2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
22 #define ATH_PCI_VERSION "0.1"
24 static char *dev_info = "ath9k";
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
33 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
36 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
41 static void ath_detach(struct ath_softc *sc);
43 /* return bus cachesize in 4B word units */
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
49 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
53 * This check was put in to avoid "unplesant" consequences if
54 * the bootrom has not fully initialized all PCI devices.
55 * Sometimes the cache line size register is not set
59 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
62 static void ath_cache_conf_rate(struct ath_softc *sc,
63 struct ieee80211_conf *conf)
65 switch (conf->channel->band) {
66 case IEEE80211_BAND_2GHZ:
67 if (conf_is_ht20(conf))
69 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
70 else if (conf_is_ht40_minus(conf))
72 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
73 else if (conf_is_ht40_plus(conf))
75 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
78 sc->hw_rate_table[ATH9K_MODE_11G];
80 case IEEE80211_BAND_5GHZ:
81 if (conf_is_ht20(conf))
83 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
84 else if (conf_is_ht40_minus(conf))
86 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
87 else if (conf_is_ht40_plus(conf))
89 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
92 sc->hw_rate_table[ATH9K_MODE_11A];
100 static void ath_update_txpow(struct ath_softc *sc)
102 struct ath_hal *ah = sc->sc_ah;
105 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
106 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
107 /* read back in case value is clamped */
108 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
109 sc->sc_curtxpow = txpow;
113 static u8 parse_mpdudensity(u8 mpdudensity)
116 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
117 * 0 for no restriction
126 switch (mpdudensity) {
132 /* Our lower layer calculations limit our precision to
148 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
150 struct ath_rate_table *rate_table = NULL;
151 struct ieee80211_supported_band *sband;
152 struct ieee80211_rate *rate;
156 case IEEE80211_BAND_2GHZ:
157 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
159 case IEEE80211_BAND_5GHZ:
160 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
166 if (rate_table == NULL)
169 sband = &sc->sbands[band];
170 rate = sc->rates[band];
172 if (rate_table->rate_cnt > ATH_RATE_MAX)
173 maxrates = ATH_RATE_MAX;
175 maxrates = rate_table->rate_cnt;
177 for (i = 0; i < maxrates; i++) {
178 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
179 rate[i].hw_value = rate_table->info[i].ratecode;
181 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
182 rate[i].bitrate / 10, rate[i].hw_value);
186 static int ath_setup_channels(struct ath_softc *sc)
188 struct ath_hal *ah = sc->sc_ah;
189 int nchan, i, a = 0, b = 0;
190 u8 regclassids[ATH_REGCLASSIDS_MAX];
192 struct ieee80211_supported_band *band_2ghz;
193 struct ieee80211_supported_band *band_5ghz;
194 struct ieee80211_channel *chan_2ghz;
195 struct ieee80211_channel *chan_5ghz;
196 struct ath9k_channel *c;
198 /* Fill in ah->ah_channels */
199 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
200 regclassids, ATH_REGCLASSIDS_MAX,
201 &nregclass, CTRY_DEFAULT, false, 1)) {
202 u32 rd = ah->ah_currentRD;
203 DPRINTF(sc, ATH_DBG_FATAL,
204 "Unable to collect channel list; "
205 "regdomain likely %u country code %u\n",
210 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
211 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
212 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
213 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
215 for (i = 0; i < nchan; i++) {
216 c = &ah->ah_channels[i];
217 if (IS_CHAN_2GHZ(c)) {
218 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
219 chan_2ghz[a].center_freq = c->channel;
220 chan_2ghz[a].max_power = c->maxTxPower;
221 c->chan = &chan_2ghz[a];
223 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
224 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
225 if (c->channelFlags & CHANNEL_PASSIVE)
226 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
228 band_2ghz->n_channels = ++a;
230 DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
231 "channelFlags: 0x%x\n",
232 c->channel, c->channelFlags);
233 } else if (IS_CHAN_5GHZ(c)) {
234 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
235 chan_5ghz[b].center_freq = c->channel;
236 chan_5ghz[b].max_power = c->maxTxPower;
237 c->chan = &chan_5ghz[a];
239 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
240 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
241 if (c->channelFlags & CHANNEL_PASSIVE)
242 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
244 band_5ghz->n_channels = ++b;
246 DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
247 "channelFlags: 0x%x\n",
248 c->channel, c->channelFlags);
256 * Set/change channels. If the channel is really being changed, it's done
257 * by reseting the chip. To accomplish this we must first cleanup any pending
258 * DMA, then restart stuff.
260 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
262 struct ath_hal *ah = sc->sc_ah;
263 bool fastcc = true, stopped;
264 struct ieee80211_hw *hw = sc->hw;
265 struct ieee80211_channel *channel = hw->conf.channel;
268 if (sc->sc_flags & SC_OP_INVALID)
272 * This is only performed if the channel settings have
275 * To switch channels clear any pending DMA operations;
276 * wait long enough for the RX fifo to drain, reset the
277 * hardware at the new frequency, and then re-enable
278 * the relevant bits of the h/w.
280 ath9k_hw_set_interrupts(ah, 0);
281 ath_draintxq(sc, false);
282 stopped = ath_stoprecv(sc);
284 /* XXX: do not flush receive queue here. We don't want
285 * to flush data frames already in queue because of
286 * changing channel. */
288 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
291 DPRINTF(sc, ATH_DBG_CONFIG,
292 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
293 sc->sc_ah->ah_curchan->channel,
294 channel->center_freq, sc->tx_chan_width);
296 spin_lock_bh(&sc->sc_resetlock);
298 r = ath9k_hw_reset(ah, hchan, fastcc);
300 DPRINTF(sc, ATH_DBG_FATAL,
301 "Unable to reset channel (%u Mhz) "
303 channel->center_freq, r);
304 spin_unlock_bh(&sc->sc_resetlock);
307 spin_unlock_bh(&sc->sc_resetlock);
309 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
310 sc->sc_flags &= ~SC_OP_FULL_RESET;
312 if (ath_startrecv(sc) != 0) {
313 DPRINTF(sc, ATH_DBG_FATAL,
314 "Unable to restart recv logic\n");
318 ath_cache_conf_rate(sc, &hw->conf);
319 ath_update_txpow(sc);
320 ath9k_hw_set_interrupts(ah, sc->sc_imask);
325 * This routine performs the periodic noise floor calibration function
326 * that is used to adjust and optimize the chip performance. This
327 * takes environmental changes (location, temperature) into account.
328 * When the task is complete, it reschedules itself depending on the
329 * appropriate interval that was calculated.
331 static void ath_ani_calibrate(unsigned long data)
333 struct ath_softc *sc;
335 bool longcal = false;
336 bool shortcal = false;
337 bool aniflag = false;
338 unsigned int timestamp = jiffies_to_msecs(jiffies);
341 sc = (struct ath_softc *)data;
345 * don't calibrate when we're scanning.
346 * we are most likely not on our home channel.
