2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
56 int percpu_pagelist_fraction;
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59 static void __free_pages_ok(struct page *page, unsigned int order);
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74 EXPORT_SYMBOL(totalram_pages);
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
86 unsigned long __initdata nr_kernel_pages;
87 unsigned long __initdata nr_all_pages;
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
94 unsigned long pfn = page_to_pfn(page);
97 seq = zone_span_seqbegin(zone);
98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 else if (pfn < zone->zone_start_pfn)
102 } while (zone_span_seqretry(zone, seq));
107 static int page_is_consistent(struct zone *zone, struct page *page)
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page)))
113 if (zone != page_zone(page))
119 * Temporary debugging check for pages not lying within a given zone.
121 static int bad_range(struct zone *zone, struct page *page)
123 if (page_outside_zone_boundaries(zone, page))
125 if (!page_is_consistent(zone, page))
132 static inline int bad_range(struct zone *zone, struct page *page)
138 static void bad_page(struct page *page)
140 printk(KERN_EMERG "Bad page state in process '%s'\n"
141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG "Backtrace:\n",
144 current->comm, page, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page->flags, page->mapping,
146 page_mapcount(page), page_count(page));
148 page->flags &= ~(1 << PG_lru |
157 set_page_count(page, 0);
158 reset_page_mapcount(page);
159 page->mapping = NULL;
160 add_taint(TAINT_BAD_PAGE);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page *page)
180 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 static void prep_compound_page(struct page *page, unsigned long order)
186 int nr_pages = 1 << order;
188 page[1].lru.next = (void *)free_compound_page; /* set dtor */
189 page[1].lru.prev = (void *)order;
190 for (i = 0; i < nr_pages; i++) {
191 struct page *p = page + i;
194 set_page_private(p, (unsigned long)page);
198 static void destroy_compound_page(struct page *page, unsigned long order)
201 int nr_pages = 1 << order;
203 if (unlikely((unsigned long)page[1].lru.prev != order))
206 for (i = 0; i < nr_pages; i++) {
207 struct page *p = page + i;
209 if (unlikely(!PageCompound(p) |
210 (page_private(p) != (unsigned long)page)))
212 ClearPageCompound(p);
217 * function for dealing with page's order in buddy system.
218 * zone->lock is already acquired when we use these.
219 * So, we don't need atomic page->flags operations here.
221 static inline unsigned long page_order(struct page *page) {
222 return page_private(page);
225 static inline void set_page_order(struct page *page, int order) {
226 set_page_private(page, order);
227 __SetPagePrivate(page);
230 static inline void rmv_page_order(struct page *page)
232 __ClearPagePrivate(page);
233 set_page_private(page, 0);
237 * Locate the struct page for both the matching buddy in our
238 * pair (buddy1) and the combined O(n+1) page they form (page).
240 * 1) Any buddy B1 will have an order O twin B2 which satisfies
241 * the following equation:
243 * For example, if the starting buddy (buddy2) is #8 its order
245 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
247 * 2) Any buddy B will have an order O+1 parent P which
248 * satisfies the following equation:
251 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
253 static inline struct page *
254 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
256 unsigned long buddy_idx = page_idx ^ (1 << order);
258 return page + (buddy_idx - page_idx);
261 static inline unsigned long
262 __find_combined_index(unsigned long page_idx, unsigned int order)
264 return (page_idx & ~(1 << order));
268 * This function checks whether a page is free && is the buddy
269 * we can do coalesce a page and its buddy if
270 * (a) the buddy is not in a hole &&
271 * (b) the buddy is free &&
272 * (c) the buddy is on the buddy system &&
273 * (d) a page and its buddy have the same order.
274 * for recording page's order, we use page_private(page) and PG_private.
277 static inline int page_is_buddy(struct page *page, int order)
279 #ifdef CONFIG_HOLES_IN_ZONE
280 if (!pfn_valid(page_to_pfn(page)))
284 if (PagePrivate(page) &&
285 (page_order(page) == order) &&
286 page_count(page) == 0)
292 * Freeing function for a buddy system allocator.
294 * The concept of a buddy system is to maintain direct-mapped table
295 * (containing bit values) for memory blocks of various "orders".
296 * The bottom level table contains the map for the smallest allocatable
297 * units of memory (here, pages), and each level above it describes
298 * pairs of units from the levels below, hence, "buddies".
299 * At a high level, all that happens here is marking the table entry
300 * at the bottom level available, and propagating the changes upward
301 * as necessary, plus some accounting needed to play nicely with other
302 * parts of the VM system.
303 * At each level, we keep a list of pages, which are heads of continuous
304 * free pages of length of (1 << order) and marked with PG_Private.Page's
305 * order is recorded in page_private(page) field.
306 * So when we are allocating or freeing one, we can derive the state of the
307 * other. That is, if we allocate a small block, and both were
308 * free, the remainder of the region must be split into blocks.
309 * If a block is freed, and its buddy is also free, then this
310 * triggers coalescing into a block of larger size.
315 static inline void __free_one_page(struct page *page,
316 struct zone *zone, unsigned int order)
318 unsigned long page_idx;
319 int order_size = 1 << order;
321 if (unlikely(PageCompound(page)))
322 destroy_compound_page(page, order);
324 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
326 BUG_ON(page_idx & (order_size - 1));
327 BUG_ON(bad_range(zone, page));
329 zone->free_pages += order_size;
330 while (order < MAX_ORDER-1) {
331 unsigned long combined_idx;
332 struct free_area *area;
335 buddy = __page_find_buddy(page, page_idx, order);
336 if (!page_is_buddy(buddy, order))
337 break; /* Move the buddy up one level. */
339 list_del(&buddy->lru);
340 area = zone->free_area + order;
342 rmv_page_order(buddy);
343 combined_idx = __find_combined_index(page_idx, order);
344 page = page + (combined_idx - page_idx);
345 page_idx = combined_idx;
348 set_page_order(page, order);
349 list_add(&page->lru, &zone->free_area[order].free_list);
350 zone->free_area[order].nr_free++;
353 static inline int free_pages_check(struct page *page)
355 if (unlikely(page_mapcount(page) |
356 (page->mapping != NULL) |
357 (page_count(page) != 0) |
367 1 << PG_reserved ))))
370 __ClearPageDirty(page);
372 * For now, we report if PG_reserved was found set, but do not
373 * clear it, and do not free the page. But we shall soon need
374 * to do more, for when the ZERO_PAGE count wraps negative.
376 return PageReserved(page);
380 * Frees a list of pages.
381 * Assumes all pages on list are in same zone, and of same order.
382 * count is the number of pages to free.
384 * If the zone was previously in an "all pages pinned" state then look to
385 * see if this freeing clears that state.
387 * And clear the zone's pages_scanned counter, to hold off the "all pages are
388 * pinned" detection logic.
