2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
94 int aac_fib_setup(struct aac_dev * dev)
97 struct hw_fib *hw_fib_va;
101 while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109 hw_fib_va = dev->hw_fib_va;
110 hw_fib_pa = dev->hw_fib_pa;
111 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
113 * Initialise the fibs
115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
118 fibptr->hw_fib = hw_fib_va;
119 fibptr->data = (void *) fibptr->hw_fib->data;
120 fibptr->next = fibptr+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr->event_wait);
122 spin_lock_init(&fibptr->event_lock);
123 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
124 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 fibptr->hw_fib_pa = hw_fib_pa;
126 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
127 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
130 * Add the fib chain to the free list
132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
134 * Enable this to debug out of queue space
136 dev->free_fib = &dev->fibs[0];
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
152 spin_lock_irqsave(&dev->fib_lock, flags);
153 fibptr = dev->free_fib;
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
158 dev->free_fib = fibptr->next;
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
161 * Set the proper node type code and node byte size
163 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 fibptr->size = sizeof(struct fib);
166 * Null out fields that depend on being zero at the start of
169 fibptr->hw_fib->header.XferState = 0;
170 fibptr->callback = NULL;
171 fibptr->callback_data = NULL;
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
180 * Frees up a fib and places it on the appropriate queue
181 * (either free or timed out)
184 void aac_fib_free(struct fib *fibptr)
188 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190 aac_config.fib_timeouts++;
191 fibptr->next = fibptr->dev->timeout_fib;
192 fibptr->dev->timeout_fib = fibptr;
194 if (fibptr->hw_fib->header.XferState != 0) {
195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
197 le32_to_cpu(fibptr->hw_fib->header.XferState));
199 fibptr->next = fibptr->dev->free_fib;
200 fibptr->dev->free_fib = fibptr;
202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
206 * aac_fib_init - initialise a fib
207 * @fibptr: The fib to initialize
209 * Set up the generic fib fields ready for use
212 void aac_fib_init(struct fib *fibptr)
214 struct hw_fib *hw_fib = fibptr->hw_fib;
216 hw_fib->header.StructType = FIB_MAGIC;
217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
225 * fib_deallocate - deallocate a fib
226 * @fibptr: fib to deallocate
228 * Will deallocate and return to the free pool the FIB pointed to by the
232 static void fib_dealloc(struct fib * fibptr)
234 struct hw_fib *hw_fib = fibptr->hw_fib;
235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 hw_fib->header.XferState = 0;
240 * Commuication primitives define and support the queuing method we use to
241 * support host to adapter commuication. All queue accesses happen through
242 * these routines and are the only routines which have a knowledge of the
243 * how these queues are implemented.
247 * aac_get_entry - get a queue entry
250 * @entry: Entry return
251 * @index: Index return
252 * @nonotify: notification control
254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
261 struct aac_queue * q;
265 * All of the queues wrap when they reach the end, so we check
266 * to see if they have reached the end and if they have we just
267 * set the index back to zero. This is a wrap. You could or off
268 * the high bits in all updates but this is a bit faster I think.
