Merge branch 'dock' into test
[linux-2.6] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35
36 #ifdef CONFIG_UBIFS_FS_DEBUG
37
38 DEFINE_SPINLOCK(dbg_lock);
39
40 static char dbg_key_buf0[128];
41 static char dbg_key_buf1[128];
42
43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
45 unsigned int ubifs_tst_flags;
46
47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50
51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
52 MODULE_PARM_DESC(debug_chks, "Debug check flags");
53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
54
55 static const char *get_key_fmt(int fmt)
56 {
57         switch (fmt) {
58         case UBIFS_SIMPLE_KEY_FMT:
59                 return "simple";
60         default:
61                 return "unknown/invalid format";
62         }
63 }
64
65 static const char *get_key_hash(int hash)
66 {
67         switch (hash) {
68         case UBIFS_KEY_HASH_R5:
69                 return "R5";
70         case UBIFS_KEY_HASH_TEST:
71                 return "test";
72         default:
73                 return "unknown/invalid name hash";
74         }
75 }
76
77 static const char *get_key_type(int type)
78 {
79         switch (type) {
80         case UBIFS_INO_KEY:
81                 return "inode";
82         case UBIFS_DENT_KEY:
83                 return "direntry";
84         case UBIFS_XENT_KEY:
85                 return "xentry";
86         case UBIFS_DATA_KEY:
87                 return "data";
88         case UBIFS_TRUN_KEY:
89                 return "truncate";
90         default:
91                 return "unknown/invalid key";
92         }
93 }
94
95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
96                         char *buffer)
97 {
98         char *p = buffer;
99         int type = key_type(c, key);
100
101         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
102                 switch (type) {
103                 case UBIFS_INO_KEY:
104                         sprintf(p, "(%lu, %s)", key_inum(c, key),
105                                get_key_type(type));
106                         break;
107                 case UBIFS_DENT_KEY:
108                 case UBIFS_XENT_KEY:
109                         sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key),
110                                 get_key_type(type), key_hash(c, key));
111                         break;
112                 case UBIFS_DATA_KEY:
113                         sprintf(p, "(%lu, %s, %u)", key_inum(c, key),
114                                 get_key_type(type), key_block(c, key));
115                         break;
116                 case UBIFS_TRUN_KEY:
117                         sprintf(p, "(%lu, %s)",
118                                 key_inum(c, key), get_key_type(type));
119                         break;
120                 default:
121                         sprintf(p, "(bad key type: %#08x, %#08x)",
122                                 key->u32[0], key->u32[1]);
123                 }
124         } else
125                 sprintf(p, "bad key format %d", c->key_fmt);
126 }
127
128 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
129 {
130         /* dbg_lock must be held */
131         sprintf_key(c, key, dbg_key_buf0);
132         return dbg_key_buf0;
133 }
134
135 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
136 {
137         /* dbg_lock must be held */
138         sprintf_key(c, key, dbg_key_buf1);
139         return dbg_key_buf1;
140 }
141
142 const char *dbg_ntype(int type)
143 {
144         switch (type) {
145         case UBIFS_PAD_NODE:
146                 return "padding node";
147         case UBIFS_SB_NODE:
148                 return "superblock node";
149         case UBIFS_MST_NODE:
150                 return "master node";
151         case UBIFS_REF_NODE:
152                 return "reference node";
153         case UBIFS_INO_NODE:
154                 return "inode node";
155         case UBIFS_DENT_NODE:
156                 return "direntry node";
157         case UBIFS_XENT_NODE:
158                 return "xentry node";
159         case UBIFS_DATA_NODE:
160                 return "data node";
161         case UBIFS_TRUN_NODE:
162                 return "truncate node";
163         case UBIFS_IDX_NODE:
164                 return "indexing node";
165         case UBIFS_CS_NODE:
166                 return "commit start node";
167         case UBIFS_ORPH_NODE:
168                 return "orphan node";
169         default:
170                 return "unknown node";
171         }
172 }
173
174 static const char *dbg_gtype(int type)
175 {
176         switch (type) {
177         case UBIFS_NO_NODE_GROUP:
178                 return "no node group";
179         case UBIFS_IN_NODE_GROUP:
180                 return "in node group";
181         case UBIFS_LAST_OF_NODE_GROUP:
182                 return "last of node group";
183         default:
184                 return "unknown";
185         }
186 }
187
188 const char *dbg_cstate(int cmt_state)
189 {
190         switch (cmt_state) {
191         case COMMIT_RESTING:
192                 return "commit resting";
193         case COMMIT_BACKGROUND:
194                 return "background commit requested";
195         case COMMIT_REQUIRED:
196                 return "commit required";
197         case COMMIT_RUNNING_BACKGROUND:
198                 return "BACKGROUND commit running";
199         case COMMIT_RUNNING_REQUIRED:
200                 return "commit running and required";
201         case COMMIT_BROKEN:
202                 return "broken commit";
203         default:
204                 return "unknown commit state";
205         }
206 }
207
208 static void dump_ch(const struct ubifs_ch *ch)
209 {
210         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
211         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
212         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
213                dbg_ntype(ch->node_type));
214         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
215                dbg_gtype(ch->group_type));
216         printk(KERN_DEBUG "\tsqnum          %llu\n",
217                (unsigned long long)le64_to_cpu(ch->sqnum));
218         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
219 }
220
221 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
222 {
223         const struct ubifs_inode *ui = ubifs_inode(inode);
224
225         printk(KERN_DEBUG "inode      %lu\n", inode->i_ino);
226         printk(KERN_DEBUG "size       %llu\n",
227                (unsigned long long)i_size_read(inode));
228         printk(KERN_DEBUG "nlink      %u\n", inode->i_nlink);
229         printk(KERN_DEBUG "uid        %u\n", (unsigned int)inode->i_uid);
230         printk(KERN_DEBUG "gid        %u\n", (unsigned int)inode->i_gid);
231         printk(KERN_DEBUG "atime      %u.%u\n",
232                (unsigned int)inode->i_atime.tv_sec,
233                (unsigned int)inode->i_atime.tv_nsec);
234         printk(KERN_DEBUG "mtime      %u.%u\n",
235                (unsigned int)inode->i_mtime.tv_sec,
236                (unsigned int)inode->i_mtime.tv_nsec);
237         printk(KERN_DEBUG "ctime       %u.%u\n",
238                (unsigned int)inode->i_ctime.tv_sec,
239                (unsigned int)inode->i_ctime.tv_nsec);
240         printk(KERN_DEBUG "creat_sqnum %llu\n", ui->creat_sqnum);
241         printk(KERN_DEBUG "xattr_size  %u\n", ui->xattr_size);
242         printk(KERN_DEBUG "xattr_cnt   %u\n", ui->xattr_cnt);
243         printk(KERN_DEBUG "xattr_names %u\n", ui->xattr_names);
244         printk(KERN_DEBUG "dirty       %u\n", ui->dirty);
245         printk(KERN_DEBUG "xattr       %u\n", ui->xattr);
246         printk(KERN_DEBUG "flags       %d\n", ui->flags);
247         printk(KERN_DEBUG "compr_type  %d\n", ui->compr_type);
248         printk(KERN_DEBUG "data_len    %d\n", ui->data_len);
249 }
250
251 void dbg_dump_node(const struct ubifs_info *c, const void *node)
252 {
253         int i, n;
254         union ubifs_key key;
255         const struct ubifs_ch *ch = node;
256
257         if (dbg_failure_mode)
258                 return;
259
260         /* If the magic is incorrect, just hexdump the first bytes */
261         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
262                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
263                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
264                                (void *)node, UBIFS_CH_SZ, 1);
265                 return;
266         }
267
268         spin_lock(&dbg_lock);
269         dump_ch(node);
270
271         switch (ch->node_type) {
272         case UBIFS_PAD_NODE:
273         {
274                 const struct ubifs_pad_node *pad = node;
275
276                 printk(KERN_DEBUG "\tpad_len        %u\n",
277                        le32_to_cpu(pad->pad_len));
278                 break;
279         }
280         case UBIFS_SB_NODE:
281         {
282                 const struct ubifs_sb_node *sup = node;
283                 unsigned int sup_flags = le32_to_cpu(sup->flags);
284
285                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
286                        (int)sup->key_hash, get_key_hash(sup->key_hash));
287                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
288                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
289                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
290                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
291                        !!(sup_flags & UBIFS_FLG_BIGLPT));
292                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
293                        le32_to_cpu(sup->min_io_size));
294                 printk(KERN_DEBUG "\tleb_size       %u\n",
295                        le32_to_cpu(sup->leb_size));
296                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
297                        le32_to_cpu(sup->leb_cnt));
298                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
299                        le32_to_cpu(sup->max_leb_cnt));
300                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
301                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
302                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
303                        le32_to_cpu(sup->log_lebs));
304                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
305                        le32_to_cpu(sup->lpt_lebs));
306                 printk(KERN_DEBUG "\torph_lebs      %u\n",
307                        le32_to_cpu(sup->orph_lebs));
308                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
309                        le32_to_cpu(sup->jhead_cnt));
310                 printk(KERN_DEBUG "\tfanout         %u\n",
311                        le32_to_cpu(sup->fanout));
312                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
313                        le32_to_cpu(sup->lsave_cnt));
314                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
315                        (int)le16_to_cpu(sup->default_compr));
316                 printk(KERN_DEBUG "\trp_size        %llu\n",
317                        (unsigned long long)le64_to_cpu(sup->rp_size));
318                 printk(KERN_DEBUG "\trp_uid         %u\n",
319                        le32_to_cpu(sup->rp_uid));
320                 printk(KERN_DEBUG "\trp_gid         %u\n",
321                        le32_to_cpu(sup->rp_gid));
322                 printk(KERN_DEBUG "\tfmt_version    %u\n",
323                        le32_to_cpu(sup->fmt_version));
324                 printk(KERN_DEBUG "\ttime_gran      %u\n",
325                        le32_to_cpu(sup->time_gran));
