2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.10"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
110 static int skge_get_regs_len(struct net_device *dev)
116 * Returns copy of whole control register region
117 * Note: skip RAM address register because accessing it will
120 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
123 const struct skge_port *skge = netdev_priv(dev);
124 const void __iomem *io = skge->hw->regs;
127 memset(p, 0, regs->len);
128 memcpy_fromio(p, io, B3_RAM_ADDR);
130 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
131 regs->len - B3_RI_WTO_R1);
134 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 static u32 wol_supported(const struct skge_hw *hw)
137 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0)
138 return WAKE_MAGIC | WAKE_PHY;
143 static u32 pci_wake_enabled(struct pci_dev *dev)
145 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
148 /* If device doesn't support PM Capabilities, but request is to disable
149 * wake events, it's a nop; otherwise fail */
153 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
155 value &= PCI_PM_CAP_PME_MASK;
156 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
161 static void skge_wol_init(struct skge_port *skge)
163 struct skge_hw *hw = skge->hw;
164 int port = skge->port;
165 enum pause_control save_mode;
168 /* Bring hardware out of reset */
169 skge_write16(hw, B0_CTST, CS_RST_CLR);
170 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
172 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
173 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
175 /* Force to 10/100 skge_reset will re-enable on resume */
176 save_mode = skge->flow_control;
177 skge->flow_control = FLOW_MODE_SYMMETRIC;
179 ctrl = skge->advertising;
180 skge->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
182 skge_phy_reset(skge);
184 skge->flow_control = save_mode;
185 skge->advertising = ctrl;
187 /* Set GMAC to no flow control and auto update for speed/duplex */
188 gma_write16(hw, port, GM_GP_CTRL,
189 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
190 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
192 /* Set WOL address */
193 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
194 skge->netdev->dev_addr, ETH_ALEN);
196 /* Turn on appropriate WOL control bits */
197 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
199 if (skge->wol & WAKE_PHY)
200 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
202 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
204 if (skge->wol & WAKE_MAGIC)
205 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
207 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
209 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
210 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
213 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
216 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
218 struct skge_port *skge = netdev_priv(dev);
220 wol->supported = wol_supported(skge->hw);
221 wol->wolopts = skge->wol;
224 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
226 struct skge_port *skge = netdev_priv(dev);
227 struct skge_hw *hw = skge->hw;
229 if (wol->wolopts & wol_supported(hw))
232 skge->wol = wol->wolopts;
233 if (!netif_running(dev))
238 /* Determine supported/advertised modes based on hardware.
239 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
241 static u32 skge_supported_modes(const struct skge_hw *hw)
246 supported = SUPPORTED_10baseT_Half
247 | SUPPORTED_10baseT_Full
248 | SUPPORTED_100baseT_Half
249 | SUPPORTED_100baseT_Full
250 | SUPPORTED_1000baseT_Half
251 | SUPPORTED_1000baseT_Full
252 | SUPPORTED_Autoneg| SUPPORTED_TP;
254 if (hw->chip_id == CHIP_ID_GENESIS)
255 supported &= ~(SUPPORTED_10baseT_Half
256 | SUPPORTED_10baseT_Full
257 | SUPPORTED_100baseT_Half
258 | SUPPORTED_100baseT_Full);
260 else if (hw->chip_id == CHIP_ID_YUKON)
261 supported &= ~SUPPORTED_1000baseT_Half;
263 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
264 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
269 static int skge_get_settings(struct net_device *dev,
270 struct ethtool_cmd *ecmd)
272 struct skge_port *skge = netdev_priv(dev);
273 struct skge_hw *hw = skge->hw;
275 ecmd->transceiver = XCVR_INTERNAL;
276 ecmd->supported = skge_supported_modes(hw);
279 ecmd->port = PORT_TP;
280 ecmd->phy_address = hw->phy_addr;
282 ecmd->port = PORT_FIBRE;
284 ecmd->advertising = skge->advertising;
285 ecmd->autoneg = skge->autoneg;
286 ecmd->speed = skge->speed;
287 ecmd->duplex = skge->duplex;
291 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
293 struct skge_port *skge = netdev_priv(dev);
294 const struct skge_hw *hw = skge->hw;
295 u32 supported = skge_supported_modes(hw);
297 if (ecmd->autoneg == AUTONEG_ENABLE) {
298 ecmd->advertising = supported;
304 switch (ecmd->speed) {
306 if (ecmd->duplex == DUPLEX_FULL)
307 setting = SUPPORTED_1000baseT_Full;
308 else if (ecmd->duplex == DUPLEX_HALF)
309 setting = SUPPORTED_1000baseT_Half;
314 if (ecmd->duplex == DUPLEX_FULL)
315 setting = SUPPORTED_100baseT_Full;
316 else if (ecmd->duplex == DUPLEX_HALF)
317 setting = SUPPORTED_100baseT_Half;
323 if (ecmd->duplex == DUPLEX_FULL)
324 setting = SUPPORTED_10baseT_Full;
325 else if (ecmd->duplex == DUPLEX_HALF)
326 setting = SUPPORTED_10baseT_Half;
334 if ((setting & supported) == 0)
337 skge->speed = ecmd->speed;
338 skge->duplex = ecmd->duplex;
341 skge->autoneg = ecmd->autoneg;
342 skge->advertising = ecmd->advertising;
344 if (netif_running(dev))
345 skge_phy_reset(skge);
350 static void skge_get_drvinfo(struct net_device *dev,
351 struct ethtool_drvinfo *info)
353 struct skge_port *skge = netdev_priv(dev);
355 strcpy(info->driver, DRV_NAME);
356 strcpy(info->version, DRV_VERSION);
357 strcpy(info->fw_version, "N/A");
358 strcpy(info->bus_info, pci_name(skge->hw->pdev));
361 static const struct skge_stat {
362 char name[ETH_GSTRING_LEN];
366 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
367 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
369 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
370 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
371 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
372 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
373 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
374 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
375 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
376 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
378 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
379 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
380 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
381 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
382 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
383 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
385 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
386 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
387 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
388 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
389 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
392 static int skge_get_stats_count(struct net_device *dev)
394 return ARRAY_SIZE(skge_stats);
397 static void skge_get_ethtool_stats(struct net_device *dev,
398 struct ethtool_stats *stats, u64 *data)
400 struct skge_port *skge = netdev_priv(dev);
402 if (skge->hw->chip_id == CHIP_ID_GENESIS)
403 genesis_get_stats(skge, data);
405 yukon_get_stats(skge, data);
408 /* Use hardware MIB variables for critical path statistics and
409 * transmit feedback not reported at interrupt.
410 * Other errors are accounted for in interrupt handler.
412 static struct net_device_stats *skge_get_stats(struct net_device *dev)
414 struct skge_port *skge = netdev_priv(dev);
415 u64 data[ARRAY_SIZE(skge_stats)];
417 if (skge->hw->chip_id == CHIP_ID_GENESIS)
418 genesis_get_stats(skge, data);
420 yukon_get_stats(skge, data);
422 skge->net_stats.tx_bytes = data[0];
423 skge->net_stats.rx_bytes = data[1];
424 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
425 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
426 skge->net_stats.multicast = data[3] + data[5];
427 skge->net_stats.collisions = data[10];
428 skge->net_stats.tx_aborted_errors = data[12];
430 return &skge->net_stats;
433 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
439 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
440 memcpy(data + i * ETH_GSTRING_LEN,
441 skge_stats[i].name, ETH_GSTRING_LEN);
446 static void skge_get_ring_param(struct net_device *dev,
447 struct ethtool_ringparam *p)
449 struct skge_port *skge = netdev_priv(dev);
451 p->rx_max_pending = MAX_RX_RING_SIZE;
452 p->tx_max_pending = MAX_TX_RING_SIZE;
453 p->rx_mini_max_pending = 0;
454 p->rx_jumbo_max_pending = 0;
456 p->rx_pending = skge->rx_ring.count;
457 p->tx_pending = skge->tx_ring.count;
458 p->rx_mini_pending = 0;
459 p->rx_jumbo_pending = 0;
462 static int skge_set_ring_param(struct net_device *dev,
463 struct ethtool_ringparam *p)
465 struct skge_port *skge = netdev_priv(dev);
468 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
469 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
472 skge->rx_ring.count = p->rx_pending;
473 skge->tx_ring.count = p->tx_pending;
475 if (netif_running(dev)) {
485 static u32 skge_get_msglevel(struct net_device *netdev)
487 struct skge_port *skge = netdev_priv(netdev);
488 return skge->msg_enable;
491 static void skge_set_msglevel(struct net_device *netdev, u32 value)
493 struct skge_port *skge = netdev_priv(netdev);
494 skge->msg_enable = value;
