2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/platform_device.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/amba/bus.h>
28 #include <linux/amba/clcd.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/cnt32_to_63.h>
34 #include <asm/clkdev.h>
35 #include <asm/system.h>
36 #include <mach/hardware.h>
39 #include <asm/hardware/arm_timer.h>
40 #include <asm/hardware/icst307.h>
41 #include <asm/hardware/vic.h>
42 #include <asm/mach-types.h>
44 #include <asm/mach/arch.h>
45 #include <asm/mach/flash.h>
46 #include <asm/mach/irq.h>
47 #include <asm/mach/time.h>
48 #include <asm/mach/map.h>
49 #include <asm/mach/mmc.h>
55 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
58 * Setup a VA for the Versatile Vectored Interrupt Controller.
60 #define __io_address(n) __io(IO_ADDRESS(n))
61 #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
62 #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
64 static void sic_mask_irq(unsigned int irq)
67 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
70 static void sic_unmask_irq(unsigned int irq)
73 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
76 static struct irq_chip sic_chip = {
80 .unmask = sic_unmask_irq,
84 sic_handle_irq(unsigned int irq, struct irq_desc *desc)
86 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
89 do_bad_IRQ(irq, desc);
94 irq = ffs(status) - 1;
95 status &= ~(1 << irq);
99 generic_handle_irq(irq);
104 #define IRQ_MMCI0A IRQ_VICSOURCE22
105 #define IRQ_AACI IRQ_VICSOURCE24
106 #define IRQ_ETH IRQ_VICSOURCE25
107 #define PIC_MASK 0xFFD00000
109 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
110 #define IRQ_AACI IRQ_SIC_AACI
111 #define IRQ_ETH IRQ_SIC_ETH
115 void __init versatile_init_irq(void)
119 vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
121 set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
123 /* Do second interrupt controller */
124 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
126 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
127 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
128 set_irq_chip(i, &sic_chip);
129 set_irq_handler(i, handle_level_irq);
130 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
135 * Interrupts on secondary controller from 0 to 8 are routed to
137 * Interrupts from 21 to 31 are routed directly to the VIC on
138 * the corresponding number on primary controller. This is controlled
139 * by setting PIC_ENABLEx.
141 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
144 static struct map_desc versatile_io_desc[] __initdata = {
146 .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
147 .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
151 .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
152 .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
156 .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
157 .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
161 .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
162 .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
166 #ifdef CONFIG_MACH_VERSATILE_AB
168 .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
169 .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
173 .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
174 .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
179 #ifdef CONFIG_DEBUG_LL
181 .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
182 .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
189 .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
190 .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
194 .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
195 .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
196 .length = VERSATILE_PCI_BASE_SIZE,
199 .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
200 .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
201 .length = VERSATILE_PCI_CFG_BASE_SIZE,
206 .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
207 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
211 .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
212 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
216 .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
217 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
225 void __init versatile_map_io(void)
227 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
230 #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
233 * This is the Versatile sched_clock implementation. This has
234 * a resolution of 41.7ns, and a maximum value of about 35583 days.
236 * The return value is guaranteed to be monotonic in that range as
237 * long as there is always less than 89 seconds between successive
238 * calls to this function.
