
1251         u64 val;
1252
1253         data.regs = regs;
1254         data.addr = 0;
1255
1256         cpu = smp_processor_id();
1257         cpuc = &per_cpu(cpu_hw_counters, cpu);
1258
1259         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1260                 if (!test_bit(idx, cpuc->active_mask))
1261                         continue;
1262
1263                 counter = cpuc->counters[idx];
1264                 hwc = &counter->hw;
1265
1266                 val = x86_perf_counter_update(counter, hwc, idx);
1267                 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1268                         continue;
1269
1270                 /*
1271                  * counter overflow
1272                  */
1273                 handled         = 1;
1274                 data.period     = counter->hw.last_period;
1275
1276                 if (!x86_perf_counter_set_period(counter, hwc, idx))
1277                         continue;
1278
1279                 if (perf_counter_overflow(counter, 1, &data))
1280                         amd_pmu_disable_counter(hwc, idx);
1281         }
1282
1283         if (handled)
1284                 inc_irq_stat(apic_perf_irqs);
1285
1286         return handled;
1287 }
1288
1289 void smp_perf_pending_interrupt(struct pt_regs *regs)
1290 {
1291         irq_enter();
1292         ack_APIC_irq();
1293         inc_irq_stat(apic_pending_irqs);
1294         perf_counter_do_pending();
1295         irq_exit();
1296 }
1297
1298 void set_perf_counter_pending(void)
1299 {
1300         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1301 }
1302
1303 void perf_counters_lapic_init(void)
1304 {
1305         if (!x86_pmu_initialized())
1306                 return;
1307
1308         /*
1309          * Always use NMI for PMU
1310          */
1311         apic_write(APIC_LVTPC, APIC_DM_NMI);
1312 }
1313
1314 static int __kprobes
1315 perf_counter_nmi_handler(struct notifier_block *self,
1316                          unsigned long cmd, void *__args)
1317 {
1318         struct die_args *args = __args;
1319         struct pt_regs *regs;
1320
1321         if (!atomic_read(&active_counters))
1322                 return NOTIFY_DONE;
1323
1324         switch (cmd) {
1325         case DIE_NMI:
1326         case DIE_NMI_IPI:
1327                 break;
1328
1329         default:
1330                 return NOTIFY_DONE;
1331         }
1332
1333         regs = args->regs;
1334
1335         apic_write(APIC_LVTPC, APIC_DM_NMI);
1336         /*
1337          * Can't rely on the handled return value to say it was our NMI, two
1338          * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1339          *
1340          * If the first NMI handles both, the latter will be empty and daze
1341          * the CPU.
1342          */
1343         x86_pmu.handle_irq(regs);
1344
1345         return NOTIFY_STOP;
1346 }
1347
1348 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1349         .notifier_call          = perf_counter_nmi_handler,
1350         .next                   = NULL,
1351         .priority               = 1
1352 };
1353
1354 static struct x86_pmu intel_pmu = {
1355         .name                   = "Intel",
1356         .handle_irq             = intel_pmu_handle_irq,
1357         .disable_all            = intel_pmu_disable_all,
1358         .enable_all             = intel_pmu_enable_all,
1359         .enable                 = intel_pmu_enable_counter,
1360         .disable                = intel_pmu_disable_counter,
1361         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1362         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1363         .event_map              = intel_pmu_event_map,
1364         .raw_event              = intel_pmu_raw_event,
1365         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1366         /*
1367          * Intel PMCs cannot be accessed sanely above 32 bit width,
1368          * so we install an artificial 1<<31 period regardless of
1369          * the generic counter period:
1370          */
1371         .max_period             = (1ULL << 31) - 1,
1372 };
1373
1374 static struct x86_pmu amd_pmu = {
1375         .name                   = "AMD",
1376         .handle_irq             = amd_pmu_handle_irq,
1377         .disable_all            = amd_pmu_disable_all,
1378         .enable_all             = amd_pmu_enable_all,
1379         .enable                 = amd_pmu_enable_counter,
1380         .disable                = amd_pmu_disable_counter,
1381         .eventsel               = MSR_K7_EVNTSEL0,
1382         .perfctr                = MSR_K7_PERFCTR0,
1383         .event_map              = amd_pmu_event_map,
1384         .raw_event              = amd_pmu_raw_event,
1385         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1386         .num_counters           = 4,
1387         .counter_bits           = 48,
1388         .counter_mask           = (1ULL << 48) - 1,
1389         /* use highest bit to detect overflow */
1390         .max_period             = (1ULL << 47) - 1,
1391 };
1392
1393 static int intel_pmu_init(void)
1394 {
1395         union cpuid10_edx edx;
1396         union cpuid10_eax eax;
1397         unsigned int unused;
1398         unsigned int ebx;
1399         int version;
1400
1401         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1402                 return -ENODEV;
1403
1404         /*
1405          * Check whether the Architectural PerfMon supports
1406          * Branch Misses Retired Event or not.