271 q = &dev->queues->queue[qid];
273 idx = *index = le32_to_cpu(*(q->headers.producer));
274 /* Interrupt Moderation, only interrupt for first two entries */
275 if (idx != le32_to_cpu(*(q->headers.consumer))) {
277 if (qid == AdapNormCmdQueue)
278 idx = ADAP_NORM_CMD_ENTRIES;
280 idx = ADAP_NORM_RESP_ENTRIES;
282 if (idx != le32_to_cpu(*(q->headers.consumer)))
286 if (qid == AdapNormCmdQueue) {
287 if (*index >= ADAP_NORM_CMD_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
290 if (*index >= ADAP_NORM_RESP_ENTRIES)
291 *index = 0; /* Wrap to front of the Producer Queue. */
294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
299 *entry = q->base + *index;
305 * aac_queue_get - get the next free QE
307 * @index: Returned index
308 * @priority: Priority of fib
309 * @fib: Fib to associate with the queue entry
310 * @wait: Wait if queue full
311 * @fibptr: Driver fib object to go with fib
312 * @nonotify: Don't notify the adapter
314 * Gets the next free QE off the requested priorty adapter command
315 * queue and associates the Fib with the QE. The QE represented by
316 * index is ready to insert on the queue when this routine returns
320 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
322 struct aac_entry * entry = NULL;
325 if (qid == AdapNormCmdQueue) {
326 /* if no entries wait for some if caller wants to */
327 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
329 printk(KERN_ERR "GetEntries failed\n");
332 * Setup queue entry with a command, status and fib mapped
334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
339 /* if no entries wait for some if caller wants to */
342 * Setup queue entry with command, status and fib mapped
344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345 entry->addr = hw_fib->header.SenderFibAddress;
346 /* Restore adapters pointer to the FIB */
347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
351 * If MapFib is true than we need to map the Fib and put pointers
352 * in the queue entry.
355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
360 * Define the highest level of host to adapter communication routines.
361 * These routines will support host to adapter FS commuication. These
362 * routines have no knowledge of the commuication method used. This level
363 * sends and receives FIBs. This level has no knowledge of how these FIBs
364 * get passed back and forth.
368 * aac_fib_send - send a fib to the adapter
369 * @command: Command to send
371 * @size: Size of fib data area
372 * @priority: Priority of Fib
373 * @wait: Async/sync select
374 * @reply: True if a reply is wanted
375 * @callback: Called with reply
376 * @callback_data: Passed to callback
378 * Sends the requested FIB to the adapter and optionally will wait for a
379 * response FIB. If the caller does not wish to wait for a response than
380 * an event to wait on must be supplied. This event will be set when a
381 * response FIB is received from the adapter.
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 int priority, int wait, int reply, fib_callback callback,
388 struct aac_dev * dev = fibptr->dev;
389 struct hw_fib * hw_fib = fibptr->hw_fib;
390 struct aac_queue * q;
391 unsigned long flags = 0;
392 unsigned long qflags;
394 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
397 * There are 5 cases with the wait and reponse requested flags.
398 * The only invalid cases are if the caller requests to wait and
399 * does not request a response and if the caller does not want a
400 * response and the Fib is not allocated from pool. If a response
401 * is not requesed the Fib will just be deallocaed by the DPC
402 * routine when the response comes back from the adapter. No
403 * further processing will be done besides deleting the Fib. We
404 * will have a debug mode where the adapter can notify the host
405 * it had a problem and the host can log that fact.
407 if (wait && !reply) {
409 } else if (!wait && reply) {
410 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
412 } else if (!wait && !reply) {
413 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
414 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
415 } else if (wait && reply) {
416 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
417 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
420 * Map the fib into 32bits by using the fib number
423 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
424 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
426 * Set FIB state to indicate where it came from and if we want a
427 * response from the adapter. Also load the command from the
430 * Map the hw fib pointer as a 32bit value
432 hw_fib->header.Command = cpu_to_le16(command);
433 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
434 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
436 * Set the size of the Fib we want to send to the adapter
438 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
439 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
443 * Get a queue entry connect the FIB to it and send an notify
444 * the adapter a command is ready.
446 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
449 * Fill in the Callback and CallbackContext if we are not
453 fibptr->callback = callback;
454 fibptr->callback_data = callback_data;
460 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
462 dprintk((KERN_DEBUG "Fib contents:.\n"));
463 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
464 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
465 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
466 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
467 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
468 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
472 q = &dev->queues->queue[AdapNormCmdQueue];
475 spin_lock_irqsave(&fibptr->event_lock, flags);
476 spin_lock_irqsave(q->lock, qflags);
477 if (dev->new_comm_interface) {
478 unsigned long count = 10000000L; /* 50 seconds */
480 spin_unlock_irqrestore(q->lock, qflags);
481 while (aac_adapter_send(fibptr) != 0) {
484 spin_unlock_irqrestore(&fibptr->event_lock, flags);
485 spin_lock_irqsave(q->lock, qflags);
487 spin_unlock_irqrestore(q->lock, qflags);
494 unsigned long nointr = 0;
495 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
498 *(q->headers.producer) = cpu_to_le32(index + 1);
499 spin_unlock_irqrestore(q->lock, qflags);
500 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
501 if (!(nointr & aac_config.irq_mod))
502 aac_adapter_notify(dev, AdapNormCmdQueue);
506 * If the caller wanted us to wait for response wait now.