240 unsigned long long sched_clock(void)
242 unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
244 /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
252 #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
254 static int versatile_flash_init(void)
258 val = __raw_readl(VERSATILE_FLASHCTRL);
259 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
260 __raw_writel(val, VERSATILE_FLASHCTRL);
265 static void versatile_flash_exit(void)
269 val = __raw_readl(VERSATILE_FLASHCTRL);
270 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
271 __raw_writel(val, VERSATILE_FLASHCTRL);
274 static void versatile_flash_set_vpp(int on)
278 val = __raw_readl(VERSATILE_FLASHCTRL);
280 val |= VERSATILE_FLASHPROG_FLVPPEN;
282 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
283 __raw_writel(val, VERSATILE_FLASHCTRL);
286 static struct flash_platform_data versatile_flash_data = {
287 .map_name = "cfi_probe",
289 .init = versatile_flash_init,
290 .exit = versatile_flash_exit,
291 .set_vpp = versatile_flash_set_vpp,
294 static struct resource versatile_flash_resource = {
295 .start = VERSATILE_FLASH_BASE,
296 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
297 .flags = IORESOURCE_MEM,
300 static struct platform_device versatile_flash_device = {
304 .platform_data = &versatile_flash_data,
307 .resource = &versatile_flash_resource,
310 static struct resource smc91x_resources[] = {
312 .start = VERSATILE_ETH_BASE,
313 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
314 .flags = IORESOURCE_MEM,
319 .flags = IORESOURCE_IRQ,
323 static struct platform_device smc91x_device = {
326 .num_resources = ARRAY_SIZE(smc91x_resources),
327 .resource = smc91x_resources,
330 static struct resource versatile_i2c_resource = {
331 .start = VERSATILE_I2C_BASE,
332 .end = VERSATILE_I2C_BASE + SZ_4K - 1,
333 .flags = IORESOURCE_MEM,
336 static struct platform_device versatile_i2c_device = {
337 .name = "versatile-i2c",
340 .resource = &versatile_i2c_resource,
343 #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
345 unsigned int mmc_status(struct device *dev)
347 struct amba_device *adev = container_of(dev, struct amba_device, dev);
350 if (adev->res.start == VERSATILE_MMCI0_BASE)
355 return readl(VERSATILE_SYSMCI) & mask;
358 static struct mmc_platform_data mmc0_plat_data = {
359 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
360 .status = mmc_status,
366 static const struct icst307_params versatile_oscvco_params = {
375 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
377 void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
378 void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
381 val = readl(sys + clk->oscoff) & ~0x7ffff;
382 val |= vco.v | (vco.r << 9) | (vco.s << 16);
384 writel(0xa05f, sys_lock);
385 writel(val, sys + clk->oscoff);
389 static struct clk osc4_clk = {
390 .params = &versatile_oscvco_params,
391 .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
392 .setvco = versatile_oscvco_set,
396 * These are fixed clocks.
398 static struct clk ref24_clk = {
402 static struct clk_lookup lookups[] __initdata = {
436 #define SYS_CLCD_MODE_MASK (3 << 0)
437 #define SYS_CLCD_MODE_888 (0 << 0)
438 #define SYS_CLCD_MODE_5551 (1 << 0)
439 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
440 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
441 #define SYS_CLCD_NLCDIOON (1 << 2)
442 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
443 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
444 #define SYS_CLCD_ID_MASK (0x1f << 8)
445 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
446 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
447 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
448 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
449 #define SYS_CLCD_ID_VGA (0x1f << 8)
451 static struct clcd_panel vga = {
465 .vmode = FB_VMODE_NONINTERLACED,
469 .tim2 = TIM2_BCD | TIM2_IPC,
470 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
474 static struct clcd_panel sanyo_3_8_in = {
476 .name = "Sanyo QVGA",
488 .vmode = FB_VMODE_NONINTERLACED,
493 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
497 static struct clcd_panel sanyo_2_5_in = {
499 .name = "Sanyo QVGA Portrait",
510 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
511 .vmode = FB_VMODE_NONINTERLACED,
515 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
516 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
520 static struct clcd_panel epson_2_2_in = {
522 .name = "Epson QCIF",
534 .vmode = FB_VMODE_NONINTERLACED,
538 .tim2 = TIM2_BCD | TIM2_IPC,
539 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
544 * Detect which LCD panel is connected, and return the appropriate
545 * clcd_panel structure. Note: we do not have any information on
546 * the required timings for the 8.4in panel, so we presently assume
549 static struct clcd_panel *versatile_clcd_panel(void)
551 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
552 struct clcd_panel *panel = &vga;
555 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
556 if (val == SYS_CLCD_ID_SANYO_3_8)
557 panel = &sanyo_3_8_in;
558 else if (val == SYS_CLCD_ID_SANYO_2_5)
559 panel = &sanyo_2_5_in;
560 else if (val == SYS_CLCD_ID_EPSON_2_2)
561 panel = &epson_2_2_in;
562 else if (val == SYS_CLCD_ID_VGA)
565 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
574 * Disable all display connectors on the interface module.
