1 /******************************************************************************
2 *******************************************************************************
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
11 *******************************************************************************
12 ******************************************************************************/
17 * This is the appallingly named "mid-level" comms layer.
19 * Its purpose is to take packets from the "real" comms layer,
20 * split them up into packets and pass them to the interested
21 * part of the locking mechanism.
23 * It also takes messages from the locking layer, formats them
24 * into packets and sends them to the comms layer.
27 #include "dlm_internal.h"
35 static void copy_from_cb(void *dst, const void *base, unsigned offset,
36 unsigned len, unsigned limit)
40 if ((copy + offset) > limit)
41 copy = limit - offset;
42 memcpy(dst, base + offset, copy);
45 memcpy(dst + copy, base, len);
49 * Called from the low-level comms layer to process a buffer of
52 * Only complete messages are processed here, any "spare" bytes from
53 * the end of a buffer are saved and tacked onto the front of the next
54 * message that comes in. I doubt this will happen very often but we
55 * need to be able to cope with it and I don't want the task to be waiting
56 * for packets to come in when there is useful work to be done.
59 int dlm_process_incoming_buffer(int nodeid, const void *base,
60 unsigned offset, unsigned len, unsigned limit)
62 unsigned char __tmp[DLM_INBUF_LEN];
63 struct dlm_header *msg = (struct dlm_header *) __tmp;
69 while (len > sizeof(struct dlm_header)) {
71 /* Copy just the header to check the total length. The
72 message may wrap around the end of the buffer back to the
73 start, so we need to use a temp buffer and copy_from_cb. */
75 copy_from_cb(msg, base, offset, sizeof(struct dlm_header),
78 msglen = le16_to_cpu(msg->h_length);
79 lockspace = msg->h_lockspace;
82 if (msglen < sizeof(struct dlm_header))
85 if (msglen > dlm_config.ci_buffer_size) {
86 log_print("message size %d from %d too big, buf len %d",
92 /* If only part of the full message is contained in this
93 buffer, then do nothing and wait for lowcomms to call
94 us again later with more data. We return 0 meaning
95 we've consumed none of the input buffer. */
100 /* Allocate a larger temp buffer if the full message won't fit
101 in the buffer on the stack (which should work for most
102 ordinary messages). */
104 if (msglen > sizeof(__tmp) &&
105 msg == (struct dlm_header *) __tmp) {
106 msg = kmalloc(dlm_config.ci_buffer_size, GFP_KERNEL);
111 copy_from_cb(msg, base, offset, msglen, limit);
113 BUG_ON(lockspace != msg->h_lockspace);
117 offset &= (limit - 1);
120 switch (msg->h_cmd) {
122 dlm_receive_message(msg, nodeid, 0);
126 dlm_receive_rcom(msg, nodeid);
130 log_print("unknown msg type %x from %u: %u %u %u %u",
131 msg->h_cmd, nodeid, msglen, len, offset, ret);
135 if (msg != (struct dlm_header *) __tmp)
138 return err ? err : ret;