SELinux: add more validity checks on policy load
[linux-2.6] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
28 #include "security.h"
29
30 #include "policydb.h"
31 #include "conditional.h"
32 #include "mls.h"
33
34 #define _DEBUG_HASHES
35
36 #ifdef DEBUG_HASHES
37 static char *symtab_name[SYM_NUM] = {
38         "common prefixes",
39         "classes",
40         "roles",
41         "types",
42         "users",
43         "bools",
44         "levels",
45         "categories",
46 };
47 #endif
48
49 int selinux_mls_enabled = 0;
50
51 static unsigned int symtab_sizes[SYM_NUM] = {
52         2,
53         32,
54         16,
55         512,
56         128,
57         16,
58         16,
59         16,
60 };
61
62 struct policydb_compat_info {
63         int version;
64         int sym_num;
65         int ocon_num;
66 };
67
68 /* These need to be updated if SYM_NUM or OCON_NUM changes */
69 static struct policydb_compat_info policydb_compat[] = {
70         {
71                 .version        = POLICYDB_VERSION_BASE,
72                 .sym_num        = SYM_NUM - 3,
73                 .ocon_num       = OCON_NUM - 1,
74         },
75         {
76                 .version        = POLICYDB_VERSION_BOOL,
77                 .sym_num        = SYM_NUM - 2,
78                 .ocon_num       = OCON_NUM - 1,
79         },
80         {
81                 .version        = POLICYDB_VERSION_IPV6,
82                 .sym_num        = SYM_NUM - 2,
83                 .ocon_num       = OCON_NUM,
84         },
85         {
86                 .version        = POLICYDB_VERSION_NLCLASS,
87                 .sym_num        = SYM_NUM - 2,
88                 .ocon_num       = OCON_NUM,
89         },
90         {
91                 .version        = POLICYDB_VERSION_MLS,
92                 .sym_num        = SYM_NUM,
93                 .ocon_num       = OCON_NUM,
94         },
95         {
96                 .version        = POLICYDB_VERSION_AVTAB,
97                 .sym_num        = SYM_NUM,
98                 .ocon_num       = OCON_NUM,
99         },
100         {
101                 .version        = POLICYDB_VERSION_RANGETRANS,
102                 .sym_num        = SYM_NUM,
103                 .ocon_num       = OCON_NUM,
104         },
105 };
106
107 static struct policydb_compat_info *policydb_lookup_compat(int version)
108 {
109         int i;
110         struct policydb_compat_info *info = NULL;
111
112         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
113                 if (policydb_compat[i].version == version) {
114                         info = &policydb_compat[i];
115                         break;
116                 }
117         }
118         return info;
119 }
120
121 /*
122  * Initialize the role table.
123  */
124 static int roles_init(struct policydb *p)
125 {
126         char *key = NULL;
127         int rc;
128         struct role_datum *role;
129
130         role = kzalloc(sizeof(*role), GFP_KERNEL);
131         if (!role) {
132                 rc = -ENOMEM;
133                 goto out;
134         }
135         role->value = ++p->p_roles.nprim;
136         if (role->value != OBJECT_R_VAL) {
137                 rc = -EINVAL;
138                 goto out_free_role;
139         }
140         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
141         if (!key) {
142                 rc = -ENOMEM;
143                 goto out_free_role;
144         }
145         strcpy(key, OBJECT_R);
146         rc = hashtab_insert(p->p_roles.table, key, role);
147         if (rc)
148                 goto out_free_key;
149 out:
150         return rc;
151
152 out_free_key:
153         kfree(key);
154 out_free_role:
155         kfree(role);
156         goto out;
157 }
158
159 /*
160  * Initialize a policy database structure.
161  */
162 static int policydb_init(struct policydb *p)
163 {
164         int i, rc;
165
166         memset(p, 0, sizeof(*p));
167
168         for (i = 0; i < SYM_NUM; i++) {
169                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
170                 if (rc)
171                         goto out_free_symtab;
172         }
173
174         rc = avtab_init(&p->te_avtab);
175         if (rc)
176                 goto out_free_symtab;
177
178         rc = roles_init(p);
179         if (rc)
180                 goto out_free_symtab;
181
182         rc = cond_policydb_init(p);
183         if (rc)
184                 goto out_free_symtab;
185
186 out:
187         return rc;
188
189 out_free_symtab:
190         for (i = 0; i < SYM_NUM; i++)
191                 hashtab_destroy(p->symtab[i].table);
192         goto out;
193 }
194
195 /*
196  * The following *_index functions are used to
197  * define the val_to_name and val_to_struct arrays
198  * in a policy database structure.  The val_to_name
199  * arrays are used when converting security context
200  * structures into string representations.  The
201  * val_to_struct arrays are used when the attributes
202  * of a class, role, or user are needed.
203  */
204
205 static int common_index(void *key, void *datum, void *datap)
206 {
207         struct policydb *p;
208         struct common_datum *comdatum;
209
210         comdatum = datum;
211         p = datap;
212         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
213                 return -EINVAL;
214         p->p_common_val_to_name[comdatum->value - 1] = key;
215         return 0;
216 }
217
218 static int class_index(void *key, void *datum, void *datap)
219 {
220         struct policydb *p;
221         struct class_datum *cladatum;
222
223         cladatum = datum;
224         p = datap;
225         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
226                 return -EINVAL;
227         p->p_class_val_to_name[cladatum->value - 1] = key;
228         p->class_val_to_struct[cladatum->value - 1] = cladatum;
229         return 0;
230 }
231
232 static int role_index(void *key, void *datum, void *datap)
233 {
234         struct policydb *p;
235         struct role_datum *role;
236
237         role = datum;
238         p = datap;
239         if (!role->value || role->value > p->p_roles.nprim)
240                 return -EINVAL;
241         p->p_role_val_to_name[role->value - 1] = key;
242         p->role_val_to_struct[role->value - 1] = role;
243         return 0;
244 }
245
246 static int type_index(void *key, void *datum, void *datap)
247 {
248         struct policydb *p;
249         struct type_datum *typdatum;
250
251         typdatum = datum;
252         p = datap;
253
254         if (typdatum->primary) {
255                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
256                         return -EINVAL;
257                 p->p_type_val_to_name[typdatum->value - 1] = key;
258         }
259
260         return 0;
261 }
262
263 static int user_index(void *key, void *datum, void *datap)
264 {
265         struct policydb *p;
266         struct user_datum *usrdatum;
267
268         usrdatum = datum;
269         p = datap;
270         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
271                 return -EINVAL;
272         p->p_user_val_to_name[usrdatum->value - 1] = key;
273         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
274         return 0;
275 }
276
277 static int sens_index(void *key, void *datum, void *datap)
278 {
279         struct policydb *p;
280         struct level_datum *levdatum;
281
282         levdatum = datum;
283         p = datap;
284
285         if (!levdatum->isalias) {
286                 if (!levdatum->level->sens ||
287                     levdatum->level->sens > p->p_levels.nprim)
288                         return -EINVAL;
289                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
290         }
291
292         return 0;
293 }
294
295 static int cat_index(void *key, void *datum, void *datap)
296 {
297         struct policydb *p;
298         struct cat_datum *catdatum;
299
300         catdatum = datum;
301         p = datap;
302
303         if (!catdatum->isalias) {
304                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
305                         return -EINVAL;
306                 p->p_cat_val_to_name[catdatum->value - 1] = key;
307         }
308
309         return 0;
310 }
311
312 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
313 {
314         common_index,
315         class_index,
316         role_index,
317         type_index,
318         user_index,
319         cond_index_bool,
320         sens_index,
321         cat_index,
322 };
323
324 /*
325  * Define the common val_to_name array and the class
326  * val_to_name and val_to_struct arrays in a policy
327  * database structure.
