1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct *refill_workqueue;
42 /**************************************************************************
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
54 static int lro = true;
55 module_param(lro, int, 0644);
56 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
67 static unsigned int separate_tx_and_rx_channels = true;
69 /* This is the weight assigned to each of the (per-channel) virtual
72 static int napi_weight = 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval = 1 * HZ;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset = true;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec = 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec = 150;
113 /* This is the first interrupt mode to try out of:
118 static unsigned int interrupt_mode;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus;
128 module_param(rss_cpus, uint, 0444);
129 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel *channel);
137 static void efx_remove_port(struct efx_nic *efx);
138 static void efx_fini_napi(struct efx_nic *efx);
139 static void efx_fini_channels(struct efx_nic *efx);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
164 struct efx_rx_queue *rx_queue;
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
186 efx_fast_push_rx_descriptors(rx_queue);
194 /* Mark channel as finished processing
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
200 static inline void efx_channel_processed(struct efx_channel *channel)
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
205 channel->work_pending = false;
208 falcon_eventq_read_ack(channel);
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
216 static int efx_poll(struct napi_struct *napi, int budget)
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
243 /* Process the eventq of the specified channel immediately on this CPU
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
249 * Since we are touching interrupts the caller should hold the suspend lock
251 void efx_process_channel_now(struct efx_channel *channel)
253 struct efx_nic *efx = channel->efx;
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
261 synchronize_irq(efx->legacy_irq);
262 if (channel->has_interrupt && channel->irq)
263 synchronize_irq(channel->irq);
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
268 /* Poll the channel */
269 efx_process_channel(channel, efx->type->evq_size);
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
279 /* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
284 static int efx_probe_eventq(struct efx_channel *channel)
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
288 return falcon_probe_eventq(channel);
291 /* Prepare channel's event queue */
292 static int efx_init_eventq(struct efx_channel *channel)
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
296 channel->eventq_read_ptr = 0;
298 return falcon_init_eventq(channel);
301 static void efx_fini_eventq(struct efx_channel *channel)
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
305 falcon_fini_eventq(channel);
308 static void efx_remove_eventq(struct efx_channel *channel)
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
312 falcon_remove_eventq(channel);
315 /**************************************************************************
319 *************************************************************************/
321 static int efx_probe_channel(struct efx_channel *channel)
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
329 rc = efx_probe_eventq(channel);
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
345 channel->n_rx_frm_trunc = 0;
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
360 /* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
364 static int efx_init_channels(struct efx_nic *efx)
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
384 rc = efx_init_eventq(channel);
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
416 /* This enables event queue processing and packet transmission.
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
421 static void efx_start_channel(struct efx_channel *channel)
423 struct efx_rx_queue *rx_queue;
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
434 channel->work_pending = false;
435 channel->enabled = true;
438 napi_enable(&channel->napi_str);
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
445 /* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
449 static void efx_stop_channel(struct efx_channel *channel)
451 struct efx_rx_queue *rx_queue;
453 if (!channel->enabled)
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458 channel->enabled = false;
459 napi_disable(&channel->napi_str);
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
468 static void efx_fini_channels(struct efx_nic *efx)
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
491 efx_fini_eventq(channel);
495 static void efx_remove_channel(struct efx_channel *channel)
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
508 channel->used_flags = 0;
511 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
516 /**************************************************************************
520 **************************************************************************/
522 /* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
526 static void efx_link_status_changed(struct efx_nic *efx)
528 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 * that no events are triggered between unregister_netdev() and the
530 * driver unloading. A more general condition is that NETDEV_CHANGE
531 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 if (!netif_running(efx->net_dev))
535 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
536 efx->n_link_state_changes++;
539 netif_carrier_on(efx->net_dev);
541 netif_carrier_off(efx->net_dev);
544 /* Status message for kernel log */
546 struct mii_if_info *gmii = &efx->mii;
548 /* NONE here means direct XAUI from the controller, with no
549 * MDIO-attached device we can query. */
550 if (efx->phy_type != PHY_TYPE_NONE) {
551 adv = gmii_advertised(gmii);
552 lpa = gmii_lpa(gmii);
554 lpa = GM_LPA_10000 | LPA_DUPLEX;
557 EFX_INFO(efx, "link up at %dMbps %s-duplex "
558 "(adv %04x lpa %04x) (MTU %d)%s\n",
559 (efx->link_options & GM_LPA_10000 ? 10000 :
560 (efx->link_options & GM_LPA_1000 ? 1000 :
561 (efx->link_options & GM_LPA_100 ? 100 :
563 (efx->link_options & GM_LPA_DUPLEX ?