326                 printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
327                        "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
328                        sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
329                        sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
330                        sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
331                        sup->uuid[12], sup->uuid[13], sup->uuid[14],
332                        sup->uuid[15]);
333                 break;
334         }
335         case UBIFS_MST_NODE:
336         {
337                 const struct ubifs_mst_node *mst = node;
338
339                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
340                        (unsigned long long)le64_to_cpu(mst->highest_inum));
341                 printk(KERN_DEBUG "\tcommit number  %llu\n",
342                        (unsigned long long)le64_to_cpu(mst->cmt_no));
343                 printk(KERN_DEBUG "\tflags          %#x\n",
344                        le32_to_cpu(mst->flags));
345                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
346                        le32_to_cpu(mst->log_lnum));
347                 printk(KERN_DEBUG "\troot_lnum      %u\n",
348                        le32_to_cpu(mst->root_lnum));
349                 printk(KERN_DEBUG "\troot_offs      %u\n",
350                        le32_to_cpu(mst->root_offs));
351                 printk(KERN_DEBUG "\troot_len       %u\n",
352                        le32_to_cpu(mst->root_len));
353                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
354                        le32_to_cpu(mst->gc_lnum));
355                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
356                        le32_to_cpu(mst->ihead_lnum));
357                 printk(KERN_DEBUG "\tihead_offs     %u\n",
358                        le32_to_cpu(mst->ihead_offs));
359                 printk(KERN_DEBUG "\tindex_size     %u\n",
360                        le32_to_cpu(mst->index_size));
361                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
362                        le32_to_cpu(mst->lpt_lnum));
363                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
364                        le32_to_cpu(mst->lpt_offs));
365                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
366                        le32_to_cpu(mst->nhead_lnum));
367                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
368                        le32_to_cpu(mst->nhead_offs));
369                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
370                        le32_to_cpu(mst->ltab_lnum));
371                 printk(KERN_DEBUG "\tltab_offs      %u\n",
372                        le32_to_cpu(mst->ltab_offs));
373                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
374                        le32_to_cpu(mst->lsave_lnum));
375                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
376                        le32_to_cpu(mst->lsave_offs));
377                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
378                        le32_to_cpu(mst->lscan_lnum));
379                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
380                        le32_to_cpu(mst->leb_cnt));
381                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
382                        le32_to_cpu(mst->empty_lebs));
383                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
384                        le32_to_cpu(mst->idx_lebs));
385                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
386                        (unsigned long long)le64_to_cpu(mst->total_free));
387                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
388                        (unsigned long long)le64_to_cpu(mst->total_dirty));
389                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
390                        (unsigned long long)le64_to_cpu(mst->total_used));
391                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
392                        (unsigned long long)le64_to_cpu(mst->total_dead));
393                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
394                        (unsigned long long)le64_to_cpu(mst->total_dark));
395                 break;
396         }
397         case UBIFS_REF_NODE:
398         {
399                 const struct ubifs_ref_node *ref = node;
400
401                 printk(KERN_DEBUG "\tlnum           %u\n",
402                        le32_to_cpu(ref->lnum));
403                 printk(KERN_DEBUG "\toffs           %u\n",
404                        le32_to_cpu(ref->offs));
405                 printk(KERN_DEBUG "\tjhead          %u\n",
406                        le32_to_cpu(ref->jhead));
407                 break;
408         }
409         case UBIFS_INO_NODE:
410         {
411                 const struct ubifs_ino_node *ino = node;
412
413                 key_read(c, &ino->key, &key);
414                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
415                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
416                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417                 printk(KERN_DEBUG "\tsize           %llu\n",
418                        (unsigned long long)le64_to_cpu(ino->size));
419                 printk(KERN_DEBUG "\tnlink          %u\n",
420                        le32_to_cpu(ino->nlink));
421                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
422                        (long long)le64_to_cpu(ino->atime_sec),
423                        le32_to_cpu(ino->atime_nsec));
424                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
425                        (long long)le64_to_cpu(ino->mtime_sec),
426                        le32_to_cpu(ino->mtime_nsec));
427                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->ctime_sec),
429                        le32_to_cpu(ino->ctime_nsec));
430                 printk(KERN_DEBUG "\tuid            %u\n",
431                        le32_to_cpu(ino->uid));
432                 printk(KERN_DEBUG "\tgid            %u\n",
433                        le32_to_cpu(ino->gid));
434                 printk(KERN_DEBUG "\tmode           %u\n",
435                        le32_to_cpu(ino->mode));
436                 printk(KERN_DEBUG "\tflags          %#x\n",
437                        le32_to_cpu(ino->flags));
438                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
439                        le32_to_cpu(ino->xattr_cnt));
440                 printk(KERN_DEBUG "\txattr_size     %u\n",
441                        le32_to_cpu(ino->xattr_size));
442                 printk(KERN_DEBUG "\txattr_names    %u\n",
443                        le32_to_cpu(ino->xattr_names));
444                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
445                        (int)le16_to_cpu(ino->compr_type));
446                 printk(KERN_DEBUG "\tdata len       %u\n",
447                        le32_to_cpu(ino->data_len));
448                 break;
449         }
450         case UBIFS_DENT_NODE:
451         case UBIFS_XENT_NODE:
452         {
453                 const struct ubifs_dent_node *dent = node;
454                 int nlen = le16_to_cpu(dent->nlen);
455
456                 key_read(c, &dent->key, &key);
457                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
458                 printk(KERN_DEBUG "\tinum           %llu\n",
459                        (unsigned long long)le64_to_cpu(dent->inum));
460                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
461                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
462                 printk(KERN_DEBUG "\tname           ");
463
464                 if (nlen > UBIFS_MAX_NLEN)
465                         printk(KERN_DEBUG "(bad name length, not printing, "
466                                           "bad or corrupted node)");
467                 else {
468                         for (i = 0; i < nlen && dent->name[i]; i++)
469                                 printk("%c", dent->name[i]);
470                 }
471                 printk("\n");
472
473                 break;
474         }
475         case UBIFS_DATA_NODE:
476         {
477                 const struct ubifs_data_node *dn = node;
478                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
479
480                 key_read(c, &dn->key, &key);
481                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
482                 printk(KERN_DEBUG "\tsize           %u\n",
483                        le32_to_cpu(dn->size));
484                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
485                        (int)le16_to_cpu(dn->compr_type));
486                 printk(KERN_DEBUG "\tdata size      %d\n",
487                        dlen);
488                 printk(KERN_DEBUG "\tdata:\n");
489                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
490                                (void *)&dn->data, dlen, 0);
491                 break;
492         }
493         case UBIFS_TRUN_NODE:
494         {
495                 const struct ubifs_trun_node *trun = node;
496
497                 printk(KERN_DEBUG "\tinum           %u\n",
498                        le32_to_cpu(trun->inum));
499                 printk(KERN_DEBUG "\told_size       %llu\n",
500                        (unsigned long long)le64_to_cpu(trun->old_size));
501                 printk(KERN_DEBUG "\tnew_size       %llu\n",
502                        (unsigned long long)le64_to_cpu(trun->new_size));
503                 break;
504         }
505         case UBIFS_IDX_NODE:
506         {
507                 const struct ubifs_idx_node *idx = node;
508
509                 n = le16_to_cpu(idx->child_cnt);
510                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
511                 printk(KERN_DEBUG "\tlevel          %d\n",
512                        (int)le16_to_cpu(idx->level));
513                 printk(KERN_DEBUG "\tBranches:\n");
514
515                 for (i = 0; i < n && i < c->fanout - 1; i++) {
516                         const struct ubifs_branch *br;
517
518                         br = ubifs_idx_branch(c, idx, i);
519                         key_read(c, &br->key, &key);
520                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
521                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
522                                le32_to_cpu(br->len), DBGKEY(&key));
523                 }
524                 break;
525         }
526         case UBIFS_CS_NODE:
527                 break;
528         case UBIFS_ORPH_NODE:
529         {
530                 const struct ubifs_orph_node *orph = node;
531
532                 printk(KERN_DEBUG "\tcommit number  %llu\n",
533                        (unsigned long long)
534                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
535                 printk(KERN_DEBUG "\tlast node flag %llu\n",
536                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
537                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
538                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
539                 for (i = 0; i < n; i++)
540                         printk(KERN_DEBUG "\t  ino %llu\n",
541                                (unsigned long long)le64_to_cpu(orph->inos[i]));
542                 break;
543         }
544         default:
545                 printk(KERN_DEBUG "node type %d was not recognized\n",
546                        (int)ch->node_type);
547         }