1407          */
1408         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1409         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1410                 return -ENODEV;
1411
1412         version = eax.split.version_id;
1413         if (version < 2)
1414                 return -ENODEV;
1415
1416         x86_pmu                         = intel_pmu;
1417         x86_pmu.version                 = version;
1418         x86_pmu.num_counters            = eax.split.num_counters;
1419         x86_pmu.counter_bits            = eax.split.bit_width;
1420         x86_pmu.counter_mask            = (1ULL << eax.split.bit_width) - 1;
1421
1422         /*
1423          * Quirk: v2 perfmon does not report fixed-purpose counters, so
1424          * assume at least 3 counters:
1425          */
1426         x86_pmu.num_counters_fixed      = max((int)edx.split.num_counters_fixed, 3);
1427
1428         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1429
1430         /*
1431          * Install the hw-cache-events table:
1432          */
1433         switch (boot_cpu_data.x86_model) {
1434         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1435         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1436         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1437         case 29: /* six-core 45 nm xeon "Dunnington" */
1438                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1439                        sizeof(hw_cache_event_ids));
1440
1441                 pr_cont("Core2 events, ");
1442                 break;
1443         default:
1444         case 26:
1445                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1446                        sizeof(hw_cache_event_ids));
1447
1448                 pr_cont("Nehalem/Corei7 events, ");
1449                 break;
1450         case 28:
1451                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1452                        sizeof(hw_cache_event_ids));
1453
1454                 pr_cont("Atom events, ");
1455                 break;
1456         }
1457         return 0;
1458 }
1459
1460 static int amd_pmu_init(void)
1461 {
1462         x86_pmu = amd_pmu;
1463
1464         switch (boot_cpu_data.x86) {
1465         case 0x0f:
1466         case 0x10:
1467         case 0x11:
1468                 memcpy(hw_cache_event_ids, amd_0f_hw_cache_event_ids,
1469                        sizeof(hw_cache_event_ids));
1470
1471                 pr_cont("AMD Family 0f/10/11 events, ");
1472                 break;
1473         }
1474         return 0;
1475 }
1476
1477 void __init init_hw_perf_counters(void)
1478 {
1479         int err;
1480
1481         pr_info("Performance Counters: ");
1482
1483         switch (boot_cpu_data.x86_vendor) {
1484         case X86_VENDOR_INTEL:
1485                 err = intel_pmu_init();
1486                 break;
1487         case X86_VENDOR_AMD:
1488                 err = amd_pmu_init();
1489                 break;
1490         default:
1491                 return;
1492         }
1493         if (err != 0) {
1494                 pr_cont("no PMU driver, software counters only.\n");
1495                 return;
1496         }
1497
1498         pr_cont("%s PMU driver.\n", x86_pmu.name);
1499
1500         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1501                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1502                 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1503                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1504         }
1505         perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1506         perf_max_counters = x86_pmu.num_counters;
1507
1508         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1509                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1510                 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1511                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1512         }
1513
1514         perf_counter_mask |=
1515                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1516
1517         perf_counters_lapic_init();
1518         register_die_notifier(&perf_counter_nmi_notifier);
1519
1520         pr_info("... version:                 %d\n",     x86_pmu.version);
1521         pr_info("... bit width:               %d\n",     x86_pmu.counter_bits);
1522         pr_info("... generic counters:        %d\n",     x86_pmu.num_counters);
1523         pr_info("... value mask:              %016Lx\n", x86_pmu.counter_mask);
1524         pr_info("... max period:              %016Lx\n", x86_pmu.max_period);
1525         pr_info("... fixed-purpose counters:  %d\n",     x86_pmu.num_counters_fixed);
1526         pr_info("... counter mask:            %016Lx\n", perf_counter_mask);
1527 }
1528
1529 static inline void x86_pmu_read(struct perf_counter *counter)
1530 {
1531         x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1532 }