567 (efx->promiscuous ? " [PROMISC]" : ""));
569 EFX_INFO(efx, "link down\n");
574 /* This call reinitialises the MAC to pick up new PHY settings. The
575 * caller must hold the mac_lock */
576 static void __efx_reconfigure_port(struct efx_nic *efx)
578 WARN_ON(!mutex_is_locked(&efx->mac_lock));
580 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
581 raw_smp_processor_id());
583 falcon_reconfigure_xmac(efx);
585 /* Inform kernel of loss/gain of carrier */
586 efx_link_status_changed(efx);
589 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
591 void efx_reconfigure_port(struct efx_nic *efx)
593 EFX_ASSERT_RESET_SERIALISED(efx);
595 mutex_lock(&efx->mac_lock);
596 __efx_reconfigure_port(efx);
597 mutex_unlock(&efx->mac_lock);
600 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
601 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
602 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
603 static void efx_reconfigure_work(struct work_struct *data)
605 struct efx_nic *efx = container_of(data, struct efx_nic,
608 mutex_lock(&efx->mac_lock);
609 if (efx->port_enabled)
610 __efx_reconfigure_port(efx);
611 mutex_unlock(&efx->mac_lock);
614 static int efx_probe_port(struct efx_nic *efx)
618 EFX_LOG(efx, "create port\n");
620 /* Connect up MAC/PHY operations table and read MAC address */
621 rc = falcon_probe_port(efx);
625 /* Sanity check MAC address */
626 if (is_valid_ether_addr(efx->mac_address)) {
627 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
629 DECLARE_MAC_BUF(mac);
631 EFX_ERR(efx, "invalid MAC address %s\n",
632 print_mac(mac, efx->mac_address));
633 if (!allow_bad_hwaddr) {
637 random_ether_addr(efx->net_dev->dev_addr);
638 EFX_INFO(efx, "using locally-generated MAC %s\n",
639 print_mac(mac, efx->net_dev->dev_addr));
645 efx_remove_port(efx);
649 static int efx_init_port(struct efx_nic *efx)
653 EFX_LOG(efx, "init port\n");
655 /* Initialise the MAC and PHY */
656 rc = falcon_init_xmac(efx);
660 efx->port_initialized = true;
662 /* Reconfigure port to program MAC registers */
663 falcon_reconfigure_xmac(efx);
668 /* Allow efx_reconfigure_port() to be scheduled, and close the window
669 * between efx_stop_port and efx_flush_all whereby a previously scheduled
670 * efx_reconfigure_port() may have been cancelled */
671 static void efx_start_port(struct efx_nic *efx)
673 EFX_LOG(efx, "start port\n");
674 BUG_ON(efx->port_enabled);
676 mutex_lock(&efx->mac_lock);
677 efx->port_enabled = true;
678 __efx_reconfigure_port(efx);
679 mutex_unlock(&efx->mac_lock);
682 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
683 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
684 * efx_reconfigure_work can still be scheduled via NAPI processing
685 * until efx_flush_all() is called */
686 static void efx_stop_port(struct efx_nic *efx)
688 EFX_LOG(efx, "stop port\n");
690 mutex_lock(&efx->mac_lock);
691 efx->port_enabled = false;
692 mutex_unlock(&efx->mac_lock);
694 /* Serialise against efx_set_multicast_list() */
695 if (efx_dev_registered(efx)) {
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
701 static void efx_fini_port(struct efx_nic *efx)
703 EFX_LOG(efx, "shut down port\n");
705 if (!efx->port_initialized)
708 falcon_fini_xmac(efx);
709 efx->port_initialized = false;
711 efx->link_up = false;
712 efx_link_status_changed(efx);
715 static void efx_remove_port(struct efx_nic *efx)
717 EFX_LOG(efx, "destroying port\n");
719 falcon_remove_port(efx);
722 /**************************************************************************
726 **************************************************************************/
728 /* This configures the PCI device to enable I/O and DMA. */
729 static int efx_init_io(struct efx_nic *efx)
731 struct pci_dev *pci_dev = efx->pci_dev;
732 dma_addr_t dma_mask = efx->type->max_dma_mask;
735 EFX_LOG(efx, "initialising I/O\n");
737 rc = pci_enable_device(pci_dev);
739 EFX_ERR(efx, "failed to enable PCI device\n");
743 pci_set_master(pci_dev);
745 /* Set the PCI DMA mask. Try all possibilities from our
746 * genuine mask down to 32 bits, because some architectures
747 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
748 * masks event though they reject 46 bit masks.
750 while (dma_mask > 0x7fffffffUL) {
751 if (pci_dma_supported(pci_dev, dma_mask) &&
752 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
757 EFX_ERR(efx, "could not find a suitable DMA mask\n");
760 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
761 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
763 /* pci_set_consistent_dma_mask() is not *allowed* to
764 * fail with a mask that pci_set_dma_mask() accepted,
765 * but just in case...
767 EFX_ERR(efx, "failed to set consistent DMA mask\n");
771 efx->membase_phys = pci_resource_start(efx->pci_dev,
773 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
775 EFX_ERR(efx, "request for memory BAR failed\n");
779 efx->membase = ioremap_nocache(efx->membase_phys,
780 efx->type->mem_map_size);
782 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
784 (unsigned long long)efx->membase_phys,
785 efx->type->mem_map_size);
789 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
790 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
791 efx->type->mem_map_size, efx->membase);
796 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
798 efx->membase_phys = 0;
800 pci_disable_device(efx->pci_dev);
805 static void efx_fini_io(struct efx_nic *efx)
807 EFX_LOG(efx, "shutting down I/O\n");
810 iounmap(efx->membase);
814 if (efx->membase_phys) {
815 pci_release_region(efx->pci_dev, efx->type->mem_bar);
816 efx->membase_phys = 0;
819 pci_disable_device(efx->pci_dev);
822 /* Get number of RX queues wanted. Return number of online CPU
823 * packages in the expectation that an IRQ balancer will spread
824 * interrupts across them. */
825 static int efx_wanted_rx_queues(void)
831 cpus_clear(core_mask);
833 for_each_online_cpu(cpu) {
834 if (!cpu_isset(cpu, core_mask)) {
836 cpus_or(core_mask, core_mask,
837 topology_core_siblings(cpu));
844 /* Probe the number and type of interrupts we are able to obtain, and
845 * the resulting numbers of channels and RX queues.
847 static void efx_probe_interrupts(struct efx_nic *efx)
850 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
853 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
854 struct msix_entry xentries[EFX_MAX_CHANNELS];
857 /* We want one RX queue and interrupt per CPU package
858 * (or as specified by the rss_cpus module parameter).
