4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t *pgd)
97 void pud_clear_bad(pud_t *pud)
103 void pmd_clear_bad(pmd_t *pmd)
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
115 struct page *page = pmd_page(*pmd);
117 pte_lock_deinit(page);
118 pte_free_tlb(tlb, page);
119 dec_page_state(nr_page_table_pages);
123 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124 unsigned long addr, unsigned long end,
125 unsigned long floor, unsigned long ceiling)
132 pmd = pmd_offset(pud, addr);
134 next = pmd_addr_end(addr, end);
135 if (pmd_none_or_clear_bad(pmd))
137 free_pte_range(tlb, pmd);
138 } while (pmd++, addr = next, addr != end);
148 if (end - 1 > ceiling - 1)
151 pmd = pmd_offset(pud, start);
153 pmd_free_tlb(tlb, pmd);
156 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157 unsigned long addr, unsigned long end,
158 unsigned long floor, unsigned long ceiling)
165 pud = pud_offset(pgd, addr);
167 next = pud_addr_end(addr, end);
168 if (pud_none_or_clear_bad(pud))
170 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171 } while (pud++, addr = next, addr != end);
177 ceiling &= PGDIR_MASK;
181 if (end - 1 > ceiling - 1)
184 pud = pud_offset(pgd, start);
186 pud_free_tlb(tlb, pud);
190 * This function frees user-level page tables of a process.
192 * Must be called with pagetable lock held.
194 void free_pgd_range(struct mmu_gather **tlb,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
203 * The next few lines have given us lots of grief...
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
239 if (end - 1 > ceiling - 1)
245 pgd = pgd_offset((*tlb)->mm, addr);
247 next = pgd_addr_end(addr, end);
248 if (pgd_none_or_clear_bad(pgd))
250 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251 } while (pgd++, addr = next, addr != end);
254 flush_tlb_pgtables((*tlb)->mm, start, end);
257 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258 unsigned long floor, unsigned long ceiling)
261 struct vm_area_struct *next = vma->vm_next;
262 unsigned long addr = vma->vm_start;
265 * Hide vma from rmap and vmtruncate before freeing pgtables
267 anon_vma_unlink(vma);
268 unlink_file_vma(vma);
270 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272 floor, next? next->vm_start: ceiling);
275 * Optimization: gather nearby vmas into one call down
277 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
282 anon_vma_unlink(vma);
283 unlink_file_vma(vma);
285 free_pgd_range(tlb, addr, vma->vm_end,
286 floor, next? next->vm_start: ceiling);
292 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
294 struct page *new = pte_alloc_one(mm, address);
299 spin_lock(&mm->page_table_lock);
300 if (pmd_present(*pmd)) { /* Another has populated it */
301 pte_lock_deinit(new);
305 inc_page_state(nr_page_table_pages);
306 pmd_populate(mm, pmd, new);
308 spin_unlock(&mm->page_table_lock);
312 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
314 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
318 spin_lock(&init_mm.page_table_lock);
319 if (pmd_present(*pmd)) /* Another has populated it */
320 pte_free_kernel(new);
322 pmd_populate_kernel(&init_mm, pmd, new);
323 spin_unlock(&init_mm.page_table_lock);
327 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
330 add_mm_counter(mm, file_rss, file_rss);
332 add_mm_counter(mm, anon_rss, anon_rss);
336 * This function is called to print an error when a bad pte
337 * is found. For example, we might have a PFN-mapped pte in
338 * a region that doesn't allow it.
340 * The calling function must still handle the error.
342 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
344 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte),
347 (vma->vm_mm == current->mm ? current->comm : "???"),
348 vma->vm_flags, vaddr);
352 static inline int is_cow_mapping(unsigned int flags)
354 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
358 * This function gets the "struct page" associated with a pte.
360 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
361 * will have each page table entry just pointing to a raw page frame
362 * number, and as far as the VM layer is concerned, those do not have
363 * pages associated with them - even if the PFN might point to memory
364 * that otherwise is perfectly fine and has a "struct page".