497 static int skge_nway_reset(struct net_device *dev)
499 struct skge_port *skge = netdev_priv(dev);
501 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
504 skge_phy_reset(skge);
508 static int skge_set_sg(struct net_device *dev, u32 data)
510 struct skge_port *skge = netdev_priv(dev);
511 struct skge_hw *hw = skge->hw;
513 if (hw->chip_id == CHIP_ID_GENESIS && data)
515 return ethtool_op_set_sg(dev, data);
518 static int skge_set_tx_csum(struct net_device *dev, u32 data)
520 struct skge_port *skge = netdev_priv(dev);
521 struct skge_hw *hw = skge->hw;
523 if (hw->chip_id == CHIP_ID_GENESIS && data)
526 return ethtool_op_set_tx_csum(dev, data);
529 static u32 skge_get_rx_csum(struct net_device *dev)
531 struct skge_port *skge = netdev_priv(dev);
533 return skge->rx_csum;
536 /* Only Yukon supports checksum offload. */
537 static int skge_set_rx_csum(struct net_device *dev, u32 data)
539 struct skge_port *skge = netdev_priv(dev);
541 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
544 skge->rx_csum = data;
548 static void skge_get_pauseparam(struct net_device *dev,
549 struct ethtool_pauseparam *ecmd)
551 struct skge_port *skge = netdev_priv(dev);
553 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
554 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
555 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
557 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
560 static int skge_set_pauseparam(struct net_device *dev,
561 struct ethtool_pauseparam *ecmd)
563 struct skge_port *skge = netdev_priv(dev);
564 struct ethtool_pauseparam old;
566 skge_get_pauseparam(dev, &old);
568 if (ecmd->autoneg != old.autoneg)
569 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
571 if (ecmd->rx_pause && ecmd->tx_pause)
572 skge->flow_control = FLOW_MODE_SYMMETRIC;
573 else if (ecmd->rx_pause && !ecmd->tx_pause)
574 skge->flow_control = FLOW_MODE_SYM_OR_REM;
575 else if (!ecmd->rx_pause && ecmd->tx_pause)
576 skge->flow_control = FLOW_MODE_LOC_SEND;
578 skge->flow_control = FLOW_MODE_NONE;
581 if (netif_running(dev))
582 skge_phy_reset(skge);
587 /* Chip internal frequency for clock calculations */
588 static inline u32 hwkhz(const struct skge_hw *hw)
590 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
593 /* Chip HZ to microseconds */
594 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
596 return (ticks * 1000) / hwkhz(hw);
599 /* Microseconds to chip HZ */
600 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
602 return hwkhz(hw) * usec / 1000;
605 static int skge_get_coalesce(struct net_device *dev,
606 struct ethtool_coalesce *ecmd)
608 struct skge_port *skge = netdev_priv(dev);
609 struct skge_hw *hw = skge->hw;
610 int port = skge->port;
612 ecmd->rx_coalesce_usecs = 0;
613 ecmd->tx_coalesce_usecs = 0;
615 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
616 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
617 u32 msk = skge_read32(hw, B2_IRQM_MSK);
619 if (msk & rxirqmask[port])
620 ecmd->rx_coalesce_usecs = delay;
621 if (msk & txirqmask[port])
622 ecmd->tx_coalesce_usecs = delay;
628 /* Note: interrupt timer is per board, but can turn on/off per port */
629 static int skge_set_coalesce(struct net_device *dev,
630 struct ethtool_coalesce *ecmd)
632 struct skge_port *skge = netdev_priv(dev);
633 struct skge_hw *hw = skge->hw;
634 int port = skge->port;
635 u32 msk = skge_read32(hw, B2_IRQM_MSK);
638 if (ecmd->rx_coalesce_usecs == 0)
639 msk &= ~rxirqmask[port];
640 else if (ecmd->rx_coalesce_usecs < 25 ||
641 ecmd->rx_coalesce_usecs > 33333)
644 msk |= rxirqmask[port];
645 delay = ecmd->rx_coalesce_usecs;
648 if (ecmd->tx_coalesce_usecs == 0)
649 msk &= ~txirqmask[port];
650 else if (ecmd->tx_coalesce_usecs < 25 ||
651 ecmd->tx_coalesce_usecs > 33333)
654 msk |= txirqmask[port];
655 delay = min(delay, ecmd->rx_coalesce_usecs);
658 skge_write32(hw, B2_IRQM_MSK, msk);
660 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
662 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
663 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
668 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
669 static void skge_led(struct skge_port *skge, enum led_mode mode)
671 struct skge_hw *hw = skge->hw;
672 int port = skge->port;
674 mutex_lock(&hw->phy_mutex);
675 if (hw->chip_id == CHIP_ID_GENESIS) {
678 if (hw->phy_type == SK_PHY_BCOM)
679 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
681 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
682 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
684 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
685 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
686 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
690 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
691 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
693 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
699 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
700 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
701 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
703 if (hw->phy_type == SK_PHY_BCOM)
704 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
706 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
715 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
716 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
717 PHY_M_LED_MO_DUP(MO_LED_OFF) |
718 PHY_M_LED_MO_10(MO_LED_OFF) |
719 PHY_M_LED_MO_100(MO_LED_OFF) |
720 PHY_M_LED_MO_1000(MO_LED_OFF) |
721 PHY_M_LED_MO_RX(MO_LED_OFF));
724 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
725 PHY_M_LED_PULS_DUR(PULS_170MS) |
726 PHY_M_LED_BLINK_RT(BLINK_84MS) |
730 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
731 PHY_M_LED_MO_RX(MO_LED_OFF) |
732 (skge->speed == SPEED_100 ?
733 PHY_M_LED_MO_100(MO_LED_ON) : 0));
736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
737 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
738 PHY_M_LED_MO_DUP(MO_LED_ON) |
739 PHY_M_LED_MO_10(MO_LED_ON) |
740 PHY_M_LED_MO_100(MO_LED_ON) |
741 PHY_M_LED_MO_1000(MO_LED_ON) |
742 PHY_M_LED_MO_RX(MO_LED_ON));
745 mutex_unlock(&hw->phy_mutex);
748 /* blink LED's for finding board */
749 static int skge_phys_id(struct net_device *dev, u32 data)
751 struct skge_port *skge = netdev_priv(dev);
753 enum led_mode mode = LED_MODE_TST;
755 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
756 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
761 skge_led(skge, mode);
762 mode ^= LED_MODE_TST;
764 if (msleep_interruptible(BLINK_MS))
769 /* back to regular LED state */
770 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
775 static const struct ethtool_ops skge_ethtool_ops = {
776 .get_settings = skge_get_settings,
777 .set_settings = skge_set_settings,
778 .get_drvinfo = skge_get_drvinfo,
779 .get_regs_len = skge_get_regs_len,
780 .get_regs = skge_get_regs,
781 .get_wol = skge_get_wol,
782 .set_wol = skge_set_wol,
783 .get_msglevel = skge_get_msglevel,
784 .set_msglevel = skge_set_msglevel,
785 .nway_reset = skge_nway_reset,
786 .get_link = ethtool_op_get_link,
787 .get_ringparam = skge_get_ring_param,
788 .set_ringparam = skge_set_ring_param,
789 .get_pauseparam = skge_get_pauseparam,
790 .set_pauseparam = skge_set_pauseparam,
791 .get_coalesce = skge_get_coalesce,
792 .set_coalesce = skge_set_coalesce,
793 .get_sg = ethtool_op_get_sg,
794 .set_sg = skge_set_sg,
795 .get_tx_csum = ethtool_op_get_tx_csum,
796 .set_tx_csum = skge_set_tx_csum,
797 .get_rx_csum = skge_get_rx_csum,
798 .set_rx_csum = skge_set_rx_csum,
799 .get_strings = skge_get_strings,
800 .phys_id = skge_phys_id,
801 .get_stats_count = skge_get_stats_count,
802 .get_ethtool_stats = skge_get_ethtool_stats,
803 .get_perm_addr = ethtool_op_get_perm_addr,
807 * Allocate ring elements and chain them together
808 * One-to-one association of board descriptors with ring elements
810 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
812 struct skge_tx_desc *d;
813 struct skge_element *e;
816 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
820 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
822 if (i == ring->count - 1) {
823 e->next = ring->start;
824 d->next_offset = base;
827 d->next_offset = base + (i+1) * sizeof(*d);
830 ring->to_use = ring->to_clean = ring->start;
835 /* Allocate and setup a new buffer for receiving */
836 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
837 struct sk_buff *skb, unsigned int bufsize)
839 struct skge_rx_desc *rd = e->desc;
842 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
846 rd->dma_hi = map >> 32;
848 rd->csum1_start = ETH_HLEN;
849 rd->csum2_start = ETH_HLEN;
855 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
856 pci_unmap_addr_set(e, mapaddr, map);
857 pci_unmap_len_set(e, maplen, bufsize);
860 /* Resume receiving using existing skb,
861 * Note: DMA address is not changed by chip.
862 * MTU not changed while receiver active.
864 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
866 struct skge_rx_desc *rd = e->desc;
869 rd->csum2_start = ETH_HLEN;
873 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
877 /* Free all buffers in receive ring, assumes receiver stopped */
878 static void skge_rx_clean(struct skge_port *skge)
880 struct skge_hw *hw = skge->hw;
881 struct skge_ring *ring = &skge->rx_ring;
882 struct skge_element *e;
886 struct skge_rx_desc *rd = e->desc;
889 pci_unmap_single(hw->pdev,
890 pci_unmap_addr(e, mapaddr),
891 pci_unmap_len(e, maplen),
893 dev_kfree_skb(e->skb);
896 } while ((e = e->next) != ring->start);
900 /* Allocate buffers for receive ring
901 * For receive: to_clean is next received frame.