859 * We will need one channel per interrupt.
861 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
862 efx->rss_queues = min(wanted_ints, max_channels);
864 for (i = 0; i < efx->rss_queues; i++)
865 xentries[i].entry = i;
866 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
868 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
869 efx->rss_queues = rc;
870 rc = pci_enable_msix(efx->pci_dev, xentries,
875 for (i = 0; i < efx->rss_queues; i++) {
876 efx->channel[i].has_interrupt = true;
877 efx->channel[i].irq = xentries[i].vector;
880 /* Fall back to single channel MSI */
881 efx->interrupt_mode = EFX_INT_MODE_MSI;
882 EFX_ERR(efx, "could not enable MSI-X\n");
886 /* Try single interrupt MSI */
887 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
889 rc = pci_enable_msi(efx->pci_dev);
891 efx->channel[0].irq = efx->pci_dev->irq;
892 efx->channel[0].has_interrupt = true;
894 EFX_ERR(efx, "could not enable MSI\n");
895 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
899 /* Assume legacy interrupts */
900 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
902 /* Every channel is interruptible */
903 for (i = 0; i < EFX_MAX_CHANNELS; i++)
904 efx->channel[i].has_interrupt = true;
905 efx->legacy_irq = efx->pci_dev->irq;
909 static void efx_remove_interrupts(struct efx_nic *efx)
911 struct efx_channel *channel;
913 /* Remove MSI/MSI-X interrupts */
914 efx_for_each_channel_with_interrupt(channel, efx)
916 pci_disable_msi(efx->pci_dev);
917 pci_disable_msix(efx->pci_dev);
919 /* Remove legacy interrupt */
923 /* Select number of used resources
924 * Should be called after probe_interrupts()
926 static void efx_select_used(struct efx_nic *efx)
928 struct efx_tx_queue *tx_queue;
929 struct efx_rx_queue *rx_queue;
932 efx_for_each_tx_queue(tx_queue, efx) {
933 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
934 tx_queue->channel = &efx->channel[1];
936 tx_queue->channel = &efx->channel[0];
937 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
940 /* RX queues. Each has a dedicated channel. */
941 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
942 rx_queue = &efx->rx_queue[i];
944 if (i < efx->rss_queues) {
945 rx_queue->used = true;
946 /* If we allow multiple RX queues per channel
947 * we need to decide that here
949 rx_queue->channel = &efx->channel[rx_queue->queue];
950 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
956 static int efx_probe_nic(struct efx_nic *efx)
960 EFX_LOG(efx, "creating NIC\n");
962 /* Carry out hardware-type specific initialisation */
963 rc = falcon_probe_nic(efx);
967 /* Determine the number of channels and RX queues by trying to hook
968 * in MSI-X interrupts. */
969 efx_probe_interrupts(efx);
971 /* Determine number of RX queues and TX queues */
972 efx_select_used(efx);
974 /* Initialise the interrupt moderation settings */
975 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
980 static void efx_remove_nic(struct efx_nic *efx)
982 EFX_LOG(efx, "destroying NIC\n");
984 efx_remove_interrupts(efx);
985 falcon_remove_nic(efx);
988 /**************************************************************************
990 * NIC startup/shutdown
992 *************************************************************************/
994 static int efx_probe_all(struct efx_nic *efx)
996 struct efx_channel *channel;
1000 rc = efx_probe_nic(efx);
1002 EFX_ERR(efx, "failed to create NIC\n");
1007 rc = efx_probe_port(efx);
1009 EFX_ERR(efx, "failed to create port\n");
1013 /* Create channels */
1014 efx_for_each_channel(channel, efx) {
1015 rc = efx_probe_channel(channel);
1017 EFX_ERR(efx, "failed to create channel %d\n",
1026 efx_for_each_channel(channel, efx)
1027 efx_remove_channel(channel);
1028 efx_remove_port(efx);
1030 efx_remove_nic(efx);
1035 /* Called after previous invocation(s) of efx_stop_all, restarts the
1036 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1037 * and ensures that the port is scheduled to be reconfigured.
1038 * This function is safe to call multiple times when the NIC is in any
1040 static void efx_start_all(struct efx_nic *efx)
1042 struct efx_channel *channel;
1044 EFX_ASSERT_RESET_SERIALISED(efx);
1046 /* Check that it is appropriate to restart the interface. All
1047 * of these flags are safe to read under just the rtnl lock */
1048 if (efx->port_enabled)
1050 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1052 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1055 /* Mark the port as enabled so port reconfigurations can start, then
1056 * restart the transmit interface early so the watchdog timer stops */
1057 efx_start_port(efx);
1058 efx_wake_queue(efx);
1060 efx_for_each_channel(channel, efx)
1061 efx_start_channel(channel);
1063 falcon_enable_interrupts(efx);
1065 /* Start hardware monitor if we're in RUNNING */
1066 if (efx->state == STATE_RUNNING)
1067 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1068 efx_monitor_interval);
1071 /* Flush all delayed work. Should only be called when no more delayed work
1072 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1073 * since we're holding the rtnl_lock at this point. */
1074 static void efx_flush_all(struct efx_nic *efx)
1076 struct efx_rx_queue *rx_queue;
1078 /* Make sure the hardware monitor is stopped */
1079 cancel_delayed_work_sync(&efx->monitor_work);
1081 /* Ensure that all RX slow refills are complete. */
1082 efx_for_each_rx_queue(rx_queue, efx)
1083 cancel_delayed_work_sync(&rx_queue->work);
1085 /* Stop scheduled port reconfigurations */
1086 cancel_work_sync(&efx->reconfigure_work);
1090 /* Quiesce hardware and software without bringing the link down.