548         spin_unlock(&dbg_lock);
549 }
550
551 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
552 {
553         spin_lock(&dbg_lock);
554         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
555                req->new_ino, req->dirtied_ino);
556         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
557                req->new_ino_d, req->dirtied_ino_d);
558         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
559                req->new_page, req->dirtied_page);
560         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
561                req->new_dent, req->mod_dent);
562         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
563         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
564                req->data_growth, req->dd_growth);
565         spin_unlock(&dbg_lock);
566 }
567
568 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
569 {
570         spin_lock(&dbg_lock);
571         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
572                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
573         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
574                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
575                lst->total_dirty);
576         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
577                "total_dead %lld\n", lst->total_used, lst->total_dark,
578                lst->total_dead);
579         spin_unlock(&dbg_lock);
580 }
581
582 void dbg_dump_budg(struct ubifs_info *c)
583 {
584         int i;
585         struct rb_node *rb;
586         struct ubifs_bud *bud;
587         struct ubifs_gced_idx_leb *idx_gc;
588
589         spin_lock(&dbg_lock);
590         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
591                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
592                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
593         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
594                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
595                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
596                c->freeable_cnt);
597         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
598                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
599                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
600         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
601                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
602                atomic_long_read(&c->dirty_zn_cnt),
603                atomic_long_read(&c->clean_zn_cnt));
604         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
605                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
606         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
607                c->gc_lnum, c->ihead_lnum);
608         for (i = 0; i < c->jhead_cnt; i++)
609                 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
610                        c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
611         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
612                 bud = rb_entry(rb, struct ubifs_bud, rb);
613                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
614         }
615         list_for_each_entry(bud, &c->old_buds, list)
616                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
617         list_for_each_entry(idx_gc, &c->idx_gc, list)
618                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
619                        idx_gc->lnum, idx_gc->unmap);
620         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
621         spin_unlock(&dbg_lock);
622 }
623
624 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
625 {
626         printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
627                "flags %#x\n", lp->lnum, lp->free, lp->dirty,
628                c->leb_size - lp->free - lp->dirty, lp->flags);
629 }
630
631 void dbg_dump_lprops(struct ubifs_info *c)
632 {
633         int lnum, err;
634         struct ubifs_lprops lp;
635         struct ubifs_lp_stats lst;
636
637         printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid);
638         ubifs_get_lp_stats(c, &lst);
639         dbg_dump_lstats(&lst);
640
641         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
642                 err = ubifs_read_one_lp(c, lnum, &lp);
643                 if (err)
644                         ubifs_err("cannot read lprops for LEB %d", lnum);
645
646                 dbg_dump_lprop(c, &lp);
647         }
648 }
649
650 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
651 {
652         struct ubifs_scan_leb *sleb;
653         struct ubifs_scan_node *snod;
654
655         if (dbg_failure_mode)
656                 return;
657
658         printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum);
659
660         sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
661         if (IS_ERR(sleb)) {
662                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
663                 return;
664         }
665
666         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
667                sleb->nodes_cnt, sleb->endpt);
668
669         list_for_each_entry(snod, &sleb->nodes, list) {
670                 cond_resched();
671                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
672                        snod->offs, snod->len);
673                 dbg_dump_node(c, snod->node);
674         }
675
676         ubifs_scan_destroy(sleb);
677         return;
678 }
679
680 void dbg_dump_znode(const struct ubifs_info *c,
681                     const struct ubifs_znode *znode)
682 {
683         int n;
684         const struct ubifs_zbranch *zbr;
685
686         spin_lock(&dbg_lock);
687         if (znode->parent)
688                 zbr = &znode->parent->zbranch[znode->iip];
689         else
690                 zbr = &c->zroot;
691
692         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
693                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
694                zbr->len, znode->parent, znode->iip, znode->level,
695                znode->child_cnt, znode->flags);
696
697         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
698                 spin_unlock(&dbg_lock);
699                 return;
700         }
701
702         printk(KERN_DEBUG "zbranches:\n");
703         for (n = 0; n < znode->child_cnt; n++) {
704                 zbr = &znode->zbranch[n];
705                 if (znode->level > 0)
706                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
707                                           "%s\n", n, zbr->znode, zbr->lnum,
708                                           zbr->offs, zbr->len,
709                                           DBGKEY(&zbr->key));
710                 else
711                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
712                                           "%s\n", n, zbr->znode, zbr->lnum,
713                                           zbr->offs, zbr->len,
714                                           DBGKEY(&zbr->key));
715         }
716         spin_unlock(&dbg_lock);
717 }
718
719 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
720 {
721         int i;
722
723         printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n",
724                current->pid, cat, heap->cnt);
725         for (i = 0; i < heap->cnt; i++) {
726                 struct ubifs_lprops *lprops = heap->arr[i];
727
728                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
729                        "flags %d\n", i, lprops->lnum, lprops->hpos,
730                        lprops->free, lprops->dirty, lprops->flags);
731         }
732 }
733
734 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
735                     struct ubifs_nnode *parent, int iip)
736 {
737         int i;
738
739         printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid);
740         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
741                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
742         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
743                pnode->flags, iip, pnode->level, pnode->num);
744         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
745                 struct ubifs_lprops *lp = &pnode->lprops[i];
746
747                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
748                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
749         }
750 }
751
752 void dbg_dump_tnc(struct ubifs_info *c)
753 {
754         struct ubifs_znode *znode;
755         int level;
756
757         printk(KERN_DEBUG "\n");
758         printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid);
759         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
760         level = znode->level;
761         printk(KERN_DEBUG "== Level %d ==\n", level);
762         while (znode) {
763                 if (level != znode->level) {
764                         level = znode->level;
765                         printk(KERN_DEBUG "== Level %d ==\n", level);
766                 }
767                 dbg_dump_znode(c, znode);
768                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
769         }
770
771         printk(KERN_DEBUG "\n");
772 }
773
774 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
775                       void *priv)
776 {
777         dbg_dump_znode(c, znode);
778         return 0;
779 }
780
781 /**
782  * dbg_dump_index - dump the on-flash index.
783  * @c: UBIFS file-system description object
784  *
785  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
786  * which dumps only in-memory znodes and does not read znodes which from flash.
787  */
788 void dbg_dump_index(struct ubifs_info *c)
789 {
790         dbg_walk_index(c, NULL, dump_znode, NULL);
791 }
792
793 /**
794  * dbg_check_synced_i_size - check synchronized inode size.
795  * @inode: inode to check
796  *
797  * If inode is clean, synchronized inode size has to be equivalent to current
798  * inode size. This function has to be called only for locked inodes (@i_mutex
799  * has to be locked). Returns %0 if synchronized inode size if correct, and
800  * %-EINVAL if not.
801  */
802 int dbg_check_synced_i_size(struct inode *inode)
803 {
804         int err = 0;
805         struct ubifs_inode *ui = ubifs_inode(inode);
806
807         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
808                 return 0;
809         if (!S_ISREG(inode->i_mode))
810                 return 0;
811
812         mutex_lock(&ui->ui_mutex);
813         spin_lock(&ui->ui_lock);
814         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
815                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
816                           "is clean", ui->ui_size, ui->synced_i_size);
817                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
818                           inode->i_mode, i_size_read(inode));
819                 dbg_dump_stack();
820                 err = -EINVAL;
821         }
822         spin_unlock(&ui->ui_lock);
823         mutex_unlock(&ui->ui_mutex);
824         return err;
825 }
826
827 /*
828  * dbg_check_dir - check directory inode size and link count.
829  * @c: UBIFS file-system description object
830  * @dir: the directory to calculate size for
831  * @size: the result is returned here
832  *
833  * This function makes sure that directory size and link count are correct.
834  * Returns zero in case of success and a negative error code in case of
835  * failure.
836  *
837  * Note, it is good idea to make sure the @dir->i_mutex is locked before
838  * calling this function.