903 static int skge_rx_fill(struct net_device *dev)
905 struct skge_port *skge = netdev_priv(dev);
906 struct skge_ring *ring = &skge->rx_ring;
907 struct skge_element *e;
913 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
918 skb_reserve(skb, NET_IP_ALIGN);
919 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
920 } while ( (e = e->next) != ring->start);
922 ring->to_clean = ring->start;
926 static const char *skge_pause(enum pause_status status)
931 case FLOW_STAT_REM_SEND:
933 case FLOW_STAT_LOC_SEND:
935 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
938 return "indeterminated";
943 static void skge_link_up(struct skge_port *skge)
945 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
946 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
948 netif_carrier_on(skge->netdev);
949 netif_wake_queue(skge->netdev);
951 if (netif_msg_link(skge)) {
953 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
954 skge->netdev->name, skge->speed,
955 skge->duplex == DUPLEX_FULL ? "full" : "half",
956 skge_pause(skge->flow_status));
960 static void skge_link_down(struct skge_port *skge)
962 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
963 netif_carrier_off(skge->netdev);
964 netif_stop_queue(skge->netdev);
966 if (netif_msg_link(skge))
967 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
971 static void xm_link_down(struct skge_hw *hw, int port)
973 struct net_device *dev = hw->dev[port];
974 struct skge_port *skge = netdev_priv(dev);
977 if (hw->phy_type == SK_PHY_XMAC) {
978 msk = xm_read16(hw, port, XM_IMSK);
979 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
980 xm_write16(hw, port, XM_IMSK, msk);
983 cmd = xm_read16(hw, port, XM_MMU_CMD);
984 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
985 xm_write16(hw, port, XM_MMU_CMD, cmd);
986 /* dummy read to ensure writing */
987 (void) xm_read16(hw, port, XM_MMU_CMD);
989 if (netif_carrier_ok(dev))
990 skge_link_down(skge);
993 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
997 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
998 *val = xm_read16(hw, port, XM_PHY_DATA);
1000 if (hw->phy_type == SK_PHY_XMAC)
1003 for (i = 0; i < PHY_RETRIES; i++) {
1004 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1011 *val = xm_read16(hw, port, XM_PHY_DATA);
1016 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1019 if (__xm_phy_read(hw, port, reg, &v))
1020 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1021 hw->dev[port]->name);
1025 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1029 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1030 for (i = 0; i < PHY_RETRIES; i++) {
1031 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1038 xm_write16(hw, port, XM_PHY_DATA, val);
1039 for (i = 0; i < PHY_RETRIES; i++) {
1040 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1047 static void genesis_init(struct skge_hw *hw)
1049 /* set blink source counter */
1050 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1051 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1053 /* configure mac arbiter */
1054 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1056 /* configure mac arbiter timeout values */
1057 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1058 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1059 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1060 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1062 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1063 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1064 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1065 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1067 /* configure packet arbiter timeout */
1068 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1069 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1070 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1071 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1072 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1075 static void genesis_reset(struct skge_hw *hw, int port)
1077 const u8 zero[8] = { 0 };
1079 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1081 /* reset the statistics module */
1082 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1083 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1084 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1085 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1086 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1088 /* disable Broadcom PHY IRQ */
1089 if (hw->phy_type == SK_PHY_BCOM)
1090 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1092 xm_outhash(hw, port, XM_HSM, zero);
1096 /* Convert mode to MII values */
1097 static const u16 phy_pause_map[] = {
1098 [FLOW_MODE_NONE] = 0,
1099 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1100 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1101 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1104 /* special defines for FIBER (88E1011S only) */
1105 static const u16 fiber_pause_map[] = {
1106 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1107 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1108 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1109 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1113 /* Check status of Broadcom phy link */
1114 static void bcom_check_link(struct skge_hw *hw, int port)
1116 struct net_device *dev = hw->dev[port];
1117 struct skge_port *skge = netdev_priv(dev);
1120 /* read twice because of latch */
1121 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1122 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1124 if ((status & PHY_ST_LSYNC) == 0) {
1125 xm_link_down(hw, port);
1129 if (skge->autoneg == AUTONEG_ENABLE) {
1132 if (!(status & PHY_ST_AN_OVER))
1135 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1136 if (lpa & PHY_B_AN_RF) {
1137 printk(KERN_NOTICE PFX "%s: remote fault\n",
1142 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1144 /* Check Duplex mismatch */
1145 switch (aux & PHY_B_AS_AN_RES_MSK) {
1146 case PHY_B_RES_1000FD:
1147 skge->duplex = DUPLEX_FULL;
1149 case PHY_B_RES_1000HD:
1150 skge->duplex = DUPLEX_HALF;
1153 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1158 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1159 switch (aux & PHY_B_AS_PAUSE_MSK) {
1160 case PHY_B_AS_PAUSE_MSK:
1161 skge->flow_status = FLOW_STAT_SYMMETRIC;
1164 skge->flow_status = FLOW_STAT_REM_SEND;
1167 skge->flow_status = FLOW_STAT_LOC_SEND;
1170 skge->flow_status = FLOW_STAT_NONE;
1172 skge->speed = SPEED_1000;
1175 if (!netif_carrier_ok(dev))
1176 genesis_link_up(skge);
1179 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1180 * Phy on for 100 or 10Mbit operation
1182 static void bcom_phy_init(struct skge_port *skge)
1184 struct skge_hw *hw = skge->hw;
1185 int port = skge->port;
1187 u16 id1, r, ext, ctl;
1189 /* magic workaround patterns for Broadcom */
1190 static const struct {
1194 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1195 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1196 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1197 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1199 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1200 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1203 /* read Id from external PHY (all have the same address) */
1204 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1206 /* Optimize MDIO transfer by suppressing preamble. */
1207 r = xm_read16(hw, port, XM_MMU_CMD);
1209 xm_write16(hw, port, XM_MMU_CMD,r);
1212 case PHY_BCOM_ID1_C0:
1214 * Workaround BCOM Errata for the C0 type.
1215 * Write magic patterns to reserved registers.
1217 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1218 xm_phy_write(hw, port,
1219 C0hack[i].reg, C0hack[i].val);
1222 case PHY_BCOM_ID1_A1:
1224 * Workaround BCOM Errata for the A1 type.
1225 * Write magic patterns to reserved registers.
1227 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1228 xm_phy_write(hw, port,
1229 A1hack[i].reg, A1hack[i].val);
1234 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1235 * Disable Power Management after reset.
1237 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1238 r |= PHY_B_AC_DIS_PM;
1239 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1242 xm_read16(hw, port, XM_ISRC);
1244 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1245 ctl = PHY_CT_SP1000; /* always 1000mbit */
1247 if (skge->autoneg == AUTONEG_ENABLE) {
1249 * Workaround BCOM Errata #1 for the C5 type.
1250 * 1000Base-T Link Acquisition Failure in Slave Mode
1251 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1253 u16 adv = PHY_B_1000C_RD;
1254 if (skge->advertising & ADVERTISED_1000baseT_Half)
1255 adv |= PHY_B_1000C_AHD;
1256 if (skge->advertising & ADVERTISED_1000baseT_Full)
1257 adv |= PHY_B_1000C_AFD;
1258 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1260 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1262 if (skge->duplex == DUPLEX_FULL)
1263 ctl |= PHY_CT_DUP_MD;
1264 /* Force to slave */
1265 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1268 /* Set autonegotiation pause parameters */
1269 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1270 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1272 /* Handle Jumbo frames */
1273 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1274 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1275 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1277 ext |= PHY_B_PEC_HIGH_LA;
1281 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1282 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1284 /* Use link status change interrupt */
1285 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1288 static void xm_phy_init(struct skge_port *skge)
1290 struct skge_hw *hw = skge->hw;
1291 int port = skge->port;
1294 if (skge->autoneg == AUTONEG_ENABLE) {
1295 if (skge->advertising & ADVERTISED_1000baseT_Half)
1296 ctrl |= PHY_X_AN_HD;
1297 if (skge->advertising & ADVERTISED_1000baseT_Full)
1298 ctrl |= PHY_X_AN_FD;
1300 ctrl |= fiber_pause_map[skge->flow_control];
1302 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1304 /* Restart Auto-negotiation */
1305 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1307 /* Set DuplexMode in Config register */
1308 if (skge->duplex == DUPLEX_FULL)
1309 ctrl |= PHY_CT_DUP_MD;
1311 * Do NOT enable Auto-negotiation here. This would hold
1312 * the link down because no IDLEs are transmitted
1316 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1318 /* Poll PHY for status changes */
1319 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1322 static void xm_check_link(struct net_device *dev)
1324 struct skge_port *skge = netdev_priv(dev);
1325 struct skge_hw *hw = skge->hw;
1326 int port = skge->port;
1329 /* read twice because of latch */
1330 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1331 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1333 if ((status & PHY_ST_LSYNC) == 0) {
1334 xm_link_down(hw, port);
1338 if (skge->autoneg == AUTONEG_ENABLE) {
1341 if (!(status & PHY_ST_AN_OVER))
1344 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1345 if (lpa & PHY_B_AN_RF) {
1346 printk(KERN_NOTICE PFX "%s: remote fault\n",
1351 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1353 /* Check Duplex mismatch */
1354 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1356 skge->duplex = DUPLEX_FULL;
1359 skge->duplex = DUPLEX_HALF;
1362 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1367 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1368 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1369 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1370 (lpa & PHY_X_P_SYM_MD))
1371 skge->flow_status = FLOW_STAT_SYMMETRIC;
1372 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1373 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1374 /* Enable PAUSE receive, disable PAUSE transmit */
1375 skge->flow_status = FLOW_STAT_REM_SEND;
1376 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1377 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1378 /* Disable PAUSE receive, enable PAUSE transmit */
1379 skge->flow_status = FLOW_STAT_LOC_SEND;
1381 skge->flow_status = FLOW_STAT_NONE;
1383 skge->speed = SPEED_1000;
1386 if (!netif_carrier_ok(dev))
1387 genesis_link_up(skge);
1390 /* Poll to check for link coming up.
1391 * Since internal PHY is wired to a level triggered pin, can't
1392 * get an interrupt when carrier is detected.
1394 static void xm_link_timer(struct work_struct *work)
1396 struct skge_port *skge =
1397 container_of(work, struct skge_port, link_thread.work);
1398 struct net_device *dev = skge->netdev;
1399 struct skge_hw *hw = skge->hw;
1400 int port = skge->port;
1402 if (!netif_running(dev))
1405 if (netif_carrier_ok(dev)) {
1406 xm_read16(hw, port, XM_ISRC);
1407 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1410 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1412 xm_read16(hw, port, XM_ISRC);
1413 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1417 mutex_lock(&hw->phy_mutex);
1419 mutex_unlock(&hw->phy_mutex);
1422 if (netif_running(dev))
1423 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1426 static void genesis_mac_init(struct skge_hw *hw, int port)
1428 struct net_device *dev = hw->dev[port];
1429 struct skge_port *skge = netdev_priv(dev);
1430 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1433 const u8 zero[6] = { 0 };
1435 for (i = 0; i < 10; i++) {
1436 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1438 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1443 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1446 /* Unreset the XMAC. */
1447 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1450 * Perform additional initialization for external PHYs,
1451 * namely for the 1000baseTX cards that use the XMAC's
1454 if (hw->phy_type != SK_PHY_XMAC) {
1455 /* Take external Phy out of reset */
1456 r = skge_read32(hw, B2_GP_IO);
1458 r |= GP_DIR_0|GP_IO_0;
1460 r |= GP_DIR_2|GP_IO_2;
1462 skge_write32(hw, B2_GP_IO, r);
1464 /* Enable GMII interface */
1465 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1469 switch(hw->phy_type) {
1474 bcom_phy_init(skge);
1475 bcom_check_link(hw, port);
1478 /* Set Station Address */
1479 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1481 /* We don't use match addresses so clear */
1482 for (i = 1; i < 16; i++)
1483 xm_outaddr(hw, port, XM_EXM(i), zero);
1485 /* Clear MIB counters */
1486 xm_write16(hw, port, XM_STAT_CMD,
1487 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1488 /* Clear two times according to Errata #3 */
1489 xm_write16(hw, port, XM_STAT_CMD,
1490 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1492 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1493 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1495 /* We don't need the FCS appended to the packet. */
1496 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1498 r |= XM_RX_BIG_PK_OK;
1500 if (skge->duplex == DUPLEX_HALF) {
1502 * If in manual half duplex mode the other side might be in
1503 * full duplex mode, so ignore if a carrier extension is not seen
1504 * on frames received
1506 r |= XM_RX_DIS_CEXT;
1508 xm_write16(hw, port, XM_RX_CMD, r);
1511 /* We want short frames padded to 60 bytes. */
1512 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1515 * Bump up the transmit threshold. This helps hold off transmit
1516 * underruns when we're blasting traffic from both ports at once.