328  *
329  * Caller must clean up upon failure.
330  */
331 static int policydb_index_classes(struct policydb *p)
332 {
333         int rc;
334
335         p->p_common_val_to_name =
336                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
337         if (!p->p_common_val_to_name) {
338                 rc = -ENOMEM;
339                 goto out;
340         }
341
342         rc = hashtab_map(p->p_commons.table, common_index, p);
343         if (rc)
344                 goto out;
345
346         p->class_val_to_struct =
347                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
348         if (!p->class_val_to_struct) {
349                 rc = -ENOMEM;
350                 goto out;
351         }
352
353         p->p_class_val_to_name =
354                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
355         if (!p->p_class_val_to_name) {
356                 rc = -ENOMEM;
357                 goto out;
358         }
359
360         rc = hashtab_map(p->p_classes.table, class_index, p);
361 out:
362         return rc;
363 }
364
365 #ifdef DEBUG_HASHES
366 static void symtab_hash_eval(struct symtab *s)
367 {
368         int i;
369
370         for (i = 0; i < SYM_NUM; i++) {
371                 struct hashtab *h = s[i].table;
372                 struct hashtab_info info;
373
374                 hashtab_stat(h, &info);
375                 printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
376                        "longest chain length %d\n", symtab_name[i], h->nel,
377                        info.slots_used, h->size, info.max_chain_len);
378         }
379 }
380 #endif
381
382 /*
383  * Define the other val_to_name and val_to_struct arrays
384  * in a policy database structure.
385  *
386  * Caller must clean up on failure.
387  */
388 static int policydb_index_others(struct policydb *p)
389 {
390         int i, rc = 0;
391
392         printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
393                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
394         if (selinux_mls_enabled)
395                 printk(", %d sens, %d cats", p->p_levels.nprim,
396                        p->p_cats.nprim);
397         printk("\n");
398
399         printk(KERN_DEBUG "security:  %d classes, %d rules\n",
400                p->p_classes.nprim, p->te_avtab.nel);
401
402 #ifdef DEBUG_HASHES
403         avtab_hash_eval(&p->te_avtab, "rules");
404         symtab_hash_eval(p->symtab);
405 #endif
406
407         p->role_val_to_struct =
408                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
409                         GFP_KERNEL);
410         if (!p->role_val_to_struct) {
411                 rc = -ENOMEM;
412                 goto out;
413         }
414
415         p->user_val_to_struct =
416                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
417                         GFP_KERNEL);
418         if (!p->user_val_to_struct) {
419                 rc = -ENOMEM;
420                 goto out;
421         }
422
423         if (cond_init_bool_indexes(p)) {
424                 rc = -ENOMEM;
425                 goto out;
426         }
427
428         for (i = SYM_ROLES; i < SYM_NUM; i++) {
429                 p->sym_val_to_name[i] =
430                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
431                 if (!p->sym_val_to_name[i]) {
432                         rc = -ENOMEM;
433                         goto out;
434                 }
435                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
436                 if (rc)
437                         goto out;
438         }
439
440 out:
441         return rc;
442 }
443
444 /*
445  * The following *_destroy functions are used to
446  * free any memory allocated for each kind of
447  * symbol data in the policy database.
448  */
449
450 static int perm_destroy(void *key, void *datum, void *p)
451 {
452         kfree(key);
453         kfree(datum);
454         return 0;
455 }
456
457 static int common_destroy(void *key, void *datum, void *p)
458 {
459         struct common_datum *comdatum;
460
461         kfree(key);
462         comdatum = datum;
463         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
464         hashtab_destroy(comdatum->permissions.table);
465         kfree(datum);
466         return 0;
467 }
468
469 static int cls_destroy(void *key, void *datum, void *p)
470 {
471         struct class_datum *cladatum;
472         struct constraint_node *constraint, *ctemp;
473         struct constraint_expr *e, *etmp;
474
475         kfree(key);
476         cladatum = datum;
477         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
478         hashtab_destroy(cladatum->permissions.table);
479         constraint = cladatum->constraints;
480         while (constraint) {
481                 e = constraint->expr;
482                 while (e) {
483                         ebitmap_destroy(&e->names);
484                         etmp = e;
485                         e = e->next;
486                         kfree(etmp);
487                 }
488                 ctemp = constraint;
489                 constraint = constraint->next;
490                 kfree(ctemp);
491         }
492
493         constraint = cladatum->validatetrans;
494         while (constraint) {
495                 e = constraint->expr;
496                 while (e) {
497                         ebitmap_destroy(&e->names);
498                         etmp = e;
499                         e = e->next;
500                         kfree(etmp);
501                 }
502                 ctemp = constraint;
503                 constraint = constraint->next;
504                 kfree(ctemp);
505         }
506
507         kfree(cladatum->comkey);
508         kfree(datum);
509         return 0;
510 }
511
512 static int role_destroy(void *key, void *datum, void *p)
513 {
514         struct role_datum *role;
515
516         kfree(key);
517         role = datum;
518         ebitmap_destroy(&role->dominates);
519         ebitmap_destroy(&role->types);
520         kfree(datum);
521         return 0;
522 }
523
524 static int type_destroy(void *key, void *datum, void *p)
525 {
526         kfree(key);
527         kfree(datum);
528         return 0;
529 }
530
531 static int user_destroy(void *key, void *datum, void *p)
532 {
533         struct user_datum *usrdatum;
534
535         kfree(key);
536         usrdatum = datum;
537         ebitmap_destroy(&usrdatum->roles);
538         ebitmap_destroy(&usrdatum->range.level[0].cat);
539         ebitmap_destroy(&usrdatum->range.level[1].cat);
540         ebitmap_destroy(&usrdatum->dfltlevel.cat);
541         kfree(datum);
542         return 0;
543 }
544
545 static int sens_destroy(void *key, void *datum, void *p)
546 {
547         struct level_datum *levdatum;
548
549         kfree(key);
550         levdatum = datum;
551         ebitmap_destroy(&levdatum->level->cat);
552         kfree(levdatum->level);
553         kfree(datum);
554         return 0;
555 }
556
557 static int cat_destroy(void *key, void *datum, void *p)
558 {
559         kfree(key);
560         kfree(datum);
561         return 0;
562 }
563
564 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
565 {
566         common_destroy,
567         cls_destroy,
568         role_destroy,
569         type_destroy,
570         user_destroy,
571         cond_destroy_bool,
572         sens_destroy,
573         cat_destroy,
574 };
575
576 static void ocontext_destroy(struct ocontext *c, int i)
577 {
578         context_destroy(&c->context[0]);
579         context_destroy(&c->context[1]);
580         if (i == OCON_ISID || i == OCON_FS ||
581             i == OCON_NETIF || i == OCON_FSUSE)
582                 kfree(c->u.name);
583         kfree(c);
584 }
585
586 /*
587  * Free any memory allocated by a policy database structure.