348 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
351 /* Long calibration runs independently of short calibration. */
352 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
354 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
355 sc->sc_ani.sc_longcal_timer = timestamp;
358 /* Short calibration applies only while sc_caldone is false */
359 if (!sc->sc_ani.sc_caldone) {
360 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
361 ATH_SHORT_CALINTERVAL) {
363 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
364 sc->sc_ani.sc_shortcal_timer = timestamp;
365 sc->sc_ani.sc_resetcal_timer = timestamp;
368 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
369 ATH_RESTART_CALINTERVAL) {
370 sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
371 if (sc->sc_ani.sc_caldone)
372 sc->sc_ani.sc_resetcal_timer = timestamp;
376 /* Verify whether we must check ANI */
377 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
378 ATH_ANI_POLLINTERVAL) {
380 sc->sc_ani.sc_checkani_timer = timestamp;
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
387 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
390 /* Perform calibration if necessary */
391 if (longcal || shortcal) {
392 bool iscaldone = false;
394 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
395 sc->sc_rx_chainmask, longcal,
398 sc->sc_ani.sc_noise_floor =
399 ath9k_hw_getchan_noise(ah,
402 DPRINTF(sc, ATH_DBG_ANI,
403 "calibrate chan %u/%x nf: %d\n",
404 ah->ah_curchan->channel,
405 ah->ah_curchan->channelFlags,
406 sc->sc_ani.sc_noise_floor);
408 DPRINTF(sc, ATH_DBG_ANY,
409 "calibrate chan %u/%x failed\n",
410 ah->ah_curchan->channel,
411 ah->ah_curchan->channelFlags);
413 sc->sc_ani.sc_caldone = iscaldone;
418 * Set timer interval based on previous results.
419 * The interval must be the shortest necessary to satisfy ANI,
420 * short calibration and long calibration.
422 cal_interval = ATH_LONG_CALINTERVAL;
423 if (sc->sc_ah->ah_config.enable_ani)
424 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
425 if (!sc->sc_ani.sc_caldone)
426 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
428 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
432 * Update tx/rx chainmask. For legacy association,
433 * hard code chainmask to 1x1, for 11n association, use
434 * the chainmask configuration, for bt coexistence, use
435 * the chainmask configuration even in legacy mode.
437 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
439 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
441 (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
442 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
443 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
445 sc->sc_tx_chainmask = 1;
446 sc->sc_rx_chainmask = 1;
449 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
450 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
453 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
457 an = (struct ath_node *)sta->drv_priv;
459 if (sc->sc_flags & SC_OP_TXAGGR)
460 ath_tx_node_init(sc, an);
462 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
463 sta->ht_cap.ampdu_factor);
464 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
467 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
469 struct ath_node *an = (struct ath_node *)sta->drv_priv;
471 if (sc->sc_flags & SC_OP_TXAGGR)
472 ath_tx_node_cleanup(sc, an);
475 static void ath9k_tasklet(unsigned long data)
477 struct ath_softc *sc = (struct ath_softc *)data;
478 u32 status = sc->sc_intrstatus;
480 if (status & ATH9K_INT_FATAL) {
481 /* need a chip reset */
482 ath_reset(sc, false);
487 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
488 spin_lock_bh(&sc->rx.rxflushlock);
489 ath_rx_tasklet(sc, 0);
490 spin_unlock_bh(&sc->rx.rxflushlock);
492 /* XXX: optimize this */
493 if (status & ATH9K_INT_TX)
497 /* re-enable hardware interrupt */
498 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
501 static irqreturn_t ath_isr(int irq, void *dev)
503 struct ath_softc *sc = dev;
504 struct ath_hal *ah = sc->sc_ah;
505 enum ath9k_int status;
509 if (sc->sc_flags & SC_OP_INVALID) {
511 * The hardware is not ready/present, don't
512 * touch anything. Note this can happen early
513 * on if the IRQ is shared.
517 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
522 * Figure out the reason(s) for the interrupt. Note
523 * that the hal returns a pseudo-ISR that may include
524 * bits we haven't explicitly enabled so we mask the
525 * value to insure we only process bits we requested.
527 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
529 status &= sc->sc_imask; /* discard unasked-for bits */
532 * If there are no status bits set, then this interrupt was not
533 * for me (should have been caught above).
538 sc->sc_intrstatus = status;
540 if (status & ATH9K_INT_FATAL) {
541 /* need a chip reset */
543 } else if (status & ATH9K_INT_RXORN) {
544 /* need a chip reset */
547 if (status & ATH9K_INT_SWBA) {
548 /* schedule a tasklet for beacon handling */
549 tasklet_schedule(&sc->bcon_tasklet);
551 if (status & ATH9K_INT_RXEOL) {
553 * NB: the hardware should re-read the link when
554 * RXE bit is written, but it doesn't work
555 * at least on older hardware revs.
560 if (status & ATH9K_INT_TXURN)
561 /* bump tx trigger level */
562 ath9k_hw_updatetxtriglevel(ah, true);
563 /* XXX: optimize this */
564 if (status & ATH9K_INT_RX)
566 if (status & ATH9K_INT_TX)
568 if (status & ATH9K_INT_BMISS)
570 /* carrier sense timeout */
571 if (status & ATH9K_INT_CST)
573 if (status & ATH9K_INT_MIB) {
575 * Disable interrupts until we service the MIB
576 * interrupt; otherwise it will continue to
579 ath9k_hw_set_interrupts(ah, 0);
581 * Let the hal handle the event. We assume
582 * it will clear whatever condition caused
585 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
586 ath9k_hw_set_interrupts(ah, sc->sc_imask);
588 if (status & ATH9K_INT_TIM_TIMER) {
589 if (!(ah->ah_caps.hw_caps &
590 ATH9K_HW_CAP_AUTOSLEEP)) {
591 /* Clear RxAbort bit so that we can
593 ath9k_hw_setrxabort(ah, 0);
600 ath_debug_stat_interrupt(sc, status);
603 /* turn off every interrupt except SWBA */
604 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
605 tasklet_schedule(&sc->intr_tq);
611 static int ath_get_channel(struct ath_softc *sc,
612 struct ieee80211_channel *chan)
616 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
617 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
624 static u32 ath_get_extchanmode(struct ath_softc *sc,
625 struct ieee80211_channel *chan,
626 enum nl80211_channel_type channel_type)
630 switch (chan->band) {
631 case IEEE80211_BAND_2GHZ:
632 switch(channel_type) {
633 case NL80211_CHAN_NO_HT:
634 case NL80211_CHAN_HT20:
635 chanmode = CHANNEL_G_HT20;
637 case NL80211_CHAN_HT40PLUS:
638 chanmode = CHANNEL_G_HT40PLUS;
640 case NL80211_CHAN_HT40MINUS:
641 chanmode = CHANNEL_G_HT40MINUS;
645 case IEEE80211_BAND_5GHZ:
646 switch(channel_type) {
647 case NL80211_CHAN_NO_HT:
648 case NL80211_CHAN_HT20:
649 chanmode = CHANNEL_A_HT20;
651 case NL80211_CHAN_HT40PLUS:
652 chanmode = CHANNEL_A_HT40PLUS;
654 case NL80211_CHAN_HT40MINUS:
655 chanmode = CHANNEL_A_HT40MINUS;
666 static int ath_keyset(struct ath_softc *sc, u16 keyix,
667 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
671 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
672 keyix, hk, mac, false);
674 return status != false;
677 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
678 struct ath9k_keyval *hk,
684 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
685 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
688 /* Group key installation */
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 return ath_keyset(sc, keyix, hk, addr);
692 if (!sc->sc_splitmic) {
694 * data key goes at first index,
695 * the hal handles the MIC keys at index+64.
697 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
698 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
699 return ath_keyset(sc, keyix, hk, addr);
702 * TX key goes at first index, RX key at +32.
703 * The hal handles the MIC keys at index+64.