366 * The way we recognize those mappings is through the rules set up
367 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
368 * and the vm_pgoff will point to the first PFN mapped: thus every
369 * page that is a raw mapping will always honor the rule
371 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
373 * and if that isn't true, the page has been COW'ed (in which case it
374 * _does_ have a "struct page" associated with it even if it is in a
377 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
379 unsigned long pfn = pte_pfn(pte);
381 if (vma->vm_flags & VM_PFNMAP) {
382 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
383 if (pfn == vma->vm_pgoff + off)
385 if (!is_cow_mapping(vma->vm_flags))
390 * Add some anal sanity checks for now. Eventually,
391 * we should just do "return pfn_to_page(pfn)", but
392 * in the meantime we check that we get a valid pfn,
393 * and that the resulting page looks ok.
395 * Remove this test eventually!
397 if (unlikely(!pfn_valid(pfn))) {
398 print_bad_pte(vma, pte, addr);
403 * NOTE! We still have PageReserved() pages in the page
406 * The PAGE_ZERO() pages and various VDSO mappings can
407 * cause them to exist.
409 return pfn_to_page(pfn);
413 * copy one vm_area from one task to the other. Assumes the page tables
414 * already present in the new task to be cleared in the whole range
415 * covered by this vma.
419 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
420 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
421 unsigned long addr, int *rss)
423 unsigned long vm_flags = vma->vm_flags;
424 pte_t pte = *src_pte;
427 /* pte contains position in swap or file, so copy. */
428 if (unlikely(!pte_present(pte))) {
429 if (!pte_file(pte)) {
430 swap_duplicate(pte_to_swp_entry(pte));
431 /* make sure dst_mm is on swapoff's mmlist. */
432 if (unlikely(list_empty(&dst_mm->mmlist))) {
433 spin_lock(&mmlist_lock);
434 if (list_empty(&dst_mm->mmlist))
435 list_add(&dst_mm->mmlist,
437 spin_unlock(&mmlist_lock);
444 * If it's a COW mapping, write protect it both
445 * in the parent and the child
447 if (is_cow_mapping(vm_flags)) {
448 ptep_set_wrprotect(src_mm, addr, src_pte);
453 * If it's a shared mapping, mark it clean in
456 if (vm_flags & VM_SHARED)
457 pte = pte_mkclean(pte);
458 pte = pte_mkold(pte);
460 page = vm_normal_page(vma, addr, pte);
464 rss[!!PageAnon(page)]++;
468 set_pte_at(dst_mm, addr, dst_pte, pte);
471 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
473 unsigned long addr, unsigned long end)
475 pte_t *src_pte, *dst_pte;
476 spinlock_t *src_ptl, *dst_ptl;
482 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
485 src_pte = pte_offset_map_nested(src_pmd, addr);
486 src_ptl = pte_lockptr(src_mm, src_pmd);
491 * We are holding two locks at this point - either of them
492 * could generate latencies in another task on another CPU.
494 if (progress >= 32) {
496 if (need_resched() ||
497 need_lockbreak(src_ptl) ||
498 need_lockbreak(dst_ptl))
501 if (pte_none(*src_pte)) {
505 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
507 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
509 spin_unlock(src_ptl);
510 pte_unmap_nested(src_pte - 1);
511 add_mm_rss(dst_mm, rss[0], rss[1]);
512 pte_unmap_unlock(dst_pte - 1, dst_ptl);
519 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
520 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
521 unsigned long addr, unsigned long end)
523 pmd_t *src_pmd, *dst_pmd;
526 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
529 src_pmd = pmd_offset(src_pud, addr);
531 next = pmd_addr_end(addr, end);
532 if (pmd_none_or_clear_bad(src_pmd))
534 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
537 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
541 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
542 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
543 unsigned long addr, unsigned long end)
545 pud_t *src_pud, *dst_pud;
548 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
551 src_pud = pud_offset(src_pgd, addr);
553 next = pud_addr_end(addr, end);
554 if (pud_none_or_clear_bad(src_pud))
556 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
559 } while (dst_pud++, src_pud++, addr = next, addr != end);
563 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
564 struct vm_area_struct *vma)
566 pgd_t *src_pgd, *dst_pgd;
568 unsigned long addr = vma->vm_start;
569 unsigned long end = vma->vm_end;
572 * Don't copy ptes where a page fault will fill them correctly.