588  */
589 void policydb_destroy(struct policydb *p)
590 {
591         struct ocontext *c, *ctmp;
592         struct genfs *g, *gtmp;
593         int i;
594         struct role_allow *ra, *lra = NULL;
595         struct role_trans *tr, *ltr = NULL;
596         struct range_trans *rt, *lrt = NULL;
597
598         for (i = 0; i < SYM_NUM; i++) {
599                 cond_resched();
600                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
601                 hashtab_destroy(p->symtab[i].table);
602         }
603
604         for (i = 0; i < SYM_NUM; i++)
605                 kfree(p->sym_val_to_name[i]);
606
607         kfree(p->class_val_to_struct);
608         kfree(p->role_val_to_struct);
609         kfree(p->user_val_to_struct);
610
611         avtab_destroy(&p->te_avtab);
612
613         for (i = 0; i < OCON_NUM; i++) {
614                 cond_resched();
615                 c = p->ocontexts[i];
616                 while (c) {
617                         ctmp = c;
618                         c = c->next;
619                         ocontext_destroy(ctmp,i);
620                 }
621                 p->ocontexts[i] = NULL;
622         }
623
624         g = p->genfs;
625         while (g) {
626                 cond_resched();
627                 kfree(g->fstype);
628                 c = g->head;
629                 while (c) {
630                         ctmp = c;
631                         c = c->next;
632                         ocontext_destroy(ctmp,OCON_FSUSE);
633                 }
634                 gtmp = g;
635                 g = g->next;
636                 kfree(gtmp);
637         }
638         p->genfs = NULL;
639
640         cond_policydb_destroy(p);
641
642         for (tr = p->role_tr; tr; tr = tr->next) {
643                 cond_resched();
644                 kfree(ltr);
645                 ltr = tr;
646         }
647         kfree(ltr);
648
649         for (ra = p->role_allow; ra; ra = ra -> next) {
650                 cond_resched();
651                 kfree(lra);
652                 lra = ra;
653         }
654         kfree(lra);
655
656         for (rt = p->range_tr; rt; rt = rt -> next) {
657                 cond_resched();
658                 if (lrt) {
659                         ebitmap_destroy(&lrt->target_range.level[0].cat);
660                         ebitmap_destroy(&lrt->target_range.level[1].cat);
661                         kfree(lrt);
662                 }
663                 lrt = rt;
664         }
665         if (lrt) {
666                 ebitmap_destroy(&lrt->target_range.level[0].cat);
667                 ebitmap_destroy(&lrt->target_range.level[1].cat);
668                 kfree(lrt);
669         }
670
671         if (p->type_attr_map) {
672                 for (i = 0; i < p->p_types.nprim; i++)
673                         ebitmap_destroy(&p->type_attr_map[i]);
674         }
675         kfree(p->type_attr_map);
676
677         kfree(p->undefined_perms);
678
679         return;
680 }
681
682 /*
683  * Load the initial SIDs specified in a policy database
684  * structure into a SID table.
685  */
686 int policydb_load_isids(struct policydb *p, struct sidtab *s)
687 {
688         struct ocontext *head, *c;
689         int rc;
690
691         rc = sidtab_init(s);
692         if (rc) {
693                 printk(KERN_ERR "security:  out of memory on SID table init\n");
694                 goto out;
695         }
696
697         head = p->ocontexts[OCON_ISID];
698         for (c = head; c; c = c->next) {
699                 if (!c->context[0].user) {
700                         printk(KERN_ERR "security:  SID %s was never "
701                                "defined.\n", c->u.name);
702                         rc = -EINVAL;
703                         goto out;
704                 }
705                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
706                         printk(KERN_ERR "security:  unable to load initial "
707                                "SID %s.\n", c->u.name);
708                         rc = -EINVAL;
709                         goto out;
710                 }
711         }
712 out:
713         return rc;
714 }
715
716 int policydb_class_isvalid(struct policydb *p, unsigned int class)
717 {
718         if (!class || class > p->p_classes.nprim)
719                 return 0;
720         return 1;
721 }
722
723 int policydb_role_isvalid(struct policydb *p, unsigned int role)
724 {
725         if (!role || role > p->p_roles.nprim)
726                 return 0;
727         return 1;
728 }
729
730 int policydb_type_isvalid(struct policydb *p, unsigned int type)
731 {
732         if (!type || type > p->p_types.nprim)
733                 return 0;
734         return 1;
735 }
736
737 /*
738  * Return 1 if the fields in the security context
739  * structure `c' are valid.  Return 0 otherwise.
740  */
741 int policydb_context_isvalid(struct policydb *p, struct context *c)
742 {
743         struct role_datum *role;
744         struct user_datum *usrdatum;
745
746         if (!c->role || c->role > p->p_roles.nprim)
747                 return 0;
748
749         if (!c->user || c->user > p->p_users.nprim)
750                 return 0;
751
752         if (!c->type || c->type > p->p_types.nprim)
753                 return 0;
754
755         if (c->role != OBJECT_R_VAL) {
756                 /*
757                  * Role must be authorized for the type.
758                  */
759                 role = p->role_val_to_struct[c->role - 1];
760                 if (!ebitmap_get_bit(&role->types,
761                                      c->type - 1))
762                         /* role may not be associated with type */
763                         return 0;
764
765                 /*
766                  * User must be authorized for the role.
767                  */
768                 usrdatum = p->user_val_to_struct[c->user - 1];
769                 if (!usrdatum)
770                         return 0;
771
772                 if (!ebitmap_get_bit(&usrdatum->roles,
773                                      c->role - 1))
774                         /* user may not be associated with role */
775                         return 0;
776         }
777
778         if (!mls_context_isvalid(p, c))
779                 return 0;
780
781         return 1;
782 }
783
784 /*
785  * Read a MLS range structure from a policydb binary
786  * representation file.
