2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 * Alan Cox : verify_area() calls
18 * Alan Cox : stopped close while in use off icmp
19 * messages. Not a fix but a botch that
20 * for udp at least is 'valid'.
21 * Alan Cox : Fixed icmp handling properly
22 * Alan Cox : Correct error for oversized datagrams
23 * Alan Cox : Tidied select() semantics.
24 * Alan Cox : udp_err() fixed properly, also now
25 * select and read wake correctly on errors
26 * Alan Cox : udp_send verify_area moved to avoid mem leak
27 * Alan Cox : UDP can count its memory
28 * Alan Cox : send to an unknown connection causes
29 * an ECONNREFUSED off the icmp, but
31 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
33 * bug no longer crashes it.
34 * Fred Van Kempen : Net2e support for sk->broadcast.
35 * Alan Cox : Uses skb_free_datagram
36 * Alan Cox : Added get/set sockopt support.
37 * Alan Cox : Broadcasting without option set returns EACCES.
38 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
39 * Alan Cox : Use ip_tos and ip_ttl
40 * Alan Cox : SNMP Mibs
41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
42 * Matt Dillon : UDP length checks.
43 * Alan Cox : Smarter af_inet used properly.
44 * Alan Cox : Use new kernel side addressing.
45 * Alan Cox : Incorrect return on truncated datagram receive.
46 * Arnt Gulbrandsen : New udp_send and stuff
47 * Alan Cox : Cache last socket
48 * Alan Cox : Route cache
49 * Jon Peatfield : Minor efficiency fix to sendto().
50 * Mike Shaver : RFC1122 checks.
51 * Alan Cox : Nonblocking error fix.
52 * Willy Konynenberg : Transparent proxying support.
53 * Mike McLagan : Routing by source
54 * David S. Miller : New socket lookup architecture.
55 * Last socket cache retained as it
56 * does have a high hit rate.
57 * Olaf Kirch : Don't linearise iovec on sendmsg.
58 * Andi Kleen : Some cleanups, cache destination entry
60 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
61 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
62 * return ENOTCONN for unconnected sockets (POSIX)
63 * Janos Farkas : don't deliver multi/broadcasts to a different
64 * bound-to-device socket
65 * Hirokazu Takahashi : HW checksumming for outgoing UDP
67 * Hirokazu Takahashi : sendfile() on UDP works now.
68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
71 * a single port at the same time.
72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
75 * This program is free software; you can redistribute it and/or
76 * modify it under the terms of the GNU General Public License
77 * as published by the Free Software Foundation; either version
78 * 2 of the License, or (at your option) any later version.
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/icmp.h>
101 #include <net/route.h>
102 #include <net/checksum.h>
103 #include <net/xfrm.h>
104 #include "udp_impl.h"
107 * Snmp MIB for the UDP layer
110 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
112 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113 DEFINE_RWLOCK(udp_hash_lock);
115 static int udp_port_rover;
118 * Note about this hash function :
119 * Typical use is probably daddr = 0, only dport is going to vary hash
121 static inline unsigned int udp_hash_port(__u16 port)
126 static inline int __udp_lib_port_inuse(unsigned int hash, int port,
127 const struct sock *this_sk,
128 struct hlist_head udptable[],
129 const struct udp_get_port_ops *ops)
132 struct hlist_node *node;
133 struct inet_sock *inet;
135 sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
136 if (sk->sk_hash != hash)
139 if (inet->num != port)
142 if (ops->saddr_cmp(sk, this_sk))
144 } else if (ops->saddr_any(sk))
151 * __udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
153 * @sk: socket struct in question
154 * @snum: port number to look up
155 * @udptable: hash list table, must be of UDP_HTABLE_SIZE
156 * @port_rover: pointer to record of last unallocated port
157 * @ops: AF-dependent address operations
159 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
160 struct hlist_head udptable[], int *port_rover,
161 const struct udp_get_port_ops *ops)
163 struct hlist_node *node;
164 struct hlist_head *head;
169 write_lock_bh(&udp_hash_lock);
171 int best_size_so_far, best, result, i;
173 if (*port_rover > sysctl_local_port_range[1] ||
174 *port_rover < sysctl_local_port_range[0])
175 *port_rover = sysctl_local_port_range[0];
176 best_size_so_far = 32767;
177 best = result = *port_rover;
178 for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
181 hash = ops->hash_port_and_rcv_saddr(result, sk);
182 head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
183 if (hlist_empty(head)) {
184 if (result > sysctl_local_port_range[1])