576 static void versatile_clcd_disable(struct clcd_fb *fb)
578 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
581 val = readl(sys_clcd);
582 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
583 writel(val, sys_clcd);
585 #ifdef CONFIG_MACH_VERSATILE_AB
587 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
589 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
590 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
593 ctrl = readl(versatile_ib2_ctrl);
595 writel(ctrl, versatile_ib2_ctrl);
601 * Enable the relevant connector on the interface module.
603 static void versatile_clcd_enable(struct clcd_fb *fb)
605 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
608 val = readl(sys_clcd);
609 val &= ~SYS_CLCD_MODE_MASK;
611 switch (fb->fb.var.green.length) {
613 val |= SYS_CLCD_MODE_5551;
616 val |= SYS_CLCD_MODE_565_RLSB;
619 val |= SYS_CLCD_MODE_888;
626 writel(val, sys_clcd);
629 * And now enable the PSUs
631 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
632 writel(val, sys_clcd);
634 #ifdef CONFIG_MACH_VERSATILE_AB
636 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
638 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
639 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
642 ctrl = readl(versatile_ib2_ctrl);
644 writel(ctrl, versatile_ib2_ctrl);
649 static unsigned long framesize = SZ_1M;
651 static int versatile_clcd_setup(struct clcd_fb *fb)
655 fb->panel = versatile_clcd_panel();
657 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
659 if (!fb->fb.screen_base) {
660 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
664 fb->fb.fix.smem_start = dma;
665 fb->fb.fix.smem_len = framesize;
670 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
672 return dma_mmap_writecombine(&fb->dev->dev, vma,
674 fb->fb.fix.smem_start,
675 fb->fb.fix.smem_len);
678 static void versatile_clcd_remove(struct clcd_fb *fb)
680 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
681 fb->fb.screen_base, fb->fb.fix.smem_start);
684 static struct clcd_board clcd_plat_data = {
686 .check = clcdfb_check,
687 .decode = clcdfb_decode,
688 .disable = versatile_clcd_disable,
689 .enable = versatile_clcd_enable,
690 .setup = versatile_clcd_setup,
691 .mmap = versatile_clcd_mmap,
692 .remove = versatile_clcd_remove,
695 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
696 #define AACI_DMA { 0x80, 0x81 }
697 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
698 #define MMCI0_DMA { 0x84, 0 }
699 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
700 #define KMI0_DMA { 0, 0 }
701 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
702 #define KMI1_DMA { 0, 0 }
705 * These devices are connected directly to the multi-layer AHB switch
707 #define SMC_IRQ { NO_IRQ, NO_IRQ }
708 #define SMC_DMA { 0, 0 }
709 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
710 #define MPMC_DMA { 0, 0 }
711 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
712 #define CLCD_DMA { 0, 0 }
713 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
714 #define DMAC_DMA { 0, 0 }
717 * These devices are connected via the core APB bridge
719 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
720 #define SCTL_DMA { 0, 0 }
721 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
722 #define WATCHDOG_DMA { 0, 0 }
723 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
724 #define GPIO0_DMA { 0, 0 }
725 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
726 #define GPIO1_DMA { 0, 0 }
727 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
728 #define RTC_DMA { 0, 0 }
731 * These devices are connected via the DMA APB bridge
733 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
734 #define SCI_DMA { 7, 6 }
735 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
736 #define UART0_DMA { 15, 14 }
737 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
738 #define UART1_DMA { 13, 12 }
739 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
740 #define UART2_DMA { 11, 10 }
741 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
742 #define SSP_DMA { 9, 8 }
744 /* FPGA Primecells */
745 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
746 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
747 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
748 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
750 /* DevChip Primecells */
751 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
752 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
753 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
754 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
755 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
756 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
757 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
758 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
759 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
760 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
761 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
762 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
763 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
764 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
766 static struct amba_device *amba_devs[] __initdata = {
788 #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
790 static void versatile_leds_event(led_event_t ledevt)
795 local_irq_save(flags);
796 val = readl(VA_LEDS_BASE);
800 val = val & ~VERSATILE_SYS_LED0;
804 val = val | VERSATILE_SYS_LED0;
808 val = val ^ VERSATILE_SYS_LED1;
819 writel(val, VA_LEDS_BASE);
820 local_irq_restore(flags);
822 #endif /* CONFIG_LEDS */
824 void __init versatile_init(void)
828 for (i = 0; i < ARRAY_SIZE(lookups); i++)
829 clkdev_add(&lookups[i]);
831 platform_device_register(&versatile_flash_device);
832 platform_device_register(&versatile_i2c_device);
833 platform_device_register(&smc91x_device);
835 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
836 struct amba_device *d = amba_devs[i];
837 amba_device_register(d, &iomem_resource);
841 leds_event = versatile_leds_event;
846 * Where is the timer (VA)?