705 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
706 if (!ath_keyset(sc, keyix, hk, NULL)) {
707 /* Txmic entry failed. No need to proceed further */
708 DPRINTF(sc, ATH_DBG_KEYCACHE,
709 "Setting TX MIC Key Failed\n");
713 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
714 /* XXX delete tx key on failure? */
715 return ath_keyset(sc, keyix + 32, hk, addr);
718 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
722 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
723 if (test_bit(i, sc->sc_keymap) ||
724 test_bit(i + 64, sc->sc_keymap))
725 continue; /* At least one part of TKIP key allocated */
726 if (sc->sc_splitmic &&
727 (test_bit(i + 32, sc->sc_keymap) ||
728 test_bit(i + 64 + 32, sc->sc_keymap)))
729 continue; /* At least one part of TKIP key allocated */
731 /* Found a free slot for a TKIP key */
737 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
741 /* First, try to find slots that would not be available for TKIP. */
742 if (sc->sc_splitmic) {
743 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
744 if (!test_bit(i, sc->sc_keymap) &&
745 (test_bit(i + 32, sc->sc_keymap) ||
746 test_bit(i + 64, sc->sc_keymap) ||
747 test_bit(i + 64 + 32, sc->sc_keymap)))
749 if (!test_bit(i + 32, sc->sc_keymap) &&
750 (test_bit(i, sc->sc_keymap) ||
751 test_bit(i + 64, sc->sc_keymap) ||
752 test_bit(i + 64 + 32, sc->sc_keymap)))
754 if (!test_bit(i + 64, sc->sc_keymap) &&
755 (test_bit(i , sc->sc_keymap) ||
756 test_bit(i + 32, sc->sc_keymap) ||
757 test_bit(i + 64 + 32, sc->sc_keymap)))
759 if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
760 (test_bit(i, sc->sc_keymap) ||
761 test_bit(i + 32, sc->sc_keymap) ||
762 test_bit(i + 64, sc->sc_keymap)))
766 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
767 if (!test_bit(i, sc->sc_keymap) &&
768 test_bit(i + 64, sc->sc_keymap))
770 if (test_bit(i, sc->sc_keymap) &&
771 !test_bit(i + 64, sc->sc_keymap))
776 /* No partially used TKIP slots, pick any available slot */
777 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
778 /* Do not allow slots that could be needed for TKIP group keys
779 * to be used. This limitation could be removed if we know that
780 * TKIP will not be used. */
781 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
783 if (sc->sc_splitmic) {
784 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
786 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
790 if (!test_bit(i, sc->sc_keymap))
791 return i; /* Found a free slot for a key */
794 /* No free slot found */
798 static int ath_key_config(struct ath_softc *sc,
799 struct ieee80211_sta *sta,
800 struct ieee80211_key_conf *key)
802 struct ath9k_keyval hk;
803 const u8 *mac = NULL;
807 memset(&hk, 0, sizeof(hk));
811 hk.kv_type = ATH9K_CIPHER_WEP;
814 hk.kv_type = ATH9K_CIPHER_TKIP;
817 hk.kv_type = ATH9K_CIPHER_AES_CCM;
823 hk.kv_len = key->keylen;
824 memcpy(hk.kv_val, key->key, key->keylen);
826 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
827 /* For now, use the default keys for broadcast keys. This may
828 * need to change with virtual interfaces. */
830 } else if (key->keyidx) {
831 struct ieee80211_vif *vif;
837 vif = sc->sc_vaps[0];
838 if (vif->type != NL80211_IFTYPE_AP) {
839 /* Only keyidx 0 should be used with unicast key, but
840 * allow this for client mode for now. */
849 if (key->alg == ALG_TKIP)
850 idx = ath_reserve_key_cache_slot_tkip(sc);
852 idx = ath_reserve_key_cache_slot(sc);
854 return -EIO; /* no free key cache entries */
857 if (key->alg == ALG_TKIP)
858 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
860 ret = ath_keyset(sc, idx, &hk, mac);
865 set_bit(idx, sc->sc_keymap);
866 if (key->alg == ALG_TKIP) {
867 set_bit(idx + 64, sc->sc_keymap);
868 if (sc->sc_splitmic) {
869 set_bit(idx + 32, sc->sc_keymap);
870 set_bit(idx + 64 + 32, sc->sc_keymap);
877 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
879 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
880 if (key->hw_key_idx < IEEE80211_WEP_NKID)
883 clear_bit(key->hw_key_idx, sc->sc_keymap);
884 if (key->alg != ALG_TKIP)
887 clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
888 if (sc->sc_splitmic) {
889 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
890 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
894 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
896 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
897 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
899 ht_info->ht_supported = true;
900 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
901 IEEE80211_HT_CAP_SM_PS |
902 IEEE80211_HT_CAP_SGI_40 |
903 IEEE80211_HT_CAP_DSSSCCK40;
905 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
906 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
907 /* set up supported mcs set */
908 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
909 ht_info->mcs.rx_mask[0] = 0xff;
910 ht_info->mcs.rx_mask[1] = 0xff;
911 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
914 static void ath9k_bss_assoc_info(struct ath_softc *sc,
915 struct ieee80211_vif *vif,
916 struct ieee80211_bss_conf *bss_conf)
918 struct ath_vap *avp = (void *)vif->drv_priv;
920 if (bss_conf->assoc) {
921 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
922 bss_conf->aid, sc->sc_curbssid);
924 /* New association, store aid */
925 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
926 sc->sc_curaid = bss_conf->aid;
927 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
931 /* Configure the beacon */
932 ath_beacon_config(sc, 0);
933 sc->sc_flags |= SC_OP_BEACONS;
935 /* Reset rssi stats */
936 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
937 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
938 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
939 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
942 mod_timer(&sc->sc_ani.timer,
943 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
946 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
951 /********************************/
953 /********************************/
955 static void ath_led_brightness(struct led_classdev *led_cdev,
956 enum led_brightness brightness)
958 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
959 struct ath_softc *sc = led->sc;
961 switch (brightness) {
963 if (led->led_type == ATH_LED_ASSOC ||
964 led->led_type == ATH_LED_RADIO)
965 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
966 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
967 (led->led_type == ATH_LED_RADIO) ? 1 :
968 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
971 if (led->led_type == ATH_LED_ASSOC)
972 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
973 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
980 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
986 led->led_cdev.name = led->name;
987 led->led_cdev.default_trigger = trigger;
988 led->led_cdev.brightness_set = ath_led_brightness;
990 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
992 DPRINTF(sc, ATH_DBG_FATAL,
993 "Failed to register led:%s", led->name);
999 static void ath_unregister_led(struct ath_led *led)
1001 if (led->registered) {
1002 led_classdev_unregister(&led->led_cdev);
1003 led->registered = 0;
1007 static void ath_deinit_leds(struct ath_softc *sc)
1009 ath_unregister_led(&sc->assoc_led);
1010 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1011 ath_unregister_led(&sc->tx_led);
1012 ath_unregister_led(&sc->rx_led);
1013 ath_unregister_led(&sc->radio_led);
1014 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1017 static void ath_init_leds(struct ath_softc *sc)
1022 /* Configure gpio 1 for output */
1023 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1024 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1025 /* LED off, active low */
1026 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1028 trigger = ieee80211_get_radio_led_name(sc->hw);
1029 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1030 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1031 ret = ath_register_led(sc, &sc->radio_led, trigger);
1032 sc->radio_led.led_type = ATH_LED_RADIO;
1036 trigger = ieee80211_get_assoc_led_name(sc->hw);