390 static void free_pages_bulk(struct zone *zone, int count,
391 struct list_head *list, int order)
393 spin_lock(&zone->lock);
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
399 BUG_ON(list_empty(list));
400 page = list_entry(list->prev, struct page, lru);
401 /* have to delete it as __free_one_page list manipulates */
402 list_del(&page->lru);
403 __free_one_page(page, zone, order);
405 spin_unlock(&zone->lock);
408 static void free_one_page(struct zone *zone, struct page *page, int order)
411 list_add(&page->lru, &list);
412 free_pages_bulk(zone, 1, &list, order);
415 static void __free_pages_ok(struct page *page, unsigned int order)
421 arch_free_page(page, order);
422 if (!PageHighMem(page))
423 mutex_debug_check_no_locks_freed(page_address(page),
427 for (i = 1 ; i < (1 << order) ; ++i)
428 __put_page(page + i);
431 for (i = 0 ; i < (1 << order) ; ++i)
432 reserved += free_pages_check(page + i);
436 kernel_map_pages(page, 1 << order, 0);
437 local_irq_save(flags);
438 __mod_page_state(pgfree, 1 << order);
439 free_one_page(page_zone(page), page, order);
440 local_irq_restore(flags);
444 * permit the bootmem allocator to evade page validation on high-order frees
446 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
449 __ClearPageReserved(page);
450 set_page_count(page, 0);
452 free_hot_cold_page(page, 0);
457 for (loop = 0; loop < BITS_PER_LONG; loop++) {
458 struct page *p = &page[loop];
460 if (loop + 16 < BITS_PER_LONG)
462 __ClearPageReserved(p);
463 set_page_count(p, 0);
466 arch_free_page(page, order);
468 mod_page_state(pgfree, 1 << order);
470 list_add(&page->lru, &list);
471 kernel_map_pages(page, 1 << order, 0);
472 free_pages_bulk(page_zone(page), 1, &list, order);
478 * The order of subdivision here is critical for the IO subsystem.
479 * Please do not alter this order without good reasons and regression
480 * testing. Specifically, as large blocks of memory are subdivided,
481 * the order in which smaller blocks are delivered depends on the order
482 * they're subdivided in this function. This is the primary factor
483 * influencing the order in which pages are delivered to the IO
484 * subsystem according to empirical testing, and this is also justified
485 * by considering the behavior of a buddy system containing a single
486 * large block of memory acted on by a series of small allocations.
487 * This behavior is a critical factor in sglist merging's success.
491 static inline void expand(struct zone *zone, struct page *page,
492 int low, int high, struct free_area *area)
494 unsigned long size = 1 << high;
500 BUG_ON(bad_range(zone, &page[size]));
501 list_add(&page[size].lru, &area->free_list);
503 set_page_order(&page[size], high);
508 * This page is about to be returned from the page allocator
510 static int prep_new_page(struct page *page, int order)
512 if (unlikely(page_mapcount(page) |
513 (page->mapping != NULL) |
514 (page_count(page) != 0) |
525 1 << PG_reserved ))))
529 * For now, we report if PG_reserved was found set, but do not
530 * clear it, and do not allocate the page: as a safety net.
532 if (PageReserved(page))
535 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
536 1 << PG_referenced | 1 << PG_arch_1 |
537 1 << PG_checked | 1 << PG_mappedtodisk);
538 set_page_private(page, 0);
539 set_page_refs(page, order);
540 kernel_map_pages(page, 1 << order, 1);
545 * Do the hard work of removing an element from the buddy allocator.
546 * Call me with the zone->lock already held.
548 static struct page *__rmqueue(struct zone *zone, unsigned int order)
550 struct free_area * area;
551 unsigned int current_order;
554 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
555 area = zone->free_area + current_order;
556 if (list_empty(&area->free_list))
559 page = list_entry(area->free_list.next, struct page, lru);
560 list_del(&page->lru);
561 rmv_page_order(page);
563 zone->free_pages -= 1UL << order;
564 expand(zone, page, order, current_order, area);
572 * Obtain a specified number of elements from the buddy allocator, all under
573 * a single hold of the lock, for efficiency. Add them to the supplied list.
574 * Returns the number of new pages which were placed at *list.
576 static int rmqueue_bulk(struct zone *zone, unsigned int order,
577 unsigned long count, struct list_head *list)
581 spin_lock(&zone->lock);
582 for (i = 0; i < count; ++i) {
583 struct page *page = __rmqueue(zone, order);
584 if (unlikely(page == NULL))
586 list_add_tail(&page->lru, list);
588 spin_unlock(&zone->lock);
594 * Called from the slab reaper to drain pagesets on a particular node that
595 * belong to the currently executing processor.
597 void drain_node_pages(int nodeid)
602 local_irq_save(flags);
603 for (z = 0; z < MAX_NR_ZONES; z++) {
604 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
605 struct per_cpu_pageset *pset;
607 pset = zone_pcp(zone, smp_processor_id());
608 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
609 struct per_cpu_pages *pcp;
612 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
616 local_irq_restore(flags);
620 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
621 static void __drain_pages(unsigned int cpu)
627 for_each_zone(zone) {
628 struct per_cpu_pageset *pset;
630 pset = zone_pcp(zone, cpu);
631 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
632 struct per_cpu_pages *pcp;
635 local_irq_save(flags);
636 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
638 local_irq_restore(flags);
642 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
646 void mark_free_pages(struct zone *zone)
648 unsigned long zone_pfn, flags;
650 struct list_head *curr;
652 if (!zone->spanned_pages)
655 spin_lock_irqsave(&zone->lock, flags);
656 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
657 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
659 for (order = MAX_ORDER - 1; order >= 0; --order)
660 list_for_each(curr, &zone->free_area[order].free_list) {
661 unsigned long start_pfn, i;
663 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
665 for (i=0; i < (1<<order); i++)
666 SetPageNosaveFree(pfn_to_page(start_pfn+i));
668 spin_unlock_irqrestore(&zone->lock, flags);
672 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
674 void drain_local_pages(void)
678 local_irq_save(flags);
679 __drain_pages(smp_processor_id());
680 local_irq_restore(flags);
682 #endif /* CONFIG_PM */
684 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
687 pg_data_t *pg = z->zone_pgdat;
688 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
689 struct per_cpu_pageset *p;
691 p = zone_pcp(z, cpu);
696 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
698 if (pg == NODE_DATA(numa_node_id()))
706 * Free a 0-order page
708 static void fastcall free_hot_cold_page(struct page *page, int cold)
710 struct zone *zone = page_zone(page);
711 struct per_cpu_pages *pcp;
714 arch_free_page(page, 0);
717 page->mapping = NULL;
718 if (free_pages_check(page))
721 kernel_map_pages(page, 1, 0);
723 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
724 local_irq_save(flags);
725 __inc_page_state(pgfree);
726 list_add(&page->lru, &pcp->list);
728 if (pcp->count >= pcp->high) {
729 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