1091 * Safe to call multiple times, when the nic and interface is in any
1092 * state. The caller is guaranteed to subsequently be in a position
1093 * to modify any hardware and software state they see fit without
1095 static void efx_stop_all(struct efx_nic *efx)
1097 struct efx_channel *channel;
1099 EFX_ASSERT_RESET_SERIALISED(efx);
1101 /* port_enabled can be read safely under the rtnl lock */
1102 if (!efx->port_enabled)
1105 /* Disable interrupts and wait for ISR to complete */
1106 falcon_disable_interrupts(efx);
1107 if (efx->legacy_irq)
1108 synchronize_irq(efx->legacy_irq);
1109 efx_for_each_channel_with_interrupt(channel, efx) {
1111 synchronize_irq(channel->irq);
1114 /* Stop all NAPI processing and synchronous rx refills */
1115 efx_for_each_channel(channel, efx)
1116 efx_stop_channel(channel);
1118 /* Stop all asynchronous port reconfigurations. Since all
1119 * event processing has already been stopped, there is no
1120 * window to loose phy events */
1123 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1126 /* Isolate the MAC from the TX and RX engines, so that queue
1127 * flushes will complete in a timely fashion. */
1128 falcon_deconfigure_mac_wrapper(efx);
1129 falcon_drain_tx_fifo(efx);
1131 /* Stop the kernel transmit interface late, so the watchdog
1132 * timer isn't ticking over the flush */
1133 efx_stop_queue(efx);
1134 if (efx_dev_registered(efx)) {
1135 netif_tx_lock_bh(efx->net_dev);
1136 netif_tx_unlock_bh(efx->net_dev);
1140 static void efx_remove_all(struct efx_nic *efx)
1142 struct efx_channel *channel;
1144 efx_for_each_channel(channel, efx)
1145 efx_remove_channel(channel);
1146 efx_remove_port(efx);
1147 efx_remove_nic(efx);
1150 /* A convinience function to safely flush all the queues */
1151 int efx_flush_queues(struct efx_nic *efx)
1155 EFX_ASSERT_RESET_SERIALISED(efx);
1159 efx_fini_channels(efx);
1160 rc = efx_init_channels(efx);
1162 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1171 /**************************************************************************
1173 * Interrupt moderation
1175 **************************************************************************/
1177 /* Set interrupt moderation parameters */
1178 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1180 struct efx_tx_queue *tx_queue;
1181 struct efx_rx_queue *rx_queue;
1183 EFX_ASSERT_RESET_SERIALISED(efx);
1185 efx_for_each_tx_queue(tx_queue, efx)
1186 tx_queue->channel->irq_moderation = tx_usecs;
1188 efx_for_each_rx_queue(rx_queue, efx)
1189 rx_queue->channel->irq_moderation = rx_usecs;
1192 /**************************************************************************
1196 **************************************************************************/
1198 /* Run periodically off the general workqueue. Serialised against
1199 * efx_reconfigure_port via the mac_lock */
1200 static void efx_monitor(struct work_struct *data)
1202 struct efx_nic *efx = container_of(data, struct efx_nic,
1206 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1207 raw_smp_processor_id());
1210 /* If the mac_lock is already held then it is likely a port
1211 * reconfiguration is already in place, which will likely do
1212 * most of the work of check_hw() anyway. */
1213 if (!mutex_trylock(&efx->mac_lock)) {
1214 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1215 efx_monitor_interval);
1219 if (efx->port_enabled)
1220 rc = falcon_check_xmac(efx);
1221 mutex_unlock(&efx->mac_lock);
1224 if (monitor_reset) {
1225 EFX_ERR(efx, "hardware monitor detected a fault: "
1226 "triggering reset\n");
1227 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1229 EFX_ERR(efx, "hardware monitor detected a fault, "
1230 "skipping reset\n");
1234 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1235 efx_monitor_interval);
1238 /**************************************************************************
1242 *************************************************************************/
1245 * Context: process, rtnl_lock() held.
1247 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1249 struct efx_nic *efx = netdev_priv(net_dev);
1251 EFX_ASSERT_RESET_SERIALISED(efx);
1253 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1256 /**************************************************************************
1260 **************************************************************************/
1262 static int efx_init_napi(struct efx_nic *efx)
1264 struct efx_channel *channel;
1267 efx_for_each_channel(channel, efx) {
1268 channel->napi_dev = efx->net_dev;
1269 rc = efx_lro_init(&channel->lro_mgr, efx);
1279 static void efx_fini_napi(struct efx_nic *efx)
1281 struct efx_channel *channel;
1283 efx_for_each_channel(channel, efx) {
1284 efx_lro_fini(&channel->lro_mgr);
1285 channel->napi_dev = NULL;
1289 /**************************************************************************
1291 * Kernel netpoll interface
1293 *************************************************************************/
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1297 /* Although in the common case interrupts will be disabled, this is not
1298 * guaranteed. However, all our work happens inside the NAPI callback,
1299 * so no locking is required.
1301 static void efx_netpoll(struct net_device *net_dev)
1303 struct efx_nic *efx = netdev_priv(net_dev);
1304 struct efx_channel *channel;
1306 efx_for_each_channel_with_interrupt(channel, efx)
1307 efx_schedule_channel(channel);
1312 /**************************************************************************
1314 * Kernel net device interface
1316 *************************************************************************/
1318 /* Context: process, rtnl_lock() held. */
1319 static int efx_net_open(struct net_device *net_dev)
1321 struct efx_nic *efx = netdev_priv(net_dev);
1322 EFX_ASSERT_RESET_SERIALISED(efx);
1324 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1325 raw_smp_processor_id());
1331 /* Context: process, rtnl_lock() held.