1518 xm_write16(hw, port, XM_TX_THR, 512);
1521 * Enable the reception of all error frames. This is is
1522 * a necessary evil due to the design of the XMAC. The
1523 * XMAC's receive FIFO is only 8K in size, however jumbo
1524 * frames can be up to 9000 bytes in length. When bad
1525 * frame filtering is enabled, the XMAC's RX FIFO operates
1526 * in 'store and forward' mode. For this to work, the
1527 * entire frame has to fit into the FIFO, but that means
1528 * that jumbo frames larger than 8192 bytes will be
1529 * truncated. Disabling all bad frame filtering causes
1530 * the RX FIFO to operate in streaming mode, in which
1531 * case the XMAC will start transferring frames out of the
1532 * RX FIFO as soon as the FIFO threshold is reached.
1534 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1538 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1539 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1540 * and 'Octets Rx OK Hi Cnt Ov'.
1542 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1545 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1546 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1547 * and 'Octets Tx OK Hi Cnt Ov'.
1549 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1551 /* Configure MAC arbiter */
1552 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1554 /* configure timeout values */
1555 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1556 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1557 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1558 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1560 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1561 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1562 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1563 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1565 /* Configure Rx MAC FIFO */
1566 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1567 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1568 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1570 /* Configure Tx MAC FIFO */
1571 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1572 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1573 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1576 /* Enable frame flushing if jumbo frames used */
1577 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1579 /* enable timeout timers if normal frames */
1580 skge_write16(hw, B3_PA_CTRL,
1581 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1585 static void genesis_stop(struct skge_port *skge)
1587 struct skge_hw *hw = skge->hw;
1588 int port = skge->port;
1591 genesis_reset(hw, port);
1593 /* Clear Tx packet arbiter timeout IRQ */
1594 skge_write16(hw, B3_PA_CTRL,
1595 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1598 * If the transfer sticks at the MAC the STOP command will not
1599 * terminate if we don't flush the XMAC's transmit FIFO !
1601 xm_write32(hw, port, XM_MODE,
1602 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1606 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1608 /* For external PHYs there must be special handling */
1609 if (hw->phy_type != SK_PHY_XMAC) {
1610 reg = skge_read32(hw, B2_GP_IO);
1618 skge_write32(hw, B2_GP_IO, reg);
1619 skge_read32(hw, B2_GP_IO);
1622 xm_write16(hw, port, XM_MMU_CMD,
1623 xm_read16(hw, port, XM_MMU_CMD)
1624 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1626 xm_read16(hw, port, XM_MMU_CMD);
1630 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1632 struct skge_hw *hw = skge->hw;
1633 int port = skge->port;
1635 unsigned long timeout = jiffies + HZ;
1637 xm_write16(hw, port,
1638 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1640 /* wait for update to complete */
1641 while (xm_read16(hw, port, XM_STAT_CMD)
1642 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1643 if (time_after(jiffies, timeout))
1648 /* special case for 64 bit octet counter */
1649 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1650 | xm_read32(hw, port, XM_TXO_OK_LO);
1651 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1652 | xm_read32(hw, port, XM_RXO_OK_LO);
1654 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1655 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1658 static void genesis_mac_intr(struct skge_hw *hw, int port)
1660 struct skge_port *skge = netdev_priv(hw->dev[port]);
1661 u16 status = xm_read16(hw, port, XM_ISRC);
1663 if (netif_msg_intr(skge))
1664 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1665 skge->netdev->name, status);
1667 if (hw->phy_type == SK_PHY_XMAC &&
1668 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1669 xm_link_down(hw, port);
1671 if (status & XM_IS_TXF_UR) {
1672 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1673 ++skge->net_stats.tx_fifo_errors;
1675 if (status & XM_IS_RXF_OV) {
1676 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1677 ++skge->net_stats.rx_fifo_errors;
1681 static void genesis_link_up(struct skge_port *skge)
1683 struct skge_hw *hw = skge->hw;
1684 int port = skge->port;
1688 cmd = xm_read16(hw, port, XM_MMU_CMD);
1691 * enabling pause frame reception is required for 1000BT
1692 * because the XMAC is not reset if the link is going down
1694 if (skge->flow_status == FLOW_STAT_NONE ||
1695 skge->flow_status == FLOW_STAT_LOC_SEND)
1696 /* Disable Pause Frame Reception */
1697 cmd |= XM_MMU_IGN_PF;
1699 /* Enable Pause Frame Reception */
1700 cmd &= ~XM_MMU_IGN_PF;
1702 xm_write16(hw, port, XM_MMU_CMD, cmd);
1704 mode = xm_read32(hw, port, XM_MODE);
1705 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1706 skge->flow_status == FLOW_STAT_LOC_SEND) {
1708 * Configure Pause Frame Generation
1709 * Use internal and external Pause Frame Generation.
1710 * Sending pause frames is edge triggered.
1711 * Send a Pause frame with the maximum pause time if
1712 * internal oder external FIFO full condition occurs.
1713 * Send a zero pause time frame to re-start transmission.
1715 /* XM_PAUSE_DA = '010000C28001' (default) */
1716 /* XM_MAC_PTIME = 0xffff (maximum) */
1717 /* remember this value is defined in big endian (!) */
1718 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1720 mode |= XM_PAUSE_MODE;
1721 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1724 * disable pause frame generation is required for 1000BT
1725 * because the XMAC is not reset if the link is going down
1727 /* Disable Pause Mode in Mode Register */
1728 mode &= ~XM_PAUSE_MODE;
1730 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1733 xm_write32(hw, port, XM_MODE, mode);
1735 if (hw->phy_type != SK_PHY_XMAC)
1736 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1738 xm_write16(hw, port, XM_IMSK, msk);
1739 xm_read16(hw, port, XM_ISRC);
1741 /* get MMU Command Reg. */
1742 cmd = xm_read16(hw, port, XM_MMU_CMD);
1743 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1744 cmd |= XM_MMU_GMII_FD;
1747 * Workaround BCOM Errata (#10523) for all BCom Phys
1748 * Enable Power Management after link up
1750 if (hw->phy_type == SK_PHY_BCOM) {
1751 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1752 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1753 & ~PHY_B_AC_DIS_PM);
1754 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1758 xm_write16(hw, port, XM_MMU_CMD,
1759 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1764 static inline void bcom_phy_intr(struct skge_port *skge)
1766 struct skge_hw *hw = skge->hw;
1767 int port = skge->port;
1770 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1771 if (netif_msg_intr(skge))
1772 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1773 skge->netdev->name, isrc);
1775 if (isrc & PHY_B_IS_PSE)
1776 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1777 hw->dev[port]->name);
1779 /* Workaround BCom Errata:
1780 * enable and disable loopback mode if "NO HCD" occurs.
1782 if (isrc & PHY_B_IS_NO_HDCL) {
1783 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1784 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1785 ctrl | PHY_CT_LOOP);
1786 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1787 ctrl & ~PHY_CT_LOOP);
1790 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1791 bcom_check_link(hw, port);
1795 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1799 gma_write16(hw, port, GM_SMI_DATA, val);
1800 gma_write16(hw, port, GM_SMI_CTRL,
1801 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1802 for (i = 0; i < PHY_RETRIES; i++) {
1805 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1809 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1810 hw->dev[port]->name);
1814 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1818 gma_write16(hw, port, GM_SMI_CTRL,
1819 GM_SMI_CT_PHY_AD(hw->phy_addr)
1820 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1822 for (i = 0; i < PHY_RETRIES; i++) {
1824 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1830 *val = gma_read16(hw, port, GM_SMI_DATA);
1834 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1837 if (__gm_phy_read(hw, port, reg, &v))
1838 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1839 hw->dev[port]->name);
1843 /* Marvell Phy Initialization */
1844 static void yukon_init(struct skge_hw *hw, int port)
1846 struct skge_port *skge = netdev_priv(hw->dev[port]);
1847 u16 ctrl, ct1000, adv;
1849 if (skge->autoneg == AUTONEG_ENABLE) {
1850 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1852 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1853 PHY_M_EC_MAC_S_MSK);
1854 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1856 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1858 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1861 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1862 if (skge->autoneg == AUTONEG_DISABLE)
1863 ctrl &= ~PHY_CT_ANE;
1865 ctrl |= PHY_CT_RESET;
1866 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1872 if (skge->autoneg == AUTONEG_ENABLE) {
1874 if (skge->advertising & ADVERTISED_1000baseT_Full)
1875 ct1000 |= PHY_M_1000C_AFD;
1876 if (skge->advertising & ADVERTISED_1000baseT_Half)
1877 ct1000 |= PHY_M_1000C_AHD;
1878 if (skge->advertising & ADVERTISED_100baseT_Full)
1879 adv |= PHY_M_AN_100_FD;
1880 if (skge->advertising & ADVERTISED_100baseT_Half)
1881 adv |= PHY_M_AN_100_HD;
1882 if (skge->advertising & ADVERTISED_10baseT_Full)
1883 adv |= PHY_M_AN_10_FD;
1884 if (skge->advertising & ADVERTISED_10baseT_Half)
1885 adv |= PHY_M_AN_10_HD;
1887 /* Set Flow-control capabilities */
1888 adv |= phy_pause_map[skge->flow_control];
1890 if (skge->advertising & ADVERTISED_1000baseT_Full)
1891 adv |= PHY_M_AN_1000X_AFD;
1892 if (skge->advertising & ADVERTISED_1000baseT_Half)
1893 adv |= PHY_M_AN_1000X_AHD;
1895 adv |= fiber_pause_map[skge->flow_control];
1898 /* Restart Auto-negotiation */
1899 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1901 /* forced speed/duplex settings */
1902 ct1000 = PHY_M_1000C_MSE;
1904 if (skge->duplex == DUPLEX_FULL)
1905 ctrl |= PHY_CT_DUP_MD;
1907 switch (skge->speed) {
1909 ctrl |= PHY_CT_SP1000;
1912 ctrl |= PHY_CT_SP100;
1916 ctrl |= PHY_CT_RESET;
1919 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1921 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1922 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1924 /* Enable phy interrupt on autonegotiation complete (or link up) */
1925 if (skge->autoneg == AUTONEG_ENABLE)
1926 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1928 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1931 static void yukon_reset(struct skge_hw *hw, int port)
1933 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1934 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1935 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1936 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1937 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1939 gma_write16(hw, port, GM_RX_CTRL,
1940 gma_read16(hw, port, GM_RX_CTRL)