730 pcp->count -= pcp->batch;
732 local_irq_restore(flags);
736 void fastcall free_hot_page(struct page *page)
738 free_hot_cold_page(page, 0);
741 void fastcall free_cold_page(struct page *page)
743 free_hot_cold_page(page, 1);
746 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
750 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
751 for(i = 0; i < (1 << order); i++)
752 clear_highpage(page + i);
756 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
757 * we cheat by calling it from here, in the order > 0 path. Saves a branch
760 static struct page *buffered_rmqueue(struct zonelist *zonelist,
761 struct zone *zone, int order, gfp_t gfp_flags)
765 int cold = !!(gfp_flags & __GFP_COLD);
770 if (likely(order == 0)) {
771 struct per_cpu_pages *pcp;
773 pcp = &zone_pcp(zone, cpu)->pcp[cold];
774 local_irq_save(flags);
776 pcp->count += rmqueue_bulk(zone, 0,
777 pcp->batch, &pcp->list);
778 if (unlikely(!pcp->count))
781 page = list_entry(pcp->list.next, struct page, lru);
782 list_del(&page->lru);
785 spin_lock_irqsave(&zone->lock, flags);
786 page = __rmqueue(zone, order);
787 spin_unlock(&zone->lock);
792 __mod_page_state_zone(zone, pgalloc, 1 << order);
793 zone_statistics(zonelist, zone, cpu);
794 local_irq_restore(flags);
797 BUG_ON(bad_range(zone, page));
798 if (prep_new_page(page, order))
801 if (gfp_flags & __GFP_ZERO)
802 prep_zero_page(page, order, gfp_flags);
804 if (order && (gfp_flags & __GFP_COMP))
805 prep_compound_page(page, order);
809 local_irq_restore(flags);
814 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
815 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
816 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
817 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
818 #define ALLOC_HARDER 0x10 /* try to alloc harder */
819 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
820 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
823 * Return 1 if free pages are above 'mark'. This takes into account the order
826 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
827 int classzone_idx, int alloc_flags)
829 /* free_pages my go negative - that's OK */
830 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
833 if (alloc_flags & ALLOC_HIGH)
835 if (alloc_flags & ALLOC_HARDER)
838 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
840 for (o = 0; o < order; o++) {
841 /* At the next order, this order's pages become unavailable */
842 free_pages -= z->free_area[o].nr_free << o;
844 /* Require fewer higher order pages to be free */
847 if (free_pages <= min)
854 * get_page_from_freeliest goes through the zonelist trying to allocate
858 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
859 struct zonelist *zonelist, int alloc_flags)
861 struct zone **z = zonelist->zones;
862 struct page *page = NULL;
863 int classzone_idx = zone_idx(*z);
866 * Go through the zonelist once, looking for a zone with enough free.
867 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
870 if ((alloc_flags & ALLOC_CPUSET) &&
871 !cpuset_zone_allowed(*z, gfp_mask))
874 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
876 if (alloc_flags & ALLOC_WMARK_MIN)
877 mark = (*z)->pages_min;
878 else if (alloc_flags & ALLOC_WMARK_LOW)
879 mark = (*z)->pages_low;
881 mark = (*z)->pages_high;
882 if (!zone_watermark_ok(*z, order, mark,
883 classzone_idx, alloc_flags))
884 if (!zone_reclaim_mode ||
885 !zone_reclaim(*z, gfp_mask, order))
889 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
893 } while (*(++z) != NULL);
898 * This is the 'heart' of the zoned buddy allocator.
900 struct page * fastcall
901 __alloc_pages(gfp_t gfp_mask, unsigned int order,
902 struct zonelist *zonelist)
904 const gfp_t wait = gfp_mask & __GFP_WAIT;
907 struct reclaim_state reclaim_state;
908 struct task_struct *p = current;
911 int did_some_progress;
913 might_sleep_if(wait);
916 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
918 if (unlikely(*z == NULL)) {
919 /* Should this ever happen?? */
923 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
924 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
929 wakeup_kswapd(*z, order);
933 * OK, we're below the kswapd watermark and have kicked background
934 * reclaim. Now things get more complex, so set up alloc_flags according
935 * to how we want to proceed.
937 * The caller may dip into page reserves a bit more if the caller
938 * cannot run direct reclaim, or if the caller has realtime scheduling
939 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
940 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
942 alloc_flags = ALLOC_WMARK_MIN;
943 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
944 alloc_flags |= ALLOC_HARDER;
945 if (gfp_mask & __GFP_HIGH)
946 alloc_flags |= ALLOC_HIGH;
947 alloc_flags |= ALLOC_CPUSET;
950 * Go through the zonelist again. Let __GFP_HIGH and allocations
951 * coming from realtime tasks go deeper into reserves.
953 * This is the last chance, in general, before the goto nopage.
954 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
955 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
957 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
961 /* This allocation should allow future memory freeing. */
963 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
964 && !in_interrupt()) {
965 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
967 /* go through the zonelist yet again, ignoring mins */
968 page = get_page_from_freelist(gfp_mask, order,
969 zonelist, ALLOC_NO_WATERMARKS);
972 if (gfp_mask & __GFP_NOFAIL) {
973 blk_congestion_wait(WRITE, HZ/50);
980 /* Atomic allocations - we can't balance anything */
987 /* We now go into synchronous reclaim */
988 cpuset_memory_pressure_bump();
989 p->flags |= PF_MEMALLOC;
990 reclaim_state.reclaimed_slab = 0;
991 p->reclaim_state = &reclaim_state;
993 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
995 p->reclaim_state = NULL;
996 p->flags &= ~PF_MEMALLOC;
1000 if (likely(did_some_progress)) {
1001 page = get_page_from_freelist(gfp_mask, order,
1002 zonelist, alloc_flags);
1005 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1007 * Go through the zonelist yet one more time, keep
1008 * very high watermark here, this is only to catch
1009 * a parallel oom killing, we must fail if we're still
1010 * under heavy pressure.
1012 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1013 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1017 out_of_memory(zonelist, gfp_mask, order);
1022 * Don't let big-order allocations loop unless the caller explicitly
1023 * requests that. Wait for some write requests to complete then retry.
1025 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1026 * <= 3, but that may not be true in other implementations.
1029 if (!(gfp_mask & __GFP_NORETRY)) {
1030 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1032 if (gfp_mask & __GFP_NOFAIL)
1036 blk_congestion_wait(WRITE, HZ/50);
1041 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1042 printk(KERN_WARNING "%s: page allocation failure."
1043 " order:%d, mode:0x%x\n",
1044 p->comm, order, gfp_mask);
1052 EXPORT_SYMBOL(__alloc_pages);
1055 * Common helper functions.