839  */
840 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
841 {
842         unsigned int nlink = 2;
843         union ubifs_key key;
844         struct ubifs_dent_node *dent, *pdent = NULL;
845         struct qstr nm = { .name = NULL };
846         loff_t size = UBIFS_INO_NODE_SZ;
847
848         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
849                 return 0;
850
851         if (!S_ISDIR(dir->i_mode))
852                 return 0;
853
854         lowest_dent_key(c, &key, dir->i_ino);
855         while (1) {
856                 int err;
857
858                 dent = ubifs_tnc_next_ent(c, &key, &nm);
859                 if (IS_ERR(dent)) {
860                         err = PTR_ERR(dent);
861                         if (err == -ENOENT)
862                                 break;
863                         return err;
864                 }
865
866                 nm.name = dent->name;
867                 nm.len = le16_to_cpu(dent->nlen);
868                 size += CALC_DENT_SIZE(nm.len);
869                 if (dent->type == UBIFS_ITYPE_DIR)
870                         nlink += 1;
871                 kfree(pdent);
872                 pdent = dent;
873                 key_read(c, &dent->key, &key);
874         }
875         kfree(pdent);
876
877         if (i_size_read(dir) != size) {
878                 ubifs_err("directory inode %lu has size %llu, "
879                           "but calculated size is %llu", dir->i_ino,
880                           (unsigned long long)i_size_read(dir),
881                           (unsigned long long)size);
882                 dump_stack();
883                 return -EINVAL;
884         }
885         if (dir->i_nlink != nlink) {
886                 ubifs_err("directory inode %lu has nlink %u, but calculated "
887                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
888                 dump_stack();
889                 return -EINVAL;
890         }
891
892         return 0;
893 }
894
895 /**
896  * dbg_check_key_order - make sure that colliding keys are properly ordered.
897  * @c: UBIFS file-system description object
898  * @zbr1: first zbranch
899  * @zbr2: following zbranch
900  *
901  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
902  * names of the direntries/xentries which are referred by the keys. This
903  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
904  * sure the name of direntry/xentry referred by @zbr1 is less than
905  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
906  * and a negative error code in case of failure.
907  */
908 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
909                                struct ubifs_zbranch *zbr2)
910 {
911         int err, nlen1, nlen2, cmp;
912         struct ubifs_dent_node *dent1, *dent2;
913         union ubifs_key key;
914
915         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
916         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
917         if (!dent1)
918                 return -ENOMEM;
919         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
920         if (!dent2) {
921                 err = -ENOMEM;
922                 goto out_free;
923         }
924
925         err = ubifs_tnc_read_node(c, zbr1, dent1);
926         if (err)
927                 goto out_free;
928         err = ubifs_validate_entry(c, dent1);
929         if (err)
930                 goto out_free;
931
932         err = ubifs_tnc_read_node(c, zbr2, dent2);
933         if (err)
934                 goto out_free;
935         err = ubifs_validate_entry(c, dent2);
936         if (err)
937                 goto out_free;
938
939         /* Make sure node keys are the same as in zbranch */
940         err = 1;
941         key_read(c, &dent1->key, &key);
942         if (keys_cmp(c, &zbr1->key, &key)) {
943                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
944                         zbr1->offs, DBGKEY(&key));
945                 dbg_err("but it should have key %s according to tnc",
946                         DBGKEY(&zbr1->key));
947                         dbg_dump_node(c, dent1);
948                         goto out_free;
949         }
950
951         key_read(c, &dent2->key, &key);
952         if (keys_cmp(c, &zbr2->key, &key)) {
953                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
954                         zbr1->offs, DBGKEY(&key));
955                 dbg_err("but it should have key %s according to tnc",
956                         DBGKEY(&zbr2->key));
957                         dbg_dump_node(c, dent2);
958                         goto out_free;
959         }
960
961         nlen1 = le16_to_cpu(dent1->nlen);
962         nlen2 = le16_to_cpu(dent2->nlen);
963
964         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
965         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
966                 err = 0;
967                 goto out_free;
968         }
969         if (cmp == 0 && nlen1 == nlen2)
970                 dbg_err("2 xent/dent nodes with the same name");
971         else
972                 dbg_err("bad order of colliding key %s",
973                         DBGKEY(&key));
974
975         dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
976         dbg_dump_node(c, dent1);
977         dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
978         dbg_dump_node(c, dent2);
979
980 out_free:
981         kfree(dent2);
982         kfree(dent1);
983         return err;
984 }
985
986 /**
987  * dbg_check_znode - check if znode is all right.
988  * @c: UBIFS file-system description object
989  * @zbr: zbranch which points to this znode
990  *
991  * This function makes sure that znode referred to by @zbr is all right.
992  * Returns zero if it is, and %-EINVAL if it is not.
993  */
994 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
995 {
996         struct ubifs_znode *znode = zbr->znode;
997         struct ubifs_znode *zp = znode->parent;
998         int n, err, cmp;
999
1000         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1001                 err = 1;
1002                 goto out;
1003         }
1004         if (znode->level < 0) {
1005                 err = 2;
1006                 goto out;
1007         }
1008         if (znode->iip < 0 || znode->iip >= c->fanout) {
1009                 err = 3;
1010                 goto out;
1011         }
1012
1013         if (zbr->len == 0)
1014                 /* Only dirty zbranch may have no on-flash nodes */
1015                 if (!ubifs_zn_dirty(znode)) {
1016                         err = 4;
1017                         goto out;
1018                 }
1019
1020         if (ubifs_zn_dirty(znode)) {
1021                 /*
1022                  * If znode is dirty, its parent has to be dirty as well. The
1023                  * order of the operation is important, so we have to have
1024                  * memory barriers.
1025                  */
1026                 smp_mb();
1027                 if (zp && !ubifs_zn_dirty(zp)) {
1028                         /*
1029                          * The dirty flag is atomic and is cleared outside the
1030                          * TNC mutex, so znode's dirty flag may now have
1031                          * been cleared. The child is always cleared before the
1032                          * parent, so we just need to check again.
1033                          */
1034                         smp_mb();
1035                         if (ubifs_zn_dirty(znode)) {
1036                                 err = 5;
1037                                 goto out;
1038                         }
1039                 }
1040         }
1041
1042         if (zp) {
1043                 const union ubifs_key *min, *max;
1044
1045                 if (znode->level != zp->level - 1) {
1046                         err = 6;
1047                         goto out;
1048                 }
1049
1050                 /* Make sure the 'parent' pointer in our znode is correct */
1051                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1052                 if (!err) {
1053                         /* This zbranch does not exist in the parent */
1054                         err = 7;
1055                         goto out;
1056                 }
1057
1058                 if (znode->iip >= zp->child_cnt) {
1059                         err = 8;
1060                         goto out;
1061                 }
1062
1063                 if (znode->iip != n) {
1064                         /* This may happen only in case of collisions */
1065                         if (keys_cmp(c, &zp->zbranch[n].key,
1066                                      &zp->zbranch[znode->iip].key)) {
1067                                 err = 9;
1068                                 goto out;
1069                         }
1070                         n = znode->iip;
1071                 }
1072
1073                 /*
1074                  * Make sure that the first key in our znode is greater than or
1075                  * equal to the key in the pointing zbranch.
1076                  */
1077                 min = &zbr->key;
1078                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1079                 if (cmp == 1) {
1080                         err = 10;
1081                         goto out;
1082                 }
1083
1084                 if (n + 1 < zp->child_cnt) {
1085                         max = &zp->zbranch[n + 1].key;
1086
1087                         /*
1088                          * Make sure the last key in our znode is less or
1089                          * equivalent than the the key in zbranch which goes
1090                          * after our pointing zbranch.
1091                          */
1092                         cmp = keys_cmp(c, max,
1093                                 &znode->zbranch[znode->child_cnt - 1].key);
1094                         if (cmp == -1) {
1095                                 err = 11;
1096                                 goto out;
1097                         }
1098                 }
1099         } else {
1100                 /* This may only be root znode */
1101                 if (zbr != &c->zroot) {
1102                         err = 12;
1103                         goto out;
1104                 }
1105         }
1106
1107         /*
1108          * Make sure that next key is greater or equivalent then the previous
1109          * one.
1110          */
1111         for (n = 1; n < znode->child_cnt; n++) {
1112                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1113                                &znode->zbranch[n].key);
1114                 if (cmp > 0) {
1115                         err = 13;
1116                         goto out;
1117                 }
1118                 if (cmp == 0) {
1119                         /* This can only be keys with colliding hash */
1120                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1121                                 err = 14;
1122                                 goto out;
1123                         }
1124
1125                         if (znode->level != 0 || c->replaying)
1126                                 continue;
1127
1128                         /*
1129                          * Colliding keys should follow binary order of
1130                          * corresponding xentry/dentry names.
1131                          */
1132                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1133                                                   &znode->zbranch[n]);
1134                         if (err < 0)
1135                                 return err;
1136                         if (err) {
1137                                 err = 15;
1138                                 goto out;
1139                         }
1140                 }
1141         }
1142
1143         for (n = 0; n < znode->child_cnt; n++) {
1144                 if (!znode->zbranch[n].znode &&
1145                     (znode->zbranch[n].lnum == 0 ||
1146                      znode->zbranch[n].len == 0)) {
1147                         err = 16;
1148                         goto out;
1149                 }
1150
1151                 if (znode->zbranch[n].lnum != 0 &&
1152                     znode->zbranch[n].len == 0) {
1153                         err = 17;
1154                         goto out;
1155                 }
1156
1157                 if (znode->zbranch[n].lnum == 0 &&
1158                     znode->zbranch[n].len != 0) {
1159                         err = 18;
1160                         goto out;
1161                 }
1162
1163                 if (znode->zbranch[n].lnum == 0 &&
1164                     znode->zbranch[n].offs != 0) {
1165                         err = 19;
1166                         goto out;
1167                 }
1168
1169                 if (znode->level != 0 && znode->zbranch[n].znode)
1170                         if (znode->zbranch[n].znode->parent != znode) {
1171                                 err = 20;
1172                                 goto out;
1173                         }
1174         }
1175
1176         return 0;
1177
1178 out:
1179         ubifs_err("failed, error %d", err);
1180         ubifs_msg("dump of the znode");
1181         dbg_dump_znode(c, znode);
1182         if (zp) {
1183                 ubifs_msg("dump of the parent znode");
1184                 dbg_dump_znode(c, zp);
1185         }
1186         dump_stack();
1187         return -EINVAL;
1188 }
1189
1190 /**
1191  * dbg_check_tnc - check TNC tree.