510 spin_unlock_irqrestore(&fibptr->event_lock, flags);
511 /* Only set for first known interruptable command */
514 * *VERY* Dangerous to time out a command, the
515 * assumption is made that we have no hope of
516 * functioning because an interrupt routing or other
517 * hardware failure has occurred.
519 unsigned long count = 36000000L; /* 3 minutes */
520 while (down_trylock(&fibptr->event_wait)) {
523 spin_lock_irqsave(q->lock, qflags);
525 spin_unlock_irqrestore(q->lock, qflags);
527 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
528 "Usually a result of a PCI interrupt routing problem;\n"
529 "update mother board BIOS or consider utilizing one of\n"
530 "the SAFE mode kernel options (acpi, apic etc)\n");
534 if ((blink = aac_adapter_check_health(dev)) > 0) {
536 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
537 "Usually a result of a serious unrecoverable hardware problem\n",
544 } else if (down_interruptible(&fibptr->event_wait)) {
545 spin_lock_irqsave(&fibptr->event_lock, flags);
546 if (fibptr->done == 0) {
547 fibptr->done = 2; /* Tell interrupt we aborted */
548 spin_unlock_irqrestore(&fibptr->event_lock, flags);
551 spin_unlock_irqrestore(&fibptr->event_lock, flags);
553 BUG_ON(fibptr->done == 0);
555 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
562 * If the user does not want a response than return success otherwise
572 * aac_consumer_get - get the top of the queue
575 * @entry: Return entry
577 * Will return a pointer to the entry on the top of the queue requested that
578 * we are a consumer of, and return the address of the queue entry. It does
579 * not change the state of the queue.
582 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
586 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
590 * The consumer index must be wrapped if we have reached
591 * the end of the queue, else we just use the entry
592 * pointed to by the header index
594 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
597 index = le32_to_cpu(*q->headers.consumer);
598 *entry = q->base + index;
605 * aac_consumer_free - free consumer entry
610 * Frees up the current top of the queue we are a consumer of. If the
611 * queue was full notify the producer that the queue is no longer full.
614 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
619 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
622 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
623 *q->headers.consumer = cpu_to_le32(1);
625 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
630 case HostNormCmdQueue:
631 notify = HostNormCmdNotFull;
633 case HostNormRespQueue:
634 notify = HostNormRespNotFull;
640 aac_adapter_notify(dev, notify);
645 * aac_fib_adapter_complete - complete adapter issued fib
646 * @fibptr: fib to complete
649 * Will do all necessary work to complete a FIB that was sent from
653 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
655 struct hw_fib * hw_fib = fibptr->hw_fib;
656 struct aac_dev * dev = fibptr->dev;
657 struct aac_queue * q;
658 unsigned long nointr = 0;
659 unsigned long qflags;
661 if (hw_fib->header.XferState == 0) {
662 if (dev->new_comm_interface)
667 * If we plan to do anything check the structure type first.
669 if ( hw_fib->header.StructType != FIB_MAGIC ) {
670 if (dev->new_comm_interface)
675 * This block handles the case where the adapter had sent us a
676 * command and we have finished processing the command. We
677 * call completeFib when we are done processing the command
678 * and want to send a response back to the adapter. This will
679 * send the completed cdb to the adapter.