573 * Fork becomes much lighter when there are big shared or private
574 * readonly mappings. The tradeoff is that copy_page_range is more
575 * efficient than faulting.
577 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
582 if (is_vm_hugetlb_page(vma))
583 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
585 dst_pgd = pgd_offset(dst_mm, addr);
586 src_pgd = pgd_offset(src_mm, addr);
588 next = pgd_addr_end(addr, end);
589 if (pgd_none_or_clear_bad(src_pgd))
591 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
594 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
598 static unsigned long zap_pte_range(struct mmu_gather *tlb,
599 struct vm_area_struct *vma, pmd_t *pmd,
600 unsigned long addr, unsigned long end,
601 long *zap_work, struct zap_details *details)
603 struct mm_struct *mm = tlb->mm;
609 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
612 if (pte_none(ptent)) {
616 if (pte_present(ptent)) {
619 (*zap_work) -= PAGE_SIZE;
621 page = vm_normal_page(vma, addr, ptent);
622 if (unlikely(details) && page) {
624 * unmap_shared_mapping_pages() wants to
625 * invalidate cache without truncating:
626 * unmap shared but keep private pages.
628 if (details->check_mapping &&
629 details->check_mapping != page->mapping)
632 * Each page->index must be checked when
633 * invalidating or truncating nonlinear.
635 if (details->nonlinear_vma &&
636 (page->index < details->first_index ||
637 page->index > details->last_index))
640 ptent = ptep_get_and_clear_full(mm, addr, pte,
642 tlb_remove_tlb_entry(tlb, pte, addr);
645 if (unlikely(details) && details->nonlinear_vma
646 && linear_page_index(details->nonlinear_vma,
647 addr) != page->index)
648 set_pte_at(mm, addr, pte,
649 pgoff_to_pte(page->index));
653 if (pte_dirty(ptent))
654 set_page_dirty(page);
655 if (pte_young(ptent))
656 mark_page_accessed(page);
659 page_remove_rmap(page);
660 tlb_remove_page(tlb, page);
664 * If details->check_mapping, we leave swap entries;
665 * if details->nonlinear_vma, we leave file entries.
667 if (unlikely(details))
669 if (!pte_file(ptent))
670 free_swap_and_cache(pte_to_swp_entry(ptent));
671 pte_clear_full(mm, addr, pte, tlb->fullmm);
672 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
674 add_mm_rss(mm, file_rss, anon_rss);
675 pte_unmap_unlock(pte - 1, ptl);
680 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
681 struct vm_area_struct *vma, pud_t *pud,
682 unsigned long addr, unsigned long end,
683 long *zap_work, struct zap_details *details)
688 pmd = pmd_offset(pud, addr);
690 next = pmd_addr_end(addr, end);
691 if (pmd_none_or_clear_bad(pmd)) {
695 next = zap_pte_range(tlb, vma, pmd, addr, next,
697 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
702 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
703 struct vm_area_struct *vma, pgd_t *pgd,
704 unsigned long addr, unsigned long end,
705 long *zap_work, struct zap_details *details)
710 pud = pud_offset(pgd, addr);
712 next = pud_addr_end(addr, end);
713 if (pud_none_or_clear_bad(pud)) {
717 next = zap_pmd_range(tlb, vma, pud, addr, next,
719 } while (pud++, addr = next, (addr != end && *zap_work > 0));
724 static unsigned long unmap_page_range(struct mmu_gather *tlb,
725 struct vm_area_struct *vma,
726 unsigned long addr, unsigned long end,
727 long *zap_work, struct zap_details *details)
732 if (details && !details->check_mapping && !details->nonlinear_vma)
736 tlb_start_vma(tlb, vma);
737 pgd = pgd_offset(vma->vm_mm, addr);
739 next = pgd_addr_end(addr, end);
740 if (pgd_none_or_clear_bad(pgd)) {
744 next = zap_pud_range(tlb, vma, pgd, addr, next,
746 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
747 tlb_end_vma(tlb, vma);
752 #ifdef CONFIG_PREEMPT
753 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
755 /* No preempt: go for improved straight-line efficiency */
756 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
760 * unmap_vmas - unmap a range of memory covered by a list of vma's
761 * @tlbp: address of the caller's struct mmu_gather
762 * @vma: the starting vma
763 * @start_addr: virtual address at which to start unmapping
764 * @end_addr: virtual address at which to end unmapping
765 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
766 * @details: details of nonlinear truncation or shared cache invalidation
768 * Returns the end address of the unmapping (restart addr if interrupted).