848 #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
849 #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
850 #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
851 #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
852 #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
855 * How long is the timer interval?
857 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
858 #if TIMER_INTERVAL >= 0x100000
859 #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
860 #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
861 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
862 #elif TIMER_INTERVAL >= 0x10000
863 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
864 #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
865 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
867 #define TIMER_RELOAD (TIMER_INTERVAL)
868 #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
869 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
872 static void timer_set_mode(enum clock_event_mode mode,
873 struct clock_event_device *clk)
878 case CLOCK_EVT_MODE_PERIODIC:
879 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
881 ctrl = TIMER_CTRL_PERIODIC;
882 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
884 case CLOCK_EVT_MODE_ONESHOT:
885 /* period set, and timer enabled in 'next_event' hook */
886 ctrl = TIMER_CTRL_ONESHOT;
887 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
889 case CLOCK_EVT_MODE_UNUSED:
890 case CLOCK_EVT_MODE_SHUTDOWN:
895 writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
898 static int timer_set_next_event(unsigned long evt,
899 struct clock_event_device *unused)
901 unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
903 writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
904 writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
909 static struct clock_event_device timer0_clockevent = {
912 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
913 .set_mode = timer_set_mode,
914 .set_next_event = timer_set_next_event,
918 * IRQ handler for the timer
920 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
922 struct clock_event_device *evt = &timer0_clockevent;
924 writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
926 evt->event_handler(evt);
931 static struct irqaction versatile_timer_irq = {
932 .name = "Versatile Timer Tick",
933 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
934 .handler = versatile_timer_interrupt,
937 static cycle_t versatile_get_cycles(void)
939 return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
942 static struct clocksource clocksource_versatile = {
945 .read = versatile_get_cycles,
946 .mask = CLOCKSOURCE_MASK(32),
948 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
951 static int __init versatile_clocksource_init(void)
953 /* setup timer3 as free-running clocksource */
954 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
955 writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
956 writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
957 writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
958 TIMER3_VA_BASE + TIMER_CTRL);
960 clocksource_versatile.mult =
961 clocksource_khz2mult(1000, clocksource_versatile.shift);
962 clocksource_register(&clocksource_versatile);
968 * Set up timer interrupt, and return the current time in seconds.
970 static void __init versatile_timer_init(void)
975 * set clock frequency:
976 * VERSATILE_REFCLK is 32KHz
977 * VERSATILE_TIMCLK is 1MHz
979 val = readl(__io_address(VERSATILE_SCTL_BASE));
980 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
981 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
982 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
983 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
984 __io_address(VERSATILE_SCTL_BASE));
987 * Initialise to a known state (all timers off)
989 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
990 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
991 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
992 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
995 * Make irqs happen for the system timer
997 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
999 versatile_clocksource_init();
1001 timer0_clockevent.mult =
1002 div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
1003 timer0_clockevent.max_delta_ns =
1004 clockevent_delta2ns(0xffffffff, &timer0_clockevent);
1005 timer0_clockevent.min_delta_ns =
1006 clockevent_delta2ns(0xf, &timer0_clockevent);
1008 timer0_clockevent.cpumask = cpumask_of(0);
1009 clockevents_register_device(&timer0_clockevent);
1012 struct sys_timer versatile_timer = {
1013 .init = versatile_timer_init,