1192  * @c: UBIFS file-system description object
1193  * @extra: do extra checks that are possible at start commit
1194  *
1195  * This function traverses whole TNC tree and checks every znode. Returns zero
1196  * if everything is all right and %-EINVAL if something is wrong with TNC.
1197  */
1198 int dbg_check_tnc(struct ubifs_info *c, int extra)
1199 {
1200         struct ubifs_znode *znode;
1201         long clean_cnt = 0, dirty_cnt = 0;
1202         int err, last;
1203
1204         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1205                 return 0;
1206
1207         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1208         if (!c->zroot.znode)
1209                 return 0;
1210
1211         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1212         while (1) {
1213                 struct ubifs_znode *prev;
1214                 struct ubifs_zbranch *zbr;
1215
1216                 if (!znode->parent)
1217                         zbr = &c->zroot;
1218                 else
1219                         zbr = &znode->parent->zbranch[znode->iip];
1220
1221                 err = dbg_check_znode(c, zbr);
1222                 if (err)
1223                         return err;
1224
1225                 if (extra) {
1226                         if (ubifs_zn_dirty(znode))
1227                                 dirty_cnt += 1;
1228                         else
1229                                 clean_cnt += 1;
1230                 }
1231
1232                 prev = znode;
1233                 znode = ubifs_tnc_postorder_next(znode);
1234                 if (!znode)
1235                         break;
1236
1237                 /*
1238                  * If the last key of this znode is equivalent to the first key
1239                  * of the next znode (collision), then check order of the keys.
1240                  */
1241                 last = prev->child_cnt - 1;
1242                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1243                     !keys_cmp(c, &prev->zbranch[last].key,
1244                               &znode->zbranch[0].key)) {
1245                         err = dbg_check_key_order(c, &prev->zbranch[last],
1246                                                   &znode->zbranch[0]);
1247                         if (err < 0)
1248                                 return err;
1249                         if (err) {
1250                                 ubifs_msg("first znode");
1251                                 dbg_dump_znode(c, prev);
1252                                 ubifs_msg("second znode");
1253                                 dbg_dump_znode(c, znode);
1254                                 return -EINVAL;
1255                         }
1256                 }
1257         }
1258
1259         if (extra) {
1260                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1261                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1262                                   atomic_long_read(&c->clean_zn_cnt),
1263                                   clean_cnt);
1264                         return -EINVAL;
1265                 }
1266                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1267                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1268                                   atomic_long_read(&c->dirty_zn_cnt),
1269                                   dirty_cnt);
1270                         return -EINVAL;
1271                 }
1272         }
1273
1274         return 0;
1275 }
1276
1277 /**
1278  * dbg_walk_index - walk the on-flash index.
1279  * @c: UBIFS file-system description object
1280  * @leaf_cb: called for each leaf node
1281  * @znode_cb: called for each indexing node
1282  * @priv: private date which is passed to callbacks
1283  *
1284  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1285  * node and @znode_cb for each indexing node. Returns zero in case of success
1286  * and a negative error code in case of failure.
1287  *
1288  * It would be better if this function removed every znode it pulled to into
1289  * the TNC, so that the behavior more closely matched the non-debugging
1290  * behavior.
1291  */
1292 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1293                    dbg_znode_callback znode_cb, void *priv)
1294 {
1295         int err;
1296         struct ubifs_zbranch *zbr;
1297         struct ubifs_znode *znode, *child;
1298
1299         mutex_lock(&c->tnc_mutex);
1300         /* If the root indexing node is not in TNC - pull it */
1301         if (!c->zroot.znode) {
1302                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1303                 if (IS_ERR(c->zroot.znode)) {
1304                         err = PTR_ERR(c->zroot.znode);
1305                         c->zroot.znode = NULL;
1306                         goto out_unlock;
1307                 }
1308         }
1309
1310         /*
1311          * We are going to traverse the indexing tree in the postorder manner.
1312          * Go down and find the leftmost indexing node where we are going to
1313          * start from.
1314          */
1315         znode = c->zroot.znode;
1316         while (znode->level > 0) {
1317                 zbr = &znode->zbranch[0];
1318                 child = zbr->znode;
1319                 if (!child) {
1320                         child = ubifs_load_znode(c, zbr, znode, 0);
1321                         if (IS_ERR(child)) {
1322                                 err = PTR_ERR(child);
1323                                 goto out_unlock;
1324                         }
1325                         zbr->znode = child;
1326                 }
1327
1328                 znode = child;
1329         }
1330
1331         /* Iterate over all indexing nodes */
1332         while (1) {
1333                 int idx;
1334
1335                 cond_resched();
1336
1337                 if (znode_cb) {
1338                         err = znode_cb(c, znode, priv);
1339                         if (err) {
1340                                 ubifs_err("znode checking function returned "
1341                                           "error %d", err);
1342                                 dbg_dump_znode(c, znode);
1343                                 goto out_dump;
1344                         }
1345                 }
1346                 if (leaf_cb && znode->level == 0) {
1347                         for (idx = 0; idx < znode->child_cnt; idx++) {
1348                                 zbr = &znode->zbranch[idx];
1349                                 err = leaf_cb(c, zbr, priv);
1350                                 if (err) {
1351                                         ubifs_err("leaf checking function "
1352                                                   "returned error %d, for leaf "
1353                                                   "at LEB %d:%d",
1354                                                   err, zbr->lnum, zbr->offs);
1355                                         goto out_dump;
1356                                 }
1357                         }
1358                 }
1359
1360                 if (!znode->parent)
1361                         break;
1362
1363                 idx = znode->iip + 1;
1364                 znode = znode->parent;
1365                 if (idx < znode->child_cnt) {
1366                         /* Switch to the next index in the parent */
1367                         zbr = &znode->zbranch[idx];
1368                         child = zbr->znode;
1369                         if (!child) {
1370                                 child = ubifs_load_znode(c, zbr, znode, idx);
1371                                 if (IS_ERR(child)) {
1372                                         err = PTR_ERR(child);
1373                                         goto out_unlock;
1374                                 }
1375                                 zbr->znode = child;
1376                         }
1377                         znode = child;
1378                 } else
1379                         /*
1380                          * This is the last child, switch to the parent and
1381                          * continue.
1382                          */
1383                         continue;
1384
1385                 /* Go to the lowest leftmost znode in the new sub-tree */
1386                 while (znode->level > 0) {
1387                         zbr = &znode->zbranch[0];
1388                         child = zbr->znode;
1389                         if (!child) {
1390                                 child = ubifs_load_znode(c, zbr, znode, 0);
1391                                 if (IS_ERR(child)) {
1392                                         err = PTR_ERR(child);
1393                                         goto out_unlock;
1394                                 }
1395                                 zbr->znode = child;
1396                         }
1397                         znode = child;
1398                 }
1399         }
1400
1401         mutex_unlock(&c->tnc_mutex);
1402         return 0;
1403
1404 out_dump:
1405         if (znode->parent)
1406                 zbr = &znode->parent->zbranch[znode->iip];
1407         else
1408                 zbr = &c->zroot;
1409         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1410         dbg_dump_znode(c, znode);
1411 out_unlock:
1412         mutex_unlock(&c->tnc_mutex);
1413         return err;
1414 }
1415
1416 /**
1417  * add_size - add znode size to partially calculated index size.
1418  * @c: UBIFS file-system description object
1419  * @znode: znode to add size for
1420  * @priv: partially calculated index size
1421  *
1422  * This is a helper function for 'dbg_check_idx_size()' which is called for
1423  * every indexing node and adds its size to the 'long long' variable pointed to
1424  * by @priv.
1425  */
1426 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1427 {
1428         long long *idx_size = priv;
1429         int add;
1430
1431         add = ubifs_idx_node_sz(c, znode->child_cnt);
1432         add = ALIGN(add, 8);
1433         *idx_size += add;
1434         return 0;
1435 }
1436
1437 /**
1438  * dbg_check_idx_size - check index size.
1439  * @c: UBIFS file-system description object
1440  * @idx_size: size to check
1441  *
1442  * This function walks the UBIFS index, calculates its size and checks that the
1443  * size is equivalent to @idx_size. Returns zero in case of success and a
1444  * negative error code in case of failure.