681 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
682 if (dev->new_comm_interface) {
686 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
688 size += sizeof(struct aac_fibhdr);
689 if (size > le16_to_cpu(hw_fib->header.SenderSize))
691 hw_fib->header.Size = cpu_to_le16(size);
693 q = &dev->queues->queue[AdapNormRespQueue];
694 spin_lock_irqsave(q->lock, qflags);
695 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
696 *(q->headers.producer) = cpu_to_le32(index + 1);
697 spin_unlock_irqrestore(q->lock, qflags);
698 if (!(nointr & (int)aac_config.irq_mod))
699 aac_adapter_notify(dev, AdapNormRespQueue);
704 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
711 * aac_fib_complete - fib completion handler
712 * @fib: FIB to complete
714 * Will do all necessary work to complete a FIB.
717 int aac_fib_complete(struct fib *fibptr)
719 struct hw_fib * hw_fib = fibptr->hw_fib;
722 * Check for a fib which has already been completed
725 if (hw_fib->header.XferState == 0)
728 * If we plan to do anything check the structure type first.
731 if (hw_fib->header.StructType != FIB_MAGIC)
734 * This block completes a cdb which orginated on the host and we
735 * just need to deallocate the cdb or reinit it. At this point the
736 * command is complete that we had sent to the adapter and this
737 * cdb could be reused.
739 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
740 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
744 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
747 * This handles the case when the host has aborted the I/O
748 * to the adapter because the adapter is not responding
751 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
760 * aac_printf - handle printf from firmware
764 * Print a message passed to us by the controller firmware on the
768 void aac_printf(struct aac_dev *dev, u32 val)
770 char *cp = dev->printfbuf;
771 if (dev->printf_enabled)
773 int length = val & 0xffff;
774 int level = (val >> 16) & 0xffff;
777 * The size of the printfbuf is set in port.c
778 * There is no variable or define for it
784 if (level == LOG_AAC_HIGH_ERROR)
785 printk(KERN_WARNING "%s:%s", dev->name, cp);
787 printk(KERN_INFO "%s:%s", dev->name, cp);
794 * aac_handle_aif - Handle a message from the firmware
795 * @dev: Which adapter this fib is from
796 * @fibptr: Pointer to fibptr from adapter
798 * This routine handles a driver notify fib from the adapter and
799 * dispatches it to the appropriate routine for handling.
802 #define AIF_SNIFF_TIMEOUT (30*HZ)
803 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
805 struct hw_fib * hw_fib = fibptr->hw_fib;
806 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
809 struct scsi_device *device;
815 } device_config_needed;
817 /* Sniff for container changes */
819 if (!dev || !dev->fsa_dev)
824 * We have set this up to try and minimize the number of
825 * re-configures that take place. As a result of this when
826 * certain AIF's come in we will set a flag waiting for another
827 * type of AIF before setting the re-config flag.
829 switch (le32_to_cpu(aifcmd->command)) {
830 case AifCmdDriverNotify:
831 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
833 * Morph or Expand complete
835 case AifDenMorphComplete:
836 case AifDenVolumeExtendComplete:
837 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
838 if (container >= dev->maximum_num_containers)
842 * Find the scsi_device associated with the SCSI
843 * address. Make sure we have the right array, and if
844 * so set the flag to initiate a new re-config once we
845 * see an AifEnConfigChange AIF come through.
848 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
849 device = scsi_device_lookup(dev->scsi_host_ptr,
850 CONTAINER_TO_CHANNEL(container),
851 CONTAINER_TO_ID(container),
852 CONTAINER_TO_LUN(container));
854 dev->fsa_dev[container].config_needed = CHANGE;
855 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
856 dev->fsa_dev[container].config_waiting_stamp = jiffies;
857 scsi_device_put(device);
863 * If we are waiting on something and this happens to be
864 * that thing then set the re-configure flag.