1533
1534 static const struct pmu pmu = {
1535         .enable         = x86_pmu_enable,
1536         .disable        = x86_pmu_disable,
1537         .read           = x86_pmu_read,
1538         .unthrottle     = x86_pmu_unthrottle,
1539 };
1540
1541 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1542 {
1543         int err;
1544
1545         err = __hw_perf_counter_init(counter);
1546         if (err)
1547                 return ERR_PTR(err);
1548
1549         return &pmu;
1550 }
1551
1552 /*
1553  * callchain support
1554  */
1555
1556 static inline
1557 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1558 {
1559         if (entry->nr < MAX_STACK_DEPTH)
1560                 entry->ip[entry->nr++] = ip;
1561 }
1562
1563 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1564 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1565
1566
1567 static void
1568 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1569 {
1570         /* Ignore warnings */
1571 }
1572
1573 static void backtrace_warning(void *data, char *msg)
1574 {
1575         /* Ignore warnings */
1576 }
1577
1578 static int backtrace_stack(void *data, char *name)
1579 {
1580         /* Don't bother with IRQ stacks for now */
1581         return -1;
1582 }
1583
1584 static void backtrace_address(void *data, unsigned long addr, int reliable)
1585 {
1586         struct perf_callchain_entry *entry = data;
1587
1588         if (reliable)
1589                 callchain_store(entry, addr);
1590 }
1591
1592 static const struct stacktrace_ops backtrace_ops = {
1593         .warning                = backtrace_warning,
1594         .warning_symbol         = backtrace_warning_symbol,
1595         .stack                  = backtrace_stack,
1596         .address                = backtrace_address,
1597 };
1598
1599 static void
1600 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1601 {
1602         unsigned long bp;
1603         char *stack;
1604         int nr = entry->nr;
1605
1606         callchain_store(entry, instruction_pointer(regs));
1607
1608         stack = ((char *)regs + sizeof(struct pt_regs));
1609 #ifdef CONFIG_FRAME_POINTER
1610         bp = frame_pointer(regs);
1611 #else
1612         bp = 0;
1613 #endif
1614
1615         dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1616
1617         entry->kernel = entry->nr - nr;
1618 }
1619
1620
1621 struct stack_frame {
1622         const void __user       *next_fp;
1623         unsigned long           return_address;
1624 };
1625
1626 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1627 {
1628         int ret;
1629
1630         if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1631                 return 0;
1632
1633         ret = 1;
1634         pagefault_disable();
1635         if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1636                 ret = 0;
1637         pagefault_enable();
1638
1639         return ret;
1640 }
1641
1642 static void
1643 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1644 {
1645         struct stack_frame frame;
1646         const void __user *fp;
1647         int nr = entry->nr;
1648
1649         regs = (struct pt_regs *)current->thread.sp0 - 1;
1650         fp   = (void __user *)regs->bp;
1651
1652         callchain_store(entry, regs->ip);
1653
1654         while (entry->nr < MAX_STACK_DEPTH) {
1655                 frame.next_fp        = NULL;
1656                 frame.return_address = 0;
1657
1658                 if (!copy_stack_frame(fp, &frame))
1659                         break;
1660
1661                 if ((unsigned long)fp < user_stack_pointer(regs))
1662                         break;
1663
1664                 callchain_store(entry, frame.return_address);
1665                 fp = frame.next_fp;
1666         }
1667
1668         entry->user = entry->nr - nr;
1669 }
1670
1671 static void
1672 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1673 {
1674         int is_user;
1675
1676         if (!regs)
1677                 return;
1678
1679         is_user = user_mode(regs);
1680
1681         if (!current || current->pid == 0)
1682                 return;
1683
1684         if (is_user && current->state != TASK_RUNNING)
1685                 return;
1686
1687         if (!is_user)
1688                 perf_callchain_kernel(regs, entry);
1689
1690         if (current->mm)
1691                 perf_callchain_user(regs, entry);
1692 }
1693
1694 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1695 {
1696         struct perf_callchain_entry *entry;
1697
1698         if (in_nmi())
1699                 entry = &__get_cpu_var(nmi_entry);
1700         else
1701                 entry = &__get_cpu_var(irq_entry);
1702
1703         entry->nr = 0;
1704         entry->hv = 0;
1705         entry->kernel = 0;
1706         entry->user = 0;
1707
1708         perf_do_callchain(regs, entry);
1709
1710         return entry;
1711 }