787  */
788 static int mls_read_range_helper(struct mls_range *r, void *fp)
789 {
790         __le32 buf[2];
791         u32 items;
792         int rc;
793
794         rc = next_entry(buf, fp, sizeof(u32));
795         if (rc < 0)
796                 goto out;
797
798         items = le32_to_cpu(buf[0]);
799         if (items > ARRAY_SIZE(buf)) {
800                 printk(KERN_ERR "security: mls:  range overflow\n");
801                 rc = -EINVAL;
802                 goto out;
803         }
804         rc = next_entry(buf, fp, sizeof(u32) * items);
805         if (rc < 0) {
806                 printk(KERN_ERR "security: mls:  truncated range\n");
807                 goto out;
808         }
809         r->level[0].sens = le32_to_cpu(buf[0]);
810         if (items > 1)
811                 r->level[1].sens = le32_to_cpu(buf[1]);
812         else
813                 r->level[1].sens = r->level[0].sens;
814
815         rc = ebitmap_read(&r->level[0].cat, fp);
816         if (rc) {
817                 printk(KERN_ERR "security: mls:  error reading low "
818                        "categories\n");
819                 goto out;
820         }
821         if (items > 1) {
822                 rc = ebitmap_read(&r->level[1].cat, fp);
823                 if (rc) {
824                         printk(KERN_ERR "security: mls:  error reading high "
825                                "categories\n");
826                         goto bad_high;
827                 }
828         } else {
829                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
830                 if (rc) {
831                         printk(KERN_ERR "security: mls:  out of memory\n");
832                         goto bad_high;
833                 }
834         }
835
836         rc = 0;
837 out:
838         return rc;
839 bad_high:
840         ebitmap_destroy(&r->level[0].cat);
841         goto out;
842 }
843
844 /*
845  * Read and validate a security context structure
846  * from a policydb binary representation file.
847  */
848 static int context_read_and_validate(struct context *c,
849                                      struct policydb *p,
850                                      void *fp)
851 {
852         __le32 buf[3];
853         int rc;
854
855         rc = next_entry(buf, fp, sizeof buf);
856         if (rc < 0) {
857                 printk(KERN_ERR "security: context truncated\n");
858                 goto out;
859         }
860         c->user = le32_to_cpu(buf[0]);
861         c->role = le32_to_cpu(buf[1]);
862         c->type = le32_to_cpu(buf[2]);
863         if (p->policyvers >= POLICYDB_VERSION_MLS) {
864                 if (mls_read_range_helper(&c->range, fp)) {
865                         printk(KERN_ERR "security: error reading MLS range of "
866                                "context\n");
867                         rc = -EINVAL;
868                         goto out;
869                 }
870         }
871
872         if (!policydb_context_isvalid(p, c)) {
873                 printk(KERN_ERR "security:  invalid security context\n");
874                 context_destroy(c);
875                 rc = -EINVAL;
876         }
877 out:
878         return rc;
879 }
880
881 /*
882  * The following *_read functions are used to
883  * read the symbol data from a policy database
884  * binary representation file.
885  */
886
887 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
888 {
889         char *key = NULL;
890         struct perm_datum *perdatum;
891         int rc;
892         __le32 buf[2];
893         u32 len;
894
895         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
896         if (!perdatum) {
897                 rc = -ENOMEM;
898                 goto out;
899         }
900
901         rc = next_entry(buf, fp, sizeof buf);
902         if (rc < 0)
903                 goto bad;
904
905         len = le32_to_cpu(buf[0]);
906         perdatum->value = le32_to_cpu(buf[1]);
907
908         key = kmalloc(len + 1,GFP_KERNEL);
909         if (!key) {
910                 rc = -ENOMEM;
911                 goto bad;
912         }
913         rc = next_entry(key, fp, len);
914         if (rc < 0)
915                 goto bad;
916         key[len] = 0;
917
918         rc = hashtab_insert(h, key, perdatum);
919         if (rc)
920                 goto bad;
921 out:
922         return rc;
923 bad:
924         perm_destroy(key, perdatum, NULL);
925         goto out;
926 }
927
928 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
929 {
930         char *key = NULL;
931         struct common_datum *comdatum;
932         __le32 buf[4];
933         u32 len, nel;
934         int i, rc;
935
936         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
937         if (!comdatum) {
938                 rc = -ENOMEM;
939                 goto out;
940         }
941
942         rc = next_entry(buf, fp, sizeof buf);
943         if (rc < 0)
944                 goto bad;
945
946         len = le32_to_cpu(buf[0]);
947         comdatum->value = le32_to_cpu(buf[1]);
948
949         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
950         if (rc)
951                 goto bad;
952         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
953         nel = le32_to_cpu(buf[3]);
954
955         key = kmalloc(len + 1,GFP_KERNEL);
956         if (!key) {
957                 rc = -ENOMEM;
958                 goto bad;
959         }
960         rc = next_entry(key, fp, len);
961         if (rc < 0)
962                 goto bad;
963         key[len] = 0;
964
965         for (i = 0; i < nel; i++) {
966                 rc = perm_read(p, comdatum->permissions.table, fp);
967                 if (rc)
968                         goto bad;
969         }
970
971         rc = hashtab_insert(h, key, comdatum);
972         if (rc)
973                 goto bad;
974 out:
975         return rc;
976 bad:
977         common_destroy(key, comdatum, NULL);
978         goto out;
979 }
980
981 static int read_cons_helper(struct constraint_node **nodep, int ncons,
982                             int allowxtarget, void *fp)
983 {
984         struct constraint_node *c, *lc;
985         struct constraint_expr *e, *le;
986         __le32 buf[3];
987         u32 nexpr;
988         int rc, i, j, depth;
989
990         lc = NULL;
991         for (i = 0; i < ncons; i++) {
992                 c = kzalloc(sizeof(*c), GFP_KERNEL);
993                 if (!c)
994                         return -ENOMEM;
995
996                 if (lc) {
997                         lc->next = c;
998                 } else {
999                         *nodep = c;
1000                 }
1001
1002                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1003                 if (rc < 0)
1004                         return rc;
1005                 c->permissions = le32_to_cpu(buf[0]);
1006                 nexpr = le32_to_cpu(buf[1]);
1007                 le = NULL;
1008                 depth = -1;
1009                 for (j = 0; j < nexpr; j++) {
1010                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1011                         if (!e)
1012                                 return -ENOMEM;
1013
1014                         if (le) {
1015                                 le->next = e;
1016                         } else {
1017                                 c->expr = e;
1018                         }
1019
1020                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1021                         if (rc < 0)
1022                                 return rc;
1023                         e->expr_type = le32_to_cpu(buf[0]);
1024                         e->attr = le32_to_cpu(buf[1]);
1025                         e->op = le32_to_cpu(buf[2]);
1026
1027                         switch (e->expr_type) {