866 if (container != (u32)-1) {
867 if (container >= dev->maximum_num_containers)
869 if ((dev->fsa_dev[container].config_waiting_on ==
870 le32_to_cpu(*(u32 *)aifcmd->data)) &&
871 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
872 dev->fsa_dev[container].config_waiting_on = 0;
873 } else for (container = 0;
874 container < dev->maximum_num_containers; ++container) {
875 if ((dev->fsa_dev[container].config_waiting_on ==
876 le32_to_cpu(*(u32 *)aifcmd->data)) &&
877 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
878 dev->fsa_dev[container].config_waiting_on = 0;
882 case AifCmdEventNotify:
883 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
887 case AifEnAddContainer:
888 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
889 if (container >= dev->maximum_num_containers)
891 dev->fsa_dev[container].config_needed = ADD;
892 dev->fsa_dev[container].config_waiting_on =
894 dev->fsa_dev[container].config_waiting_stamp = jiffies;
900 case AifEnDeleteContainer:
901 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
902 if (container >= dev->maximum_num_containers)
904 dev->fsa_dev[container].config_needed = DELETE;
905 dev->fsa_dev[container].config_waiting_on =
907 dev->fsa_dev[container].config_waiting_stamp = jiffies;
911 * Container change detected. If we currently are not
912 * waiting on something else, setup to wait on a Config Change.
914 case AifEnContainerChange:
915 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
916 if (container >= dev->maximum_num_containers)
918 if (dev->fsa_dev[container].config_waiting_on &&
919 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
921 dev->fsa_dev[container].config_needed = CHANGE;
922 dev->fsa_dev[container].config_waiting_on =
924 dev->fsa_dev[container].config_waiting_stamp = jiffies;
927 case AifEnConfigChange:
933 * If we are waiting on something and this happens to be
934 * that thing then set the re-configure flag.
936 if (container != (u32)-1) {
937 if (container >= dev->maximum_num_containers)
939 if ((dev->fsa_dev[container].config_waiting_on ==
940 le32_to_cpu(*(u32 *)aifcmd->data)) &&
941 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
942 dev->fsa_dev[container].config_waiting_on = 0;
943 } else for (container = 0;
944 container < dev->maximum_num_containers; ++container) {
945 if ((dev->fsa_dev[container].config_waiting_on ==
946 le32_to_cpu(*(u32 *)aifcmd->data)) &&
947 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
948 dev->fsa_dev[container].config_waiting_on = 0;
952 case AifCmdJobProgress:
954 * These are job progress AIF's. When a Clear is being
955 * done on a container it is initially created then hidden from
956 * the OS. When the clear completes we don't get a config
957 * change so we monitor the job status complete on a clear then
958 * wait for a container change.
961 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
962 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
963 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
965 container < dev->maximum_num_containers;
968 * Stomp on all config sequencing for all
971 dev->fsa_dev[container].config_waiting_on =
972 AifEnContainerChange;
973 dev->fsa_dev[container].config_needed = ADD;
974 dev->fsa_dev[container].config_waiting_stamp =
978 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
979 && (((u32 *)aifcmd->data)[6] == 0)
980 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
982 container < dev->maximum_num_containers;
985 * Stomp on all config sequencing for all
988 dev->fsa_dev[container].config_waiting_on =
989 AifEnContainerChange;
990 dev->fsa_dev[container].config_needed = DELETE;
991 dev->fsa_dev[container].config_waiting_stamp =
998 device_config_needed = NOTHING;
999 for (container = 0; container < dev->maximum_num_containers;
1001 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1002 (dev->fsa_dev[container].config_needed != NOTHING) &&
1003 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1004 device_config_needed =
1005 dev->fsa_dev[container].config_needed;
1006 dev->fsa_dev[container].config_needed = NOTHING;
1010 if (device_config_needed == NOTHING)
1014 * If we decided that a re-configuration needs to be done,
1015 * schedule it here on the way out the door, please close the door
1023 * Find the scsi_device associated with the SCSI address,
1024 * and mark it as changed, invalidating the cache. This deals
1025 * with changes to existing device IDs.