1332 * Note that the kernel will ignore our return code; this method
1333 * should really be a void.
1335 static int efx_net_stop(struct net_device *net_dev)
1337 struct efx_nic *efx = netdev_priv(net_dev);
1340 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1341 raw_smp_processor_id());
1343 /* Stop the device and flush all the channels */
1345 efx_fini_channels(efx);
1346 rc = efx_init_channels(efx);
1348 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1353 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1354 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1356 struct efx_nic *efx = netdev_priv(net_dev);
1357 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1358 struct net_device_stats *stats = &net_dev->stats;
1360 /* Update stats if possible, but do not wait if another thread
1361 * is updating them (or resetting the NIC); slightly stale
1362 * stats are acceptable.
1364 if (!spin_trylock(&efx->stats_lock))
1366 if (efx->state == STATE_RUNNING) {
1367 falcon_update_stats_xmac(efx);
1368 falcon_update_nic_stats(efx);
1370 spin_unlock(&efx->stats_lock);
1372 stats->rx_packets = mac_stats->rx_packets;
1373 stats->tx_packets = mac_stats->tx_packets;
1374 stats->rx_bytes = mac_stats->rx_bytes;
1375 stats->tx_bytes = mac_stats->tx_bytes;
1376 stats->multicast = mac_stats->rx_multicast;
1377 stats->collisions = mac_stats->tx_collision;
1378 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1379 mac_stats->rx_length_error);
1380 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1381 stats->rx_crc_errors = mac_stats->rx_bad;
1382 stats->rx_frame_errors = mac_stats->rx_align_error;
1383 stats->rx_fifo_errors = mac_stats->rx_overflow;
1384 stats->rx_missed_errors = mac_stats->rx_missed;
1385 stats->tx_window_errors = mac_stats->tx_late_collision;
1387 stats->rx_errors = (stats->rx_length_errors +
1388 stats->rx_over_errors +
1389 stats->rx_crc_errors +
1390 stats->rx_frame_errors +
1391 stats->rx_fifo_errors +
1392 stats->rx_missed_errors +
1393 mac_stats->rx_symbol_error);
1394 stats->tx_errors = (stats->tx_window_errors +
1400 /* Context: netif_tx_lock held, BHs disabled. */
1401 static void efx_watchdog(struct net_device *net_dev)
1403 struct efx_nic *efx = netdev_priv(net_dev);
1405 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1406 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1407 monitor_reset ? "resetting channels" : "skipping reset");
1410 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1414 /* Context: process, rtnl_lock() held. */
1415 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1417 struct efx_nic *efx = netdev_priv(net_dev);
1420 EFX_ASSERT_RESET_SERIALISED(efx);
1422 if (new_mtu > EFX_MAX_MTU)
1427 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1429 efx_fini_channels(efx);
1430 net_dev->mtu = new_mtu;
1431 rc = efx_init_channels(efx);
1439 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1443 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1445 struct efx_nic *efx = netdev_priv(net_dev);
1446 struct sockaddr *addr = data;
1447 char *new_addr = addr->sa_data;
1449 EFX_ASSERT_RESET_SERIALISED(efx);
1451 if (!is_valid_ether_addr(new_addr)) {
1452 DECLARE_MAC_BUF(mac);
1453 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1454 print_mac(mac, new_addr));
1458 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1460 /* Reconfigure the MAC */
1461 efx_reconfigure_port(efx);
1466 /* Context: netif_tx_lock held, BHs disabled. */
1467 static void efx_set_multicast_list(struct net_device *net_dev)
1469 struct efx_nic *efx = netdev_priv(net_dev);
1470 struct dev_mc_list *mc_list = net_dev->mc_list;
1471 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1477 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1478 promiscuous = !!(net_dev->flags & IFF_PROMISC);
1479 if (efx->promiscuous != promiscuous) {
1480 efx->promiscuous = promiscuous;
1481 /* Close the window between efx_stop_port() and efx_flush_all()
1482 * by only queuing work when the port is enabled. */
1483 if (efx->port_enabled)
1484 queue_work(efx->workqueue, &efx->reconfigure_work);
1487 /* Build multicast hash table */
1488 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1489 memset(mc_hash, 0xff, sizeof(*mc_hash));
1491 memset(mc_hash, 0x00, sizeof(*mc_hash));
1492 for (i = 0; i < net_dev->mc_count; i++) {
1493 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1494 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1495 set_bit_le(bit, mc_hash->byte);
1496 mc_list = mc_list->next;
1500 /* Create and activate new global multicast hash table */
1501 falcon_set_multicast_hash(efx);
1504 static int efx_netdev_event(struct notifier_block *this,
1505 unsigned long event, void *ptr)
1507 struct net_device *net_dev = ptr;
1509 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1510 struct efx_nic *efx = netdev_priv(net_dev);
1512 strcpy(efx->name, net_dev->name);
1518 static struct notifier_block efx_netdev_notifier = {
1519 .notifier_call = efx_netdev_event,