1445  */
1446 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1447 {
1448         int err;
1449         long long calc = 0;
1450
1451         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1452                 return 0;
1453
1454         err = dbg_walk_index(c, NULL, add_size, &calc);
1455         if (err) {
1456                 ubifs_err("error %d while walking the index", err);
1457                 return err;
1458         }
1459
1460         if (calc != idx_size) {
1461                 ubifs_err("index size check failed: calculated size is %lld, "
1462                           "should be %lld", calc, idx_size);
1463                 dump_stack();
1464                 return -EINVAL;
1465         }
1466
1467         return 0;
1468 }
1469
1470 /**
1471  * struct fsck_inode - information about an inode used when checking the file-system.
1472  * @rb: link in the RB-tree of inodes
1473  * @inum: inode number
1474  * @mode: inode type, permissions, etc
1475  * @nlink: inode link count
1476  * @xattr_cnt: count of extended attributes
1477  * @references: how many directory/xattr entries refer this inode (calculated
1478  *              while walking the index)
1479  * @calc_cnt: for directory inode count of child directories
1480  * @size: inode size (read from on-flash inode)
1481  * @xattr_sz: summary size of all extended attributes (read from on-flash
1482  *            inode)
1483  * @calc_sz: for directories calculated directory size
1484  * @calc_xcnt: count of extended attributes
1485  * @calc_xsz: calculated summary size of all extended attributes
1486  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1487  *             inode (read from on-flash inode)
1488  * @calc_xnms: calculated sum of lengths of all extended attribute names
1489  */
1490 struct fsck_inode {
1491         struct rb_node rb;
1492         ino_t inum;
1493         umode_t mode;
1494         unsigned int nlink;
1495         unsigned int xattr_cnt;
1496         int references;
1497         int calc_cnt;
1498         long long size;
1499         unsigned int xattr_sz;
1500         long long calc_sz;
1501         long long calc_xcnt;
1502         long long calc_xsz;
1503         unsigned int xattr_nms;
1504         long long calc_xnms;
1505 };
1506
1507 /**
1508  * struct fsck_data - private FS checking information.
1509  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1510  */
1511 struct fsck_data {
1512         struct rb_root inodes;
1513 };
1514
1515 /**
1516  * add_inode - add inode information to RB-tree of inodes.
1517  * @c: UBIFS file-system description object
1518  * @fsckd: FS checking information
1519  * @ino: raw UBIFS inode to add
1520  *
1521  * This is a helper function for 'check_leaf()' which adds information about
1522  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1523  * case of success and a negative error code in case of failure.
1524  */
1525 static struct fsck_inode *add_inode(struct ubifs_info *c,
1526                                     struct fsck_data *fsckd,
1527                                     struct ubifs_ino_node *ino)
1528 {
1529         struct rb_node **p, *parent = NULL;
1530         struct fsck_inode *fscki;
1531         ino_t inum = key_inum_flash(c, &ino->key);
1532
1533         p = &fsckd->inodes.rb_node;
1534         while (*p) {
1535                 parent = *p;
1536                 fscki = rb_entry(parent, struct fsck_inode, rb);
1537                 if (inum < fscki->inum)
1538                         p = &(*p)->rb_left;
1539                 else if (inum > fscki->inum)
1540                         p = &(*p)->rb_right;
1541                 else
1542                         return fscki;
1543         }
1544
1545         if (inum > c->highest_inum) {
1546                 ubifs_err("too high inode number, max. is %lu",
1547                           c->highest_inum);
1548                 return ERR_PTR(-EINVAL);
1549         }
1550
1551         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1552         if (!fscki)
1553                 return ERR_PTR(-ENOMEM);
1554
1555         fscki->inum = inum;
1556         fscki->nlink = le32_to_cpu(ino->nlink);
1557         fscki->size = le64_to_cpu(ino->size);
1558         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1559         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1560         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1561         fscki->mode = le32_to_cpu(ino->mode);
1562         if (S_ISDIR(fscki->mode)) {
1563                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1564                 fscki->calc_cnt = 2;
1565         }
1566         rb_link_node(&fscki->rb, parent, p);
1567         rb_insert_color(&fscki->rb, &fsckd->inodes);
1568         return fscki;
1569 }
1570
1571 /**
1572  * search_inode - search inode in the RB-tree of inodes.
1573  * @fsckd: FS checking information
1574  * @inum: inode number to search
1575  *
1576  * This is a helper function for 'check_leaf()' which searches inode @inum in
1577  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1578  * the inode was not found.
1579  */
1580 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1581 {
1582         struct rb_node *p;
1583         struct fsck_inode *fscki;
1584
1585         p = fsckd->inodes.rb_node;
1586         while (p) {
1587                 fscki = rb_entry(p, struct fsck_inode, rb);
1588                 if (inum < fscki->inum)
1589                         p = p->rb_left;
1590                 else if (inum > fscki->inum)
1591                         p = p->rb_right;
1592                 else
1593                         return fscki;
1594         }
1595         return NULL;
1596 }
1597
1598 /**
1599  * read_add_inode - read inode node and add it to RB-tree of inodes.
1600  * @c: UBIFS file-system description object
1601  * @fsckd: FS checking information
1602  * @inum: inode number to read
1603  *
1604  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1605  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1606  * information pointer in case of success and a negative error code in case of
1607  * failure.
1608  */
1609 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1610                                          struct fsck_data *fsckd, ino_t inum)
1611 {
1612         int n, err;
1613         union ubifs_key key;
1614         struct ubifs_znode *znode;
1615         struct ubifs_zbranch *zbr;
1616         struct ubifs_ino_node *ino;
1617         struct fsck_inode *fscki;
1618
1619         fscki = search_inode(fsckd, inum);
1620         if (fscki)
1621                 return fscki;
1622
1623         ino_key_init(c, &key, inum);
1624         err = ubifs_lookup_level0(c, &key, &znode, &n);
1625         if (!err) {
1626                 ubifs_err("inode %lu not found in index", inum);
1627                 return ERR_PTR(-ENOENT);
1628         } else if (err < 0) {
1629                 ubifs_err("error %d while looking up inode %lu", err, inum);
1630                 return ERR_PTR(err);
1631         }
1632
1633         zbr = &znode->zbranch[n];
1634         if (zbr->len < UBIFS_INO_NODE_SZ) {
1635                 ubifs_err("bad node %lu node length %d", inum, zbr->len);
1636                 return ERR_PTR(-EINVAL);
1637         }
1638
1639         ino = kmalloc(zbr->len, GFP_NOFS);
1640         if (!ino)
1641                 return ERR_PTR(-ENOMEM);
1642
1643         err = ubifs_tnc_read_node(c, zbr, ino);
1644         if (err) {
1645                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1646                           zbr->lnum, zbr->offs, err);
1647                 kfree(ino);
1648                 return ERR_PTR(err);
1649         }
1650
1651         fscki = add_inode(c, fsckd, ino);
1652         kfree(ino);
1653         if (IS_ERR(fscki)) {
1654                 ubifs_err("error %ld while adding inode %lu node",
1655                           PTR_ERR(fscki), inum);
1656                 return fscki;
1657         }
1658
1659         return fscki;
1660 }
1661
1662 /**
1663  * check_leaf - check leaf node.
1664  * @c: UBIFS file-system description object
1665  * @zbr: zbranch of the leaf node to check
1666  * @priv: FS checking information
1667  *
1668  * This is a helper function for 'dbg_check_filesystem()' which is called for
1669  * every single leaf node while walking the indexing tree. It checks that the
1670  * leaf node referred from the indexing tree exists, has correct CRC, and does
1671  * some other basic validation. This function is also responsible for building
1672  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1673  * calculates reference count, size, etc for each inode in order to later
1674  * compare them to the information stored inside the inodes and detect possible
1675  * inconsistencies. Returns zero in case of success and a negative error code
1676  * in case of failure.
1677  */
1678 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1679                       void *priv)
1680 {
1681         ino_t inum;
1682         void *node;
1683         struct ubifs_ch *ch;
1684         int err, type = key_type(c, &zbr->key);
1685         struct fsck_inode *fscki;
1686
1687         if (zbr->len < UBIFS_CH_SZ) {
1688                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1689                           zbr->len, zbr->lnum, zbr->offs);
1690                 return -EINVAL;
1691         }
1692
1693         node = kmalloc(zbr->len, GFP_NOFS);
1694         if (!node)
1695                 return -ENOMEM;
1696
1697         err = ubifs_tnc_read_node(c, zbr, node);
1698         if (err) {
1699                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1700                           zbr->lnum, zbr->offs, err);
1701                 goto out_free;
1702         }
1703
1704         /* If this is an inode node, add it to RB-tree of inodes */
1705         if (type == UBIFS_INO_KEY) {
1706                 fscki = add_inode(c, priv, node);
1707                 if (IS_ERR(fscki)) {
1708                         err = PTR_ERR(fscki);
1709                         ubifs_err("error %d while adding inode node", err);
1710                         goto out_dump;
1711                 }
1712                 goto out;
1713         }
1714
1715         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1716             type != UBIFS_DATA_KEY) {
1717                 ubifs_err("unexpected node type %d at LEB %d:%d",
1718                           type, zbr->lnum, zbr->offs);
1719                 err = -EINVAL;
1720                 goto out_free;
1721         }
1722
1723         ch = node;
1724         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1725                 ubifs_err("too high sequence number, max. is %llu",
1726                           c->max_sqnum);
1727                 err = -EINVAL;
1728                 goto out_dump;
1729         }
1730
1731         if (type == UBIFS_DATA_KEY) {
1732                 long long blk_offs;
1733                 struct ubifs_data_node *dn = node;
1734
1735                 /*
1736                  * Search the inode node this data node belongs to and insert
1737                  * it to the RB-tree of inodes.