1941 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1944 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1945 static int is_yukon_lite_a0(struct skge_hw *hw)
1950 if (hw->chip_id != CHIP_ID_YUKON)
1953 reg = skge_read32(hw, B2_FAR);
1954 skge_write8(hw, B2_FAR + 3, 0xff);
1955 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1956 skge_write32(hw, B2_FAR, reg);
1960 static void yukon_mac_init(struct skge_hw *hw, int port)
1962 struct skge_port *skge = netdev_priv(hw->dev[port]);
1965 const u8 *addr = hw->dev[port]->dev_addr;
1967 /* WA code for COMA mode -- set PHY reset */
1968 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1969 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1970 reg = skge_read32(hw, B2_GP_IO);
1971 reg |= GP_DIR_9 | GP_IO_9;
1972 skge_write32(hw, B2_GP_IO, reg);
1976 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1977 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1979 /* WA code for COMA mode -- clear PHY reset */
1980 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1981 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1982 reg = skge_read32(hw, B2_GP_IO);
1985 skge_write32(hw, B2_GP_IO, reg);
1988 /* Set hardware config mode */
1989 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1990 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1991 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1993 /* Clear GMC reset */
1994 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1995 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1996 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1998 if (skge->autoneg == AUTONEG_DISABLE) {
1999 reg = GM_GPCR_AU_ALL_DIS;
2000 gma_write16(hw, port, GM_GP_CTRL,
2001 gma_read16(hw, port, GM_GP_CTRL) | reg);
2003 switch (skge->speed) {
2005 reg &= ~GM_GPCR_SPEED_100;
2006 reg |= GM_GPCR_SPEED_1000;
2009 reg &= ~GM_GPCR_SPEED_1000;
2010 reg |= GM_GPCR_SPEED_100;
2013 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2017 if (skge->duplex == DUPLEX_FULL)
2018 reg |= GM_GPCR_DUP_FULL;
2020 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2022 switch (skge->flow_control) {
2023 case FLOW_MODE_NONE:
2024 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2025 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2027 case FLOW_MODE_LOC_SEND:
2028 /* disable Rx flow-control */
2029 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2031 case FLOW_MODE_SYMMETRIC:
2032 case FLOW_MODE_SYM_OR_REM:
2033 /* enable Tx & Rx flow-control */
2037 gma_write16(hw, port, GM_GP_CTRL, reg);
2038 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2040 yukon_init(hw, port);
2043 reg = gma_read16(hw, port, GM_PHY_ADDR);
2044 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2046 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2047 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2048 gma_write16(hw, port, GM_PHY_ADDR, reg);
2050 /* transmit control */
2051 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2053 /* receive control reg: unicast + multicast + no FCS */
2054 gma_write16(hw, port, GM_RX_CTRL,
2055 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2057 /* transmit flow control */
2058 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2060 /* transmit parameter */
2061 gma_write16(hw, port, GM_TX_PARAM,
2062 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2063 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2064 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2066 /* serial mode register */
2067 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2068 if (hw->dev[port]->mtu > 1500)
2069 reg |= GM_SMOD_JUMBO_ENA;
2071 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2073 /* physical address: used for pause frames */
2074 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2075 /* virtual address for data */
2076 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2078 /* enable interrupt mask for counter overflows */
2079 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2080 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2081 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2083 /* Initialize Mac Fifo */
2085 /* Configure Rx MAC FIFO */
2086 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2087 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2089 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2090 if (is_yukon_lite_a0(hw))
2091 reg &= ~GMF_RX_F_FL_ON;
2093 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2094 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2096 * because Pause Packet Truncation in GMAC is not working
2097 * we have to increase the Flush Threshold to 64 bytes
2098 * in order to flush pause packets in Rx FIFO on Yukon-1
2100 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2102 /* Configure Tx MAC FIFO */
2103 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2104 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2107 /* Go into power down mode */
2108 static void yukon_suspend(struct skge_hw *hw, int port)
2112 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2113 ctrl |= PHY_M_PC_POL_R_DIS;
2114 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2116 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2117 ctrl |= PHY_CT_RESET;
2118 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2120 /* switch IEEE compatible power down mode on */
2121 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2122 ctrl |= PHY_CT_PDOWN;
2123 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2126 static void yukon_stop(struct skge_port *skge)
2128 struct skge_hw *hw = skge->hw;
2129 int port = skge->port;
2131 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2132 yukon_reset(hw, port);
2134 gma_write16(hw, port, GM_GP_CTRL,
2135 gma_read16(hw, port, GM_GP_CTRL)
2136 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2137 gma_read16(hw, port, GM_GP_CTRL);
2139 yukon_suspend(hw, port);
2141 /* set GPHY Control reset */
2142 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2143 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2146 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2148 struct skge_hw *hw = skge->hw;
2149 int port = skge->port;
2152 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2153 | gma_read32(hw, port, GM_TXO_OK_LO);
2154 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2155 | gma_read32(hw, port, GM_RXO_OK_LO);
2157 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2158 data[i] = gma_read32(hw, port,
2159 skge_stats[i].gma_offset);
2162 static void yukon_mac_intr(struct skge_hw *hw, int port)
2164 struct net_device *dev = hw->dev[port];
2165 struct skge_port *skge = netdev_priv(dev);
2166 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2168 if (netif_msg_intr(skge))
2169 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2172 if (status & GM_IS_RX_FF_OR) {
2173 ++skge->net_stats.rx_fifo_errors;
2174 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2177 if (status & GM_IS_TX_FF_UR) {
2178 ++skge->net_stats.tx_fifo_errors;
2179 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2184 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2186 switch (aux & PHY_M_PS_SPEED_MSK) {
2187 case PHY_M_PS_SPEED_1000:
2189 case PHY_M_PS_SPEED_100:
2196 static void yukon_link_up(struct skge_port *skge)
2198 struct skge_hw *hw = skge->hw;
2199 int port = skge->port;
2202 /* Enable Transmit FIFO Underrun */
2203 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2205 reg = gma_read16(hw, port, GM_GP_CTRL);
2206 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2207 reg |= GM_GPCR_DUP_FULL;
2210 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2211 gma_write16(hw, port, GM_GP_CTRL, reg);
2213 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2217 static void yukon_link_down(struct skge_port *skge)
2219 struct skge_hw *hw = skge->hw;
2220 int port = skge->port;
2223 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2224 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2225 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2227 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2228 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2229 ctrl |= PHY_M_AN_ASP;
2230 /* restore Asymmetric Pause bit */
2231 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2234 skge_link_down(skge);
2236 yukon_init(hw, port);
2239 static void yukon_phy_intr(struct skge_port *skge)
2241 struct skge_hw *hw = skge->hw;
2242 int port = skge->port;
2243 const char *reason = NULL;
2244 u16 istatus, phystat;
2246 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2247 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2249 if (netif_msg_intr(skge))
2250 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2251 skge->netdev->name, istatus, phystat);
2253 if (istatus & PHY_M_IS_AN_COMPL) {
2254 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2256 reason = "remote fault";
2260 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2261 reason = "master/slave fault";
2265 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2266 reason = "speed/duplex";
2270 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2271 ? DUPLEX_FULL : DUPLEX_HALF;
2272 skge->speed = yukon_speed(hw, phystat);
2274 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2275 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2276 case PHY_M_PS_PAUSE_MSK:
2277 skge->flow_status = FLOW_STAT_SYMMETRIC;
2279 case PHY_M_PS_RX_P_EN:
2280 skge->flow_status = FLOW_STAT_REM_SEND;
2282 case PHY_M_PS_TX_P_EN:
2283 skge->flow_status = FLOW_STAT_LOC_SEND;
2286 skge->flow_status = FLOW_STAT_NONE;
2289 if (skge->flow_status == FLOW_STAT_NONE ||
2290 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2291 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2293 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2294 yukon_link_up(skge);
2298 if (istatus & PHY_M_IS_LSP_CHANGE)
2299 skge->speed = yukon_speed(hw, phystat);
2301 if (istatus & PHY_M_IS_DUP_CHANGE)
2302 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2303 if (istatus & PHY_M_IS_LST_CHANGE) {
2304 if (phystat & PHY_M_PS_LINK_UP)
2305 yukon_link_up(skge);
2307 yukon_link_down(skge);
2311 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2312 skge->netdev->name, reason);
2314 /* XXX restart autonegotiation? */
2317 static void skge_phy_reset(struct skge_port *skge)
2319 struct skge_hw *hw = skge->hw;
2320 int port = skge->port;
2321 struct net_device *dev = hw->dev[port];
2323 netif_stop_queue(skge->netdev);
2324 netif_carrier_off(skge->netdev);
2326 mutex_lock(&hw->phy_mutex);
2327 if (hw->chip_id == CHIP_ID_GENESIS) {
2328 genesis_reset(hw, port);
2329 genesis_mac_init(hw, port);
2331 yukon_reset(hw, port);
2332 yukon_init(hw, port);
2334 mutex_unlock(&hw->phy_mutex);
2336 dev->set_multicast_list(dev);
2339 /* Basic MII support */
2340 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2342 struct mii_ioctl_data *data = if_mii(ifr);
2343 struct skge_port *skge = netdev_priv(dev);
2344 struct skge_hw *hw = skge->hw;
2345 int err = -EOPNOTSUPP;
2347 if (!netif_running(dev))
2348 return -ENODEV; /* Phy still in reset */
2352 data->phy_id = hw->phy_addr;
2357 mutex_lock(&hw->phy_mutex);
2358 if (hw->chip_id == CHIP_ID_GENESIS)
2359 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2361 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2362 mutex_unlock(&hw->phy_mutex);
2363 data->val_out = val;
2368 if (!capable(CAP_NET_ADMIN))
2371 mutex_lock(&hw->phy_mutex);
2372 if (hw->chip_id == CHIP_ID_GENESIS)
2373 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2376 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2378 mutex_unlock(&hw->phy_mutex);
2384 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2390 end = start + len - 1;
2392 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2393 skge_write32(hw, RB_ADDR(q, RB_START), start);
2394 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2395 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2396 skge_write32(hw, RB_ADDR(q, RB_END), end);