1057 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1060 page = alloc_pages(gfp_mask, order);
1063 return (unsigned long) page_address(page);
1066 EXPORT_SYMBOL(__get_free_pages);
1068 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1073 * get_zeroed_page() returns a 32-bit address, which cannot represent
1076 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1078 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1080 return (unsigned long) page_address(page);
1084 EXPORT_SYMBOL(get_zeroed_page);
1086 void __pagevec_free(struct pagevec *pvec)
1088 int i = pagevec_count(pvec);
1091 free_hot_cold_page(pvec->pages[i], pvec->cold);
1094 fastcall void __free_pages(struct page *page, unsigned int order)
1096 if (put_page_testzero(page)) {
1098 free_hot_page(page);
1100 __free_pages_ok(page, order);
1104 EXPORT_SYMBOL(__free_pages);
1106 fastcall void free_pages(unsigned long addr, unsigned int order)
1109 BUG_ON(!virt_addr_valid((void *)addr));
1110 __free_pages(virt_to_page((void *)addr), order);
1114 EXPORT_SYMBOL(free_pages);
1117 * Total amount of free (allocatable) RAM:
1119 unsigned int nr_free_pages(void)
1121 unsigned int sum = 0;
1125 sum += zone->free_pages;
1130 EXPORT_SYMBOL(nr_free_pages);
1133 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1135 unsigned int i, sum = 0;
1137 for (i = 0; i < MAX_NR_ZONES; i++)
1138 sum += pgdat->node_zones[i].free_pages;
1144 static unsigned int nr_free_zone_pages(int offset)
1146 /* Just pick one node, since fallback list is circular */
1147 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1148 unsigned int sum = 0;
1150 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1151 struct zone **zonep = zonelist->zones;
1154 for (zone = *zonep++; zone; zone = *zonep++) {
1155 unsigned long size = zone->present_pages;
1156 unsigned long high = zone->pages_high;
1165 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1167 unsigned int nr_free_buffer_pages(void)
1169 return nr_free_zone_pages(gfp_zone(GFP_USER));
1173 * Amount of free RAM allocatable within all zones
1175 unsigned int nr_free_pagecache_pages(void)
1177 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1180 #ifdef CONFIG_HIGHMEM
1181 unsigned int nr_free_highpages (void)
1184 unsigned int pages = 0;
1186 for_each_pgdat(pgdat)
1187 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1194 static void show_node(struct zone *zone)
1196 printk("Node %d ", zone->zone_pgdat->node_id);
1199 #define show_node(zone) do { } while (0)
1203 * Accumulate the page_state information across all CPUs.
1204 * The result is unavoidably approximate - it can change
1205 * during and after execution of this function.
1207 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1209 atomic_t nr_pagecache = ATOMIC_INIT(0);
1210 EXPORT_SYMBOL(nr_pagecache);
1212 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1215 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1219 memset(ret, 0, nr * sizeof(unsigned long));
1220 cpus_and(*cpumask, *cpumask, cpu_online_map);
1222 for_each_cpu_mask(cpu, *cpumask) {
1228 in = (unsigned long *)&per_cpu(page_states, cpu);
1230 next_cpu = next_cpu(cpu, *cpumask);
1231 if (likely(next_cpu < NR_CPUS))
1232 prefetch(&per_cpu(page_states, next_cpu));
1234 out = (unsigned long *)ret;
1235 for (off = 0; off < nr; off++)
1240 void get_page_state_node(struct page_state *ret, int node)
1243 cpumask_t mask = node_to_cpumask(node);
1245 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1246 nr /= sizeof(unsigned long);
1248 __get_page_state(ret, nr+1, &mask);
1251 void get_page_state(struct page_state *ret)
1254 cpumask_t mask = CPU_MASK_ALL;
1256 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1257 nr /= sizeof(unsigned long);
1259 __get_page_state(ret, nr + 1, &mask);
1262 void get_full_page_state(struct page_state *ret)
1264 cpumask_t mask = CPU_MASK_ALL;
1266 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1269 unsigned long read_page_state_offset(unsigned long offset)
1271 unsigned long ret = 0;
1274 for_each_online_cpu(cpu) {
1277 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1278 ret += *((unsigned long *)in);
1283 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1287 ptr = &__get_cpu_var(page_states);
1288 *(unsigned long *)(ptr + offset) += delta;
1290 EXPORT_SYMBOL(__mod_page_state_offset);
1292 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1294 unsigned long flags;
1297 local_irq_save(flags);
1298 ptr = &__get_cpu_var(page_states);
1299 *(unsigned long *)(ptr + offset) += delta;
1300 local_irq_restore(flags);
1302 EXPORT_SYMBOL(mod_page_state_offset);
1304 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1305 unsigned long *free, struct pglist_data *pgdat)
1307 struct zone *zones = pgdat->node_zones;
1313 for (i = 0; i < MAX_NR_ZONES; i++) {
1314 *active += zones[i].nr_active;
1315 *inactive += zones[i].nr_inactive;
1316 *free += zones[i].free_pages;
1320 void get_zone_counts(unsigned long *active,
1321 unsigned long *inactive, unsigned long *free)
1323 struct pglist_data *pgdat;
1328 for_each_pgdat(pgdat) {
1329 unsigned long l, m, n;
1330 __get_zone_counts(&l, &m, &n, pgdat);
1337 void si_meminfo(struct sysinfo *val)
1339 val->totalram = totalram_pages;
1341 val->freeram = nr_free_pages();
1342 val->bufferram = nr_blockdev_pages();
1343 #ifdef CONFIG_HIGHMEM
1344 val->totalhigh = totalhigh_pages;
1345 val->freehigh = nr_free_highpages();
1350 val->mem_unit = PAGE_SIZE;
1353 EXPORT_SYMBOL(si_meminfo);
1356 void si_meminfo_node(struct sysinfo *val, int nid)
1358 pg_data_t *pgdat = NODE_DATA(nid);
1360 val->totalram = pgdat->node_present_pages;
1361 val->freeram = nr_free_pages_pgdat(pgdat);
1362 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1363 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1364 val->mem_unit = PAGE_SIZE;
1368 #define K(x) ((x) << (PAGE_SHIFT-10))
1371 * Show free area list (used inside shift_scroll-lock stuff)
1372 * We also calculate the percentage fragmentation. We do this by counting the
1373 * memory on each free list with the exception of the first item on the list.
1375 void show_free_areas(void)
1377 struct page_state ps;
1378 int cpu, temperature;
1379 unsigned long active;
1380 unsigned long inactive;
1384 for_each_zone(zone) {
1386 printk("%s per-cpu:", zone->name);
1388 if (!populated_zone(zone)) {
1394 for_each_online_cpu(cpu) {
1395 struct per_cpu_pageset *pageset;
1397 pageset = zone_pcp(zone, cpu);
1399 for (temperature = 0; temperature < 2; temperature++)
1400 printk("cpu %d %s: high %d, batch %d used:%d\n",
1402 temperature ? "cold" : "hot",
1403 pageset->pcp[temperature].high,
1404 pageset->pcp[temperature].batch,
1405 pageset->pcp[temperature].count);
1409 get_page_state(&ps);
1410 get_zone_counts(&active, &inactive, &free);
1412 printk("Free pages: %11ukB (%ukB HighMem)\n",
1414 K(nr_free_highpages()));
1416 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1417 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1426 ps.nr_page_table_pages);
1428 for_each_zone(zone) {
1440 " pages_scanned:%lu"
1441 " all_unreclaimable? %s"
1444 K(zone->free_pages),
1447 K(zone->pages_high),
1449 K(zone->nr_inactive),
1450 K(zone->present_pages),
1451 zone->pages_scanned,
1452 (zone->all_unreclaimable ? "yes" : "no")
1454 printk("lowmem_reserve[]:");
1455 for (i = 0; i < MAX_NR_ZONES; i++)
1456 printk(" %lu", zone->lowmem_reserve[i]);
1460 for_each_zone(zone) {
1461 unsigned long nr, flags, order, total = 0;
1464 printk("%s: ", zone->name);
1465 if (!populated_zone(zone)) {
1470 spin_lock_irqsave(&zone->lock, flags);
1471 for (order = 0; order < MAX_ORDER; order++) {
1472 nr = zone->free_area[order].nr_free;
1473 total += nr << order;
1474 printk("%lu*%lukB ", nr, K(1UL) << order);
1476 spin_unlock_irqrestore(&zone->lock, flags);
1477 printk("= %lukB\n", K(total));
1480 show_swap_cache_info();
1484 * Builds allocation fallback zone lists.