770 * Unmap all pages in the vma list.
772 * We aim to not hold locks for too long (for scheduling latency reasons).
773 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
774 * return the ending mmu_gather to the caller.
776 * Only addresses between `start' and `end' will be unmapped.
778 * The VMA list must be sorted in ascending virtual address order.
780 * unmap_vmas() assumes that the caller will flush the whole unmapped address
781 * range after unmap_vmas() returns. So the only responsibility here is to
782 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
783 * drops the lock and schedules.
785 unsigned long unmap_vmas(struct mmu_gather **tlbp,
786 struct vm_area_struct *vma, unsigned long start_addr,
787 unsigned long end_addr, unsigned long *nr_accounted,
788 struct zap_details *details)
790 long zap_work = ZAP_BLOCK_SIZE;
791 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
792 int tlb_start_valid = 0;
793 unsigned long start = start_addr;
794 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
795 int fullmm = (*tlbp)->fullmm;
797 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
800 start = max(vma->vm_start, start_addr);
801 if (start >= vma->vm_end)
803 end = min(vma->vm_end, end_addr);
804 if (end <= vma->vm_start)
807 if (vma->vm_flags & VM_ACCOUNT)
808 *nr_accounted += (end - start) >> PAGE_SHIFT;
810 while (start != end) {
811 if (!tlb_start_valid) {
816 if (unlikely(is_vm_hugetlb_page(vma))) {
817 unmap_hugepage_range(vma, start, end);
818 zap_work -= (end - start) /
819 (HPAGE_SIZE / PAGE_SIZE);
822 start = unmap_page_range(*tlbp, vma,
823 start, end, &zap_work, details);
826 BUG_ON(start != end);
830 tlb_finish_mmu(*tlbp, tlb_start, start);
832 if (need_resched() ||
833 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
841 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
843 zap_work = ZAP_BLOCK_SIZE;
847 return start; /* which is now the end (or restart) address */
851 * zap_page_range - remove user pages in a given range
852 * @vma: vm_area_struct holding the applicable pages
853 * @address: starting address of pages to zap
854 * @size: number of bytes to zap
855 * @details: details of nonlinear truncation or shared cache invalidation
857 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
858 unsigned long size, struct zap_details *details)
860 struct mm_struct *mm = vma->vm_mm;
861 struct mmu_gather *tlb;
862 unsigned long end = address + size;
863 unsigned long nr_accounted = 0;
866 tlb = tlb_gather_mmu(mm, 0);
867 update_hiwater_rss(mm);
868 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
870 tlb_finish_mmu(tlb, address, end);
875 * Do a quick page-table lookup for a single page.
877 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
886 struct mm_struct *mm = vma->vm_mm;
888 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
890 BUG_ON(flags & FOLL_GET);
895 pgd = pgd_offset(mm, address);
896 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
899 pud = pud_offset(pgd, address);
900 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
903 pmd = pmd_offset(pud, address);
904 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
907 if (pmd_huge(*pmd)) {
908 BUG_ON(flags & FOLL_GET);
909 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
913 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
918 if (!pte_present(pte))
920 if ((flags & FOLL_WRITE) && !pte_write(pte))
922 page = vm_normal_page(vma, address, pte);
926 if (flags & FOLL_GET)
928 if (flags & FOLL_TOUCH) {
929 if ((flags & FOLL_WRITE) &&
930 !pte_dirty(pte) && !PageDirty(page))
931 set_page_dirty(page);
932 mark_page_accessed(page);
935 pte_unmap_unlock(ptep, ptl);
941 * When core dumping an enormous anonymous area that nobody
942 * has touched so far, we don't want to allocate page tables.