1028                         case CEXPR_NOT:
1029                                 if (depth < 0)
1030                                         return -EINVAL;
1031                                 break;
1032                         case CEXPR_AND:
1033                         case CEXPR_OR:
1034                                 if (depth < 1)
1035                                         return -EINVAL;
1036                                 depth--;
1037                                 break;
1038                         case CEXPR_ATTR:
1039                                 if (depth == (CEXPR_MAXDEPTH - 1))
1040                                         return -EINVAL;
1041                                 depth++;
1042                                 break;
1043                         case CEXPR_NAMES:
1044                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1045                                         return -EINVAL;
1046                                 if (depth == (CEXPR_MAXDEPTH - 1))
1047                                         return -EINVAL;
1048                                 depth++;
1049                                 if (ebitmap_read(&e->names, fp))
1050                                         return -EINVAL;
1051                                 break;
1052                         default:
1053                                 return -EINVAL;
1054                         }
1055                         le = e;
1056                 }
1057                 if (depth != 0)
1058                         return -EINVAL;
1059                 lc = c;
1060         }
1061
1062         return 0;
1063 }
1064
1065 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1066 {
1067         char *key = NULL;
1068         struct class_datum *cladatum;
1069         __le32 buf[6];
1070         u32 len, len2, ncons, nel;
1071         int i, rc;
1072
1073         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1074         if (!cladatum) {
1075                 rc = -ENOMEM;
1076                 goto out;
1077         }
1078
1079         rc = next_entry(buf, fp, sizeof(u32)*6);
1080         if (rc < 0)
1081                 goto bad;
1082
1083         len = le32_to_cpu(buf[0]);
1084         len2 = le32_to_cpu(buf[1]);
1085         cladatum->value = le32_to_cpu(buf[2]);
1086
1087         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1088         if (rc)
1089                 goto bad;
1090         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1091         nel = le32_to_cpu(buf[4]);
1092
1093         ncons = le32_to_cpu(buf[5]);
1094
1095         key = kmalloc(len + 1,GFP_KERNEL);
1096         if (!key) {
1097                 rc = -ENOMEM;
1098                 goto bad;
1099         }
1100         rc = next_entry(key, fp, len);
1101         if (rc < 0)
1102                 goto bad;
1103         key[len] = 0;
1104
1105         if (len2) {
1106                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1107                 if (!cladatum->comkey) {
1108                         rc = -ENOMEM;
1109                         goto bad;
1110                 }
1111                 rc = next_entry(cladatum->comkey, fp, len2);
1112                 if (rc < 0)
1113                         goto bad;
1114                 cladatum->comkey[len2] = 0;
1115
1116                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1117                                                     cladatum->comkey);
1118                 if (!cladatum->comdatum) {
1119                         printk(KERN_ERR "security:  unknown common %s\n",
1120                                cladatum->comkey);
1121                         rc = -EINVAL;
1122                         goto bad;
1123                 }
1124         }
1125         for (i = 0; i < nel; i++) {
1126                 rc = perm_read(p, cladatum->permissions.table, fp);
1127                 if (rc)
1128                         goto bad;
1129         }
1130
1131         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1132         if (rc)
1133                 goto bad;
1134
1135         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1136                 /* grab the validatetrans rules */
1137                 rc = next_entry(buf, fp, sizeof(u32));
1138                 if (rc < 0)
1139                         goto bad;
1140                 ncons = le32_to_cpu(buf[0]);
1141                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1142                 if (rc)
1143                         goto bad;
1144         }
1145
1146         rc = hashtab_insert(h, key, cladatum);
1147         if (rc)
1148                 goto bad;
1149
1150         rc = 0;
1151 out:
1152         return rc;
1153 bad:
1154         cls_destroy(key, cladatum, NULL);
1155         goto out;
1156 }
1157
1158 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1159 {
1160         char *key = NULL;
1161         struct role_datum *role;
1162         int rc;
1163         __le32 buf[2];
1164         u32 len;
1165
1166         role = kzalloc(sizeof(*role), GFP_KERNEL);
1167         if (!role) {
1168                 rc = -ENOMEM;
1169                 goto out;
1170         }
1171
1172         rc = next_entry(buf, fp, sizeof buf);
1173         if (rc < 0)
1174                 goto bad;
1175
1176         len = le32_to_cpu(buf[0]);
1177         role->value = le32_to_cpu(buf[1]);
1178
1179         key = kmalloc(len + 1,GFP_KERNEL);
1180         if (!key) {
1181                 rc = -ENOMEM;
1182                 goto bad;
1183         }
1184         rc = next_entry(key, fp, len);
1185         if (rc < 0)
1186                 goto bad;
1187         key[len] = 0;
1188
1189         rc = ebitmap_read(&role->dominates, fp);
1190         if (rc)
1191                 goto bad;
1192
1193         rc = ebitmap_read(&role->types, fp);
1194         if (rc)
1195                 goto bad;
1196
1197         if (strcmp(key, OBJECT_R) == 0) {
1198                 if (role->value != OBJECT_R_VAL) {
1199                         printk(KERN_ERR "Role %s has wrong value %d\n",
1200                                OBJECT_R, role->value);
1201                         rc = -EINVAL;
1202                         goto bad;
1203                 }
1204                 rc = 0;
1205                 goto bad;
1206         }
1207
1208         rc = hashtab_insert(h, key, role);
1209         if (rc)
1210                 goto bad;
1211 out:
1212         return rc;
1213 bad:
1214         role_destroy(key, role, NULL);
1215         goto out;
1216 }
1217
1218 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1219 {
1220         char *key = NULL;
1221         struct type_datum *typdatum;
1222         int rc;
1223         __le32 buf[3];
1224         u32 len;
1225
1226         typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1227         if (!typdatum) {
1228                 rc = -ENOMEM;
1229                 return rc;
1230         }
1231
1232         rc = next_entry(buf, fp, sizeof buf);
1233         if (rc < 0)
1234                 goto bad;
1235
1236         len = le32_to_cpu(buf[0]);
1237         typdatum->value = le32_to_cpu(buf[1]);
1238         typdatum->primary = le32_to_cpu(buf[2]);
1239
1240         key = kmalloc(len + 1,GFP_KERNEL);
1241         if (!key) {
1242                 rc = -ENOMEM;
1243                 goto bad;
1244         }
1245         rc = next_entry(key, fp, len);
1246         if (rc < 0)
1247                 goto bad;
1248         key[len] = 0;
1249
1250         rc = hashtab_insert(h, key, typdatum);
1251         if (rc)
1252                 goto bad;
1253 out:
1254         return rc;
1255 bad:
1256         type_destroy(key, typdatum, NULL);
1257         goto out;
1258 }
1259
1260
1261 /*
1262  * Read a MLS level structure from a policydb binary
1263  * representation file.