1486 * Add all populated zones of a node to the zonelist.
1488 static int __init build_zonelists_node(pg_data_t *pgdat,
1489 struct zonelist *zonelist, int nr_zones, int zone_type)
1493 BUG_ON(zone_type > ZONE_HIGHMEM);
1496 zone = pgdat->node_zones + zone_type;
1497 if (populated_zone(zone)) {
1498 #ifndef CONFIG_HIGHMEM
1499 BUG_ON(zone_type > ZONE_NORMAL);
1501 zonelist->zones[nr_zones++] = zone;
1502 check_highest_zone(zone_type);
1506 } while (zone_type >= 0);
1510 static inline int highest_zone(int zone_bits)
1512 int res = ZONE_NORMAL;
1513 if (zone_bits & (__force int)__GFP_HIGHMEM)
1515 if (zone_bits & (__force int)__GFP_DMA32)
1517 if (zone_bits & (__force int)__GFP_DMA)
1523 #define MAX_NODE_LOAD (num_online_nodes())
1524 static int __initdata node_load[MAX_NUMNODES];
1526 * find_next_best_node - find the next node that should appear in a given node's fallback list
1527 * @node: node whose fallback list we're appending
1528 * @used_node_mask: nodemask_t of already used nodes
1530 * We use a number of factors to determine which is the next node that should
1531 * appear on a given node's fallback list. The node should not have appeared
1532 * already in @node's fallback list, and it should be the next closest node
1533 * according to the distance array (which contains arbitrary distance values
1534 * from each node to each node in the system), and should also prefer nodes
1535 * with no CPUs, since presumably they'll have very little allocation pressure
1536 * on them otherwise.
1537 * It returns -1 if no node is found.
1539 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1542 int min_val = INT_MAX;
1545 /* Use the local node if we haven't already */
1546 if (!node_isset(node, *used_node_mask)) {
1547 node_set(node, *used_node_mask);
1551 for_each_online_node(n) {
1554 /* Don't want a node to appear more than once */
1555 if (node_isset(n, *used_node_mask))
1558 /* Use the distance array to find the distance */
1559 val = node_distance(node, n);
1561 /* Penalize nodes under us ("prefer the next node") */
1564 /* Give preference to headless and unused nodes */
1565 tmp = node_to_cpumask(n);
1566 if (!cpus_empty(tmp))
1567 val += PENALTY_FOR_NODE_WITH_CPUS;
1569 /* Slight preference for less loaded node */
1570 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1571 val += node_load[n];
1573 if (val < min_val) {
1580 node_set(best_node, *used_node_mask);
1585 static void __init build_zonelists(pg_data_t *pgdat)
1587 int i, j, k, node, local_node;
1588 int prev_node, load;
1589 struct zonelist *zonelist;
1590 nodemask_t used_mask;
1592 /* initialize zonelists */
1593 for (i = 0; i < GFP_ZONETYPES; i++) {
1594 zonelist = pgdat->node_zonelists + i;
1595 zonelist->zones[0] = NULL;
1598 /* NUMA-aware ordering of nodes */
1599 local_node = pgdat->node_id;
1600 load = num_online_nodes();
1601 prev_node = local_node;
1602 nodes_clear(used_mask);
1603 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1604 int distance = node_distance(local_node, node);
1607 * If another node is sufficiently far away then it is better
1608 * to reclaim pages in a zone before going off node.
1610 if (distance > RECLAIM_DISTANCE)
1611 zone_reclaim_mode = 1;
1614 * We don't want to pressure a particular node.
1615 * So adding penalty to the first node in same
1616 * distance group to make it round-robin.
1619 if (distance != node_distance(local_node, prev_node))
1620 node_load[node] += load;
1623 for (i = 0; i < GFP_ZONETYPES; i++) {
1624 zonelist = pgdat->node_zonelists + i;
1625 for (j = 0; zonelist->zones[j] != NULL; j++);
1627 k = highest_zone(i);
1629 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1630 zonelist->zones[j] = NULL;
1635 #else /* CONFIG_NUMA */
1637 static void __init build_zonelists(pg_data_t *pgdat)
1639 int i, j, k, node, local_node;
1641 local_node = pgdat->node_id;
1642 for (i = 0; i < GFP_ZONETYPES; i++) {
1643 struct zonelist *zonelist;
1645 zonelist = pgdat->node_zonelists + i;
1648 k = highest_zone(i);
1649 j = build_zonelists_node(pgdat, zonelist, j, k);
1651 * Now we build the zonelist so that it contains the zones
1652 * of all the other nodes.
1653 * We don't want to pressure a particular node, so when
1654 * building the zones for node N, we make sure that the
1655 * zones coming right after the local ones are those from
1656 * node N+1 (modulo N)
1658 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1659 if (!node_online(node))
1661 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1663 for (node = 0; node < local_node; node++) {
1664 if (!node_online(node))
1666 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1669 zonelist->zones[j] = NULL;
1673 #endif /* CONFIG_NUMA */
1675 void __init build_all_zonelists(void)
1679 for_each_online_node(i)
1680 build_zonelists(NODE_DATA(i));
1681 printk("Built %i zonelists\n", num_online_nodes());
1682 cpuset_init_current_mems_allowed();
1686 * Helper functions to size the waitqueue hash table.
1687 * Essentially these want to choose hash table sizes sufficiently
1688 * large so that collisions trying to wait on pages are rare.
1689 * But in fact, the number of active page waitqueues on typical
1690 * systems is ridiculously low, less than 200. So this is even
1691 * conservative, even though it seems large.
1693 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1694 * waitqueues, i.e. the size of the waitq table given the number of pages.
1696 #define PAGES_PER_WAITQUEUE 256
1698 static inline unsigned long wait_table_size(unsigned long pages)
1700 unsigned long size = 1;
1702 pages /= PAGES_PER_WAITQUEUE;
1704 while (size < pages)
1708 * Once we have dozens or even hundreds of threads sleeping
1709 * on IO we've got bigger problems than wait queue collision.
1710 * Limit the size of the wait table to a reasonable size.
1712 size = min(size, 4096UL);
1714 return max(size, 4UL);
1718 * This is an integer logarithm so that shifts can be used later
1719 * to extract the more random high bits from the multiplicative
1720 * hash function before the remainder is taken.
1722 static inline unsigned long wait_table_bits(unsigned long size)
1727 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1729 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1730 unsigned long *zones_size, unsigned long *zholes_size)
1732 unsigned long realtotalpages, totalpages = 0;
1735 for (i = 0; i < MAX_NR_ZONES; i++)
1736 totalpages += zones_size[i];
1737 pgdat->node_spanned_pages = totalpages;
1739 realtotalpages = totalpages;
1741 for (i = 0; i < MAX_NR_ZONES; i++)
1742 realtotalpages -= zholes_size[i];
1743 pgdat->node_present_pages = realtotalpages;
1744 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1749 * Initially all pages are reserved - free ones are freed
1750 * up by free_all_bootmem() once the early boot process is
1751 * done. Non-atomic initialization, single-pass.