944 if (flags & FOLL_ANON) {
945 page = ZERO_PAGE(address);
946 if (flags & FOLL_GET)
948 BUG_ON(flags & FOLL_WRITE);
953 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
954 unsigned long start, int len, int write, int force,
955 struct page **pages, struct vm_area_struct **vmas)
958 unsigned int vm_flags;
961 * Require read or write permissions.
962 * If 'force' is set, we only require the "MAY" flags.
964 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
965 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
969 struct vm_area_struct *vma;
970 unsigned int foll_flags;
972 vma = find_extend_vma(mm, start);
973 if (!vma && in_gate_area(tsk, start)) {
974 unsigned long pg = start & PAGE_MASK;
975 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
980 if (write) /* user gate pages are read-only */
981 return i ? : -EFAULT;
983 pgd = pgd_offset_k(pg);
985 pgd = pgd_offset_gate(mm, pg);
986 BUG_ON(pgd_none(*pgd));
987 pud = pud_offset(pgd, pg);
988 BUG_ON(pud_none(*pud));
989 pmd = pmd_offset(pud, pg);
991 return i ? : -EFAULT;
992 pte = pte_offset_map(pmd, pg);
993 if (pte_none(*pte)) {
995 return i ? : -EFAULT;
998 struct page *page = vm_normal_page(gate_vma, start, *pte);
1012 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1013 || !(vm_flags & vma->vm_flags))
1014 return i ? : -EFAULT;
1016 if (is_vm_hugetlb_page(vma)) {
1017 i = follow_hugetlb_page(mm, vma, pages, vmas,
1022 foll_flags = FOLL_TOUCH;
1024 foll_flags |= FOLL_GET;
1025 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1026 (!vma->vm_ops || !vma->vm_ops->nopage))
1027 foll_flags |= FOLL_ANON;
1033 foll_flags |= FOLL_WRITE;
1036 while (!(page = follow_page(vma, start, foll_flags))) {
1038 ret = __handle_mm_fault(mm, vma, start,
1039 foll_flags & FOLL_WRITE);
1041 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1042 * broken COW when necessary, even if maybe_mkwrite
1043 * decided not to set pte_write. We can thus safely do
1044 * subsequent page lookups as if they were reads.
1046 if (ret & VM_FAULT_WRITE)
1047 foll_flags &= ~FOLL_WRITE;
1049 switch (ret & ~VM_FAULT_WRITE) {
1050 case VM_FAULT_MINOR:
1053 case VM_FAULT_MAJOR:
1056 case VM_FAULT_SIGBUS:
1057 return i ? i : -EFAULT;
1059 return i ? i : -ENOMEM;
1066 flush_dcache_page(page);
1073 } while (len && start < vma->vm_end);
1077 EXPORT_SYMBOL(get_user_pages);
1079 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1080 unsigned long addr, unsigned long end, pgprot_t prot)
1085 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1089 struct page *page = ZERO_PAGE(addr);
1090 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1091 page_cache_get(page);
1092 page_add_file_rmap(page);
1093 inc_mm_counter(mm, file_rss);
1094 BUG_ON(!pte_none(*pte));
1095 set_pte_at(mm, addr, pte, zero_pte);
1096 } while (pte++, addr += PAGE_SIZE, addr != end);
1097 pte_unmap_unlock(pte - 1, ptl);
1101 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1102 unsigned long addr, unsigned long end, pgprot_t prot)
1107 pmd = pmd_alloc(mm, pud, addr);
1111 next = pmd_addr_end(addr, end);
1112 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1114 } while (pmd++, addr = next, addr != end);
1118 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1119 unsigned long addr, unsigned long end, pgprot_t prot)
1124 pud = pud_alloc(mm, pgd, addr);
1128 next = pud_addr_end(addr, end);
1129 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1131 } while (pud++, addr = next, addr != end);
1135 int zeromap_page_range(struct vm_area_struct *vma,
1136 unsigned long addr, unsigned long size, pgprot_t prot)
1140 unsigned long end = addr + size;
1141 struct mm_struct *mm = vma->vm_mm;
1144 BUG_ON(addr >= end);
1145 pgd = pgd_offset(mm, addr);
1146 flush_cache_range(vma, addr, end);
1148 next = pgd_addr_end(addr, end);
1149 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1152 } while (pgd++, addr = next, addr != end);
1156 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1158 pgd_t * pgd = pgd_offset(mm, addr);
1159 pud_t * pud = pud_alloc(mm, pgd, addr);
1161 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1163 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1169 * This is the old fallback for page remapping.