1264  */
1265 static int mls_read_level(struct mls_level *lp, void *fp)
1266 {
1267         __le32 buf[1];
1268         int rc;
1269
1270         memset(lp, 0, sizeof(*lp));
1271
1272         rc = next_entry(buf, fp, sizeof buf);
1273         if (rc < 0) {
1274                 printk(KERN_ERR "security: mls: truncated level\n");
1275                 goto bad;
1276         }
1277         lp->sens = le32_to_cpu(buf[0]);
1278
1279         if (ebitmap_read(&lp->cat, fp)) {
1280                 printk(KERN_ERR "security: mls:  error reading level "
1281                        "categories\n");
1282                 goto bad;
1283         }
1284
1285         return 0;
1286
1287 bad:
1288         return -EINVAL;
1289 }
1290
1291 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1292 {
1293         char *key = NULL;
1294         struct user_datum *usrdatum;
1295         int rc;
1296         __le32 buf[2];
1297         u32 len;
1298
1299         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1300         if (!usrdatum) {
1301                 rc = -ENOMEM;
1302                 goto out;
1303         }
1304
1305         rc = next_entry(buf, fp, sizeof buf);
1306         if (rc < 0)
1307                 goto bad;
1308
1309         len = le32_to_cpu(buf[0]);
1310         usrdatum->value = le32_to_cpu(buf[1]);
1311
1312         key = kmalloc(len + 1,GFP_KERNEL);
1313         if (!key) {
1314                 rc = -ENOMEM;
1315                 goto bad;
1316         }
1317         rc = next_entry(key, fp, len);
1318         if (rc < 0)
1319                 goto bad;
1320         key[len] = 0;
1321
1322         rc = ebitmap_read(&usrdatum->roles, fp);
1323         if (rc)
1324                 goto bad;
1325
1326         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1327                 rc = mls_read_range_helper(&usrdatum->range, fp);
1328                 if (rc)
1329                         goto bad;
1330                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1331                 if (rc)
1332                         goto bad;
1333         }
1334
1335         rc = hashtab_insert(h, key, usrdatum);
1336         if (rc)
1337                 goto bad;
1338 out:
1339         return rc;
1340 bad:
1341         user_destroy(key, usrdatum, NULL);
1342         goto out;
1343 }
1344
1345 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1346 {
1347         char *key = NULL;
1348         struct level_datum *levdatum;
1349         int rc;
1350         __le32 buf[2];
1351         u32 len;
1352
1353         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1354         if (!levdatum) {
1355                 rc = -ENOMEM;
1356                 goto out;
1357         }
1358
1359         rc = next_entry(buf, fp, sizeof buf);
1360         if (rc < 0)
1361                 goto bad;
1362
1363         len = le32_to_cpu(buf[0]);
1364         levdatum->isalias = le32_to_cpu(buf[1]);
1365
1366         key = kmalloc(len + 1,GFP_ATOMIC);
1367         if (!key) {
1368                 rc = -ENOMEM;
1369                 goto bad;
1370         }
1371         rc = next_entry(key, fp, len);
1372         if (rc < 0)
1373                 goto bad;
1374         key[len] = 0;
1375
1376         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1377         if (!levdatum->level) {
1378                 rc = -ENOMEM;
1379                 goto bad;
1380         }
1381         if (mls_read_level(levdatum->level, fp)) {
1382                 rc = -EINVAL;
1383                 goto bad;
1384         }
1385
1386         rc = hashtab_insert(h, key, levdatum);
1387         if (rc)
1388                 goto bad;
1389 out:
1390         return rc;
1391 bad:
1392         sens_destroy(key, levdatum, NULL);
1393         goto out;
1394 }
1395
1396 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1397 {
1398         char *key = NULL;
1399         struct cat_datum *catdatum;
1400         int rc;
1401         __le32 buf[3];
1402         u32 len;
1403
1404         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1405         if (!catdatum) {
1406                 rc = -ENOMEM;
1407                 goto out;
1408         }
1409
1410         rc = next_entry(buf, fp, sizeof buf);
1411         if (rc < 0)
1412                 goto bad;
1413
1414         len = le32_to_cpu(buf[0]);
1415         catdatum->value = le32_to_cpu(buf[1]);
1416         catdatum->isalias = le32_to_cpu(buf[2]);
1417
1418         key = kmalloc(len + 1,GFP_ATOMIC);
1419         if (!key) {
1420                 rc = -ENOMEM;
1421                 goto bad;
1422         }
1423         rc = next_entry(key, fp, len);
1424         if (rc < 0)
1425                 goto bad;
1426         key[len] = 0;
1427
1428         rc = hashtab_insert(h, key, catdatum);
1429         if (rc)
1430                 goto bad;
1431 out:
1432         return rc;
1433
1434 bad:
1435         cat_destroy(key, catdatum, NULL);
1436         goto out;
1437 }
1438
1439 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1440 {
1441         common_read,
1442         class_read,
1443         role_read,
1444         type_read,
1445         user_read,
1446         cond_read_bool,
1447         sens_read,
1448         cat_read,
1449 };
1450
1451 extern int ss_initialized;
1452
1453 /*
1454  * Read the configuration data from a policy database binary
1455  * representation file into a policy database structure.
1456  */
1457 int policydb_read(struct policydb *p, void *fp)
1458 {
1459         struct role_allow *ra, *lra;
1460         struct role_trans *tr, *ltr;
1461         struct ocontext *l, *c, *newc;
1462         struct genfs *genfs_p, *genfs, *newgenfs;
1463         int i, j, rc;
1464         __le32 buf[8];
1465         u32 len, len2, config, nprim, nel, nel2;
1466         char *policydb_str;
1467         struct policydb_compat_info *info;
1468         struct range_trans *rt, *lrt;
1469
1470         config = 0;
1471
1472         rc = policydb_init(p);
1473         if (rc)
1474                 goto out;
1475
1476         /* Read the magic number and string length. */
1477         rc = next_entry(buf, fp, sizeof(u32)* 2);
1478         if (rc < 0)
1479                 goto bad;
1480
1481         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1482                 printk(KERN_ERR "security:  policydb magic number 0x%x does "
1483                        "not match expected magic number 0x%x\n",
1484                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1485                 goto bad;
1486         }
1487
1488         len = le32_to_cpu(buf[1]);
1489         if (len != strlen(POLICYDB_STRING)) {
1490                 printk(KERN_ERR "security:  policydb string length %d does not "
1491                        "match expected length %Zu\n",
1492                        len, strlen(POLICYDB_STRING));
1493                 goto bad;
1494         }
1495         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1496         if (!policydb_str) {
1497                 printk(KERN_ERR "security:  unable to allocate memory for policydb "
1498                        "string of length %d\n", len);
1499                 rc = -ENOMEM;
1500                 goto bad;
1501         }
1502         rc = next_entry(policydb_str, fp, len);
1503         if (rc < 0) {
1504                 printk(KERN_ERR "security:  truncated policydb string identifier\n");
1505                 kfree(policydb_str);
1506                 goto bad;
1507         }
1508         policydb_str[len] = 0;
1509         if (strcmp(policydb_str, POLICYDB_STRING)) {
1510                 printk(KERN_ERR "security:  policydb string %s does not match "
1511                        "my string %s\n", policydb_str, POLICYDB_STRING);
1512                 kfree(policydb_str);
1513                 goto bad;
1514         }
1515         /* Done with policydb_str. */
1516         kfree(policydb_str);
1517         policydb_str = NULL;
1518
1519         /* Read the version, config, and table sizes. */
1520         rc = next_entry(buf, fp, sizeof(u32)*4);
1521         if (rc < 0)
1522                 goto bad;
1523
1524         p->policyvers = le32_to_cpu(buf[0]);
1525         if (p->policyvers < POLICYDB_VERSION_MIN ||
1526             p->policyvers > POLICYDB_VERSION_MAX) {
1527                 printk(KERN_ERR "security:  policydb version %d does not match "
1528                        "my version range %d-%d\n",
1529                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1530                 goto bad;
1531         }
1532
1533         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1534                 if (ss_initialized && !selinux_mls_enabled) {
1535                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1536                                "policies\n");
1537                         goto bad;
1538                 }
1539                 selinux_mls_enabled = 1;
1540                 config |= POLICYDB_CONFIG_MLS;
1541
1542                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1543                         printk(KERN_ERR "security policydb version %d (MLS) "
1544                                "not backwards compatible\n", p->policyvers);
1545                         goto bad;
1546                 }
1547         } else {
1548                 if (ss_initialized && selinux_mls_enabled) {