1037 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1038 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1039 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1040 sc->assoc_led.led_type = ATH_LED_ASSOC;
1044 trigger = ieee80211_get_tx_led_name(sc->hw);
1045 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1046 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1047 ret = ath_register_led(sc, &sc->tx_led, trigger);
1048 sc->tx_led.led_type = ATH_LED_TX;
1052 trigger = ieee80211_get_rx_led_name(sc->hw);
1053 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1054 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1055 ret = ath_register_led(sc, &sc->rx_led, trigger);
1056 sc->rx_led.led_type = ATH_LED_RX;
1063 ath_deinit_leds(sc);
1066 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1068 /*******************/
1070 /*******************/
1072 static void ath_radio_enable(struct ath_softc *sc)
1074 struct ath_hal *ah = sc->sc_ah;
1075 struct ieee80211_channel *channel = sc->hw->conf.channel;
1078 spin_lock_bh(&sc->sc_resetlock);
1080 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1083 DPRINTF(sc, ATH_DBG_FATAL,
1084 "Unable to reset channel %u (%uMhz) ",
1085 "reset status %u\n",
1086 channel->center_freq, r);
1088 spin_unlock_bh(&sc->sc_resetlock);
1090 ath_update_txpow(sc);
1091 if (ath_startrecv(sc) != 0) {
1092 DPRINTF(sc, ATH_DBG_FATAL,
1093 "Unable to restart recv logic\n");
1097 if (sc->sc_flags & SC_OP_BEACONS)
1098 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1100 /* Re-Enable interrupts */
1101 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1104 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1105 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1106 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1108 ieee80211_wake_queues(sc->hw);
1111 static void ath_radio_disable(struct ath_softc *sc)
1113 struct ath_hal *ah = sc->sc_ah;
1114 struct ieee80211_channel *channel = sc->hw->conf.channel;
1117 ieee80211_stop_queues(sc->hw);
1120 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1121 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1123 /* Disable interrupts */
1124 ath9k_hw_set_interrupts(ah, 0);
1126 ath_draintxq(sc, false); /* clear pending tx frames */
1127 ath_stoprecv(sc); /* turn off frame recv */
1128 ath_flushrecv(sc); /* flush recv queue */
1130 spin_lock_bh(&sc->sc_resetlock);
1131 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1133 DPRINTF(sc, ATH_DBG_FATAL,
1134 "Unable to reset channel %u (%uMhz) "
1135 "reset status %u\n",
1136 channel->center_freq, r);
1138 spin_unlock_bh(&sc->sc_resetlock);
1140 ath9k_hw_phy_disable(ah);
1141 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1144 static bool ath_is_rfkill_set(struct ath_softc *sc)
1146 struct ath_hal *ah = sc->sc_ah;
1148 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1149 ah->ah_rfkill_polarity;
1152 /* h/w rfkill poll function */
1153 static void ath_rfkill_poll(struct work_struct *work)
1155 struct ath_softc *sc = container_of(work, struct ath_softc,
1156 rf_kill.rfkill_poll.work);
1159 if (sc->sc_flags & SC_OP_INVALID)
1162 radio_on = !ath_is_rfkill_set(sc);
1165 * enable/disable radio only when there is a
1166 * state change in RF switch
1168 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1169 enum rfkill_state state;
1171 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1172 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1173 : RFKILL_STATE_HARD_BLOCKED;
1174 } else if (radio_on) {
1175 ath_radio_enable(sc);
1176 state = RFKILL_STATE_UNBLOCKED;
1178 ath_radio_disable(sc);
1179 state = RFKILL_STATE_HARD_BLOCKED;
1182 if (state == RFKILL_STATE_HARD_BLOCKED)
1183 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1185 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1187 rfkill_force_state(sc->rf_kill.rfkill, state);
1190 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1191 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1194 /* s/w rfkill handler */
1195 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1197 struct ath_softc *sc = data;
1200 case RFKILL_STATE_SOFT_BLOCKED:
1201 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1202 SC_OP_RFKILL_SW_BLOCKED)))
1203 ath_radio_disable(sc);
1204 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1206 case RFKILL_STATE_UNBLOCKED:
1207 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1208 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1209 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1210 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1211 "radio as it is disabled by h/w\n");
1214 ath_radio_enable(sc);
1222 /* Init s/w rfkill */
1223 static int ath_init_sw_rfkill(struct ath_softc *sc)
1225 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1227 if (!sc->rf_kill.rfkill) {
1228 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1232 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1233 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1234 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1235 sc->rf_kill.rfkill->data = sc;
1236 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1237 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1238 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1243 /* Deinitialize rfkill */
1244 static void ath_deinit_rfkill(struct ath_softc *sc)
1246 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1247 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1249 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1250 rfkill_unregister(sc->rf_kill.rfkill);
1251 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1252 sc->rf_kill.rfkill = NULL;
1256 static int ath_start_rfkill_poll(struct ath_softc *sc)
1258 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1259 queue_delayed_work(sc->hw->workqueue,
1260 &sc->rf_kill.rfkill_poll, 0);
1262 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1263 if (rfkill_register(sc->rf_kill.rfkill)) {
1264 DPRINTF(sc, ATH_DBG_FATAL,
1265 "Unable to register rfkill\n");
1266 rfkill_free(sc->rf_kill.rfkill);
1268 /* Deinitialize the device */
1271 free_irq(sc->pdev->irq, sc);
1272 pci_iounmap(sc->pdev, sc->mem);
1273 pci_release_region(sc->pdev, 0);
1274 pci_disable_device(sc->pdev);
1275 ieee80211_free_hw(sc->hw);
1278 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1284 #endif /* CONFIG_RFKILL */
1286 static void ath_detach(struct ath_softc *sc)
1288 struct ieee80211_hw *hw = sc->hw;
1291 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1293 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1294 ath_deinit_rfkill(sc);
1296 ath_deinit_leds(sc);
1298 ieee80211_unregister_hw(hw);
1302 tasklet_kill(&sc->intr_tq);
1303 tasklet_kill(&sc->bcon_tasklet);
1305 if (!(sc->sc_flags & SC_OP_INVALID))
1306 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1308 /* cleanup tx queues */
1309 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1310 if (ATH_TXQ_SETUP(sc, i))
1311 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1313 ath9k_hw_detach(sc->sc_ah);
1314 ath9k_exit_debug(sc);
1317 static int ath_init(u16 devid, struct ath_softc *sc)
1319 struct ath_hal *ah = NULL;
1324 /* XXX: hardware will not be ready until ath_open() being called */
1325 sc->sc_flags |= SC_OP_INVALID;
1327 if (ath9k_init_debug(sc) < 0)
1328 printk(KERN_ERR "Unable to create debugfs files\n");
1330 spin_lock_init(&sc->sc_resetlock);
1331 mutex_init(&sc->mutex);
1332 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1333 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1337 * Cache line size is used to size and align various
1338 * structures used to communicate with the hardware.
1340 bus_read_cachesize(sc, &csz);
1341 /* XXX assert csz is non-zero */
1342 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1344 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1346 DPRINTF(sc, ATH_DBG_FATAL,
1347 "Unable to attach hardware; HAL status %d\n", status);
1353 /* Get the hardware key cache size. */
1354 sc->sc_keymax = ah->ah_caps.keycache_size;
1355 if (sc->sc_keymax > ATH_KEYMAX) {
1356 DPRINTF(sc, ATH_DBG_KEYCACHE,
1357 "Warning, using only %u entries in %u key cache\n",
1358 ATH_KEYMAX, sc->sc_keymax);
1359 sc->sc_keymax = ATH_KEYMAX;
1363 * Reset the key cache since some parts do not
1364 * reset the contents on initial power up.