1171 * For historical reasons, it only allows reserved pages. Only
1172 * old drivers should use this, and they needed to mark their
1173 * pages reserved for the old functions anyway.
1175 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1185 flush_dcache_page(page);
1186 pte = get_locked_pte(mm, addr, &ptl);
1190 if (!pte_none(*pte))
1193 /* Ok, finally just insert the thing.. */
1195 inc_mm_counter(mm, file_rss);
1196 page_add_file_rmap(page);
1197 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1201 pte_unmap_unlock(pte, ptl);
1207 * This allows drivers to insert individual pages they've allocated
1210 * The page has to be a nice clean _individual_ kernel allocation.
1211 * If you allocate a compound page, you need to have marked it as
1212 * such (__GFP_COMP), or manually just split the page up yourself
1213 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1214 * each sub-page, and then freeing them one by one when you free
1215 * them rather than freeing it as a compound page).
1217 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1218 * took an arbitrary page protection parameter. This doesn't allow
1219 * that. Your vma protection will have to be set up correctly, which
1220 * means that if you want a shared writable mapping, you'd better
1221 * ask for a shared writable mapping!
1223 * The page does not need to be reserved.
1225 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1227 if (addr < vma->vm_start || addr >= vma->vm_end)
1229 if (!page_count(page))
1231 vma->vm_flags |= VM_INSERTPAGE;
1232 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1234 EXPORT_SYMBOL(vm_insert_page);
1237 * maps a range of physical memory into the requested pages. the old
1238 * mappings are removed. any references to nonexistent pages results
1239 * in null mappings (currently treated as "copy-on-access")
1241 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1242 unsigned long addr, unsigned long end,
1243 unsigned long pfn, pgprot_t prot)
1248 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1252 BUG_ON(!pte_none(*pte));
1253 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1255 } while (pte++, addr += PAGE_SIZE, addr != end);
1256 pte_unmap_unlock(pte - 1, ptl);
1260 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1261 unsigned long addr, unsigned long end,
1262 unsigned long pfn, pgprot_t prot)
1267 pfn -= addr >> PAGE_SHIFT;
1268 pmd = pmd_alloc(mm, pud, addr);
1272 next = pmd_addr_end(addr, end);
1273 if (remap_pte_range(mm, pmd, addr, next,
1274 pfn + (addr >> PAGE_SHIFT), prot))
1276 } while (pmd++, addr = next, addr != end);
1280 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1281 unsigned long addr, unsigned long end,
1282 unsigned long pfn, pgprot_t prot)
1287 pfn -= addr >> PAGE_SHIFT;
1288 pud = pud_alloc(mm, pgd, addr);
1292 next = pud_addr_end(addr, end);
1293 if (remap_pmd_range(mm, pud, addr, next,
1294 pfn + (addr >> PAGE_SHIFT), prot))
1296 } while (pud++, addr = next, addr != end);
1300 /* Note: this is only safe if the mm semaphore is held when called. */
1301 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1302 unsigned long pfn, unsigned long size, pgprot_t prot)
1306 unsigned long end = addr + PAGE_ALIGN(size);
1307 struct mm_struct *mm = vma->vm_mm;
1311 * Physically remapped pages are special. Tell the
1312 * rest of the world about it:
1313 * VM_IO tells people not to look at these pages
1314 * (accesses can have side effects).