185 result = sysctl_local_port_range[0] +
186 ((result - sysctl_local_port_range[0]) &
187 (UDP_HTABLE_SIZE - 1));
191 sk_for_each(sk2, node, head) {
192 if (++size >= best_size_so_far)
195 best_size_so_far = size;
201 for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE;
202 i++, result += UDP_HTABLE_SIZE) {
203 if (result > sysctl_local_port_range[1])
204 result = sysctl_local_port_range[0]
205 + ((result - sysctl_local_port_range[0]) &
206 (UDP_HTABLE_SIZE - 1));
207 hash = udp_hash_port(result);
208 if (__udp_lib_port_inuse(hash, result,
209 NULL, udptable, ops))
211 if (ops->saddr_any(sk))
214 hash = ops->hash_port_and_rcv_saddr(result, sk);
215 if (! __udp_lib_port_inuse(hash, result,
219 if (i >= (1 << 16) / UDP_HTABLE_SIZE)
222 *port_rover = snum = result;
224 hash = udp_hash_port(snum);
225 head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
227 sk_for_each(sk2, node, head)
228 if (sk2->sk_hash == hash &&
230 inet_sk(sk2)->num == snum &&
231 (!sk2->sk_reuse || !sk->sk_reuse) &&
232 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
233 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
234 ops->saddr_cmp(sk, sk2))
237 if (!ops->saddr_any(sk)) {
238 hash = ops->hash_port_and_rcv_saddr(snum, sk);
239 head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
241 sk_for_each(sk2, node, head)
242 if (sk2->sk_hash == hash &&
244 inet_sk(sk2)->num == snum &&
245 (!sk2->sk_reuse || !sk->sk_reuse) &&
246 (!sk2->sk_bound_dev_if ||
247 !sk->sk_bound_dev_if ||
248 sk2->sk_bound_dev_if ==
249 sk->sk_bound_dev_if) &&
250 ops->saddr_cmp(sk, sk2))
254 inet_sk(sk)->num = snum;
256 if (sk_unhashed(sk)) {
257 head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
258 sk_add_node(sk, head);
259 sock_prot_inc_use(sk->sk_prot);
263 write_unlock_bh(&udp_hash_lock);
267 int udp_get_port(struct sock *sk, unsigned short snum,
268 const struct udp_get_port_ops *ops)
270 return __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, ops);
273 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
275 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
277 return ( !ipv6_only_sock(sk2) &&
278 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
279 inet1->rcv_saddr == inet2->rcv_saddr ));
282 static int ipv4_rcv_saddr_any(const struct sock *sk)
284 return !inet_sk(sk)->rcv_saddr;
287 static inline unsigned int ipv4_hash_port_and_addr(__u16 port, __be32 addr)
294 static unsigned int ipv4_hash_port_and_rcv_saddr(__u16 port,
295 const struct sock *sk)
297 return ipv4_hash_port_and_addr(port, inet_sk(sk)->rcv_saddr);
300 const struct udp_get_port_ops udp_ipv4_ops = {
301 .saddr_cmp = ipv4_rcv_saddr_equal,
302 .saddr_any = ipv4_rcv_saddr_any,
303 .hash_port_and_rcv_saddr = ipv4_hash_port_and_rcv_saddr,
306 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
308 return udp_get_port(sk, snum, &udp_ipv4_ops);
311 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
312 * harder than this. -DaveM
314 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
315 __be32 daddr, __be16 dport,
316 int dif, struct hlist_head udptable[])
318 struct sock *sk, *result = NULL;
319 struct hlist_node *node;
320 unsigned int hash, hashwild;
321 int score, best = -1, hport = ntohs(dport);
323 hash = ipv4_hash_port_and_addr(hport, daddr);
324 hashwild = udp_hash_port(hport);
326 read_lock(&udp_hash_lock);
330 sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
331 struct inet_sock *inet = inet_sk(sk);
333 if (sk->sk_hash != hash || ipv6_only_sock(sk) ||
337 score = (sk->sk_family == PF_INET ? 1 : 0);
338 if (inet->rcv_saddr) {
339 if (inet->rcv_saddr != daddr)
344 if (inet->daddr != saddr)
349 if (inet->dport != sport)
353 if (sk->sk_bound_dev_if) {
354 if (sk->sk_bound_dev_if != dif)
361 } else if (score > best) {
367 if (hash != hashwild) {
374 read_unlock(&udp_hash_lock);
378 static inline struct sock *udp_v4_mcast_next(struct sock *sk, unsigned int hnum,
379 int hport, __be32 loc_addr,
380 __be16 rmt_port, __be32 rmt_addr,
383 struct hlist_node *node;
386 sk_for_each_from(s, node) {
387 struct inet_sock *inet = inet_sk(s);
389 if (s->sk_hash != hnum ||
390 inet->num != hport ||
391 (inet->daddr && inet->daddr != rmt_addr) ||
392 (inet->dport != rmt_port && inet->dport) ||
393 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
395 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
397 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
407 * This routine is called by the ICMP module when it gets some
408 * sort of error condition. If err < 0 then the socket should
409 * be closed and the error returned to the user. If err > 0
410 * it's just the icmp type << 8 | icmp code.