1753 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1754 unsigned long start_pfn)
1757 unsigned long end_pfn = start_pfn + size;
1760 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1761 if (!early_pfn_valid(pfn))
1763 page = pfn_to_page(pfn);
1764 set_page_links(page, zone, nid, pfn);
1765 set_page_count(page, 1);
1766 reset_page_mapcount(page);
1767 SetPageReserved(page);
1768 INIT_LIST_HEAD(&page->lru);
1769 #ifdef WANT_PAGE_VIRTUAL
1770 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1771 if (!is_highmem_idx(zone))
1772 set_page_address(page, __va(pfn << PAGE_SHIFT));
1777 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1781 for (order = 0; order < MAX_ORDER ; order++) {
1782 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1783 zone->free_area[order].nr_free = 0;
1787 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1788 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1791 unsigned long snum = pfn_to_section_nr(pfn);
1792 unsigned long end = pfn_to_section_nr(pfn + size);
1795 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1797 for (; snum <= end; snum++)
1798 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1801 #ifndef __HAVE_ARCH_MEMMAP_INIT
1802 #define memmap_init(size, nid, zone, start_pfn) \
1803 memmap_init_zone((size), (nid), (zone), (start_pfn))
1806 static int __cpuinit zone_batchsize(struct zone *zone)
1811 * The per-cpu-pages pools are set to around 1000th of the
1812 * size of the zone. But no more than 1/2 of a meg.
1814 * OK, so we don't know how big the cache is. So guess.
1816 batch = zone->present_pages / 1024;
1817 if (batch * PAGE_SIZE > 512 * 1024)
1818 batch = (512 * 1024) / PAGE_SIZE;
1819 batch /= 4; /* We effectively *= 4 below */
1824 * Clamp the batch to a 2^n - 1 value. Having a power
1825 * of 2 value was found to be more likely to have
1826 * suboptimal cache aliasing properties in some cases.
1828 * For example if 2 tasks are alternately allocating
1829 * batches of pages, one task can end up with a lot
1830 * of pages of one half of the possible page colors
1831 * and the other with pages of the other colors.
1833 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1838 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1840 struct per_cpu_pages *pcp;
1842 memset(p, 0, sizeof(*p));
1844 pcp = &p->pcp[0]; /* hot */
1846 pcp->high = 6 * batch;
1847 pcp->batch = max(1UL, 1 * batch);
1848 INIT_LIST_HEAD(&pcp->list);
1850 pcp = &p->pcp[1]; /* cold*/
1852 pcp->high = 2 * batch;
1853 pcp->batch = max(1UL, batch/2);
1854 INIT_LIST_HEAD(&pcp->list);
1858 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1859 * to the value high for the pageset p.
1862 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1865 struct per_cpu_pages *pcp;
1867 pcp = &p->pcp[0]; /* hot list */
1869 pcp->batch = max(1UL, high/4);
1870 if ((high/4) > (PAGE_SHIFT * 8))
1871 pcp->batch = PAGE_SHIFT * 8;
1877 * Boot pageset table. One per cpu which is going to be used for all
1878 * zones and all nodes. The parameters will be set in such a way
1879 * that an item put on a list will immediately be handed over to
1880 * the buddy list. This is safe since pageset manipulation is done
1881 * with interrupts disabled.
1883 * Some NUMA counter updates may also be caught by the boot pagesets.
1885 * The boot_pagesets must be kept even after bootup is complete for
1886 * unused processors and/or zones. They do play a role for bootstrapping
1887 * hotplugged processors.
1889 * zoneinfo_show() and maybe other functions do
1890 * not check if the processor is online before following the pageset pointer.
1891 * Other parts of the kernel may not check if the zone is available.
1893 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1896 * Dynamically allocate memory for the
1897 * per cpu pageset array in struct zone.
1899 static int __cpuinit process_zones(int cpu)
1901 struct zone *zone, *dzone;
1903 for_each_zone(zone) {
1905 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1906 GFP_KERNEL, cpu_to_node(cpu));
1907 if (!zone_pcp(zone, cpu))
1910 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1912 if (percpu_pagelist_fraction)
1913 setup_pagelist_highmark(zone_pcp(zone, cpu),
1914 (zone->present_pages / percpu_pagelist_fraction));
1919 for_each_zone(dzone) {
1922 kfree(zone_pcp(dzone, cpu));
1923 zone_pcp(dzone, cpu) = NULL;
1928 static inline void free_zone_pagesets(int cpu)
1932 for_each_zone(zone) {
1933 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1935 zone_pcp(zone, cpu) = NULL;
1940 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1941 unsigned long action,
1944 int cpu = (long)hcpu;
1945 int ret = NOTIFY_OK;
1948 case CPU_UP_PREPARE:
1949 if (process_zones(cpu))
1952 case CPU_UP_CANCELED:
1954 free_zone_pagesets(cpu);
1962 static struct notifier_block pageset_notifier =
1963 { &pageset_cpuup_callback, NULL, 0 };
1965 void __init setup_per_cpu_pageset(void)
1969 /* Initialize per_cpu_pageset for cpu 0.