1522 static int efx_register_netdev(struct efx_nic *efx)
1524 struct net_device *net_dev = efx->net_dev;
1527 net_dev->watchdog_timeo = 5 * HZ;
1528 net_dev->irq = efx->pci_dev->irq;
1529 net_dev->open = efx_net_open;
1530 net_dev->stop = efx_net_stop;
1531 net_dev->get_stats = efx_net_stats;
1532 net_dev->tx_timeout = &efx_watchdog;
1533 net_dev->hard_start_xmit = efx_hard_start_xmit;
1534 net_dev->do_ioctl = efx_ioctl;
1535 net_dev->change_mtu = efx_change_mtu;
1536 net_dev->set_mac_address = efx_set_mac_address;
1537 net_dev->set_multicast_list = efx_set_multicast_list;
1538 #ifdef CONFIG_NET_POLL_CONTROLLER
1539 net_dev->poll_controller = efx_netpoll;
1541 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1542 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1544 /* Always start with carrier off; PHY events will detect the link */
1545 netif_carrier_off(efx->net_dev);
1547 /* Clear MAC statistics */
1548 falcon_update_stats_xmac(efx);
1549 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1551 rc = register_netdev(net_dev);
1553 EFX_ERR(efx, "could not register net dev\n");
1556 strcpy(efx->name, net_dev->name);
1561 static void efx_unregister_netdev(struct efx_nic *efx)
1563 struct efx_tx_queue *tx_queue;
1568 BUG_ON(netdev_priv(efx->net_dev) != efx);
1570 /* Free up any skbs still remaining. This has to happen before
1571 * we try to unregister the netdev as running their destructors
1572 * may be needed to get the device ref. count to 0. */
1573 efx_for_each_tx_queue(tx_queue, efx)
1574 efx_release_tx_buffers(tx_queue);
1576 if (efx_dev_registered(efx)) {
1577 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1578 unregister_netdev(efx->net_dev);
1582 /**************************************************************************
1584 * Device reset and suspend
1586 **************************************************************************/
1588 /* The final hardware and software finalisation before reset. */
1589 static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1593 EFX_ASSERT_RESET_SERIALISED(efx);
1595 rc = falcon_xmac_get_settings(efx, ecmd);
1597 EFX_ERR(efx, "could not back up PHY settings\n");
1601 efx_fini_channels(efx);
1608 /* The first part of software initialisation after a hardware reset
1609 * This function does not handle serialisation with the kernel, it
1610 * assumes the caller has done this */
1611 static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1615 rc = efx_init_channels(efx);
1619 /* Restore MAC and PHY settings. */
1620 rc = falcon_xmac_set_settings(efx, ecmd);
1622 EFX_ERR(efx, "could not restore PHY settings\n");
1629 efx_fini_channels(efx);
1634 /* Reset the NIC as transparently as possible. Do not reset the PHY
1635 * Note that the reset may fail, in which case the card will be left
1636 * in a most-probably-unusable state.
1638 * This function will sleep. You cannot reset from within an atomic
1639 * state; use efx_schedule_reset() instead.
1641 * Grabs the rtnl_lock.
1643 static int efx_reset(struct efx_nic *efx)
1645 struct ethtool_cmd ecmd;
1646 enum reset_type method = efx->reset_pending;
1649 /* Serialise with kernel interfaces */
1652 /* If we're not RUNNING then don't reset. Leave the reset_pending
1653 * flag set so that efx_pci_probe_main will be retried */
1654 if (efx->state != STATE_RUNNING) {
1655 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1659 efx->state = STATE_RESETTING;
1660 EFX_INFO(efx, "resetting (%d)\n", method);
1662 /* The net_dev->get_stats handler is quite slow, and will fail
1663 * if a fetch is pending over reset. Serialise against it. */
1664 spin_lock(&efx->stats_lock);
1665 spin_unlock(&efx->stats_lock);
1668 mutex_lock(&efx->mac_lock);
1670 rc = efx_reset_down(efx, &ecmd);
1674 rc = falcon_reset_hw(efx, method);
1676 EFX_ERR(efx, "failed to reset hardware\n");
1680 /* Allow resets to be rescheduled. */
1681 efx->reset_pending = RESET_TYPE_NONE;
1683 /* Reinitialise bus-mastering, which may have been turned off before
1684 * the reset was scheduled. This is still appropriate, even in the
1685 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1686 * can respond to requests. */
1687 pci_set_master(efx->pci_dev);
1689 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1690 * case so the driver can talk to external SRAM */
1691 rc = falcon_init_nic(efx);
1693 EFX_ERR(efx, "failed to initialise NIC\n");
1697 /* Leave device stopped if necessary */
1698 if (method == RESET_TYPE_DISABLE) {
1699 /* Reinitialise the device anyway so the driver unload sequence
1700 * can talk to the external SRAM */
1701 falcon_init_nic(efx);
1706 rc = efx_reset_up(efx, &ecmd);
1710 mutex_unlock(&efx->mac_lock);
1711 EFX_LOG(efx, "reset complete\n");
1713 efx->state = STATE_RUNNING;
1725 EFX_ERR(efx, "has been disabled\n");
1726 efx->state = STATE_DISABLED;
1728 mutex_unlock(&efx->mac_lock);
1730 efx_unregister_netdev(efx);
1735 /* The worker thread exists so that code that cannot sleep can
1736 * schedule a reset for later.