411 * Header points to the ip header of the error packet. We move
412 * on past this. Then (as it used to claim before adjustment)
413 * header points to the first 8 bytes of the udp header. We need
414 * to find the appropriate port.
417 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
419 struct inet_sock *inet;
420 struct iphdr *iph = (struct iphdr*)skb->data;
421 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
422 const int type = icmp_hdr(skb)->type;
423 const int code = icmp_hdr(skb)->code;
428 sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
429 skb->dev->ifindex, udptable );
431 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
432 return; /* No socket for error */
441 case ICMP_TIME_EXCEEDED:
444 case ICMP_SOURCE_QUENCH:
446 case ICMP_PARAMETERPROB:
450 case ICMP_DEST_UNREACH:
451 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
452 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
460 if (code <= NR_ICMP_UNREACH) {
461 harderr = icmp_err_convert[code].fatal;
462 err = icmp_err_convert[code].errno;
468 * RFC1122: OK. Passes ICMP errors back to application, as per
471 if (!inet->recverr) {
472 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
475 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
478 sk->sk_error_report(sk);
483 void udp_err(struct sk_buff *skb, u32 info)
485 return __udp4_lib_err(skb, info, udp_hash);
489 * Throw away all pending data and cancel the corking. Socket is locked.
491 static void udp_flush_pending_frames(struct sock *sk)
493 struct udp_sock *up = udp_sk(sk);
498 ip_flush_pending_frames(sk);
503 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
504 * @sk: socket we are sending on
505 * @skb: sk_buff containing the filled-in UDP header
506 * (checksum field must be zeroed out)
508 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
509 __be32 src, __be32 dst, int len )
512 struct udphdr *uh = udp_hdr(skb);
515 if (skb_queue_len(&sk->sk_write_queue) == 1) {
517 * Only one fragment on the socket.
519 skb->csum_start = skb_transport_header(skb) - skb->head;
520 skb->csum_offset = offsetof(struct udphdr, check);
521 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
524 * HW-checksum won't work as there are two or more
525 * fragments on the socket so that all csums of sk_buffs
528 offset = skb_transport_offset(skb);
529 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
531 skb->ip_summed = CHECKSUM_NONE;
533 skb_queue_walk(&sk->sk_write_queue, skb) {
534 csum = csum_add(csum, skb->csum);
537 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
539 uh->check = CSUM_MANGLED_0;
544 * Push out all pending data as one UDP datagram. Socket is locked.
546 static int udp_push_pending_frames(struct sock *sk)
548 struct udp_sock *up = udp_sk(sk);
549 struct inet_sock *inet = inet_sk(sk);
550 struct flowi *fl = &inet->cork.fl;
556 /* Grab the skbuff where UDP header space exists. */
557 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
561 * Create a UDP header
564 uh->source = fl->fl_ip_sport;
565 uh->dest = fl->fl_ip_dport;
566 uh->len = htons(up->len);
569 if (up->pcflag) /* UDP-Lite */
570 csum = udplite_csum_outgoing(sk, skb);
572 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
574 skb->ip_summed = CHECKSUM_NONE;
577 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
579 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
582 } else /* `normal' UDP */
583 csum = udp_csum_outgoing(sk, skb);
585 /* add protocol-dependent pseudo-header */
586 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
587 sk->sk_protocol, csum );
589 uh->check = CSUM_MANGLED_0;
592 err = ip_push_pending_frames(sk);
599 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
602 struct inet_sock *inet = inet_sk(sk);
603 struct udp_sock *up = udp_sk(sk);
605 struct ipcm_cookie ipc;
606 struct rtable *rt = NULL;
609 __be32 daddr, faddr, saddr;
612 int err, is_udplite = up->pcflag;
613 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
614 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
623 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */
630 * There are pending frames.
631 * The socket lock must be held while it's corked.
634 if (likely(up->pending)) {
635 if (unlikely(up->pending != AF_INET)) {
643 ulen += sizeof(struct udphdr);
646 * Get and verify the address.
649 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
650 if (msg->msg_namelen < sizeof(*usin))
652 if (usin->sin_family != AF_INET) {
653 if (usin->sin_family != AF_UNSPEC)
654 return -EAFNOSUPPORT;
657 daddr = usin->sin_addr.s_addr;
658 dport = usin->sin_port;
662 if (sk->sk_state != TCP_ESTABLISHED)
663 return -EDESTADDRREQ;
666 /* Open fast path for connected socket.