1028 if (!dev || !dev->scsi_host_ptr)
1031 * force reload of disk info via aac_probe_container
1033 if ((device_config_needed == CHANGE)
1034 && (dev->fsa_dev[container].valid == 1))
1035 dev->fsa_dev[container].valid = 2;
1036 if ((device_config_needed == CHANGE) ||
1037 (device_config_needed == ADD))
1038 aac_probe_container(dev, container);
1039 device = scsi_device_lookup(dev->scsi_host_ptr,
1040 CONTAINER_TO_CHANNEL(container),
1041 CONTAINER_TO_ID(container),
1042 CONTAINER_TO_LUN(container));
1044 switch (device_config_needed) {
1047 scsi_rescan_device(&device->sdev_gendev);
1052 scsi_device_put(device);
1054 if (device_config_needed == ADD) {
1055 scsi_add_device(dev->scsi_host_ptr,
1056 CONTAINER_TO_CHANNEL(container),
1057 CONTAINER_TO_ID(container),
1058 CONTAINER_TO_LUN(container));
1063 static int _aac_reset_adapter(struct aac_dev *aac)
1068 struct Scsi_Host *host;
1069 struct scsi_device *dev;
1070 struct scsi_cmnd *command;
1071 struct scsi_cmnd *command_list;
1076 * - in_reset is asserted, so no new i/o is getting to the
1078 * - The card is dead.
1080 host = aac->scsi_host_ptr;
1081 scsi_block_requests(host);
1082 aac_adapter_disable_int(aac);
1083 spin_unlock_irq(host->host_lock);
1084 kthread_stop(aac->thread);
1087 * If a positive health, means in a known DEAD PANIC
1088 * state and the adapter could be reset to `try again'.
1090 retval = aac_adapter_check_health(aac);
1092 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1093 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1095 retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1096 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1100 if (ret != 0x00000001) {
1106 * Loop through the fibs, close the synchronous FIBS
1108 for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1109 struct fib *fib = &aac->fibs[index];
1110 if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1111 (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) {
1112 unsigned long flagv;
1113 spin_lock_irqsave(&fib->event_lock, flagv);
1114 up(&fib->event_wait);
1115 spin_unlock_irqrestore(&fib->event_lock, flagv);
1119 index = aac->cardtype;
1122 * Re-initialize the adapter, first free resources, then carefully
1123 * apply the initialization sequence to come back again. Only risk
1124 * is a change in Firmware dropping cache, it is assumed the caller
1125 * will ensure that i/o is queisced and the card is flushed in that
1128 aac_fib_map_free(aac);
1129 aac->hw_fib_va = NULL;
1131 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1132 aac->comm_addr = NULL;
1136 free_irq(aac->pdev->irq, aac);
1137 kfree(aac->fsa_dev);
1138 aac->fsa_dev = NULL;
1139 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1140 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1141 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1144 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1145 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1148 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1150 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1151 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1153 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1154 if (IS_ERR(aac->thread)) {
1155 retval = PTR_ERR(aac->thread);
1158 (void)aac_get_adapter_info(aac);
1159 quirks = aac_get_driver_ident(index)->quirks;
1160 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1161 host->sg_tablesize = 34;
1162 host->max_sectors = (host->sg_tablesize * 8) + 112;
1164 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1165 host->sg_tablesize = 17;
1166 host->max_sectors = (host->sg_tablesize * 8) + 112;
1168 aac_get_config_status(aac, 1);
1169 aac_get_containers(aac);
1171 * This is where the assumption that the Adapter is quiesced
1174 command_list = NULL;
1175 __shost_for_each_device(dev, host) {
1176 unsigned long flags;
1177 spin_lock_irqsave(&dev->list_lock, flags);
1178 list_for_each_entry(command, &dev->cmd_list, list)
1179 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1180 command->SCp.buffer = (struct scatterlist *)command_list;
1181 command_list = command;
1183 spin_unlock_irqrestore(&dev->list_lock, flags);
1185 while ((command = command_list)) {
1186 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1187 command->SCp.buffer = NULL;
1188 command->result = DID_OK << 16
1189 | COMMAND_COMPLETE << 8
1190 | SAM_STAT_TASK_SET_FULL;
1191 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1192 command->scsi_done(command);
1198 scsi_unblock_requests(host);
1199 spin_lock_irq(host->host_lock);
1203 int aac_check_health(struct aac_dev * aac)
1206 unsigned long time_now, flagv = 0;
1207 struct list_head * entry;
1208 struct Scsi_Host * host;
1210 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1211 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1214 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1215 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1222 * aac_aifcmd.command = AifCmdEventNotify = 1
1223 * aac_aifcmd.seqnum = 0xFFFFFFFF
1224 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1225 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1226 * aac.aifcmd.data[2] = AifHighPriority = 3
1227 * aac.aifcmd.data[3] = BlinkLED
1230 time_now = jiffies/HZ;
1231 entry = aac->fib_list.next;
1234 * For each Context that is on the
1235 * fibctxList, make a copy of the
1236 * fib, and then set the event to wake up the
1237 * thread that is waiting for it.