1970 * A cpuup callback will do this for every cpu
1971 * as it comes online
1973 err = process_zones(smp_processor_id());
1975 register_cpu_notifier(&pageset_notifier);
1981 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1984 struct pglist_data *pgdat = zone->zone_pgdat;
1987 * The per-page waitqueue mechanism uses hashed waitqueues
1990 zone->wait_table_size = wait_table_size(zone_size_pages);
1991 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1992 zone->wait_table = (wait_queue_head_t *)
1993 alloc_bootmem_node(pgdat, zone->wait_table_size
1994 * sizeof(wait_queue_head_t));
1996 for(i = 0; i < zone->wait_table_size; ++i)
1997 init_waitqueue_head(zone->wait_table + i);
2000 static __meminit void zone_pcp_init(struct zone *zone)
2003 unsigned long batch = zone_batchsize(zone);
2005 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2007 /* Early boot. Slab allocator not functional yet */
2008 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2009 setup_pageset(&boot_pageset[cpu],0);
2011 setup_pageset(zone_pcp(zone,cpu), batch);
2014 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2015 zone->name, zone->present_pages, batch);
2018 static __meminit void init_currently_empty_zone(struct zone *zone,
2019 unsigned long zone_start_pfn, unsigned long size)
2021 struct pglist_data *pgdat = zone->zone_pgdat;
2023 zone_wait_table_init(zone, size);
2024 pgdat->nr_zones = zone_idx(zone) + 1;
2026 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2027 zone->zone_start_pfn = zone_start_pfn;
2029 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2031 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2035 * Set up the zone data structures:
2036 * - mark all pages reserved
2037 * - mark all memory queues empty
2038 * - clear the memory bitmaps
2040 static void __init free_area_init_core(struct pglist_data *pgdat,
2041 unsigned long *zones_size, unsigned long *zholes_size)
2044 int nid = pgdat->node_id;
2045 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2047 pgdat_resize_init(pgdat);
2048 pgdat->nr_zones = 0;
2049 init_waitqueue_head(&pgdat->kswapd_wait);
2050 pgdat->kswapd_max_order = 0;
2052 for (j = 0; j < MAX_NR_ZONES; j++) {
2053 struct zone *zone = pgdat->node_zones + j;
2054 unsigned long size, realsize;
2056 realsize = size = zones_size[j];
2058 realsize -= zholes_size[j];
2060 if (j < ZONE_HIGHMEM)
2061 nr_kernel_pages += realsize;
2062 nr_all_pages += realsize;
2064 zone->spanned_pages = size;
2065 zone->present_pages = realsize;
2066 zone->name = zone_names[j];
2067 spin_lock_init(&zone->lock);
2068 spin_lock_init(&zone->lru_lock);
2069 zone_seqlock_init(zone);
2070 zone->zone_pgdat = pgdat;
2071 zone->free_pages = 0;
2073 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2075 zone_pcp_init(zone);
2076 INIT_LIST_HEAD(&zone->active_list);
2077 INIT_LIST_HEAD(&zone->inactive_list);
2078 zone->nr_scan_active = 0;
2079 zone->nr_scan_inactive = 0;
2080 zone->nr_active = 0;
2081 zone->nr_inactive = 0;
2082 atomic_set(&zone->reclaim_in_progress, 0);
2086 zonetable_add(zone, nid, j, zone_start_pfn, size);
2087 init_currently_empty_zone(zone, zone_start_pfn, size);
2088 zone_start_pfn += size;
2092 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2094 /* Skip empty nodes */
2095 if (!pgdat->node_spanned_pages)
2098 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2099 /* ia64 gets its own node_mem_map, before this, without bootmem */
2100 if (!pgdat->node_mem_map) {
2104 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2105 map = alloc_remap(pgdat->node_id, size);
2107 map = alloc_bootmem_node(pgdat, size);
2108 pgdat->node_mem_map = map;
2110 #ifdef CONFIG_FLATMEM
2112 * With no DISCONTIG, the global mem_map is just set as node 0's
2114 if (pgdat == NODE_DATA(0))
2115 mem_map = NODE_DATA(0)->node_mem_map;
2117 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2120 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2121 unsigned long *zones_size, unsigned long node_start_pfn,
2122 unsigned long *zholes_size)
2124 pgdat->node_id = nid;
2125 pgdat->node_start_pfn = node_start_pfn;
2126 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2128 alloc_node_mem_map(pgdat);
2130 free_area_init_core(pgdat, zones_size, zholes_size);
2133 #ifndef CONFIG_NEED_MULTIPLE_NODES
2134 static bootmem_data_t contig_bootmem_data;
2135 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2137 EXPORT_SYMBOL(contig_page_data);
2140 void __init free_area_init(unsigned long *zones_size)
2142 free_area_init_node(0, NODE_DATA(0), zones_size,
2143 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2146 #ifdef CONFIG_PROC_FS
2148 #include <linux/seq_file.h>
2150 static void *frag_start(struct seq_file *m, loff_t *pos)
2155 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2161 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2163 pg_data_t *pgdat = (pg_data_t *)arg;
2166 return pgdat->pgdat_next;
2169 static void frag_stop(struct seq_file *m, void *arg)
2174 * This walks the free areas for each zone.
2176 static int frag_show(struct seq_file *m, void *arg)
2178 pg_data_t *pgdat = (pg_data_t *)arg;
2180 struct zone *node_zones = pgdat->node_zones;
2181 unsigned long flags;
2184 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2185 if (!populated_zone(zone))
2188 spin_lock_irqsave(&zone->lock, flags);
2189 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2190 for (order = 0; order < MAX_ORDER; ++order)
2191 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2192 spin_unlock_irqrestore(&zone->lock, flags);
2198 struct seq_operations fragmentation_op = {
2199 .start = frag_start,
2206 * Output information about zones in @pgdat.
2208 static int zoneinfo_show(struct seq_file *m, void *arg)
2210 pg_data_t *pgdat = arg;
2212 struct zone *node_zones = pgdat->node_zones;
2213 unsigned long flags;
2215 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2218 if (!populated_zone(zone))
2221 spin_lock_irqsave(&zone->lock, flags);
2222 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2230 "\n scanned %lu (a: %lu i: %lu)"
2239 zone->pages_scanned,
2240 zone->nr_scan_active, zone->nr_scan_inactive,
2241 zone->spanned_pages,
2242 zone->present_pages);
2244 "\n protection: (%lu",
2245 zone->lowmem_reserve[0]);
2246 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2247 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2251 for_each_online_cpu(i) {
2252 struct per_cpu_pageset *pageset;
2255 pageset = zone_pcp(zone, i);
2256 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2257 if (pageset->pcp[j].count)
2260 if (j == ARRAY_SIZE(pageset->pcp))
2262 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2264 "\n cpu: %i pcp: %i"
2269 pageset->pcp[j].count,
2270 pageset->pcp[j].high,
2271 pageset->pcp[j].batch);
2277 "\n numa_foreign: %lu"
2278 "\n interleave_hit: %lu"
2279 "\n local_node: %lu"
2280 "\n other_node: %lu",
2283 pageset->numa_foreign,
2284 pageset->interleave_hit,
2285 pageset->local_node,
2286 pageset->other_node);
2290 "\n all_unreclaimable: %u"
2291 "\n prev_priority: %i"
2292 "\n temp_priority: %i"
2293 "\n start_pfn: %lu",
2294 zone->all_unreclaimable,
2295 zone->prev_priority,
2296 zone->temp_priority,
2297 zone->zone_start_pfn);
2298 spin_unlock_irqrestore(&zone->lock, flags);
2304 struct seq_operations zoneinfo_op = {
2305 .start = frag_start, /* iterate over all zones. The same as in
2309 .show = zoneinfo_show,
2312 static char *vmstat_text[] = {
2316 "nr_page_table_pages",
2347 "pgscan_kswapd_high",
2348 "pgscan_kswapd_normal",
2349 "pgscan_kswapd_dma32",
2350 "pgscan_kswapd_dma",
2352 "pgscan_direct_high",
2353 "pgscan_direct_normal",
2354 "pgscan_direct_dma32",
2355 "pgscan_direct_dma",
2360 "kswapd_inodesteal",
2368 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2370 struct page_state *ps;
2372 if (*pos >= ARRAY_SIZE(vmstat_text))
2375 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2378 return ERR_PTR(-ENOMEM);
2379 get_full_page_state(ps);
2380 ps->pgpgin /= 2; /* sectors -> kbytes */
2382 return (unsigned long *)ps + *pos;
2385 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2388 if (*pos >= ARRAY_SIZE(vmstat_text))
2390 return (unsigned long *)m->private + *pos;
2393 static int vmstat_show(struct seq_file *m, void *arg)
2395 unsigned long *l = arg;
2396 unsigned long off = l - (unsigned long *)m->private;
2398 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2402 static void vmstat_stop(struct seq_file *m, void *arg)
2408 struct seq_operations vmstat_op = {
2409 .start = vmstat_start,
2410 .next = vmstat_next,
2411 .stop = vmstat_stop,
2412 .show = vmstat_show,
2415 #endif /* CONFIG_PROC_FS */
2417 #ifdef CONFIG_HOTPLUG_CPU
2418 static int page_alloc_cpu_notify(struct notifier_block *self,
2419 unsigned long action, void *hcpu)
2421 int cpu = (unsigned long)hcpu;
2423 unsigned long *src, *dest;
2425 if (action == CPU_DEAD) {
2428 /* Drain local pagecache count. */
2429 count = &per_cpu(nr_pagecache_local, cpu);
2430 atomic_add(*count, &nr_pagecache);
2432 local_irq_disable();
2435 /* Add dead cpu's page_states to our own. */
2436 dest = (unsigned long *)&__get_cpu_var(page_states);
2437 src = (unsigned long *)&per_cpu(page_states, cpu);
2439 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2449 #endif /* CONFIG_HOTPLUG_CPU */
2451 void __init page_alloc_init(void)
2453 hotcpu_notifier(page_alloc_cpu_notify, 0);
2457 * setup_per_zone_lowmem_reserve - called whenever
2458 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2459 * has a correct pages reserved value, so an adequate number of
2460 * pages are left in the zone after a successful __alloc_pages().