667 Route will not be used, if at least one option is set.
671 ipc.addr = inet->saddr;
673 ipc.oif = sk->sk_bound_dev_if;
674 if (msg->msg_controllen) {
675 err = ip_cmsg_send(msg, &ipc);
686 ipc.addr = faddr = daddr;
688 if (ipc.opt && ipc.opt->srr) {
691 faddr = ipc.opt->faddr;
694 tos = RT_TOS(inet->tos);
695 if (sock_flag(sk, SOCK_LOCALROUTE) ||
696 (msg->msg_flags & MSG_DONTROUTE) ||
697 (ipc.opt && ipc.opt->is_strictroute)) {
702 if (MULTICAST(daddr)) {
704 ipc.oif = inet->mc_index;
706 saddr = inet->mc_addr;
711 rt = (struct rtable*)sk_dst_check(sk, 0);
714 struct flowi fl = { .oif = ipc.oif,
719 .proto = sk->sk_protocol,
721 { .sport = inet->sport,
722 .dport = dport } } };
723 security_sk_classify_flow(sk, &fl);
724 err = ip_route_output_flow(&rt, &fl, sk, 1);
726 if (err == -ENETUNREACH)
727 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
732 if ((rt->rt_flags & RTCF_BROADCAST) &&
733 !sock_flag(sk, SOCK_BROADCAST))
736 sk_dst_set(sk, dst_clone(&rt->u.dst));
739 if (msg->msg_flags&MSG_CONFIRM)
745 daddr = ipc.addr = rt->rt_dst;
748 if (unlikely(up->pending)) {
749 /* The socket is already corked while preparing it. */
750 /* ... which is an evident application bug. --ANK */
753 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
758 * Now cork the socket to pend data.
760 inet->cork.fl.fl4_dst = daddr;
761 inet->cork.fl.fl_ip_dport = dport;
762 inet->cork.fl.fl4_src = saddr;
763 inet->cork.fl.fl_ip_sport = inet->sport;
764 up->pending = AF_INET;
768 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
769 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
770 sizeof(struct udphdr), &ipc, rt,
771 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
773 udp_flush_pending_frames(sk);
775 err = udp_push_pending_frames(sk);
776 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
785 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
789 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
790 * ENOBUFS might not be good (it's not tunable per se), but otherwise
791 * we don't have a good statistic (IpOutDiscards but it can be too many
792 * things). We could add another new stat but at least for now that
793 * seems like overkill.
795 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
796 UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
801 dst_confirm(&rt->u.dst);
802 if (!(msg->msg_flags&MSG_PROBE) || len)
803 goto back_from_confirm;
808 int udp_sendpage(struct sock *sk, struct page *page, int offset,
809 size_t size, int flags)
811 struct udp_sock *up = udp_sk(sk);
815 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
817 /* Call udp_sendmsg to specify destination address which
818 * sendpage interface can't pass.
819 * This will succeed only when the socket is connected.
821 ret = udp_sendmsg(NULL, sk, &msg, 0);
828 if (unlikely(!up->pending)) {
831 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
835 ret = ip_append_page(sk, page, offset, size, flags);
836 if (ret == -EOPNOTSUPP) {
838 return sock_no_sendpage(sk->sk_socket, page, offset,
842 udp_flush_pending_frames(sk);
847 if (!(up->corkflag || (flags&MSG_MORE)))
848 ret = udp_push_pending_frames(sk);
857 * IOCTL requests applicable to the UDP protocol
860 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
865 int amount = atomic_read(&sk->sk_wmem_alloc);
866 return put_user(amount, (int __user *)arg);
872 unsigned long amount;
875 spin_lock_bh(&sk->sk_receive_queue.lock);
876 skb = skb_peek(&sk->sk_receive_queue);
879 * We will only return the amount
880 * of this packet since that is all
883 amount = skb->len - sizeof(struct udphdr);
885 spin_unlock_bh(&sk->sk_receive_queue.lock);
886 return put_user(amount, (int __user *)arg);
897 * This should be easy, if there is something there we
898 * return it, otherwise we block.
901 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
902 size_t len, int noblock, int flags, int *addr_len)
904 struct inet_sock *inet = inet_sk(sk);
905 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
907 unsigned int ulen, copied;
909 int is_udplite = IS_UDPLITE(sk);
912 * Check any passed addresses
915 *addr_len=sizeof(*sin);
917 if (flags & MSG_ERRQUEUE)
918 return ip_recv_error(sk, msg, len);
921 skb = skb_recv_datagram(sk, flags, noblock, &err);
925 ulen = skb->len - sizeof(struct udphdr);
929 else if (copied < ulen)
930 msg->msg_flags |= MSG_TRUNC;
933 * If checksum is needed at all, try to do it while copying the
934 * data. If the data is truncated, or if we only want a partial
935 * coverage checksum (UDP-Lite), do it before the copy.