1549                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1550                                "policies\n");
1551                         goto bad;
1552                 }
1553         }
1554         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1555         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1556
1557         info = policydb_lookup_compat(p->policyvers);
1558         if (!info) {
1559                 printk(KERN_ERR "security:  unable to find policy compat info "
1560                        "for version %d\n", p->policyvers);
1561                 goto bad;
1562         }
1563
1564         if (le32_to_cpu(buf[2]) != info->sym_num ||
1565                 le32_to_cpu(buf[3]) != info->ocon_num) {
1566                 printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1567                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1568                         le32_to_cpu(buf[3]),
1569                        info->sym_num, info->ocon_num);
1570                 goto bad;
1571         }
1572
1573         for (i = 0; i < info->sym_num; i++) {
1574                 rc = next_entry(buf, fp, sizeof(u32)*2);
1575                 if (rc < 0)
1576                         goto bad;
1577                 nprim = le32_to_cpu(buf[0]);
1578                 nel = le32_to_cpu(buf[1]);
1579                 for (j = 0; j < nel; j++) {
1580                         rc = read_f[i](p, p->symtab[i].table, fp);
1581                         if (rc)
1582                                 goto bad;
1583                 }
1584
1585                 p->symtab[i].nprim = nprim;
1586         }
1587
1588         rc = avtab_read(&p->te_avtab, fp, p);
1589         if (rc)
1590                 goto bad;
1591
1592         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1593                 rc = cond_read_list(p, fp);
1594                 if (rc)
1595                         goto bad;
1596         }
1597
1598         rc = next_entry(buf, fp, sizeof(u32));
1599         if (rc < 0)
1600                 goto bad;
1601         nel = le32_to_cpu(buf[0]);
1602         ltr = NULL;
1603         for (i = 0; i < nel; i++) {
1604                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1605                 if (!tr) {
1606                         rc = -ENOMEM;
1607                         goto bad;
1608                 }
1609                 if (ltr) {
1610                         ltr->next = tr;
1611                 } else {
1612                         p->role_tr = tr;
1613                 }
1614                 rc = next_entry(buf, fp, sizeof(u32)*3);
1615                 if (rc < 0)
1616                         goto bad;
1617                 tr->role = le32_to_cpu(buf[0]);
1618                 tr->type = le32_to_cpu(buf[1]);
1619                 tr->new_role = le32_to_cpu(buf[2]);
1620                 if (!policydb_role_isvalid(p, tr->role) ||
1621                     !policydb_type_isvalid(p, tr->type) ||
1622                     !policydb_role_isvalid(p, tr->new_role)) {
1623                         rc = -EINVAL;
1624                         goto bad;
1625                 }
1626                 ltr = tr;
1627         }
1628
1629         rc = next_entry(buf, fp, sizeof(u32));
1630         if (rc < 0)
1631                 goto bad;
1632         nel = le32_to_cpu(buf[0]);
1633         lra = NULL;
1634         for (i = 0; i < nel; i++) {
1635                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1636                 if (!ra) {
1637                         rc = -ENOMEM;
1638                         goto bad;
1639                 }
1640                 if (lra) {
1641                         lra->next = ra;
1642                 } else {
1643                         p->role_allow = ra;
1644                 }
1645                 rc = next_entry(buf, fp, sizeof(u32)*2);
1646                 if (rc < 0)
1647                         goto bad;
1648                 ra->role = le32_to_cpu(buf[0]);
1649                 ra->new_role = le32_to_cpu(buf[1]);
1650                 if (!policydb_role_isvalid(p, ra->role) ||
1651                     !policydb_role_isvalid(p, ra->new_role)) {
1652                         rc = -EINVAL;
1653                         goto bad;
1654                 }
1655                 lra = ra;
1656         }
1657
1658         rc = policydb_index_classes(p);
1659         if (rc)
1660                 goto bad;
1661
1662         rc = policydb_index_others(p);
1663         if (rc)
1664                 goto bad;
1665
1666         for (i = 0; i < info->ocon_num; i++) {
1667                 rc = next_entry(buf, fp, sizeof(u32));
1668                 if (rc < 0)
1669                         goto bad;
1670                 nel = le32_to_cpu(buf[0]);
1671                 l = NULL;
1672                 for (j = 0; j < nel; j++) {
1673                         c = kzalloc(sizeof(*c), GFP_KERNEL);
1674                         if (!c) {
1675                                 rc = -ENOMEM;
1676                                 goto bad;
1677                         }
1678                         if (l) {
1679                                 l->next = c;
1680                         } else {
1681                                 p->ocontexts[i] = c;
1682                         }
1683                         l = c;
1684                         rc = -EINVAL;
1685                         switch (i) {
1686                         case OCON_ISID:
1687                                 rc = next_entry(buf, fp, sizeof(u32));
1688                                 if (rc < 0)
1689                                         goto bad;
1690                                 c->sid[0] = le32_to_cpu(buf[0]);
1691                                 rc = context_read_and_validate(&c->context[0], p, fp);
1692                                 if (rc)
1693                                         goto bad;
1694                                 break;
1695                         case OCON_FS:
1696                         case OCON_NETIF:
1697                                 rc = next_entry(buf, fp, sizeof(u32));
1698                                 if (rc < 0)
1699                                         goto bad;
1700                                 len = le32_to_cpu(buf[0]);
1701                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1702                                 if (!c->u.name) {
1703                                         rc = -ENOMEM;
1704                                         goto bad;
1705                                 }
1706                                 rc = next_entry(c->u.name, fp, len);
1707                                 if (rc < 0)
1708                                         goto bad;
1709                                 c->u.name[len] = 0;
1710                                 rc = context_read_and_validate(&c->context[0], p, fp);
1711                                 if (rc)
1712                                         goto bad;
1713                                 rc = context_read_and_validate(&c->context[1], p, fp);
1714                                 if (rc)
1715                                         goto bad;
1716                                 break;
1717                         case OCON_PORT:
1718                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1719                                 if (rc < 0)
1720                                         goto bad;
1721                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1722                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1723                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1724                                 rc = context_read_and_validate(&c->context[0], p, fp);
1725                                 if (rc)
1726                                         goto bad;
1727                                 break;
1728                         case OCON_NODE:
1729                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1730                                 if (rc < 0)
1731                                         goto bad;
1732                                 c->u.node.addr = le32_to_cpu(buf[0]);
1733                                 c->u.node.mask = le32_to_cpu(buf[1]);
1734                                 rc = context_read_and_validate(&c->context[0], p, fp);
1735                                 if (rc)
1736                                         goto bad;
1737                                 break;
1738                         case OCON_FSUSE:
1739                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1740                                 if (rc < 0)
1741                                         goto bad;
1742                                 c->v.behavior = le32_to_cpu(buf[0]);
1743                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1744                                         goto bad;
1745                                 len = le32_to_cpu(buf[1]);
1746                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1747                                 if (!c->u.name) {
1748                                         rc = -ENOMEM;
1749                                         goto bad;
1750                                 }
1751                                 rc = next_entry(c->u.name, fp, len);
1752                                 if (rc < 0)
1753                                         goto bad;