2398 if (q == Q_R1 || q == Q_R2) {
2399 /* Set thresholds on receive queue's */
2400 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2402 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2405 /* Enable store & forward on Tx queue's because
2406 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2408 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2411 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2414 /* Setup Bus Memory Interface */
2415 static void skge_qset(struct skge_port *skge, u16 q,
2416 const struct skge_element *e)
2418 struct skge_hw *hw = skge->hw;
2419 u32 watermark = 0x600;
2420 u64 base = skge->dma + (e->desc - skge->mem);
2422 /* optimization to reduce window on 32bit/33mhz */
2423 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2426 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2427 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2428 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2429 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2432 static int skge_up(struct net_device *dev)
2434 struct skge_port *skge = netdev_priv(dev);
2435 struct skge_hw *hw = skge->hw;
2436 int port = skge->port;
2437 u32 chunk, ram_addr;
2438 size_t rx_size, tx_size;
2441 if (!is_valid_ether_addr(dev->dev_addr))
2444 if (netif_msg_ifup(skge))
2445 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2447 if (dev->mtu > RX_BUF_SIZE)
2448 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2450 skge->rx_buf_size = RX_BUF_SIZE;
2453 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2454 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2455 skge->mem_size = tx_size + rx_size;
2456 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2460 BUG_ON(skge->dma & 7);
2462 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2463 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2468 memset(skge->mem, 0, skge->mem_size);
2470 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2474 err = skge_rx_fill(dev);
2478 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2479 skge->dma + rx_size);
2483 /* Initialize MAC */
2484 mutex_lock(&hw->phy_mutex);
2485 if (hw->chip_id == CHIP_ID_GENESIS)
2486 genesis_mac_init(hw, port);
2488 yukon_mac_init(hw, port);
2489 mutex_unlock(&hw->phy_mutex);
2491 /* Configure RAMbuffers */
2492 chunk = hw->ram_size / ((hw->ports + 1)*2);
2493 ram_addr = hw->ram_offset + 2 * chunk * port;
2495 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2496 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2498 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2499 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2500 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2502 /* Start receiver BMU */
2504 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2505 skge_led(skge, LED_MODE_ON);
2507 netif_poll_enable(dev);
2511 skge_rx_clean(skge);
2512 kfree(skge->rx_ring.start);
2514 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2520 static int skge_down(struct net_device *dev)
2522 struct skge_port *skge = netdev_priv(dev);
2523 struct skge_hw *hw = skge->hw;
2524 int port = skge->port;
2526 if (skge->mem == NULL)
2529 if (netif_msg_ifdown(skge))
2530 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2532 netif_stop_queue(dev);
2533 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2534 cancel_delayed_work(&skge->link_thread);
2536 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2537 if (hw->chip_id == CHIP_ID_GENESIS)
2542 /* Stop transmitter */
2543 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2544 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2545 RB_RST_SET|RB_DIS_OP_MD);
2548 /* Disable Force Sync bit and Enable Alloc bit */
2549 skge_write8(hw, SK_REG(port, TXA_CTRL),
2550 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2552 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2553 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2554 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2556 /* Reset PCI FIFO */
2557 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2558 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2560 /* Reset the RAM Buffer async Tx queue */
2561 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2563 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2564 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2565 RB_RST_SET|RB_DIS_OP_MD);
2566 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2568 if (hw->chip_id == CHIP_ID_GENESIS) {
2569 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2570 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2572 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2573 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2576 skge_led(skge, LED_MODE_OFF);
2578 netif_poll_disable(dev);
2580 skge_rx_clean(skge);
2582 kfree(skge->rx_ring.start);
2583 kfree(skge->tx_ring.start);
2584 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2589 static inline int skge_avail(const struct skge_ring *ring)
2591 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2592 + (ring->to_clean - ring->to_use) - 1;
2595 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2597 struct skge_port *skge = netdev_priv(dev);
2598 struct skge_hw *hw = skge->hw;
2599 struct skge_element *e;
2600 struct skge_tx_desc *td;
2605 if (skb_padto(skb, ETH_ZLEN))
2606 return NETDEV_TX_OK;
2608 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2609 return NETDEV_TX_BUSY;
2611 e = skge->tx_ring.to_use;
2613 BUG_ON(td->control & BMU_OWN);
2615 len = skb_headlen(skb);
2616 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2617 pci_unmap_addr_set(e, mapaddr, map);
2618 pci_unmap_len_set(e, maplen, len);
2621 td->dma_hi = map >> 32;
2623 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2624 int offset = skb->h.raw - skb->data;
2626 /* This seems backwards, but it is what the sk98lin
2627 * does. Looks like hardware is wrong?
2629 if (skb->h.ipiph->protocol == IPPROTO_UDP
2630 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2631 control = BMU_TCP_CHECK;
2633 control = BMU_UDP_CHECK;
2636 td->csum_start = offset;
2637 td->csum_write = offset + skb->csum_offset;
2639 control = BMU_CHECK;
2641 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2642 control |= BMU_EOF| BMU_IRQ_EOF;
2644 struct skge_tx_desc *tf = td;
2646 control |= BMU_STFWD;
2647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2648 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2650 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2651 frag->size, PCI_DMA_TODEVICE);
2656 BUG_ON(tf->control & BMU_OWN);
2659 tf->dma_hi = (u64) map >> 32;
2660 pci_unmap_addr_set(e, mapaddr, map);
2661 pci_unmap_len_set(e, maplen, frag->size);
2663 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2665 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2667 /* Make sure all the descriptors written */
2669 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2672 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2674 if (unlikely(netif_msg_tx_queued(skge)))
2675 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2676 dev->name, e - skge->tx_ring.start, skb->len);
2678 skge->tx_ring.to_use = e->next;
2679 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2680 pr_debug("%s: transmit queue full\n", dev->name);
2681 netif_stop_queue(dev);
2684 dev->trans_start = jiffies;
2686 return NETDEV_TX_OK;
2690 /* Free resources associated with this reing element */
2691 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2694 struct pci_dev *pdev = skge->hw->pdev;
2698 /* skb header vs. fragment */
2699 if (control & BMU_STF)
2700 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2701 pci_unmap_len(e, maplen),
2704 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2705 pci_unmap_len(e, maplen),
2708 if (control & BMU_EOF) {
2709 if (unlikely(netif_msg_tx_done(skge)))
2710 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2711 skge->netdev->name, e - skge->tx_ring.start);
2713 dev_kfree_skb(e->skb);
2718 /* Free all buffers in transmit ring */
2719 static void skge_tx_clean(struct net_device *dev)
2721 struct skge_port *skge = netdev_priv(dev);
2722 struct skge_element *e;
2724 netif_tx_lock_bh(dev);
2725 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2726 struct skge_tx_desc *td = e->desc;
2727 skge_tx_free(skge, e, td->control);
2731 skge->tx_ring.to_clean = e;
2732 netif_wake_queue(dev);
2733 netif_tx_unlock_bh(dev);
2736 static void skge_tx_timeout(struct net_device *dev)
2738 struct skge_port *skge = netdev_priv(dev);
2740 if (netif_msg_timer(skge))
2741 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2743 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2747 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2751 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2754 if (!netif_running(dev)) {
2770 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2772 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2776 crc = ether_crc_le(ETH_ALEN, addr);
2778 filter[bit/8] |= 1 << (bit%8);
2781 static void genesis_set_multicast(struct net_device *dev)
2783 struct skge_port *skge = netdev_priv(dev);
2784 struct skge_hw *hw = skge->hw;
2785 int port = skge->port;
2786 int i, count = dev->mc_count;
2787 struct dev_mc_list *list = dev->mc_list;
2791 mode = xm_read32(hw, port, XM_MODE);
2792 mode |= XM_MD_ENA_HASH;
2793 if (dev->flags & IFF_PROMISC)
2794 mode |= XM_MD_ENA_PROM;
2796 mode &= ~XM_MD_ENA_PROM;
2798 if (dev->flags & IFF_ALLMULTI)
2799 memset(filter, 0xff, sizeof(filter));
2801 memset(filter, 0, sizeof(filter));
2803 if (skge->flow_status == FLOW_STAT_REM_SEND
2804 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2805 genesis_add_filter(filter, pause_mc_addr);
2807 for (i = 0; list && i < count; i++, list = list->next)
2808 genesis_add_filter(filter, list->dmi_addr);
2811 xm_write32(hw, port, XM_MODE, mode);
2812 xm_outhash(hw, port, XM_HSM, filter);
2815 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2817 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2818 filter[bit/8] |= 1 << (bit%8);
2821 static void yukon_set_multicast(struct net_device *dev)
2823 struct skge_port *skge = netdev_priv(dev);
2824 struct skge_hw *hw = skge->hw;
2825 int port = skge->port;
2826 struct dev_mc_list *list = dev->mc_list;
2827 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2828 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2832 memset(filter, 0, sizeof(filter));
2834 reg = gma_read16(hw, port, GM_RX_CTRL);
2835 reg |= GM_RXCR_UCF_ENA;
2837 if (dev->flags & IFF_PROMISC) /* promiscuous */
2838 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2839 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2840 memset(filter, 0xff, sizeof(filter));
2841 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2842 reg &= ~GM_RXCR_MCF_ENA;
2845 reg |= GM_RXCR_MCF_ENA;
2848 yukon_add_filter(filter, pause_mc_addr);
2850 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
2851 yukon_add_filter(filter, list->dmi_addr);
2855 gma_write16(hw, port, GM_MC_ADDR_H1,
2856 (u16)filter[0] | ((u16)filter[1] << 8));
2857 gma_write16(hw, port, GM_MC_ADDR_H2,
2858 (u16)filter[2] | ((u16)filter[3] << 8));
2859 gma_write16(hw, port, GM_MC_ADDR_H3,
2860 (u16)filter[4] | ((u16)filter[5] << 8));
2861 gma_write16(hw, port, GM_MC_ADDR_H4,
2862 (u16)filter[6] | ((u16)filter[7] << 8));
2864 gma_write16(hw, port, GM_RX_CTRL, reg);
2867 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2869 if (hw->chip_id == CHIP_ID_GENESIS)
2870 return status >> XMR_FS_LEN_SHIFT;
2872 return status >> GMR_FS_LEN_SHIFT;
2875 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2877 if (hw->chip_id == CHIP_ID_GENESIS)
2878 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2880 return (status & GMR_FS_ANY_ERR) ||
2881 (status & GMR_FS_RX_OK) == 0;
2885 /* Get receive buffer from descriptor.