938 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
939 if (udp_lib_checksum_complete(skb))
943 if (skb_csum_unnecessary(skb))
944 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
945 msg->msg_iov, copied );
947 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
956 sock_recv_timestamp(msg, sk, skb);
958 /* Copy the address. */
961 sin->sin_family = AF_INET;
962 sin->sin_port = udp_hdr(skb)->source;
963 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
964 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
966 if (inet->cmsg_flags)
967 ip_cmsg_recv(msg, skb);
970 if (flags & MSG_TRUNC)
974 skb_free_datagram(sk, skb);
979 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
981 skb_kill_datagram(sk, skb, flags);
989 int udp_disconnect(struct sock *sk, int flags)
991 struct inet_sock *inet = inet_sk(sk);
993 * 1003.1g - break association.
996 sk->sk_state = TCP_CLOSE;
999 sk->sk_bound_dev_if = 0;
1000 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1001 inet_reset_saddr(sk);
1003 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1004 sk->sk_prot->unhash(sk);
1012 * 1 if the UDP system should process it
1013 * 0 if we should drop this packet
1014 * -1 if it should get processed by xfrm4_rcv_encap
1016 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
1021 struct udp_sock *up = udp_sk(sk);
1028 __u16 encap_type = up->encap_type;
1030 /* if we're overly short, let UDP handle it */
1031 len = skb->len - sizeof(struct udphdr);
1035 /* if this is not encapsulated socket, then just return now */
1039 /* If this is a paged skb, make sure we pull up
1040 * whatever data we need to look at. */
1041 if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
1044 /* Now we can get the pointers */
1046 udpdata = (__u8 *)uh + sizeof(struct udphdr);
1047 udpdata32 = (__be32 *)udpdata;
1049 switch (encap_type) {
1051 case UDP_ENCAP_ESPINUDP:
1052 /* Check if this is a keepalive packet. If so, eat it. */
1053 if (len == 1 && udpdata[0] == 0xff) {
1055 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
1056 /* ESP Packet without Non-ESP header */
1057 len = sizeof(struct udphdr);
1059 /* Must be an IKE packet.. pass it through */
1062 case UDP_ENCAP_ESPINUDP_NON_IKE:
1063 /* Check if this is a keepalive packet. If so, eat it. */
1064 if (len == 1 && udpdata[0] == 0xff) {
1066 } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
1067 udpdata32[0] == 0 && udpdata32[1] == 0) {
1069 /* ESP Packet with Non-IKE marker */
1070 len = sizeof(struct udphdr) + 2 * sizeof(u32);
1072 /* Must be an IKE packet.. pass it through */
1077 /* At this point we are sure that this is an ESPinUDP packet,
1078 * so we need to remove 'len' bytes from the packet (the UDP
1079 * header and optional ESP marker bytes) and then modify the
1080 * protocol to ESP, and then call into the transform receiver.
1082 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1085 /* Now we can update and verify the packet length... */
1087 iphlen = iph->ihl << 2;
1088 iph->tot_len = htons(ntohs(iph->tot_len) - len);
1089 if (skb->len < iphlen + len) {
1090 /* packet is too small!?! */
1094 /* pull the data buffer up to the ESP header and set the
1095 * transport header to point to ESP. Keep UDP on the stack
1098 __skb_pull(skb, len);
1099 skb_reset_transport_header(skb);
1101 /* modify the protocol (it's ESP!) */
1102 iph->protocol = IPPROTO_ESP;
1104 /* and let the caller know to send this into the ESP processor... */
1112 * >0: "udp encap" protocol resubmission
1114 * Note that in the success and error cases, the skb is assumed to
1115 * have either been requeued or freed.
1117 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1119 struct udp_sock *up = udp_sk(sk);
1123 * Charge it to the socket, dropping if the queue is full.
1125 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1129 if (up->encap_type) {
1131 * This is an encapsulation socket, so let's see if this is
1132 * an encapsulated packet.
1133 * If it's a keepalive packet, then just eat it.
1134 * If it's an encapsulateed packet, then pass it to the
1135 * IPsec xfrm input and return the response
1136 * appropriately. Otherwise, just fall through and
1137 * pass this up the UDP socket.
1141 ret = udp_encap_rcv(sk, skb);
1143 /* Eat the packet .. */
1148 /* process the ESP packet */
1149 ret = xfrm4_rcv_encap(skb, up->encap_type);
1150 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1153 /* FALLTHROUGH -- it's a UDP Packet */
1157 * UDP-Lite specific tests, ignored on UDP sockets
1159 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1162 * MIB statistics other than incrementing the error count are
1163 * disabled for the following two types of errors: these depend
1164 * on the application settings, not on the functioning of the
1165 * protocol stack as such.
1167 * RFC 3828 here recommends (sec 3.3): "There should also be a
1168 * way ... to ... at least let the receiving application block
1169 * delivery of packets with coverage values less than a value
1170 * provided by the application."
1172 if (up->pcrlen == 0) { /* full coverage was set */
1173 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1174 "%d while full coverage %d requested\n",
1175 UDP_SKB_CB(skb)->cscov, skb->len);
1178 /* The next case involves violating the min. coverage requested
1179 * by the receiver. This is subtle: if receiver wants x and x is
1180 * greater than the buffersize/MTU then receiver will complain
1181 * that it wants x while sender emits packets of smaller size y.