1239 while (entry != &aac->fib_list) {
1241 * Extract the fibctx
1243 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1244 struct hw_fib * hw_fib;
1247 * Check if the queue is getting
1250 if (fibctx->count > 20) {
1252 * It's *not* jiffies folks,
1253 * but jiffies / HZ, so do not
1256 u32 time_last = fibctx->jiffies;
1258 * Has it been > 2 minutes
1259 * since the last read off
1262 if ((time_now - time_last) > aif_timeout) {
1263 entry = entry->next;
1264 aac_close_fib_context(aac, fibctx);
1269 * Warning: no sleep allowed while
1272 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1273 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1274 if (fib && hw_fib) {
1275 struct aac_aifcmd * aif;
1277 memset(hw_fib, 0, sizeof(struct hw_fib));
1278 memset(fib, 0, sizeof(struct fib));
1279 fib->hw_fib = hw_fib;
1282 fib->type = FSAFS_NTC_FIB_CONTEXT;
1283 fib->size = sizeof (struct fib);
1284 fib->data = hw_fib->data;
1285 aif = (struct aac_aifcmd *)hw_fib->data;
1286 aif->command = cpu_to_le32(AifCmdEventNotify);
1287 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1288 aif->data[0] = cpu_to_le32(AifEnExpEvent);
1289 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1290 aif->data[2] = cpu_to_le32(AifHighPriority);
1291 aif->data[3] = cpu_to_le32(BlinkLED);
1294 * Put the FIB onto the
1297 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1300 * Set the event to wake up the
1301 * thread that will waiting.
1303 up(&fibctx->wait_sem);
1305 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1309 entry = entry->next;
1312 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1315 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1319 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1321 host = aac->scsi_host_ptr;
1322 spin_lock_irqsave(host->host_lock, flagv);
1323 BlinkLED = _aac_reset_adapter(aac);
1324 spin_unlock_irqrestore(host->host_lock, flagv);
1334 * aac_command_thread - command processing thread
1335 * @dev: Adapter to monitor
1337 * Waits on the commandready event in it's queue. When the event gets set
1338 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1339 * until the queue is empty. When the queue is empty it will wait for
1343 int aac_command_thread(void *data)
1345 struct aac_dev *dev = data;
1346 struct hw_fib *hw_fib, *hw_newfib;
1347 struct fib *fib, *newfib;
1348 struct aac_fib_context *fibctx;
1349 unsigned long flags;
1350 DECLARE_WAITQUEUE(wait, current);
1353 * We can only have one thread per adapter for AIF's.
1355 if (dev->aif_thread)
1359 * Let the DPC know it has a place to send the AIF's to.
1361 dev->aif_thread = 1;
1362 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1363 set_current_state(TASK_INTERRUPTIBLE);
1364 dprintk ((KERN_INFO "aac_command_thread start\n"));
1367 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1368 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1369 struct list_head *entry;
1370 struct aac_aifcmd * aifcmd;
1372 set_current_state(TASK_RUNNING);
1374 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1377 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1378 fib = list_entry(entry, struct fib, fiblink);
1380 * We will process the FIB here or pass it to a
1381 * worker thread that is TBD. We Really can't
1382 * do anything at this point since we don't have
1383 * anything defined for this thread to do.