1738                  */
1739                 inum = key_inum_flash(c, &dn->key);
1740                 fscki = read_add_inode(c, priv, inum);
1741                 if (IS_ERR(fscki)) {
1742                         err = PTR_ERR(fscki);
1743                         ubifs_err("error %d while processing data node and "
1744                                   "trying to find inode node %lu", err, inum);
1745                         goto out_dump;
1746                 }
1747
1748                 /* Make sure the data node is within inode size */
1749                 blk_offs = key_block_flash(c, &dn->key);
1750                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1751                 blk_offs += le32_to_cpu(dn->size);
1752                 if (blk_offs > fscki->size) {
1753                         ubifs_err("data node at LEB %d:%d is not within inode "
1754                                   "size %lld", zbr->lnum, zbr->offs,
1755                                   fscki->size);
1756                         err = -EINVAL;
1757                         goto out_dump;
1758                 }
1759         } else {
1760                 int nlen;
1761                 struct ubifs_dent_node *dent = node;
1762                 struct fsck_inode *fscki1;
1763
1764                 err = ubifs_validate_entry(c, dent);
1765                 if (err)
1766                         goto out_dump;
1767
1768                 /*
1769                  * Search the inode node this entry refers to and the parent
1770                  * inode node and insert them to the RB-tree of inodes.
1771                  */
1772                 inum = le64_to_cpu(dent->inum);
1773                 fscki = read_add_inode(c, priv, inum);
1774                 if (IS_ERR(fscki)) {
1775                         err = PTR_ERR(fscki);
1776                         ubifs_err("error %d while processing entry node and "
1777                                   "trying to find inode node %lu", err, inum);
1778                         goto out_dump;
1779                 }
1780
1781                 /* Count how many direntries or xentries refers this inode */
1782                 fscki->references += 1;
1783
1784                 inum = key_inum_flash(c, &dent->key);
1785                 fscki1 = read_add_inode(c, priv, inum);
1786                 if (IS_ERR(fscki1)) {
1787                         err = PTR_ERR(fscki);
1788                         ubifs_err("error %d while processing entry node and "
1789                                   "trying to find parent inode node %lu",
1790                                   err, inum);
1791                         goto out_dump;
1792                 }
1793
1794                 nlen = le16_to_cpu(dent->nlen);
1795                 if (type == UBIFS_XENT_KEY) {
1796                         fscki1->calc_xcnt += 1;
1797                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1798                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1799                         fscki1->calc_xnms += nlen;
1800                 } else {
1801                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1802                         if (dent->type == UBIFS_ITYPE_DIR)
1803                                 fscki1->calc_cnt += 1;
1804                 }
1805         }
1806
1807 out:
1808         kfree(node);
1809         return 0;
1810
1811 out_dump:
1812         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1813         dbg_dump_node(c, node);
1814 out_free:
1815         kfree(node);
1816         return err;
1817 }
1818
1819 /**
1820  * free_inodes - free RB-tree of inodes.
1821  * @fsckd: FS checking information
1822  */
1823 static void free_inodes(struct fsck_data *fsckd)
1824 {
1825         struct rb_node *this = fsckd->inodes.rb_node;
1826         struct fsck_inode *fscki;
1827
1828         while (this) {
1829                 if (this->rb_left)
1830                         this = this->rb_left;
1831                 else if (this->rb_right)
1832                         this = this->rb_right;
1833                 else {
1834                         fscki = rb_entry(this, struct fsck_inode, rb);
1835                         this = rb_parent(this);
1836                         if (this) {
1837                                 if (this->rb_left == &fscki->rb)
1838                                         this->rb_left = NULL;
1839                                 else
1840                                         this->rb_right = NULL;
1841                         }
1842                         kfree(fscki);
1843                 }
1844         }
1845 }
1846
1847 /**
1848  * check_inodes - checks all inodes.
1849  * @c: UBIFS file-system description object
1850  * @fsckd: FS checking information
1851  *
1852  * This is a helper function for 'dbg_check_filesystem()' which walks the
1853  * RB-tree of inodes after the index scan has been finished, and checks that
1854  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1855  * %-EINVAL if not, and a negative error code in case of failure.
1856  */
1857 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1858 {
1859         int n, err;
1860         union ubifs_key key;
1861         struct ubifs_znode *znode;
1862         struct ubifs_zbranch *zbr;
1863         struct ubifs_ino_node *ino;
1864         struct fsck_inode *fscki;
1865         struct rb_node *this = rb_first(&fsckd->inodes);
1866
1867         while (this) {
1868                 fscki = rb_entry(this, struct fsck_inode, rb);
1869                 this = rb_next(this);
1870
1871                 if (S_ISDIR(fscki->mode)) {
1872                         /*
1873                          * Directories have to have exactly one reference (they
1874                          * cannot have hardlinks), although root inode is an
1875                          * exception.
1876                          */
1877                         if (fscki->inum != UBIFS_ROOT_INO &&
1878                             fscki->references != 1) {
1879                                 ubifs_err("directory inode %lu has %d "
1880                                           "direntries which refer it, but "
1881                                           "should be 1", fscki->inum,
1882                                           fscki->references);
1883                                 goto out_dump;
1884                         }
1885                         if (fscki->inum == UBIFS_ROOT_INO &&
1886                             fscki->references != 0) {
1887                                 ubifs_err("root inode %lu has non-zero (%d) "
1888                                           "direntries which refer it",
1889                                           fscki->inum, fscki->references);
1890                                 goto out_dump;
1891                         }
1892                         if (fscki->calc_sz != fscki->size) {
1893                                 ubifs_err("directory inode %lu size is %lld, "
1894                                           "but calculated size is %lld",
1895                                           fscki->inum, fscki->size,
1896                                           fscki->calc_sz);
1897                                 goto out_dump;
1898                         }
1899                         if (fscki->calc_cnt != fscki->nlink) {
1900                                 ubifs_err("directory inode %lu nlink is %d, "
1901                                           "but calculated nlink is %d",
1902                                           fscki->inum, fscki->nlink,
1903                                           fscki->calc_cnt);
1904                                 goto out_dump;
1905                         }
1906                 } else {
1907                         if (fscki->references != fscki->nlink) {
1908                                 ubifs_err("inode %lu nlink is %d, but "
1909                                           "calculated nlink is %d", fscki->inum,
1910                                           fscki->nlink, fscki->references);
1911                                 goto out_dump;
1912                         }
1913                 }
1914                 if (fscki->xattr_sz != fscki->calc_xsz) {
1915                         ubifs_err("inode %lu has xattr size %u, but "
1916                                   "calculated size is %lld",
1917                                   fscki->inum, fscki->xattr_sz,
1918                                   fscki->calc_xsz);
1919                         goto out_dump;
1920                 }
1921                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1922                         ubifs_err("inode %lu has %u xattrs, but "
1923                                   "calculated count is %lld", fscki->inum,
1924                                   fscki->xattr_cnt, fscki->calc_xcnt);
1925                         goto out_dump;
1926                 }
1927                 if (fscki->xattr_nms != fscki->calc_xnms) {
1928                         ubifs_err("inode %lu has xattr names' size %u, but "
1929                                   "calculated names' size is %lld",
1930                                   fscki->inum, fscki->xattr_nms,
1931                                   fscki->calc_xnms);
1932                         goto out_dump;
1933                 }
1934         }
1935
1936         return 0;
1937
1938 out_dump:
1939         /* Read the bad inode and dump it */
1940         ino_key_init(c, &key, fscki->inum);
1941         err = ubifs_lookup_level0(c, &key, &znode, &n);
1942         if (!err) {
1943                 ubifs_err("inode %lu not found in index", fscki->inum);
1944                 return -ENOENT;
1945         } else if (err < 0) {
1946                 ubifs_err("error %d while looking up inode %lu",
1947                           err, fscki->inum);
1948                 return err;
1949         }
1950
1951         zbr = &znode->zbranch[n];
1952         ino = kmalloc(zbr->len, GFP_NOFS);
1953         if (!ino)
1954                 return -ENOMEM;
1955
1956         err = ubifs_tnc_read_node(c, zbr, ino);
1957         if (err) {
1958                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1959                           zbr->lnum, zbr->offs, err);
1960                 kfree(ino);
1961                 return err;
1962         }
1963
1964         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
1965                   fscki->inum, zbr->lnum, zbr->offs);
1966         dbg_dump_node(c, ino);
1967         kfree(ino);
1968         return -EINVAL;
1969 }
1970
1971 /**
1972  * dbg_check_filesystem - check the file-system.