1182 * Therefore the above ...()->partial_cov statement is essential.
1184 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1185 LIMIT_NETDEBUG(KERN_WARNING
1186 "UDPLITE: coverage %d too small, need min %d\n",
1187 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1192 if (sk->sk_filter) {
1193 if (udp_lib_checksum_complete(skb))
1197 if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1198 /* Note that an ENOMEM error is charged twice */
1200 UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1204 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1208 UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1214 * Multicasts and broadcasts go to each listener.
1216 * Note: called only from the BH handler context,
1217 * so we don't need to lock the hashes.
1219 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1221 __be32 saddr, __be32 daddr,
1222 struct hlist_head udptable[])
1224 struct sock *sk, *skw, *sknext;
1226 int hport = ntohs(uh->dest);
1227 unsigned int hash = ipv4_hash_port_and_addr(hport, daddr);
1228 unsigned int hashwild = udp_hash_port(hport);
1230 dif = skb->dev->ifindex;
1232 read_lock(&udp_hash_lock);
1234 sk = sk_head(&udptable[hash & (UDP_HTABLE_SIZE - 1)]);
1235 skw = sk_head(&udptable[hashwild & (UDP_HTABLE_SIZE - 1)]);
1237 sk = udp_v4_mcast_next(sk, hash, hport, daddr, uh->source, saddr, dif);
1240 sk = udp_v4_mcast_next(skw, hash, hport, daddr, uh->source,
1245 struct sk_buff *skb1 = skb;
1246 sknext = udp_v4_mcast_next(sk_next(sk), hash, hport,
1247 daddr, uh->source, saddr, dif);
1248 if (!sknext && hash != hashwild) {
1250 sknext = udp_v4_mcast_next(skw, hash, hport,
1251 daddr, uh->source, saddr, dif);
1254 skb1 = skb_clone(skb, GFP_ATOMIC);
1257 int ret = udp_queue_rcv_skb(sk, skb1);
1260 * we should probably re-process
1261 * instead of dropping packets here.
1269 read_unlock(&udp_hash_lock);
1273 /* Initialize UDP checksum. If exited with zero value (success),
1274 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1275 * Otherwise, csum completion requires chacksumming packet body,
1276 * including udp header and folding it to skb->csum.
1278 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1281 const struct iphdr *iph;
1284 UDP_SKB_CB(skb)->partial_cov = 0;
1285 UDP_SKB_CB(skb)->cscov = skb->len;
1287 if (proto == IPPROTO_UDPLITE) {
1288 err = udplite_checksum_init(skb, uh);
1294 if (uh->check == 0) {
1295 skb->ip_summed = CHECKSUM_UNNECESSARY;
1296 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1297 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1299 skb->ip_summed = CHECKSUM_UNNECESSARY;
1301 if (!skb_csum_unnecessary(skb))
1302 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1303 skb->len, proto, 0);
1304 /* Probably, we should checksum udp header (it should be in cache
1305 * in any case) and data in tiny packets (< rx copybreak).
1312 * All we need to do is get the socket, and then do a checksum.
1315 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1319 struct udphdr *uh = udp_hdr(skb);
1320 unsigned short ulen;
1321 struct rtable *rt = (struct rtable*)skb->dst;
1322 __be32 saddr = ip_hdr(skb)->saddr;
1323 __be32 daddr = ip_hdr(skb)->daddr;
1326 * Validate the packet.
1328 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1329 goto drop; /* No space for header. */
1331 ulen = ntohs(uh->len);
1332 if (ulen > skb->len)
1335 if (proto == IPPROTO_UDP) {
1336 /* UDP validates ulen. */
1337 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1342 if (udp4_csum_init(skb, uh, proto))
1345 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1346 return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1348 sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1349 skb->dev->ifindex, udptable);
1352 int ret = udp_queue_rcv_skb(sk, skb);
1355 /* a return value > 0 means to resubmit the input, but
1356 * it wants the return to be -protocol, or 0
1363 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1367 /* No socket. Drop packet silently, if checksum is wrong */
1368 if (udp_lib_checksum_complete(skb))
1371 UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1372 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1375 * Hmm. We got an UDP packet to a port to which we
1376 * don't wanna listen. Ignore it.
1382 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1383 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1394 * RFC1122: OK. Discards the bad packet silently (as far as
1395 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1397 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1398 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1405 UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1410 int udp_rcv(struct sk_buff *skb)
1412 return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1415 int udp_destroy_sock(struct sock *sk)
1418 udp_flush_pending_frames(sk);
1424 * Socket option code for UDP
1426 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1427 char __user *optval, int optlen,
1428 int (*push_pending_frames)(struct sock *))
1430 struct udp_sock *up = udp_sk(sk);
1434 if (optlen<sizeof(int))
1437 if (get_user(val, (int __user *)optval))
1447 (*push_pending_frames)(sk);
1455 case UDP_ENCAP_ESPINUDP:
1456 case UDP_ENCAP_ESPINUDP_NON_IKE:
1457 up->encap_type = val;
1466 * UDP-Lite's partial checksum coverage (RFC 3828).