1315 * VM_RESERVED is specified all over the place, because
1316 * in 2.4 it kept swapout's vma scan off this vma; but
1317 * in 2.6 the LRU scan won't even find its pages, so this
1318 * flag means no more than count its pages in reserved_vm,
1319 * and omit it from core dump, even when VM_IO turned off.
1320 * VM_PFNMAP tells the core MM that the base pages are just
1321 * raw PFN mappings, and do not have a "struct page" associated
1324 * There's a horrible special case to handle copy-on-write
1325 * behaviour that some programs depend on. We mark the "original"
1326 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1328 if (is_cow_mapping(vma->vm_flags)) {
1329 if (addr != vma->vm_start || end != vma->vm_end)
1331 vma->vm_pgoff = pfn;
1334 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1336 BUG_ON(addr >= end);
1337 pfn -= addr >> PAGE_SHIFT;
1338 pgd = pgd_offset(mm, addr);
1339 flush_cache_range(vma, addr, end);
1341 next = pgd_addr_end(addr, end);
1342 err = remap_pud_range(mm, pgd, addr, next,
1343 pfn + (addr >> PAGE_SHIFT), prot);
1346 } while (pgd++, addr = next, addr != end);
1349 EXPORT_SYMBOL(remap_pfn_range);
1352 * handle_pte_fault chooses page fault handler according to an entry
1353 * which was read non-atomically. Before making any commitment, on
1354 * those architectures or configurations (e.g. i386 with PAE) which
1355 * might give a mix of unmatched parts, do_swap_page and do_file_page
1356 * must check under lock before unmapping the pte and proceeding
1357 * (but do_wp_page is only called after already making such a check;
1358 * and do_anonymous_page and do_no_page can safely check later on).
1360 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1361 pte_t *page_table, pte_t orig_pte)
1364 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1365 if (sizeof(pte_t) > sizeof(unsigned long)) {
1366 spinlock_t *ptl = pte_lockptr(mm, pmd);
1368 same = pte_same(*page_table, orig_pte);
1372 pte_unmap(page_table);
1377 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1378 * servicing faults for write access. In the normal case, do always want
1379 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1380 * that do not have writing enabled, when used by access_process_vm.
1382 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1384 if (likely(vma->vm_flags & VM_WRITE))
1385 pte = pte_mkwrite(pte);
1389 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1392 * If the source page was a PFN mapping, we don't have
1393 * a "struct page" for it. We do a best-effort copy by
1394 * just copying from the original user address. If that
1395 * fails, we just zero-fill it. Live with it.
1397 if (unlikely(!src)) {
1398 void *kaddr = kmap_atomic(dst, KM_USER0);
1399 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1402 * This really shouldn't fail, because the page is there
1403 * in the page tables. But it might just be unreadable,
1404 * in which case we just give up and fill the result with
1407 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1408 memset(kaddr, 0, PAGE_SIZE);
1409 kunmap_atomic(kaddr, KM_USER0);
1413 copy_user_highpage(dst, src, va);
1417 * This routine handles present pages, when users try to write
1418 * to a shared page. It is done by copying the page to a new address
1419 * and decrementing the shared-page counter for the old page.
1421 * Note that this routine assumes that the protection checks have been
1422 * done by the caller (the low-level page fault routine in most cases).
1423 * Thus we can safely just mark it writable once we've done any necessary
1426 * We also mark the page dirty at this point even though the page will
1427 * change only once the write actually happens. This avoids a few races,
1428 * and potentially makes it more efficient.
1430 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1431 * but allow concurrent faults), with pte both mapped and locked.
1432 * We return with mmap_sem still held, but pte unmapped and unlocked.
1434 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1435 unsigned long address, pte_t *page_table, pmd_t *pmd,
1436 spinlock_t *ptl, pte_t orig_pte)
1438 struct page *old_page, *new_page;
1440 int ret = VM_FAULT_MINOR;
1442 old_page = vm_normal_page(vma, address, orig_pte);
1446 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1447 int reuse = can_share_swap_page(old_page);
1448 unlock_page(old_page);
1450 flush_cache_page(vma, address, pte_pfn(orig_pte));
1451 entry = pte_mkyoung(orig_pte);
1452 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1453 ptep_set_access_flags(vma, address, page_table, entry, 1);
1454 update_mmu_cache(vma, address, entry);
1455 lazy_mmu_prot_update(entry);
1456 ret |= VM_FAULT_WRITE;
1462 * Ok, we need to copy. Oh, well..