2886 * Handles copy of small buffers and reallocation failures
2888 static struct sk_buff *skge_rx_get(struct net_device *dev,
2889 struct skge_element *e,
2890 u32 control, u32 status, u16 csum)
2892 struct skge_port *skge = netdev_priv(dev);
2893 struct sk_buff *skb;
2894 u16 len = control & BMU_BBC;
2896 if (unlikely(netif_msg_rx_status(skge)))
2897 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2898 dev->name, e - skge->rx_ring.start,
2901 if (len > skge->rx_buf_size)
2904 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2907 if (bad_phy_status(skge->hw, status))
2910 if (phy_length(skge->hw, status) != len)
2913 if (len < RX_COPY_THRESHOLD) {
2914 skb = netdev_alloc_skb(dev, len + 2);
2918 skb_reserve(skb, 2);
2919 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2920 pci_unmap_addr(e, mapaddr),
2921 len, PCI_DMA_FROMDEVICE);
2922 memcpy(skb->data, e->skb->data, len);
2923 pci_dma_sync_single_for_device(skge->hw->pdev,
2924 pci_unmap_addr(e, mapaddr),
2925 len, PCI_DMA_FROMDEVICE);
2926 skge_rx_reuse(e, skge->rx_buf_size);
2928 struct sk_buff *nskb;
2929 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2933 skb_reserve(nskb, NET_IP_ALIGN);
2934 pci_unmap_single(skge->hw->pdev,
2935 pci_unmap_addr(e, mapaddr),
2936 pci_unmap_len(e, maplen),
2937 PCI_DMA_FROMDEVICE);
2939 prefetch(skb->data);
2940 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2944 if (skge->rx_csum) {
2946 skb->ip_summed = CHECKSUM_COMPLETE;
2949 skb->protocol = eth_type_trans(skb, dev);
2954 if (netif_msg_rx_err(skge))
2955 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2956 dev->name, e - skge->rx_ring.start,
2959 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2960 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2961 skge->net_stats.rx_length_errors++;
2962 if (status & XMR_FS_FRA_ERR)
2963 skge->net_stats.rx_frame_errors++;
2964 if (status & XMR_FS_FCS_ERR)
2965 skge->net_stats.rx_crc_errors++;
2967 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2968 skge->net_stats.rx_length_errors++;
2969 if (status & GMR_FS_FRAGMENT)
2970 skge->net_stats.rx_frame_errors++;
2971 if (status & GMR_FS_CRC_ERR)
2972 skge->net_stats.rx_crc_errors++;
2976 skge_rx_reuse(e, skge->rx_buf_size);
2980 /* Free all buffers in Tx ring which are no longer owned by device */
2981 static void skge_tx_done(struct net_device *dev)
2983 struct skge_port *skge = netdev_priv(dev);
2984 struct skge_ring *ring = &skge->tx_ring;
2985 struct skge_element *e;
2987 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2990 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2991 struct skge_tx_desc *td = e->desc;
2993 if (td->control & BMU_OWN)
2996 skge_tx_free(skge, e, td->control);
2998 skge->tx_ring.to_clean = e;
3000 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
3001 netif_wake_queue(dev);
3003 netif_tx_unlock(dev);
3006 static int skge_poll(struct net_device *dev, int *budget)
3008 struct skge_port *skge = netdev_priv(dev);
3009 struct skge_hw *hw = skge->hw;
3010 struct skge_ring *ring = &skge->rx_ring;
3011 struct skge_element *e;
3012 unsigned long flags;
3013 int to_do = min(dev->quota, *budget);
3018 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3020 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3021 struct skge_rx_desc *rd = e->desc;
3022 struct sk_buff *skb;
3026 control = rd->control;
3027 if (control & BMU_OWN)
3030 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3032 dev->last_rx = jiffies;
3033 netif_receive_skb(skb);
3040 /* restart receiver */
3042 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3044 *budget -= work_done;
3045 dev->quota -= work_done;
3047 if (work_done >= to_do)
3048 return 1; /* not done */
3050 spin_lock_irqsave(&hw->hw_lock, flags);
3051 __netif_rx_complete(dev);
3052 hw->intr_mask |= irqmask[skge->port];
3053 skge_write32(hw, B0_IMSK, hw->intr_mask);
3054 skge_read32(hw, B0_IMSK);
3055 spin_unlock_irqrestore(&hw->hw_lock, flags);
3060 /* Parity errors seem to happen when Genesis is connected to a switch
3061 * with no other ports present. Heartbeat error??
3063 static void skge_mac_parity(struct skge_hw *hw, int port)
3065 struct net_device *dev = hw->dev[port];
3068 struct skge_port *skge = netdev_priv(dev);
3069 ++skge->net_stats.tx_heartbeat_errors;
3072 if (hw->chip_id == CHIP_ID_GENESIS)
3073 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3076 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3077 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3078 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3079 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3082 static void skge_mac_intr(struct skge_hw *hw, int port)
3084 if (hw->chip_id == CHIP_ID_GENESIS)
3085 genesis_mac_intr(hw, port);
3087 yukon_mac_intr(hw, port);
3090 /* Handle device specific framing and timeout interrupts */
3091 static void skge_error_irq(struct skge_hw *hw)
3093 struct pci_dev *pdev = hw->pdev;
3094 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3096 if (hw->chip_id == CHIP_ID_GENESIS) {
3097 /* clear xmac errors */
3098 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3099 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3100 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3101 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3103 /* Timestamp (unused) overflow */
3104 if (hwstatus & IS_IRQ_TIST_OV)
3105 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3108 if (hwstatus & IS_RAM_RD_PAR) {
3109 dev_err(&pdev->dev, "Ram read data parity error\n");
3110 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3113 if (hwstatus & IS_RAM_WR_PAR) {
3114 dev_err(&pdev->dev, "Ram write data parity error\n");
3115 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3118 if (hwstatus & IS_M1_PAR_ERR)
3119 skge_mac_parity(hw, 0);
3121 if (hwstatus & IS_M2_PAR_ERR)
3122 skge_mac_parity(hw, 1);
3124 if (hwstatus & IS_R1_PAR_ERR) {
3125 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3127 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3130 if (hwstatus & IS_R2_PAR_ERR) {
3131 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3133 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3136 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3137 u16 pci_status, pci_cmd;
3139 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3140 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3142 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3143 pci_cmd, pci_status);
3145 /* Write the error bits back to clear them. */
3146 pci_status &= PCI_STATUS_ERROR_BITS;
3147 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3148 pci_write_config_word(pdev, PCI_COMMAND,
3149 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3150 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3151 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3153 /* if error still set then just ignore it */
3154 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3155 if (hwstatus & IS_IRQ_STAT) {
3156 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3157 hw->intr_mask &= ~IS_HW_ERR;
3163 * Interrupt from PHY are handled in work queue
3164 * because accessing phy registers requires spin wait which might
3165 * cause excess interrupt latency.
3167 static void skge_extirq(struct work_struct *work)
3169 struct skge_hw *hw = container_of(work, struct skge_hw, phy_work);
3172 mutex_lock(&hw->phy_mutex);
3173 for (port = 0; port < hw->ports; port++) {
3174 struct net_device *dev = hw->dev[port];
3175 struct skge_port *skge = netdev_priv(dev);
3177 if (netif_running(dev)) {
3178 if (hw->chip_id != CHIP_ID_GENESIS)
3179 yukon_phy_intr(skge);
3180 else if (hw->phy_type == SK_PHY_BCOM)
3181 bcom_phy_intr(skge);
3184 mutex_unlock(&hw->phy_mutex);
3186 spin_lock_irq(&hw->hw_lock);
3187 hw->intr_mask |= IS_EXT_REG;
3188 skge_write32(hw, B0_IMSK, hw->intr_mask);
3189 skge_read32(hw, B0_IMSK);
3190 spin_unlock_irq(&hw->hw_lock);
3193 static irqreturn_t skge_intr(int irq, void *dev_id)
3195 struct skge_hw *hw = dev_id;
3199 spin_lock(&hw->hw_lock);
3200 /* Reading this register masks IRQ */
3201 status = skge_read32(hw, B0_SP_ISRC);
3202 if (status == 0 || status == ~0)
3206 status &= hw->intr_mask;
3207 if (status & IS_EXT_REG) {
3208 hw->intr_mask &= ~IS_EXT_REG;
3209 schedule_work(&hw->phy_work);
3212 if (status & (IS_XA1_F|IS_R1_F)) {
3213 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3214 netif_rx_schedule(hw->dev[0]);
3217 if (status & IS_PA_TO_TX1)
3218 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3220 if (status & IS_PA_TO_RX1) {
3221 struct skge_port *skge = netdev_priv(hw->dev[0]);
3223 ++skge->net_stats.rx_over_errors;
3224 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3228 if (status & IS_MAC1)
3229 skge_mac_intr(hw, 0);
3232 if (status & (IS_XA2_F|IS_R2_F)) {
3233 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3234 netif_rx_schedule(hw->dev[1]);
3237 if (status & IS_PA_TO_RX2) {
3238 struct skge_port *skge = netdev_priv(hw->dev[1]);
3239 ++skge->net_stats.rx_over_errors;
3240 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3243 if (status & IS_PA_TO_TX2)
3244 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3246 if (status & IS_MAC2)
3247 skge_mac_intr(hw, 1);
3250 if (status & IS_HW_ERR)
3253 skge_write32(hw, B0_IMSK, hw->intr_mask);
3254 skge_read32(hw, B0_IMSK);
3256 spin_unlock(&hw->hw_lock);
3258 return IRQ_RETVAL(handled);
3261 #ifdef CONFIG_NET_POLL_CONTROLLER
3262 static void skge_netpoll(struct net_device *dev)
3264 struct skge_port *skge = netdev_priv(dev);
3266 disable_irq(dev->irq);
3267 skge_intr(dev->irq, skge->hw);
3268 enable_irq(dev->irq);
3272 static int skge_set_mac_address(struct net_device *dev, void *p)
3274 struct skge_port *skge = netdev_priv(dev);
3275 struct skge_hw *hw = skge->hw;
3276 unsigned port = skge->port;
3277 const struct sockaddr *addr = p;
3279 if (!is_valid_ether_addr(addr->sa_data))
3280 return -EADDRNOTAVAIL;
3282 mutex_lock(&hw->phy_mutex);
3283 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3284 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
3285 dev->dev_addr, ETH_ALEN);
3286 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
3287 dev->dev_addr, ETH_ALEN);
3289 if (hw->chip_id == CHIP_ID_GENESIS)
3290 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3292 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3293 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3295 mutex_unlock(&hw->phy_mutex);
3300 static const struct {
3304 { CHIP_ID_GENESIS, "Genesis" },
3305 { CHIP_ID_YUKON, "Yukon" },
3306 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3307 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3310 static const char *skge_board_name(const struct skge_hw *hw)
3313 static char buf[16];
3315 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3316 if (skge_chips[i].id == hw->chip_id)
3317 return skge_chips[i].name;
3319 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3325 * Setup the board data structure, but don't bring up
3328 static int skge_reset(struct skge_hw *hw)
3331 u16 ctst, pci_status;
3332 u8 t8, mac_cfg, pmd_type;
3335 ctst = skge_read16(hw, B0_CTST);
3338 skge_write8(hw, B0_CTST, CS_RST_SET);
3339 skge_write8(hw, B0_CTST, CS_RST_CLR);
3341 /* clear PCI errors, if any */
3342 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3343 skge_write8(hw, B2_TST_CTRL2, 0);
3345 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3346 pci_write_config_word(hw->pdev, PCI_STATUS,