1468 /* The sender sets actual checksum coverage length via this option.
1469 * The case coverage > packet length is handled by send module. */
1470 case UDPLITE_SEND_CSCOV:
1471 if (!up->pcflag) /* Disable the option on UDP sockets */
1472 return -ENOPROTOOPT;
1473 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1476 up->pcflag |= UDPLITE_SEND_CC;
1479 /* The receiver specifies a minimum checksum coverage value. To make
1480 * sense, this should be set to at least 8 (as done below). If zero is
1481 * used, this again means full checksum coverage. */
1482 case UDPLITE_RECV_CSCOV:
1483 if (!up->pcflag) /* Disable the option on UDP sockets */
1484 return -ENOPROTOOPT;
1485 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1488 up->pcflag |= UDPLITE_RECV_CC;
1499 int udp_setsockopt(struct sock *sk, int level, int optname,
1500 char __user *optval, int optlen)
1502 if (level == SOL_UDP || level == SOL_UDPLITE)
1503 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1504 udp_push_pending_frames);
1505 return ip_setsockopt(sk, level, optname, optval, optlen);
1508 #ifdef CONFIG_COMPAT
1509 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1510 char __user *optval, int optlen)
1512 if (level == SOL_UDP || level == SOL_UDPLITE)
1513 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1514 udp_push_pending_frames);
1515 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1519 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1520 char __user *optval, int __user *optlen)
1522 struct udp_sock *up = udp_sk(sk);
1525 if (get_user(len,optlen))
1528 len = min_t(unsigned int, len, sizeof(int));
1539 val = up->encap_type;
1542 /* The following two cannot be changed on UDP sockets, the return is
1543 * always 0 (which corresponds to the full checksum coverage of UDP). */
1544 case UDPLITE_SEND_CSCOV:
1548 case UDPLITE_RECV_CSCOV:
1553 return -ENOPROTOOPT;
1556 if (put_user(len, optlen))
1558 if (copy_to_user(optval, &val,len))
1563 int udp_getsockopt(struct sock *sk, int level, int optname,
1564 char __user *optval, int __user *optlen)
1566 if (level == SOL_UDP || level == SOL_UDPLITE)
1567 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1568 return ip_getsockopt(sk, level, optname, optval, optlen);
1571 #ifdef CONFIG_COMPAT
1572 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1573 char __user *optval, int __user *optlen)
1575 if (level == SOL_UDP || level == SOL_UDPLITE)
1576 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1577 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1581 * udp_poll - wait for a UDP event.
1582 * @file - file struct
1584 * @wait - poll table
1586 * This is same as datagram poll, except for the special case of
1587 * blocking sockets. If application is using a blocking fd
1588 * and a packet with checksum error is in the queue;
1589 * then it could get return from select indicating data available
1590 * but then block when reading it. Add special case code
1591 * to work around these arguably broken applications.
1593 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1595 unsigned int mask = datagram_poll(file, sock, wait);
1596 struct sock *sk = sock->sk;
1597 int is_lite = IS_UDPLITE(sk);
1599 /* Check for false positives due to checksum errors */
1600 if ( (mask & POLLRDNORM) &&
1601 !(file->f_flags & O_NONBLOCK) &&
1602 !(sk->sk_shutdown & RCV_SHUTDOWN)){
1603 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1604 struct sk_buff *skb;
1606 spin_lock_bh(&rcvq->lock);
1607 while ((skb = skb_peek(rcvq)) != NULL &&
1608 udp_lib_checksum_complete(skb)) {
1609 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1610 __skb_unlink(skb, rcvq);
1613 spin_unlock_bh(&rcvq->lock);
1615 /* nothing to see, move along */
1617 mask &= ~(POLLIN | POLLRDNORM);
1624 struct proto udp_prot = {
1626 .owner = THIS_MODULE,
1627 .close = udp_lib_close,
1628 .connect = ip4_datagram_connect,
1629 .disconnect = udp_disconnect,
1631 .destroy = udp_destroy_sock,
1632 .setsockopt = udp_setsockopt,
1633 .getsockopt = udp_getsockopt,
1634 .sendmsg = udp_sendmsg,
1635 .recvmsg = udp_recvmsg,
1636 .sendpage = udp_sendpage,
1637 .backlog_rcv = udp_queue_rcv_skb,
1638 .hash = udp_lib_hash,
1639 .unhash = udp_lib_unhash,
1640 .get_port = udp_v4_get_port,
1641 .obj_size = sizeof(struct udp_sock),
1642 #ifdef CONFIG_COMPAT
1643 .compat_setsockopt = compat_udp_setsockopt,