1366 for (i = 0; i < sc->sc_keymax; i++)
1367 ath9k_hw_keyreset(ah, (u16) i);
1369 /* Collect the channel list using the default country code */
1371 error = ath_setup_channels(sc);
1375 /* default to MONITOR mode */
1376 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1379 /* Setup rate tables */
1381 ath_rate_attach(sc);
1382 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1383 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1386 * Allocate hardware transmit queues: one queue for
1387 * beacon frames and one data queue for each QoS
1388 * priority. Note that the hal handles reseting
1389 * these queues at the needed time.
1391 sc->beacon.beaconq = ath_beaconq_setup(ah);
1392 if (sc->beacon.beaconq == -1) {
1393 DPRINTF(sc, ATH_DBG_FATAL,
1394 "Unable to setup a beacon xmit queue\n");
1398 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1399 if (sc->beacon.cabq == NULL) {
1400 DPRINTF(sc, ATH_DBG_FATAL,
1401 "Unable to setup CAB xmit queue\n");
1406 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1407 ath_cabq_update(sc);
1409 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1410 sc->tx.hwq_map[i] = -1;
1412 /* Setup data queues */
1413 /* NB: ensure BK queue is the lowest priority h/w queue */
1414 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1415 DPRINTF(sc, ATH_DBG_FATAL,
1416 "Unable to setup xmit queue for BK traffic\n");
1421 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1422 DPRINTF(sc, ATH_DBG_FATAL,
1423 "Unable to setup xmit queue for BE traffic\n");
1427 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1428 DPRINTF(sc, ATH_DBG_FATAL,
1429 "Unable to setup xmit queue for VI traffic\n");
1433 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1434 DPRINTF(sc, ATH_DBG_FATAL,
1435 "Unable to setup xmit queue for VO traffic\n");
1440 /* Initializes the noise floor to a reasonable default value.
1441 * Later on this will be updated during ANI processing. */
1443 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1444 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1446 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1447 ATH9K_CIPHER_TKIP, NULL)) {
1449 * Whether we should enable h/w TKIP MIC.
1450 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1451 * report WMM capable, so it's always safe to turn on
1452 * TKIP MIC in this case.
1454 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1459 * Check whether the separate key cache entries
1460 * are required to handle both tx+rx MIC keys.
1461 * With split mic keys the number of stations is limited
1462 * to 27 otherwise 59.
1464 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1465 ATH9K_CIPHER_TKIP, NULL)
1466 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1467 ATH9K_CIPHER_MIC, NULL)
1468 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1470 sc->sc_splitmic = 1;
1472 /* turn on mcast key search if possible */
1473 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1474 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1477 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1478 sc->sc_config.txpowlimit_override = 0;
1480 /* 11n Capabilities */
1481 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1482 sc->sc_flags |= SC_OP_TXAGGR;
1483 sc->sc_flags |= SC_OP_RXAGGR;
1486 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1487 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1489 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1490 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1492 ath9k_hw_getmac(ah, sc->sc_myaddr);
1493 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1494 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1495 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1496 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1499 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1501 /* initialize beacon slots */
1502 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1503 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1505 /* save MISC configurations */
1506 sc->sc_config.swBeaconProcess = 1;
1508 /* setup channels and rates */
1510 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1511 sc->channels[IEEE80211_BAND_2GHZ];
1512 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1513 sc->rates[IEEE80211_BAND_2GHZ];
1514 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1516 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1517 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1518 sc->channels[IEEE80211_BAND_5GHZ];
1519 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1520 sc->rates[IEEE80211_BAND_5GHZ];
1521 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1524 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1525 ath9k_hw_btcoex_enable(sc->sc_ah);
1529 /* cleanup tx queues */
1530 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1531 if (ATH_TXQ_SETUP(sc, i))
1532 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1535 ath9k_hw_detach(ah);
1540 static int ath_attach(u16 devid, struct ath_softc *sc)
1542 struct ieee80211_hw *hw = sc->hw;
1545 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1547 error = ath_init(devid, sc);
1551 /* get mac address from hardware and set in mac80211 */
1553 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1555 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1556 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1557 IEEE80211_HW_SIGNAL_DBM |
1558 IEEE80211_HW_AMPDU_AGGREGATION;
1560 hw->wiphy->interface_modes =
1561 BIT(NL80211_IFTYPE_AP) |
1562 BIT(NL80211_IFTYPE_STATION) |
1563 BIT(NL80211_IFTYPE_ADHOC);
1567 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1568 hw->sta_data_size = sizeof(struct ath_node);
1569 hw->vif_data_size = sizeof(struct ath_vap);
1571 hw->rate_control_algorithm = "ath9k_rate_control";
1573 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1574 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1575 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1576 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1579 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1580 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1581 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1582 &sc->sbands[IEEE80211_BAND_5GHZ];
1584 /* initialize tx/rx engine */
1585 error = ath_tx_init(sc, ATH_TXBUF);
1589 error = ath_rx_init(sc, ATH_RXBUF);
1593 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1594 /* Initialze h/w Rfkill */
1595 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1596 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1598 /* Initialize s/w rfkill */
1599 if (ath_init_sw_rfkill(sc))
1603 error = ieee80211_register_hw(hw);
1605 /* Initialize LED control */
1614 int ath_reset(struct ath_softc *sc, bool retry_tx)
1616 struct ath_hal *ah = sc->sc_ah;
1617 struct ieee80211_hw *hw = sc->hw;
1620 ath9k_hw_set_interrupts(ah, 0);
1621 ath_draintxq(sc, retry_tx);
1625 spin_lock_bh(&sc->sc_resetlock);
1626 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1628 DPRINTF(sc, ATH_DBG_FATAL,
1629 "Unable to reset hardware; reset status %u\n", r);
1630 spin_unlock_bh(&sc->sc_resetlock);
1632 if (ath_startrecv(sc) != 0)
1633 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1636 * We may be doing a reset in response to a request
1637 * that changes the channel so update any state that
1638 * might change as a result.
1640 ath_cache_conf_rate(sc, &hw->conf);
1642 ath_update_txpow(sc);
1644 if (sc->sc_flags & SC_OP_BEACONS)
1645 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1647 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1651 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1652 if (ATH_TXQ_SETUP(sc, i)) {
1653 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1654 ath_txq_schedule(sc, &sc->tx.txq[i]);
1655 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1664 * This function will allocate both the DMA descriptor structure, and the
1665 * buffers it contains. These are used to contain the descriptors used
1668 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1669 struct list_head *head, const char *name,
1670 int nbuf, int ndesc)
1672 #define DS2PHYS(_dd, _ds) \
1673 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1674 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1675 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1677 struct ath_desc *ds;
1679 int i, bsize, error;
1681 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1684 /* ath_desc must be a multiple of DWORDs */
1685 if ((sizeof(struct ath_desc) % 4) != 0) {
1686 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1687 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1693 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1696 * Need additional DMA memory because we can't use
1697 * descriptors that cross the 4K page boundary. Assume
1698 * one skipped descriptor per 4K page.