1385 hw_fib = fib->hw_fib;
1386 memset(fib, 0, sizeof(struct fib));
1387 fib->type = FSAFS_NTC_FIB_CONTEXT;
1388 fib->size = sizeof( struct fib );
1389 fib->hw_fib = hw_fib;
1390 fib->data = hw_fib->data;
1393 * We only handle AifRequest fibs from the adapter.
1395 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1396 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1397 /* Handle Driver Notify Events */
1398 aac_handle_aif(dev, fib);
1399 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1400 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1402 struct list_head *entry;
1403 /* The u32 here is important and intended. We are using
1404 32bit wrapping time to fit the adapter field */
1406 u32 time_now, time_last;
1407 unsigned long flagv;
1409 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1410 struct fib ** fib_pool, ** fib_p;
1413 if ((aifcmd->command ==
1414 cpu_to_le32(AifCmdEventNotify)) ||
1416 cpu_to_le32(AifCmdJobProgress))) {
1417 aac_handle_aif(dev, fib);
1420 time_now = jiffies/HZ;
1423 * Warning: no sleep allowed while
1424 * holding spinlock. We take the estimate
1425 * and pre-allocate a set of fibs outside the
1428 num = le32_to_cpu(dev->init->AdapterFibsSize)
1429 / sizeof(struct hw_fib); /* some extra */
1430 spin_lock_irqsave(&dev->fib_lock, flagv);
1431 entry = dev->fib_list.next;
1432 while (entry != &dev->fib_list) {
1433 entry = entry->next;
1436 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1440 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1441 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1442 hw_fib_p = hw_fib_pool;
1444 while (hw_fib_p < &hw_fib_pool[num]) {
1445 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1449 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1450 kfree(*(--hw_fib_p));
1454 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1464 spin_lock_irqsave(&dev->fib_lock, flagv);
1465 entry = dev->fib_list.next;
1467 * For each Context that is on the
1468 * fibctxList, make a copy of the
1469 * fib, and then set the event to wake up the
1470 * thread that is waiting for it.
1472 hw_fib_p = hw_fib_pool;
1474 while (entry != &dev->fib_list) {
1476 * Extract the fibctx
1478 fibctx = list_entry(entry, struct aac_fib_context, next);
1480 * Check if the queue is getting
1483 if (fibctx->count > 20)
1486 * It's *not* jiffies folks,
1487 * but jiffies / HZ so do not
1490 time_last = fibctx->jiffies;
1492 * Has it been > 2 minutes
1493 * since the last read off
1496 if ((time_now - time_last) > aif_timeout) {
1497 entry = entry->next;
1498 aac_close_fib_context(dev, fibctx);
1503 * Warning: no sleep allowed while
1506 if (hw_fib_p < &hw_fib_pool[num]) {
1507 hw_newfib = *hw_fib_p;
1508 *(hw_fib_p++) = NULL;
1512 * Make the copy of the FIB
1514 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1515 memcpy(newfib, fib, sizeof(struct fib));
1516 newfib->hw_fib = hw_newfib;
1518 * Put the FIB onto the
1521 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1524 * Set the event to wake up the
1525 * thread that is waiting.
1527 up(&fibctx->wait_sem);
1529 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1531 entry = entry->next;
1534 * Set the status of this FIB
1536 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1537 aac_fib_adapter_complete(fib, sizeof(u32));
1538 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1539 /* Free up the remaining resources */
1540 hw_fib_p = hw_fib_pool;
1542 while (hw_fib_p < &hw_fib_pool[num]) {
1552 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1555 * There are no more AIF's
1557 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1560 if (kthread_should_stop())
1562 set_current_state(TASK_INTERRUPTIBLE);
1565 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1566 dev->aif_thread = 0;