1644 .compat_getsockopt = compat_udp_getsockopt,
1648 /* ------------------------------------------------------------------------ */
1649 #ifdef CONFIG_PROC_FS
1651 static struct sock *udp_get_first(struct seq_file *seq)
1654 struct udp_iter_state *state = seq->private;
1656 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1657 struct hlist_node *node;
1658 sk_for_each(sk, node, state->hashtable + state->bucket) {
1659 if (sk->sk_family == state->family)
1668 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1670 struct udp_iter_state *state = seq->private;
1676 } while (sk && sk->sk_family != state->family);
1678 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1679 sk = sk_head(state->hashtable + state->bucket);
1685 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1687 struct sock *sk = udp_get_first(seq);
1690 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1692 return pos ? NULL : sk;
1695 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1697 read_lock(&udp_hash_lock);
1698 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1701 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1706 sk = udp_get_idx(seq, 0);
1708 sk = udp_get_next(seq, v);
1714 static void udp_seq_stop(struct seq_file *seq, void *v)
1716 read_unlock(&udp_hash_lock);
1719 static int udp_seq_open(struct inode *inode, struct file *file)
1721 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1722 struct seq_file *seq;
1724 struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1728 s->family = afinfo->family;
1729 s->hashtable = afinfo->hashtable;
1730 s->seq_ops.start = udp_seq_start;
1731 s->seq_ops.next = udp_seq_next;
1732 s->seq_ops.show = afinfo->seq_show;
1733 s->seq_ops.stop = udp_seq_stop;
1735 rc = seq_open(file, &s->seq_ops);
1739 seq = file->private_data;
1748 /* ------------------------------------------------------------------------ */
1749 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1751 struct proc_dir_entry *p;
1756 afinfo->seq_fops->owner = afinfo->owner;
1757 afinfo->seq_fops->open = udp_seq_open;
1758 afinfo->seq_fops->read = seq_read;
1759 afinfo->seq_fops->llseek = seq_lseek;
1760 afinfo->seq_fops->release = seq_release_private;
1762 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1770 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1774 proc_net_remove(afinfo->name);
1775 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1778 /* ------------------------------------------------------------------------ */
1779 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1781 struct inet_sock *inet = inet_sk(sp);
1782 __be32 dest = inet->daddr;
1783 __be32 src = inet->rcv_saddr;
1784 __u16 destp = ntohs(inet->dport);
1785 __u16 srcp = ntohs(inet->sport);
1787 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1788 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1789 bucket, src, srcp, dest, destp, sp->sk_state,
1790 atomic_read(&sp->sk_wmem_alloc),
1791 atomic_read(&sp->sk_rmem_alloc),
1792 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1793 atomic_read(&sp->sk_refcnt), sp);
1796 int udp4_seq_show(struct seq_file *seq, void *v)
1798 if (v == SEQ_START_TOKEN)
1799 seq_printf(seq, "%-127s\n",
1800 " sl local_address rem_address st tx_queue "
1801 "rx_queue tr tm->when retrnsmt uid timeout "
1805 struct udp_iter_state *state = seq->private;
1807 udp4_format_sock(v, tmpbuf, state->bucket);
1808 seq_printf(seq, "%-127s\n", tmpbuf);
1813 /* ------------------------------------------------------------------------ */
1814 static struct file_operations udp4_seq_fops;
1815 static struct udp_seq_afinfo udp4_seq_afinfo = {
1816 .owner = THIS_MODULE,
1819 .hashtable = udp_hash,
1820 .seq_show = udp4_seq_show,
1821 .seq_fops = &udp4_seq_fops,
1824 int __init udp4_proc_init(void)
1826 return udp_proc_register(&udp4_seq_afinfo);
1829 void udp4_proc_exit(void)
1831 udp_proc_unregister(&udp4_seq_afinfo);
1833 #endif /* CONFIG_PROC_FS */
1835 EXPORT_SYMBOL(udp_disconnect);
1836 EXPORT_SYMBOL(udp_hash);
1837 EXPORT_SYMBOL(udp_hash_lock);
1838 EXPORT_SYMBOL(udp_ioctl);
1839 EXPORT_SYMBOL(udp_get_port);
1840 EXPORT_SYMBOL(udp_prot);
1841 EXPORT_SYMBOL(udp_sendmsg);
1842 EXPORT_SYMBOL(udp_lib_getsockopt);
1843 EXPORT_SYMBOL(udp_lib_setsockopt);
1844 EXPORT_SYMBOL(udp_poll);
1846 #ifdef CONFIG_PROC_FS
1847 EXPORT_SYMBOL(udp_proc_register);
1848 EXPORT_SYMBOL(udp_proc_unregister);