1700 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1702 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1705 while (ndesc_skipped) {
1706 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1707 dd->dd_desc_len += dma_len;
1709 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1713 /* allocate descriptors */
1714 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1716 &dd->dd_desc_paddr);
1717 if (dd->dd_desc == NULL) {
1722 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1723 dd->dd_name, ds, (u32) dd->dd_desc_len,
1724 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1726 /* allocate buffers */
1727 bsize = sizeof(struct ath_buf) * nbuf;
1728 bf = kmalloc(bsize, GFP_KERNEL);
1733 memset(bf, 0, bsize);
1736 INIT_LIST_HEAD(head);
1737 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1739 bf->bf_daddr = DS2PHYS(dd, ds);
1741 if (!(sc->sc_ah->ah_caps.hw_caps &
1742 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1744 * Skip descriptor addresses which can cause 4KB
1745 * boundary crossing (addr + length) with a 32 dword
1748 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1749 ASSERT((caddr_t) bf->bf_desc <
1750 ((caddr_t) dd->dd_desc +
1755 bf->bf_daddr = DS2PHYS(dd, ds);
1758 list_add_tail(&bf->list, head);
1762 pci_free_consistent(sc->pdev,
1763 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1765 memset(dd, 0, sizeof(*dd));
1767 #undef ATH_DESC_4KB_BOUND_CHECK
1768 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1772 void ath_descdma_cleanup(struct ath_softc *sc,
1773 struct ath_descdma *dd,
1774 struct list_head *head)
1776 pci_free_consistent(sc->pdev,
1777 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1779 INIT_LIST_HEAD(head);
1780 kfree(dd->dd_bufptr);
1781 memset(dd, 0, sizeof(*dd));
1784 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1790 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1793 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1796 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1799 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1802 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1809 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1814 case ATH9K_WME_AC_VO:
1817 case ATH9K_WME_AC_VI:
1820 case ATH9K_WME_AC_BE:
1823 case ATH9K_WME_AC_BK:
1834 /**********************/
1835 /* mac80211 callbacks */
1836 /**********************/
1838 static int ath9k_start(struct ieee80211_hw *hw)
1840 struct ath_softc *sc = hw->priv;
1841 struct ieee80211_channel *curchan = hw->conf.channel;
1842 struct ath9k_channel *init_channel;
1845 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1846 "initial channel: %d MHz\n", curchan->center_freq);
1848 /* setup initial channel */
1850 pos = ath_get_channel(sc, curchan);
1852 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1856 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1857 sc->sc_ah->ah_channels[pos].chanmode =
1858 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1859 init_channel = &sc->sc_ah->ah_channels[pos];
1861 /* Reset SERDES registers */
1862 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1865 * The basic interface to setting the hardware in a good
1866 * state is ``reset''. On return the hardware is known to
1867 * be powered up and with interrupts disabled. This must
1868 * be followed by initialization of the appropriate bits
1869 * and then setup of the interrupt mask.
1871 spin_lock_bh(&sc->sc_resetlock);
1872 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1874 DPRINTF(sc, ATH_DBG_FATAL,
1875 "Unable to reset hardware; reset status %u "
1876 "(freq %u MHz)\n", r,
1877 curchan->center_freq);
1878 spin_unlock_bh(&sc->sc_resetlock);
1881 spin_unlock_bh(&sc->sc_resetlock);
1884 * This is needed only to setup initial state
1885 * but it's best done after a reset.
1887 ath_update_txpow(sc);
1890 * Setup the hardware after reset:
1891 * The receive engine is set going.
1892 * Frame transmit is handled entirely
1893 * in the frame output path; there's nothing to do
1894 * here except setup the interrupt mask.
1896 if (ath_startrecv(sc) != 0) {
1897 DPRINTF(sc, ATH_DBG_FATAL,
1898 "Unable to start recv logic\n");
1902 /* Setup our intr mask. */
1903 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1904 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1905 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1907 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1908 sc->sc_imask |= ATH9K_INT_GTT;
1910 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1911 sc->sc_imask |= ATH9K_INT_CST;
1914 * Enable MIB interrupts when there are hardware phy counters.
1915 * Note we only do this (at the moment) for station mode.
1917 if (ath9k_hw_phycounters(sc->sc_ah) &&
1918 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1919 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1920 sc->sc_imask |= ATH9K_INT_MIB;
1922 * Some hardware processes the TIM IE and fires an
1923 * interrupt when the TIM bit is set. For hardware
1924 * that does, if not overridden by configuration,
1925 * enable the TIM interrupt when operating as station.
1927 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1928 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1929 !sc->sc_config.swBeaconProcess)
1930 sc->sc_imask |= ATH9K_INT_TIM;
1932 ath_cache_conf_rate(sc, &hw->conf);
1934 sc->sc_flags &= ~SC_OP_INVALID;
1936 /* Disable BMISS interrupt when we're not associated */
1937 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1938 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1940 ieee80211_wake_queues(sc->hw);
1942 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1943 r = ath_start_rfkill_poll(sc);
1948 static int ath9k_tx(struct ieee80211_hw *hw,
1949 struct sk_buff *skb)
1951 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1952 struct ath_softc *sc = hw->priv;
1953 struct ath_tx_control txctl;
1954 int hdrlen, padsize;
1956 memset(&txctl, 0, sizeof(struct ath_tx_control));
1959 * As a temporary workaround, assign seq# here; this will likely need
1960 * to be cleaned up to work better with Beacon transmission and virtual
1963 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1965 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1966 sc->tx.seq_no += 0x10;
1967 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1968 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1971 /* Add the padding after the header if this is not already done */
1972 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1974 padsize = hdrlen % 4;
1975 if (skb_headroom(skb) < padsize)
1977 skb_push(skb, padsize);
1978 memmove(skb->data, skb->data + padsize, hdrlen);
1981 /* Check if a tx queue is available */
1983 txctl.txq = ath_test_get_txq(sc, skb);
1987 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1989 if (ath_tx_start(sc, skb, &txctl) != 0) {
1990 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1996 dev_kfree_skb_any(skb);
2000 static void ath9k_stop(struct ieee80211_hw *hw)
2002 struct ath_softc *sc = hw->priv;
2004 if (sc->sc_flags & SC_OP_INVALID) {
2005 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2009 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2011 ieee80211_stop_queues(sc->hw);
2013 /* make sure h/w will not generate any interrupt
2014 * before setting the invalid flag. */
2015 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2017 if (!(sc->sc_flags & SC_OP_INVALID)) {
2018 ath_draintxq(sc, false);
2020 ath9k_hw_phy_disable(sc->sc_ah);
2022 sc->rx.rxlink = NULL;
2024 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2025 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2026 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2028 /* disable HAL and put h/w to sleep */
2029 ath9k_hw_disable(sc->sc_ah);
2030 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2032 sc->sc_flags |= SC_OP_INVALID;
2034 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2037 static int ath9k_add_interface(struct ieee80211_hw *hw,
2038 struct ieee80211_if_init_conf *conf)
2040 struct ath_softc *sc = hw->priv;
2041 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2042 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2044 /* Support only vap for now */
2049 switch (conf->type) {
2050 case NL80211_IFTYPE_STATION:
2051 ic_opmode = NL80211_IFTYPE_STATION;
2053 case NL80211_IFTYPE_ADHOC:
2054 ic_opmode = NL80211_IFTYPE_ADHOC;
2056 case NL80211_IFTYPE_AP:
2057 ic_opmode = NL80211_IFTYPE_AP;
2060 DPRINTF(sc, ATH_DBG_FATAL,
2061 "Interface type %d not yet supported\n", conf->type);
2065 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2067 /* Set the VAP opmode */
2068 avp->av_opmode = ic_opmode;
2071 if (ic_opmode == NL80211_IFTYPE_AP)
2072 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2074 sc->sc_vaps[0] = conf->vif;
2077 /* Set the device opmode */
2078 sc->sc_ah->ah_opmode = ic_opmode;
2080 if (conf->type == NL80211_IFTYPE_AP) {
2081 /* TODO: is this a suitable place to start ANI for AP mode? */
2083 mod_timer(&sc->sc_ani.timer,
2084 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2090 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2091 struct ieee80211_if_init_conf *conf)
2093 struct ath_softc *sc = hw->priv;
2094 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2096 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2099 del_timer_sync(&sc->sc_ani.timer);
2101 /* Reclaim beacon resources */
2102 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2103 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2104 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2105 ath_beacon_return(sc, avp);
2108 sc->sc_flags &= ~SC_OP_BEACONS;
2110 sc->sc_vaps[0] = NULL;
2114 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2116 struct ath_softc *sc = hw->priv;
2117 struct ieee80211_conf *conf = &hw->conf;
2119 mutex_lock(&sc->mutex);
2120 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2121 struct ieee80211_channel *curchan = hw->conf.channel;
2124 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2125 curchan->center_freq);
2127 pos = ath_get_channel(sc, curchan);
2129 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2130 curchan->center_freq);
2131 mutex_unlock(&sc->mutex);
2135 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2136 sc->sc_ah->ah_channels[pos].chanmode =
2137 (curchan->band == IEEE80211_BAND_2GHZ) ?