1754                                 c->u.name[len] = 0;
1755                                 rc = context_read_and_validate(&c->context[0], p, fp);
1756                                 if (rc)
1757                                         goto bad;
1758                                 break;
1759                         case OCON_NODE6: {
1760                                 int k;
1761
1762                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1763                                 if (rc < 0)
1764                                         goto bad;
1765                                 for (k = 0; k < 4; k++)
1766                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1767                                 for (k = 0; k < 4; k++)
1768                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1769                                 if (context_read_and_validate(&c->context[0], p, fp))
1770                                         goto bad;
1771                                 break;
1772                         }
1773                         }
1774                 }
1775         }
1776
1777         rc = next_entry(buf, fp, sizeof(u32));
1778         if (rc < 0)
1779                 goto bad;
1780         nel = le32_to_cpu(buf[0]);
1781         genfs_p = NULL;
1782         rc = -EINVAL;
1783         for (i = 0; i < nel; i++) {
1784                 rc = next_entry(buf, fp, sizeof(u32));
1785                 if (rc < 0)
1786                         goto bad;
1787                 len = le32_to_cpu(buf[0]);
1788                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1789                 if (!newgenfs) {
1790                         rc = -ENOMEM;
1791                         goto bad;
1792                 }
1793
1794                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1795                 if (!newgenfs->fstype) {
1796                         rc = -ENOMEM;
1797                         kfree(newgenfs);
1798                         goto bad;
1799                 }
1800                 rc = next_entry(newgenfs->fstype, fp, len);
1801                 if (rc < 0) {
1802                         kfree(newgenfs->fstype);
1803                         kfree(newgenfs);
1804                         goto bad;
1805                 }
1806                 newgenfs->fstype[len] = 0;
1807                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1808                      genfs_p = genfs, genfs = genfs->next) {
1809                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1810                                 printk(KERN_ERR "security:  dup genfs "
1811                                        "fstype %s\n", newgenfs->fstype);
1812                                 kfree(newgenfs->fstype);
1813                                 kfree(newgenfs);
1814                                 goto bad;
1815                         }
1816                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1817                                 break;
1818                 }
1819                 newgenfs->next = genfs;
1820                 if (genfs_p)
1821                         genfs_p->next = newgenfs;
1822                 else
1823                         p->genfs = newgenfs;
1824                 rc = next_entry(buf, fp, sizeof(u32));
1825                 if (rc < 0)
1826                         goto bad;
1827                 nel2 = le32_to_cpu(buf[0]);
1828                 for (j = 0; j < nel2; j++) {
1829                         rc = next_entry(buf, fp, sizeof(u32));
1830                         if (rc < 0)
1831                                 goto bad;
1832                         len = le32_to_cpu(buf[0]);
1833
1834                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1835                         if (!newc) {
1836                                 rc = -ENOMEM;
1837                                 goto bad;
1838                         }
1839
1840                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1841                         if (!newc->u.name) {
1842                                 rc = -ENOMEM;
1843                                 goto bad_newc;
1844                         }
1845                         rc = next_entry(newc->u.name, fp, len);
1846                         if (rc < 0)
1847                                 goto bad_newc;
1848                         newc->u.name[len] = 0;
1849                         rc = next_entry(buf, fp, sizeof(u32));
1850                         if (rc < 0)
1851                                 goto bad_newc;
1852                         newc->v.sclass = le32_to_cpu(buf[0]);
1853                         if (context_read_and_validate(&newc->context[0], p, fp))
1854                                 goto bad_newc;
1855                         for (l = NULL, c = newgenfs->head; c;
1856                              l = c, c = c->next) {
1857                                 if (!strcmp(newc->u.name, c->u.name) &&
1858                                     (!c->v.sclass || !newc->v.sclass ||
1859                                      newc->v.sclass == c->v.sclass)) {
1860                                         printk(KERN_ERR "security:  dup genfs "
1861                                                "entry (%s,%s)\n",
1862                                                newgenfs->fstype, c->u.name);
1863                                         goto bad_newc;
1864                                 }
1865                                 len = strlen(newc->u.name);
1866                                 len2 = strlen(c->u.name);
1867                                 if (len > len2)
1868                                         break;
1869                         }
1870
1871                         newc->next = c;
1872                         if (l)
1873                                 l->next = newc;
1874                         else
1875                                 newgenfs->head = newc;
1876                 }
1877         }
1878
1879         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1880                 int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1881                 rc = next_entry(buf, fp, sizeof(u32));
1882                 if (rc < 0)
1883                         goto bad;
1884                 nel = le32_to_cpu(buf[0]);
1885                 lrt = NULL;
1886                 for (i = 0; i < nel; i++) {
1887                         rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1888                         if (!rt) {
1889                                 rc = -ENOMEM;
1890                                 goto bad;
1891                         }
1892                         if (lrt)
1893                                 lrt->next = rt;
1894                         else
1895                                 p->range_tr = rt;
1896                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1897                         if (rc < 0)
1898                                 goto bad;
1899                         rt->source_type = le32_to_cpu(buf[0]);
1900                         rt->target_type = le32_to_cpu(buf[1]);
1901                         if (new_rangetr) {
1902                                 rc = next_entry(buf, fp, sizeof(u32));
1903                                 if (rc < 0)
1904                                         goto bad;
1905                                 rt->target_class = le32_to_cpu(buf[0]);
1906                         } else
1907                                 rt->target_class = SECCLASS_PROCESS;
1908                         if (!policydb_type_isvalid(p, rt->source_type) ||
1909                             !policydb_type_isvalid(p, rt->target_type) ||
1910                             !policydb_class_isvalid(p, rt->target_class)) {
1911                                 rc = -EINVAL;
1912                                 goto bad;
1913                         }
1914                         rc = mls_read_range_helper(&rt->target_range, fp);
1915                         if (rc)
1916                                 goto bad;
1917                         if (!mls_range_isvalid(p, &rt->target_range)) {
1918                                 printk(KERN_WARNING "security:  rangetrans:  invalid range\n");
1919                                 goto bad;
1920                         }
1921                         lrt = rt;
1922                 }
1923         }
1924
1925         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1926         if (!p->type_attr_map)
1927                 goto bad;
1928
1929         for (i = 0; i < p->p_types.nprim; i++) {
1930                 ebitmap_init(&p->type_attr_map[i]);
1931                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1932                         if (ebitmap_read(&p->type_attr_map[i], fp))
1933                                 goto bad;
1934                 }
1935                 /* add the type itself as the degenerate case */
1936                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1937                                 goto bad;
1938         }
1939
1940         rc = 0;
1941 out:
1942         return rc;
1943 bad_newc:
1944         ocontext_destroy(newc,OCON_FSUSE);
1945 bad:
1946         if (!rc)
1947                 rc = -EINVAL;
1948         policydb_destroy(p);
1949         goto out;
1950 }