2462 static void setup_per_zone_lowmem_reserve(void)
2464 struct pglist_data *pgdat;
2467 for_each_pgdat(pgdat) {
2468 for (j = 0; j < MAX_NR_ZONES; j++) {
2469 struct zone *zone = pgdat->node_zones + j;
2470 unsigned long present_pages = zone->present_pages;
2472 zone->lowmem_reserve[j] = 0;
2474 for (idx = j-1; idx >= 0; idx--) {
2475 struct zone *lower_zone;
2477 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2478 sysctl_lowmem_reserve_ratio[idx] = 1;
2480 lower_zone = pgdat->node_zones + idx;
2481 lower_zone->lowmem_reserve[j] = present_pages /
2482 sysctl_lowmem_reserve_ratio[idx];
2483 present_pages += lower_zone->present_pages;
2490 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2491 * that the pages_{min,low,high} values for each zone are set correctly
2492 * with respect to min_free_kbytes.
2494 void setup_per_zone_pages_min(void)
2496 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2497 unsigned long lowmem_pages = 0;
2499 unsigned long flags;
2501 /* Calculate total number of !ZONE_HIGHMEM pages */
2502 for_each_zone(zone) {
2503 if (!is_highmem(zone))
2504 lowmem_pages += zone->present_pages;
2507 for_each_zone(zone) {
2509 spin_lock_irqsave(&zone->lru_lock, flags);
2510 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2511 if (is_highmem(zone)) {
2513 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2514 * need highmem pages, so cap pages_min to a small
2517 * The (pages_high-pages_low) and (pages_low-pages_min)
2518 * deltas controls asynch page reclaim, and so should
2519 * not be capped for highmem.
2523 min_pages = zone->present_pages / 1024;
2524 if (min_pages < SWAP_CLUSTER_MAX)
2525 min_pages = SWAP_CLUSTER_MAX;
2526 if (min_pages > 128)
2528 zone->pages_min = min_pages;
2531 * If it's a lowmem zone, reserve a number of pages
2532 * proportionate to the zone's size.
2534 zone->pages_min = tmp;
2537 zone->pages_low = zone->pages_min + tmp / 4;
2538 zone->pages_high = zone->pages_min + tmp / 2;
2539 spin_unlock_irqrestore(&zone->lru_lock, flags);
2544 * Initialise min_free_kbytes.
2546 * For small machines we want it small (128k min). For large machines
2547 * we want it large (64MB max). But it is not linear, because network
2548 * bandwidth does not increase linearly with machine size. We use
2550 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2551 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2567 static int __init init_per_zone_pages_min(void)
2569 unsigned long lowmem_kbytes;
2571 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2573 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2574 if (min_free_kbytes < 128)
2575 min_free_kbytes = 128;
2576 if (min_free_kbytes > 65536)
2577 min_free_kbytes = 65536;
2578 setup_per_zone_pages_min();
2579 setup_per_zone_lowmem_reserve();
2582 module_init(init_per_zone_pages_min)
2585 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2586 * that we can call two helper functions whenever min_free_kbytes
2589 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2590 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2592 proc_dointvec(table, write, file, buffer, length, ppos);
2593 setup_per_zone_pages_min();
2598 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2599 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2600 * whenever sysctl_lowmem_reserve_ratio changes.
2602 * The reserve ratio obviously has absolutely no relation with the
2603 * pages_min watermarks. The lowmem reserve ratio can only make sense
2604 * if in function of the boot time zone sizes.
2606 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2607 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2609 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2610 setup_per_zone_lowmem_reserve();
2615 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2616 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2617 * can have before it gets flushed back to buddy allocator.
2620 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2621 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2627 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2628 if (!write || (ret == -EINVAL))
2630 for_each_zone(zone) {
2631 for_each_online_cpu(cpu) {
2633 high = zone->present_pages / percpu_pagelist_fraction;
2634 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2640 __initdata int hashdist = HASHDIST_DEFAULT;
2643 static int __init set_hashdist(char *str)
2647 hashdist = simple_strtoul(str, &str, 0);
2650 __setup("hashdist=", set_hashdist);
2654 * allocate a large system hash table from bootmem
2655 * - it is assumed that the hash table must contain an exact power-of-2
2656 * quantity of entries
2657 * - limit is the number of hash buckets, not the total allocation size
2659 void *__init alloc_large_system_hash(const char *tablename,
2660 unsigned long bucketsize,
2661 unsigned long numentries,
2664 unsigned int *_hash_shift,
2665 unsigned int *_hash_mask,
2666 unsigned long limit)
2668 unsigned long long max = limit;
2669 unsigned long log2qty, size;
2672 /* allow the kernel cmdline to have a say */
2674 /* round applicable memory size up to nearest megabyte */
2675 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2676 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2677 numentries >>= 20 - PAGE_SHIFT;
2678 numentries <<= 20 - PAGE_SHIFT;
2680 /* limit to 1 bucket per 2^scale bytes of low memory */
2681 if (scale > PAGE_SHIFT)
2682 numentries >>= (scale - PAGE_SHIFT);
2684 numentries <<= (PAGE_SHIFT - scale);
2686 /* rounded up to nearest power of 2 in size */
2687 numentries = 1UL << (long_log2(numentries) + 1);
2689 /* limit allocation size to 1/16 total memory by default */
2691 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2692 do_div(max, bucketsize);
2695 if (numentries > max)
2698 log2qty = long_log2(numentries);
2701 size = bucketsize << log2qty;
2702 if (flags & HASH_EARLY)
2703 table = alloc_bootmem(size);
2705 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2707 unsigned long order;
2708 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2710 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2712 } while (!table && size > PAGE_SIZE && --log2qty);
2715 panic("Failed to allocate %s hash table\n", tablename);
2717 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2720 long_log2(size) - PAGE_SHIFT,
2724 *_hash_shift = log2qty;
2726 *_hash_mask = (1 << log2qty) - 1;