2138 CHANNEL_G : CHANNEL_A;
2140 if (conf_is_ht(conf)) {
2141 if (conf_is_ht40(conf))
2142 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2144 sc->sc_ah->ah_channels[pos].chanmode =
2145 ath_get_extchanmode(sc, curchan,
2146 conf->channel_type);
2149 ath_update_chainmask(sc, conf_is_ht(conf));
2151 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2152 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2153 mutex_unlock(&sc->mutex);
2158 if (changed & IEEE80211_CONF_CHANGE_POWER)
2159 sc->sc_config.txpowlimit = 2 * conf->power_level;
2161 mutex_unlock(&sc->mutex);
2165 static int ath9k_config_interface(struct ieee80211_hw *hw,
2166 struct ieee80211_vif *vif,
2167 struct ieee80211_if_conf *conf)
2169 struct ath_softc *sc = hw->priv;
2170 struct ath_hal *ah = sc->sc_ah;
2171 struct ath_vap *avp = (void *)vif->drv_priv;
2175 /* TODO: Need to decide which hw opmode to use for multi-interface
2177 if (vif->type == NL80211_IFTYPE_AP &&
2178 ah->ah_opmode != NL80211_IFTYPE_AP) {
2179 ah->ah_opmode = NL80211_IFTYPE_STATION;
2180 ath9k_hw_setopmode(ah);
2181 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2182 /* Request full reset to get hw opmode changed properly */
2183 sc->sc_flags |= SC_OP_FULL_RESET;
2186 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2187 !is_zero_ether_addr(conf->bssid)) {
2188 switch (vif->type) {
2189 case NL80211_IFTYPE_STATION:
2190 case NL80211_IFTYPE_ADHOC:
2192 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2194 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2197 /* Set aggregation protection mode parameters */
2198 sc->sc_config.ath_aggr_prot = 0;
2200 DPRINTF(sc, ATH_DBG_CONFIG,
2201 "RX filter 0x%x bssid %pM aid 0x%x\n",
2202 rfilt, sc->sc_curbssid, sc->sc_curaid);
2204 /* need to reconfigure the beacon */
2205 sc->sc_flags &= ~SC_OP_BEACONS ;
2213 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2214 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2215 (vif->type == NL80211_IFTYPE_AP))) {
2217 * Allocate and setup the beacon frame.
2219 * Stop any previous beacon DMA. This may be
2220 * necessary, for example, when an ibss merge
2221 * causes reconfiguration; we may be called
2222 * with beacon transmission active.
2224 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2226 error = ath_beacon_alloc(sc, 0);
2230 ath_beacon_sync(sc, 0);
2233 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2234 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2235 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2236 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2237 ath9k_hw_keysetmac(sc->sc_ah,
2242 /* Only legacy IBSS for now */
2243 if (vif->type == NL80211_IFTYPE_ADHOC)
2244 ath_update_chainmask(sc, 0);
2249 #define SUPPORTED_FILTERS \
2250 (FIF_PROMISC_IN_BSS | \
2254 FIF_BCN_PRBRESP_PROMISC | \
2257 /* FIXME: sc->sc_full_reset ? */
2258 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2259 unsigned int changed_flags,
2260 unsigned int *total_flags,
2262 struct dev_mc_list *mclist)
2264 struct ath_softc *sc = hw->priv;
2267 changed_flags &= SUPPORTED_FILTERS;
2268 *total_flags &= SUPPORTED_FILTERS;
2270 sc->rx.rxfilter = *total_flags;
2271 rfilt = ath_calcrxfilter(sc);
2272 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2274 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2275 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2276 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2279 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2282 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2283 struct ieee80211_vif *vif,
2284 enum sta_notify_cmd cmd,
2285 struct ieee80211_sta *sta)
2287 struct ath_softc *sc = hw->priv;
2290 case STA_NOTIFY_ADD:
2291 ath_node_attach(sc, sta);
2293 case STA_NOTIFY_REMOVE:
2294 ath_node_detach(sc, sta);
2301 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2303 const struct ieee80211_tx_queue_params *params)
2305 struct ath_softc *sc = hw->priv;
2306 struct ath9k_tx_queue_info qi;
2309 if (queue >= WME_NUM_AC)
2312 qi.tqi_aifs = params->aifs;
2313 qi.tqi_cwmin = params->cw_min;
2314 qi.tqi_cwmax = params->cw_max;
2315 qi.tqi_burstTime = params->txop;
2316 qnum = ath_get_hal_qnum(queue, sc);
2318 DPRINTF(sc, ATH_DBG_CONFIG,
2319 "Configure tx [queue/halq] [%d/%d], "
2320 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2321 queue, qnum, params->aifs, params->cw_min,
2322 params->cw_max, params->txop);
2324 ret = ath_txq_update(sc, qnum, &qi);
2326 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2331 static int ath9k_set_key(struct ieee80211_hw *hw,
2332 enum set_key_cmd cmd,
2333 struct ieee80211_vif *vif,
2334 struct ieee80211_sta *sta,
2335 struct ieee80211_key_conf *key)
2337 struct ath_softc *sc = hw->priv;
2340 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2344 ret = ath_key_config(sc, sta, key);
2346 key->hw_key_idx = ret;
2347 /* push IV and Michael MIC generation to stack */
2348 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2349 if (key->alg == ALG_TKIP)
2350 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2355 ath_key_delete(sc, key);
2364 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2365 struct ieee80211_vif *vif,
2366 struct ieee80211_bss_conf *bss_conf,
2369 struct ath_softc *sc = hw->priv;
2371 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2372 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2373 bss_conf->use_short_preamble);
2374 if (bss_conf->use_short_preamble)
2375 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2377 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2380 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2381 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2382 bss_conf->use_cts_prot);
2383 if (bss_conf->use_cts_prot &&
2384 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2385 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2387 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2390 if (changed & BSS_CHANGED_ASSOC) {
2391 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2393 ath9k_bss_assoc_info(sc, vif, bss_conf);
2397 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2400 struct ath_softc *sc = hw->priv;
2401 struct ath_hal *ah = sc->sc_ah;
2403 tsf = ath9k_hw_gettsf64(ah);
2408 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2410 struct ath_softc *sc = hw->priv;
2411 struct ath_hal *ah = sc->sc_ah;
2413 ath9k_hw_reset_tsf(ah);
2416 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2417 enum ieee80211_ampdu_mlme_action action,
2418 struct ieee80211_sta *sta,
2421 struct ath_softc *sc = hw->priv;
2425 case IEEE80211_AMPDU_RX_START:
2426 if (!(sc->sc_flags & SC_OP_RXAGGR))
2429 case IEEE80211_AMPDU_RX_STOP:
2431 case IEEE80211_AMPDU_TX_START:
2432 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2434 DPRINTF(sc, ATH_DBG_FATAL,
2435 "Unable to start TX aggregation\n");
2437 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2439 case IEEE80211_AMPDU_TX_STOP:
2440 ret = ath_tx_aggr_stop(sc, sta, tid);