1738 static void efx_reset_work(struct work_struct *data)
1740 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1745 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1747 enum reset_type method;
1749 if (efx->reset_pending != RESET_TYPE_NONE) {
1750 EFX_INFO(efx, "quenching already scheduled reset\n");
1755 case RESET_TYPE_INVISIBLE:
1756 case RESET_TYPE_ALL:
1757 case RESET_TYPE_WORLD:
1758 case RESET_TYPE_DISABLE:
1761 case RESET_TYPE_RX_RECOVERY:
1762 case RESET_TYPE_RX_DESC_FETCH:
1763 case RESET_TYPE_TX_DESC_FETCH:
1764 case RESET_TYPE_TX_SKIP:
1765 method = RESET_TYPE_INVISIBLE;
1768 method = RESET_TYPE_ALL;
1773 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1775 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1777 efx->reset_pending = method;
1779 queue_work(efx->reset_workqueue, &efx->reset_work);
1782 /**************************************************************************
1784 * List of NICs we support
1786 **************************************************************************/
1788 /* PCI device ID table */
1789 static struct pci_device_id efx_pci_table[] __devinitdata = {
1790 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1791 .driver_data = (unsigned long) &falcon_a_nic_type},
1792 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1793 .driver_data = (unsigned long) &falcon_b_nic_type},
1794 {0} /* end of list */
1797 /**************************************************************************
1799 * Dummy PHY/MAC/Board operations
1801 * Can be used where the MAC does not implement this operation
1802 * Needed so all function pointers are valid and do not have to be tested
1805 **************************************************************************/
1806 int efx_port_dummy_op_int(struct efx_nic *efx)
1810 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1811 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1813 static struct efx_phy_operations efx_dummy_phy_operations = {
1814 .init = efx_port_dummy_op_int,
1815 .reconfigure = efx_port_dummy_op_void,
1816 .check_hw = efx_port_dummy_op_int,
1817 .fini = efx_port_dummy_op_void,
1818 .clear_interrupt = efx_port_dummy_op_void,
1819 .reset_xaui = efx_port_dummy_op_void,
1822 /* Dummy board operations */
1823 static int efx_nic_dummy_op_int(struct efx_nic *nic)
1828 static struct efx_board efx_dummy_board_info = {
1829 .init = efx_nic_dummy_op_int,
1830 .init_leds = efx_port_dummy_op_int,
1831 .set_fault_led = efx_port_dummy_op_blink,
1832 .fini = efx_port_dummy_op_void,
1835 /**************************************************************************
1839 **************************************************************************/
1841 /* This zeroes out and then fills in the invariants in a struct
1842 * efx_nic (including all sub-structures).
1844 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1845 struct pci_dev *pci_dev, struct net_device *net_dev)
1847 struct efx_channel *channel;
1848 struct efx_tx_queue *tx_queue;
1849 struct efx_rx_queue *rx_queue;
1852 /* Initialise common structures */
1853 memset(efx, 0, sizeof(*efx));
1854 spin_lock_init(&efx->biu_lock);
1855 spin_lock_init(&efx->phy_lock);
1856 INIT_WORK(&efx->reset_work, efx_reset_work);
1857 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1858 efx->pci_dev = pci_dev;
1859 efx->state = STATE_INIT;
1860 efx->reset_pending = RESET_TYPE_NONE;
1861 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1862 efx->board_info = efx_dummy_board_info;
1864 efx->net_dev = net_dev;
1865 efx->rx_checksum_enabled = true;
1866 spin_lock_init(&efx->netif_stop_lock);
1867 spin_lock_init(&efx->stats_lock);
1868 mutex_init(&efx->mac_lock);
1869 efx->phy_op = &efx_dummy_phy_operations;
1870 efx->mii.dev = net_dev;
1871 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1872 atomic_set(&efx->netif_stop_count, 1);
1874 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1875 channel = &efx->channel[i];
1877 channel->channel = i;
1878 channel->evqnum = i;
1879 channel->work_pending = false;
1881 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1882 tx_queue = &efx->tx_queue[i];
1883 tx_queue->efx = efx;
1884 tx_queue->queue = i;
1885 tx_queue->buffer = NULL;
1886 tx_queue->channel = &efx->channel[0]; /* for safety */
1887 tx_queue->tso_headers_free = NULL;
1889 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1890 rx_queue = &efx->rx_queue[i];
1891 rx_queue->efx = efx;
1892 rx_queue->queue = i;
1893 rx_queue->channel = &efx->channel[0]; /* for safety */
1894 rx_queue->buffer = NULL;
1895 spin_lock_init(&rx_queue->add_lock);
1896 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1901 /* Sanity-check NIC type */
1902 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1903 (efx->type->txd_ring_mask + 1));
1904 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1905 (efx->type->rxd_ring_mask + 1));
1906 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1907 (efx->type->evq_size - 1));
1908 /* As close as we can get to guaranteeing that we don't overflow */
1909 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1910 (efx->type->txd_ring_mask + 1 +
1911 efx->type->rxd_ring_mask + 1));
1912 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1914 /* Higher numbered interrupt modes are less capable! */
1915 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1918 efx->workqueue = create_singlethread_workqueue("sfc_work");
1919 if (!efx->workqueue) {
1924 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1925 if (!efx->reset_workqueue) {
1933 destroy_workqueue(efx->workqueue);
1934 efx->workqueue = NULL;
1940 static void efx_fini_struct(struct efx_nic *efx)
1942 if (efx->reset_workqueue) {
1943 destroy_workqueue(efx->reset_workqueue);
1944 efx->reset_workqueue = NULL;
1946 if (efx->workqueue) {
1947 destroy_workqueue(efx->workqueue);
1948 efx->workqueue = NULL;
1952 /**************************************************************************
1956 **************************************************************************/
1958 /* Main body of final NIC shutdown code
1959 * This is called only at module unload (or hotplug removal).
1961 static void efx_pci_remove_main(struct efx_nic *efx)
1963 EFX_ASSERT_RESET_SERIALISED(efx);
1965 /* Skip everything if we never obtained a valid membase */
1969 efx_fini_channels(efx);
1972 /* Shutdown the board, then the NIC and board state */
1973 efx->board_info.fini(efx);
1974 falcon_fini_interrupt(efx);
1977 efx_remove_all(efx);
1980 /* Final NIC shutdown
1981 * This is called only at module unload (or hotplug removal).