3347 pci_status | PCI_STATUS_ERROR_BITS);
3348 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3349 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3351 /* restore CLK_RUN bits (for Yukon-Lite) */
3352 skge_write16(hw, B0_CTST,
3353 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3355 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3356 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3357 pmd_type = skge_read8(hw, B2_PMD_TYP);
3358 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3360 switch (hw->chip_id) {
3361 case CHIP_ID_GENESIS:
3362 switch (hw->phy_type) {
3364 hw->phy_addr = PHY_ADDR_XMAC;
3367 hw->phy_addr = PHY_ADDR_BCOM;
3370 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3377 case CHIP_ID_YUKON_LITE:
3378 case CHIP_ID_YUKON_LP:
3379 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3382 hw->phy_addr = PHY_ADDR_MARV;
3386 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3391 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3392 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3393 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3395 /* read the adapters RAM size */
3396 t8 = skge_read8(hw, B2_E_0);
3397 if (hw->chip_id == CHIP_ID_GENESIS) {
3399 /* special case: 4 x 64k x 36, offset = 0x80000 */
3400 hw->ram_size = 0x100000;
3401 hw->ram_offset = 0x80000;
3403 hw->ram_size = t8 * 512;
3406 hw->ram_size = 0x20000;
3408 hw->ram_size = t8 * 4096;
3410 hw->intr_mask = IS_HW_ERR | IS_PORT_1;
3412 hw->intr_mask |= IS_PORT_2;
3414 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3415 hw->intr_mask |= IS_EXT_REG;
3417 if (hw->chip_id == CHIP_ID_GENESIS)
3420 /* switch power to VCC (WA for VAUX problem) */
3421 skge_write8(hw, B0_POWER_CTRL,
3422 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3424 /* avoid boards with stuck Hardware error bits */
3425 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3426 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3427 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3428 hw->intr_mask &= ~IS_HW_ERR;
3431 /* Clear PHY COMA */
3432 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3433 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3434 reg &= ~PCI_PHY_COMA;
3435 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3436 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3439 for (i = 0; i < hw->ports; i++) {
3440 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3441 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3445 /* turn off hardware timer (unused) */
3446 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3447 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3448 skge_write8(hw, B0_LED, LED_STAT_ON);
3450 /* enable the Tx Arbiters */
3451 for (i = 0; i < hw->ports; i++)
3452 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3454 /* Initialize ram interface */
3455 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3457 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3458 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3459 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3460 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3461 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3462 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3463 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3464 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3465 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3466 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3467 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3468 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3470 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3472 /* Set interrupt moderation for Transmit only
3473 * Receive interrupts avoided by NAPI
3475 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3476 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3477 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3479 skge_write32(hw, B0_IMSK, hw->intr_mask);
3481 mutex_lock(&hw->phy_mutex);
3482 for (i = 0; i < hw->ports; i++) {
3483 if (hw->chip_id == CHIP_ID_GENESIS)
3484 genesis_reset(hw, i);
3488 mutex_unlock(&hw->phy_mutex);
3493 /* Initialize network device */
3494 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3497 struct skge_port *skge;
3498 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3501 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3505 SET_MODULE_OWNER(dev);
3506 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3507 dev->open = skge_up;
3508 dev->stop = skge_down;
3509 dev->do_ioctl = skge_ioctl;
3510 dev->hard_start_xmit = skge_xmit_frame;
3511 dev->get_stats = skge_get_stats;
3512 if (hw->chip_id == CHIP_ID_GENESIS)
3513 dev->set_multicast_list = genesis_set_multicast;
3515 dev->set_multicast_list = yukon_set_multicast;
3517 dev->set_mac_address = skge_set_mac_address;
3518 dev->change_mtu = skge_change_mtu;
3519 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3520 dev->tx_timeout = skge_tx_timeout;
3521 dev->watchdog_timeo = TX_WATCHDOG;
3522 dev->poll = skge_poll;
3523 dev->weight = NAPI_WEIGHT;
3524 #ifdef CONFIG_NET_POLL_CONTROLLER
3525 dev->poll_controller = skge_netpoll;
3527 dev->irq = hw->pdev->irq;
3530 dev->features |= NETIF_F_HIGHDMA;
3532 skge = netdev_priv(dev);
3535 skge->msg_enable = netif_msg_init(debug, default_msg);
3536 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3537 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3539 /* Auto speed and flow control */
3540 skge->autoneg = AUTONEG_ENABLE;
3541 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3544 skge->advertising = skge_supported_modes(hw);
3545 skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0;
3547 hw->dev[port] = dev;
3551 /* Only used for Genesis XMAC */
3552 INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer);
3554 if (hw->chip_id != CHIP_ID_GENESIS) {
3555 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3559 /* read the mac address */
3560 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3561 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3563 /* device is off until link detection */
3564 netif_carrier_off(dev);
3565 netif_stop_queue(dev);
3570 static void __devinit skge_show_addr(struct net_device *dev)
3572 const struct skge_port *skge = netdev_priv(dev);
3574 if (netif_msg_probe(skge))
3575 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3577 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3578 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3581 static int __devinit skge_probe(struct pci_dev *pdev,
3582 const struct pci_device_id *ent)
3584 struct net_device *dev, *dev1;
3586 int err, using_dac = 0;
3588 err = pci_enable_device(pdev);
3590 dev_err(&pdev->dev, "cannot enable PCI device\n");
3594 err = pci_request_regions(pdev, DRV_NAME);
3596 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3597 goto err_out_disable_pdev;
3600 pci_set_master(pdev);
3602 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3604 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3605 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3607 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3611 dev_err(&pdev->dev, "no usable DMA configuration\n");
3612 goto err_out_free_regions;
3616 /* byte swap descriptors in hardware */
3620 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3621 reg |= PCI_REV_DESC;
3622 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3627 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3629 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3630 goto err_out_free_regions;
3634 mutex_init(&hw->phy_mutex);
3635 INIT_WORK(&hw->phy_work, skge_extirq);
3636 spin_lock_init(&hw->hw_lock);
3638 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3640 dev_err(&pdev->dev, "cannot map device registers\n");
3641 goto err_out_free_hw;
3644 err = skge_reset(hw);
3646 goto err_out_iounmap;
3648 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3649 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3650 skge_board_name(hw), hw->chip_rev);
3652 dev = skge_devinit(hw, 0, using_dac);
3654 goto err_out_led_off;
3656 /* Some motherboards are broken and has zero in ROM. */
3657 if (!is_valid_ether_addr(dev->dev_addr))
3658 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3660 err = register_netdev(dev);
3662 dev_err(&pdev->dev, "cannot register net device\n");
3663 goto err_out_free_netdev;
3666 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3668 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3669 dev->name, pdev->irq);
3670 goto err_out_unregister;
3672 skge_show_addr(dev);
3674 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3675 if (register_netdev(dev1) == 0)
3676 skge_show_addr(dev1);
3678 /* Failure to register second port need not be fatal */
3679 dev_warn(&pdev->dev, "register of second port failed\n");
3684 pci_set_drvdata(pdev, hw);
3689 unregister_netdev(dev);
3690 err_out_free_netdev:
3693 skge_write16(hw, B0_LED, LED_STAT_OFF);
3698 err_out_free_regions:
3699 pci_release_regions(pdev);
3700 err_out_disable_pdev:
3701 pci_disable_device(pdev);
3702 pci_set_drvdata(pdev, NULL);
3707 static void __devexit skge_remove(struct pci_dev *pdev)
3709 struct skge_hw *hw = pci_get_drvdata(pdev);
3710 struct net_device *dev0, *dev1;
3715 flush_scheduled_work();
3717 if ((dev1 = hw->dev[1]))
3718 unregister_netdev(dev1);
3720 unregister_netdev(dev0);
3722 spin_lock_irq(&hw->hw_lock);
3724 skge_write32(hw, B0_IMSK, 0);
3725 skge_read32(hw, B0_IMSK);
3726 spin_unlock_irq(&hw->hw_lock);
3728 skge_write16(hw, B0_LED, LED_STAT_OFF);
3729 skge_write8(hw, B0_CTST, CS_RST_SET);
3731 free_irq(pdev->irq, hw);
3732 pci_release_regions(pdev);
3733 pci_disable_device(pdev);
3740 pci_set_drvdata(pdev, NULL);
3744 static int vaux_avail(struct pci_dev *pdev)
3748 pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
3751 pci_read_config_word(pdev, pm_cap + PCI_PM_PMC, &ctl);
3752 if (ctl & PCI_PM_CAP_AUX_POWER)
3759 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3761 struct skge_hw *hw = pci_get_drvdata(pdev);
3762 int i, err, wol = 0;
3764 err = pci_save_state(pdev);
3768 for (i = 0; i < hw->ports; i++) {
3769 struct net_device *dev = hw->dev[i];
3770 struct skge_port *skge = netdev_priv(dev);
3772 if (netif_running(dev))
3775 skge_wol_init(skge);
3780 if (wol && vaux_avail(pdev))
3781 skge_write8(hw, B0_POWER_CTRL,
3782 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
3784 skge_write32(hw, B0_IMSK, 0);
3785 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3786 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3791 static int skge_resume(struct pci_dev *pdev)
3793 struct skge_hw *hw = pci_get_drvdata(pdev);
3796 err = pci_set_power_state(pdev, PCI_D0);
3800 err = pci_restore_state(pdev);
3804 pci_enable_wake(pdev, PCI_D0, 0);
3806 err = skge_reset(hw);
3810 for (i = 0; i < hw->ports; i++) {
3811 struct net_device *dev = hw->dev[i];
3813 if (netif_running(dev)) {
3817 printk(KERN_ERR PFX "%s: could not up: %d\n",
3829 static struct pci_driver skge_driver = {
3831 .id_table = skge_id_table,
3832 .probe = skge_probe,
3833 .remove = __devexit_p(skge_remove),
3835 .suspend = skge_suspend,
3836 .resume = skge_resume,
3840 static int __init skge_init_module(void)
3842 return pci_register_driver(&skge_driver);
3845 static void __exit skge_cleanup_module(void)
3847 pci_unregister_driver(&skge_driver);
3850 module_init(skge_init_module);
3851 module_exit(skge_cleanup_module);