1973  * @c: UBIFS file-system description object
1974  *
1975  * This function checks the file system, namely:
1976  * o makes sure that all leaf nodes exist and their CRCs are correct;
1977  * o makes sure inode nlink, size, xattr size/count are correct (for all
1978  *   inodes).
1979  *
1980  * The function reads whole indexing tree and all nodes, so it is pretty
1981  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
1982  * not, and a negative error code in case of failure.
1983  */
1984 int dbg_check_filesystem(struct ubifs_info *c)
1985 {
1986         int err;
1987         struct fsck_data fsckd;
1988
1989         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
1990                 return 0;
1991
1992         fsckd.inodes = RB_ROOT;
1993         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
1994         if (err)
1995                 goto out_free;
1996
1997         err = check_inodes(c, &fsckd);
1998         if (err)
1999                 goto out_free;
2000
2001         free_inodes(&fsckd);
2002         return 0;
2003
2004 out_free:
2005         ubifs_err("file-system check failed with error %d", err);
2006         dump_stack();
2007         free_inodes(&fsckd);
2008         return err;
2009 }
2010
2011 static int invocation_cnt;
2012
2013 int dbg_force_in_the_gaps(void)
2014 {
2015         if (!dbg_force_in_the_gaps_enabled)
2016                 return 0;
2017         /* Force in-the-gaps every 8th commit */
2018         return !((invocation_cnt++) & 0x7);
2019 }
2020
2021 /* Failure mode for recovery testing */
2022
2023 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2024
2025 struct failure_mode_info {
2026         struct list_head list;
2027         struct ubifs_info *c;
2028 };
2029
2030 static LIST_HEAD(fmi_list);
2031 static DEFINE_SPINLOCK(fmi_lock);
2032
2033 static unsigned int next;
2034
2035 static int simple_rand(void)
2036 {
2037         if (next == 0)
2038                 next = current->pid;
2039         next = next * 1103515245 + 12345;
2040         return (next >> 16) & 32767;
2041 }
2042
2043 void dbg_failure_mode_registration(struct ubifs_info *c)
2044 {
2045         struct failure_mode_info *fmi;
2046
2047         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2048         if (!fmi) {
2049                 dbg_err("Failed to register failure mode - no memory");
2050                 return;
2051         }
2052         fmi->c = c;
2053         spin_lock(&fmi_lock);
2054         list_add_tail(&fmi->list, &fmi_list);
2055         spin_unlock(&fmi_lock);
2056 }
2057
2058 void dbg_failure_mode_deregistration(struct ubifs_info *c)
2059 {
2060         struct failure_mode_info *fmi, *tmp;
2061
2062         spin_lock(&fmi_lock);
2063         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2064                 if (fmi->c == c) {
2065                         list_del(&fmi->list);
2066                         kfree(fmi);
2067                 }
2068         spin_unlock(&fmi_lock);
2069 }
2070
2071 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2072 {
2073         struct failure_mode_info *fmi;
2074
2075         spin_lock(&fmi_lock);
2076         list_for_each_entry(fmi, &fmi_list, list)
2077                 if (fmi->c->ubi == desc) {
2078                         struct ubifs_info *c = fmi->c;
2079
2080                         spin_unlock(&fmi_lock);
2081                         return c;
2082                 }
2083         spin_unlock(&fmi_lock);
2084         return NULL;
2085 }
2086
2087 static int in_failure_mode(struct ubi_volume_desc *desc)
2088 {
2089         struct ubifs_info *c = dbg_find_info(desc);
2090
2091         if (c && dbg_failure_mode)
2092                 return c->failure_mode;
2093         return 0;
2094 }
2095
2096 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2097 {
2098         struct ubifs_info *c = dbg_find_info(desc);
2099
2100         if (!c || !dbg_failure_mode)
2101                 return 0;
2102         if (c->failure_mode)
2103                 return 1;
2104         if (!c->fail_cnt) {
2105                 /* First call - decide delay to failure */
2106                 if (chance(1, 2)) {
2107                         unsigned int delay = 1 << (simple_rand() >> 11);
2108
2109                         if (chance(1, 2)) {
2110                                 c->fail_delay = 1;
2111                                 c->fail_timeout = jiffies +
2112                                                   msecs_to_jiffies(delay);
2113                                 dbg_rcvry("failing after %ums", delay);
2114                         } else {
2115                                 c->fail_delay = 2;
2116                                 c->fail_cnt_max = delay;
2117                                 dbg_rcvry("failing after %u calls", delay);
2118                         }
2119                 }
2120                 c->fail_cnt += 1;
2121         }
2122         /* Determine if failure delay has expired */
2123         if (c->fail_delay == 1) {
2124                 if (time_before(jiffies, c->fail_timeout))
2125                         return 0;
2126         } else if (c->fail_delay == 2)
2127                 if (c->fail_cnt++ < c->fail_cnt_max)
2128                         return 0;
2129         if (lnum == UBIFS_SB_LNUM) {
2130                 if (write) {
2131                         if (chance(1, 2))
2132                                 return 0;
2133                 } else if (chance(19, 20))
2134                         return 0;
2135                 dbg_rcvry("failing in super block LEB %d", lnum);
2136         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2137                 if (chance(19, 20))
2138                         return 0;
2139                 dbg_rcvry("failing in master LEB %d", lnum);
2140         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2141                 if (write) {
2142                         if (chance(99, 100))
2143                                 return 0;
2144                 } else if (chance(399, 400))
2145                         return 0;
2146                 dbg_rcvry("failing in log LEB %d", lnum);
2147         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2148                 if (write) {
2149                         if (chance(7, 8))
2150                                 return 0;
2151                 } else if (chance(19, 20))
2152                         return 0;
2153                 dbg_rcvry("failing in LPT LEB %d", lnum);
2154         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2155                 if (write) {
2156                         if (chance(1, 2))
2157                                 return 0;
2158                 } else if (chance(9, 10))
2159                         return 0;
2160                 dbg_rcvry("failing in orphan LEB %d", lnum);
2161         } else if (lnum == c->ihead_lnum) {
2162                 if (chance(99, 100))
2163                         return 0;
2164                 dbg_rcvry("failing in index head LEB %d", lnum);
2165         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2166                 if (chance(9, 10))
2167                         return 0;
2168                 dbg_rcvry("failing in GC head LEB %d", lnum);
2169         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2170                    !ubifs_search_bud(c, lnum)) {
2171                 if (chance(19, 20))
2172                         return 0;
2173                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2174         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2175                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2176                 if (chance(999, 1000))
2177                         return 0;
2178                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2179         } else {
2180                 if (chance(9999, 10000))
2181                         return 0;
2182                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2183         }
2184         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2185         c->failure_mode = 1;
2186         dump_stack();
2187         return 1;
2188 }
2189
2190 static void cut_data(const void *buf, int len)
2191 {
2192         int flen, i;
2193         unsigned char *p = (void *)buf;
2194
2195         flen = (len * (long long)simple_rand()) >> 15;
2196         for (i = flen; i < len; i++)
2197                 p[i] = 0xff;
2198 }
2199
2200 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2201                  int len, int check)
2202 {
2203         if (in_failure_mode(desc))
2204                 return -EIO;
2205         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2206 }
2207
2208 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2209                   int offset, int len, int dtype)
2210 {
2211         int err, failing;
2212
2213         if (in_failure_mode(desc))
2214                 return -EIO;
2215         failing = do_fail(desc, lnum, 1);
2216         if (failing)
2217                 cut_data(buf, len);
2218         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2219         if (err)
2220                 return err;
2221         if (failing)
2222                 return -EIO;
2223         return 0;
2224 }
2225
2226 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2227                    int len, int dtype)
2228 {
2229         int err;
2230
2231         if (do_fail(desc, lnum, 1))
2232                 return -EIO;
2233         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2234         if (err)
2235                 return err;
2236         if (do_fail(desc, lnum, 1))
2237                 return -EIO;
2238         return 0;
2239 }
2240
2241 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2242 {
2243         int err;
2244
2245         if (do_fail(desc, lnum, 0))
2246                 return -EIO;
2247         err = ubi_leb_erase(desc, lnum);
2248         if (err)
2249                 return err;
2250         if (do_fail(desc, lnum, 0))
2251                 return -EIO;
2252         return 0;
2253 }
2254
2255 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2256 {
2257         int err;
2258
2259         if (do_fail(desc, lnum, 0))
2260                 return -EIO;
2261         err = ubi_leb_unmap(desc, lnum);
2262         if (err)
2263                 return err;
2264         if (do_fail(desc, lnum, 0))
2265                 return -EIO;
2266         return 0;
2267 }
2268
2269 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2270 {
2271         if (in_failure_mode(desc))
2272                 return -EIO;
2273         return ubi_is_mapped(desc, lnum);
2274 }
2275
2276 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2277 {
2278         int err;
2279
2280         if (do_fail(desc, lnum, 0))
2281                 return -EIO;
2282         err = ubi_leb_map(desc, lnum, dtype);
2283         if (err)
2284                 return err;
2285         if (do_fail(desc, lnum, 0))
2286                 return -EIO;
2287         return 0;
2288 }
2289
2290 #endif /* CONFIG_UBIFS_FS_DEBUG */