2442 DPRINTF(sc, ATH_DBG_FATAL,
2443 "Unable to stop TX aggregation\n");
2445 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2447 case IEEE80211_AMPDU_TX_RESUME:
2448 ath_tx_aggr_resume(sc, sta, tid);
2451 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2457 static struct ieee80211_ops ath9k_ops = {
2459 .start = ath9k_start,
2461 .add_interface = ath9k_add_interface,
2462 .remove_interface = ath9k_remove_interface,
2463 .config = ath9k_config,
2464 .config_interface = ath9k_config_interface,
2465 .configure_filter = ath9k_configure_filter,
2466 .sta_notify = ath9k_sta_notify,
2467 .conf_tx = ath9k_conf_tx,
2468 .bss_info_changed = ath9k_bss_info_changed,
2469 .set_key = ath9k_set_key,
2470 .get_tsf = ath9k_get_tsf,
2471 .reset_tsf = ath9k_reset_tsf,
2472 .ampdu_action = ath9k_ampdu_action,
2478 } ath_mac_bb_names[] = {
2479 { AR_SREV_VERSION_5416_PCI, "5416" },
2480 { AR_SREV_VERSION_5416_PCIE, "5418" },
2481 { AR_SREV_VERSION_9100, "9100" },
2482 { AR_SREV_VERSION_9160, "9160" },
2483 { AR_SREV_VERSION_9280, "9280" },
2484 { AR_SREV_VERSION_9285, "9285" }
2490 } ath_rf_names[] = {
2492 { AR_RAD5133_SREV_MAJOR, "5133" },
2493 { AR_RAD5122_SREV_MAJOR, "5122" },
2494 { AR_RAD2133_SREV_MAJOR, "2133" },
2495 { AR_RAD2122_SREV_MAJOR, "2122" }
2499 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2502 ath_mac_bb_name(u32 mac_bb_version)
2506 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2507 if (ath_mac_bb_names[i].version == mac_bb_version) {
2508 return ath_mac_bb_names[i].name;
2516 * Return the RF name. "????" is returned if the RF is unknown.
2519 ath_rf_name(u16 rf_version)
2523 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2524 if (ath_rf_names[i].version == rf_version) {
2525 return ath_rf_names[i].name;
2532 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2535 struct ath_softc *sc;
2536 struct ieee80211_hw *hw;
2542 if (pci_enable_device(pdev))
2545 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2548 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2552 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2555 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2556 "DMA enable failed\n");
2561 * Cache line size is used to size and align various
2562 * structures used to communicate with the hardware.
2564 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2567 * Linux 2.4.18 (at least) writes the cache line size
2568 * register as a 16-bit wide register which is wrong.
2569 * We must have this setup properly for rx buffer
2570 * DMA to work so force a reasonable value here if it
2573 csz = L1_CACHE_BYTES / sizeof(u32);
2574 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2577 * The default setting of latency timer yields poor results,
2578 * set it to the value used by other systems. It may be worth
2579 * tweaking this setting more.
2581 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2583 pci_set_master(pdev);
2586 * Disable the RETRY_TIMEOUT register (0x41) to keep
2587 * PCI Tx retries from interfering with C3 CPU state.
2589 pci_read_config_dword(pdev, 0x40, &val);
2590 if ((val & 0x0000ff00) != 0)
2591 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2593 ret = pci_request_region(pdev, 0, "ath9k");
2595 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2600 mem = pci_iomap(pdev, 0, 0);
2602 printk(KERN_ERR "PCI memory map error\n") ;
2607 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2609 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2613 SET_IEEE80211_DEV(hw, &pdev->dev);
2614 pci_set_drvdata(pdev, hw);
2621 if (ath_attach(id->device, sc) != 0) {
2626 /* setup interrupt service routine */
2628 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2629 printk(KERN_ERR "%s: request_irq failed\n",
2630 wiphy_name(hw->wiphy));
2637 "%s: Atheros AR%s MAC/BB Rev:%x "
2638 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2639 wiphy_name(hw->wiphy),
2640 ath_mac_bb_name(ah->ah_macVersion),
2642 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2644 (unsigned long)mem, pdev->irq);
2650 ieee80211_free_hw(hw);
2652 pci_iounmap(pdev, mem);
2654 pci_release_region(pdev, 0);
2656 pci_disable_device(pdev);
2660 static void ath_pci_remove(struct pci_dev *pdev)
2662 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2663 struct ath_softc *sc = hw->priv;
2667 free_irq(pdev->irq, sc);
2668 pci_iounmap(pdev, sc->mem);
2669 pci_release_region(pdev, 0);
2670 pci_disable_device(pdev);
2671 ieee80211_free_hw(hw);
2676 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2678 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2679 struct ath_softc *sc = hw->priv;
2681 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2683 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2684 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2685 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2688 pci_save_state(pdev);
2689 pci_disable_device(pdev);
2690 pci_set_power_state(pdev, 3);
2695 static int ath_pci_resume(struct pci_dev *pdev)
2697 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2698 struct ath_softc *sc = hw->priv;
2702 err = pci_enable_device(pdev);
2705 pci_restore_state(pdev);
2707 * Suspend/Resume resets the PCI configuration space, so we have to
2708 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2709 * PCI Tx retries from interfering with C3 CPU state
2711 pci_read_config_dword(pdev, 0x40, &val);
2712 if ((val & 0x0000ff00) != 0)
2713 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2716 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2717 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2718 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2720 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2722 * check the h/w rfkill state on resume
2723 * and start the rfkill poll timer
2725 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2726 queue_delayed_work(sc->hw->workqueue,
2727 &sc->rf_kill.rfkill_poll, 0);
2733 #endif /* CONFIG_PM */
2735 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2737 static struct pci_driver ath_pci_driver = {
2739 .id_table = ath_pci_id_table,
2740 .probe = ath_pci_probe,
2741 .remove = ath_pci_remove,
2743 .suspend = ath_pci_suspend,
2744 .resume = ath_pci_resume,
2745 #endif /* CONFIG_PM */
2748 static int __init init_ath_pci(void)
2752 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2754 /* Register rate control algorithm */
2755 error = ath_rate_control_register();
2758 "Unable to register rate control algorithm: %d\n",
2760 ath_rate_control_unregister();
2764 if (pci_register_driver(&ath_pci_driver) < 0) {
2766 "ath_pci: No devices found, driver not installed.\n");
2767 ath_rate_control_unregister();
2768 pci_unregister_driver(&ath_pci_driver);
2774 module_init(init_ath_pci);
2776 static void __exit exit_ath_pci(void)
2778 ath_rate_control_unregister();
2779 pci_unregister_driver(&ath_pci_driver);
2780 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2782 module_exit(exit_ath_pci);