1983 static void efx_pci_remove(struct pci_dev *pci_dev)
1985 struct efx_nic *efx;
1987 efx = pci_get_drvdata(pci_dev);
1991 /* Mark the NIC as fini, then stop the interface */
1993 efx->state = STATE_FINI;
1994 dev_close(efx->net_dev);
1996 /* Allow any queued efx_resets() to complete */
1999 if (efx->membase == NULL)
2002 efx_unregister_netdev(efx);
2004 /* Wait for any scheduled resets to complete. No more will be
2005 * scheduled from this point because efx_stop_all() has been
2006 * called, we are no longer registered with driverlink, and
2007 * the net_device's have been removed. */
2008 flush_workqueue(efx->reset_workqueue);
2010 efx_pci_remove_main(efx);
2014 EFX_LOG(efx, "shutdown successful\n");
2016 pci_set_drvdata(pci_dev, NULL);
2017 efx_fini_struct(efx);
2018 free_netdev(efx->net_dev);
2021 /* Main body of NIC initialisation
2022 * This is called at module load (or hotplug insertion, theoretically).
2024 static int efx_pci_probe_main(struct efx_nic *efx)
2028 /* Do start-of-day initialisation */
2029 rc = efx_probe_all(efx);
2033 rc = efx_init_napi(efx);
2037 /* Initialise the board */
2038 rc = efx->board_info.init(efx);
2040 EFX_ERR(efx, "failed to initialise board\n");
2044 rc = falcon_init_nic(efx);
2046 EFX_ERR(efx, "failed to initialise NIC\n");
2050 rc = efx_init_port(efx);
2052 EFX_ERR(efx, "failed to initialise port\n");
2056 rc = efx_init_channels(efx);
2060 rc = falcon_init_interrupt(efx);
2067 efx_fini_channels(efx);
2075 efx_remove_all(efx);
2080 /* NIC initialisation
2082 * This is called at module load (or hotplug insertion,
2083 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2084 * sets up and registers the network devices with the kernel and hooks
2085 * the interrupt service routine. It does not prepare the device for
2086 * transmission; this is left to the first time one of the network
2087 * interfaces is brought up (i.e. efx_net_open).
2089 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2090 const struct pci_device_id *entry)
2092 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2093 struct net_device *net_dev;
2094 struct efx_nic *efx;
2097 /* Allocate and initialise a struct net_device and struct efx_nic */
2098 net_dev = alloc_etherdev(sizeof(*efx));
2101 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2102 NETIF_F_HIGHDMA | NETIF_F_TSO);
2104 net_dev->features |= NETIF_F_LRO;
2105 /* Mask for features that also apply to VLAN devices */
2106 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2108 efx = netdev_priv(net_dev);
2109 pci_set_drvdata(pci_dev, efx);
2110 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2114 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2116 /* Set up basic I/O (BAR mappings etc) */
2117 rc = efx_init_io(efx);
2121 /* No serialisation is required with the reset path because
2122 * we're in STATE_INIT. */
2123 for (i = 0; i < 5; i++) {
2124 rc = efx_pci_probe_main(efx);
2128 /* Serialise against efx_reset(). No more resets will be
2129 * scheduled since efx_stop_all() has been called, and we
2130 * have not and never have been registered with either
2131 * the rtnetlink or driverlink layers. */
2132 flush_workqueue(efx->reset_workqueue);
2134 /* Retry if a recoverably reset event has been scheduled */
2135 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2136 (efx->reset_pending != RESET_TYPE_ALL))
2139 efx->reset_pending = RESET_TYPE_NONE;
2143 EFX_ERR(efx, "Could not reset NIC\n");
2147 /* Switch to the running state before we expose the device to
2148 * the OS. This is to ensure that the initial gathering of
2149 * MAC stats succeeds. */
2151 efx->state = STATE_RUNNING;
2154 rc = efx_register_netdev(efx);
2158 EFX_LOG(efx, "initialisation successful\n");
2163 efx_pci_remove_main(efx);
2168 efx_fini_struct(efx);
2170 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2171 free_netdev(net_dev);
2175 static struct pci_driver efx_pci_driver = {
2176 .name = EFX_DRIVER_NAME,
2177 .id_table = efx_pci_table,
2178 .probe = efx_pci_probe,
2179 .remove = efx_pci_remove,
2182 /**************************************************************************
2184 * Kernel module interface
2186 *************************************************************************/
2188 module_param(interrupt_mode, uint, 0444);
2189 MODULE_PARM_DESC(interrupt_mode,
2190 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2192 static int __init efx_init_module(void)
2196 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2198 rc = register_netdevice_notifier(&efx_netdev_notifier);
2202 refill_workqueue = create_workqueue("sfc_refill");
2203 if (!refill_workqueue) {
2208 rc = pci_register_driver(&efx_pci_driver);
2215 destroy_workqueue(refill_workqueue);
2217 unregister_netdevice_notifier(&efx_netdev_notifier);
2222 static void __exit efx_exit_module(void)
2224 printk(KERN_INFO "Solarflare NET driver unloading\n");
2226 pci_unregister_driver(&efx_pci_driver);
2227 destroy_workqueue(refill_workqueue);
2228 unregister_netdevice_notifier(&efx_netdev_notifier);
2232 module_init(efx_init_module);
2233 module_exit(efx_exit_module);
2235 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2236 "Solarflare Communications");
2237 MODULE_DESCRIPTION("Solarflare Communications network driver");
2238 MODULE_LICENSE("GPL");
2239 MODULE_DEVICE_TABLE(pci, efx_pci_table);