1464 page_cache_get(old_page);
1466 pte_unmap_unlock(page_table, ptl);
1468 if (unlikely(anon_vma_prepare(vma)))
1470 if (old_page == ZERO_PAGE(address)) {
1471 new_page = alloc_zeroed_user_highpage(vma, address);
1475 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1478 cow_user_page(new_page, old_page, address);
1482 * Re-check the pte - we dropped the lock
1484 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1485 if (likely(pte_same(*page_table, orig_pte))) {
1487 page_remove_rmap(old_page);
1488 if (!PageAnon(old_page)) {
1489 dec_mm_counter(mm, file_rss);
1490 inc_mm_counter(mm, anon_rss);
1493 inc_mm_counter(mm, anon_rss);
1494 flush_cache_page(vma, address, pte_pfn(orig_pte));
1495 entry = mk_pte(new_page, vma->vm_page_prot);
1496 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1497 ptep_establish(vma, address, page_table, entry);
1498 update_mmu_cache(vma, address, entry);
1499 lazy_mmu_prot_update(entry);
1500 lru_cache_add_active(new_page);
1501 page_add_anon_rmap(new_page, vma, address);
1503 /* Free the old page.. */
1504 new_page = old_page;
1505 ret |= VM_FAULT_WRITE;
1508 page_cache_release(new_page);
1510 page_cache_release(old_page);
1512 pte_unmap_unlock(page_table, ptl);
1516 page_cache_release(old_page);
1517 return VM_FAULT_OOM;
1521 * Helper functions for unmap_mapping_range().
1523 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1525 * We have to restart searching the prio_tree whenever we drop the lock,
1526 * since the iterator is only valid while the lock is held, and anyway
1527 * a later vma might be split and reinserted earlier while lock dropped.
1529 * The list of nonlinear vmas could be handled more efficiently, using
1530 * a placeholder, but handle it in the same way until a need is shown.
1531 * It is important to search the prio_tree before nonlinear list: a vma
1532 * may become nonlinear and be shifted from prio_tree to nonlinear list
1533 * while the lock is dropped; but never shifted from list to prio_tree.
1535 * In order to make forward progress despite restarting the search,
1536 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1537 * quickly skip it next time around. Since the prio_tree search only
1538 * shows us those vmas affected by unmapping the range in question, we
1539 * can't efficiently keep all vmas in step with mapping->truncate_count:
1540 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1541 * mapping->truncate_count and vma->vm_truncate_count are protected by
1544 * In order to make forward progress despite repeatedly restarting some
1545 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1546 * and restart from that address when we reach that vma again. It might
1547 * have been split or merged, shrunk or extended, but never shifted: so
1548 * restart_addr remains valid so long as it remains in the vma's range.
1549 * unmap_mapping_range forces truncate_count to leap over page-aligned
1550 * values so we can save vma's restart_addr in its truncate_count field.
1552 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1554 static void reset_vma_truncate_counts(struct address_space *mapping)
1556 struct vm_area_struct *vma;
1557 struct prio_tree_iter iter;
1559 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1560 vma->vm_truncate_count = 0;
1561 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1562 vma->vm_truncate_count = 0;
1565 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1566 unsigned long start_addr, unsigned long end_addr,
1567 struct zap_details *details)
1569 unsigned long restart_addr;
1573 restart_addr = vma->vm_truncate_count;
1574 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1575 start_addr = restart_addr;
1576 if (start_addr >= end_addr) {
1577 /* Top of vma has been split off since last time */
1578 vma->vm_truncate_count = details->truncate_count;
1583 restart_addr = zap_page_range(vma, start_addr,
1584 end_addr - start_addr, details);
1585 need_break = need_resched() ||
1586 need_lockbreak(details->i_mmap_lock);
1588 if (restart_addr >= end_addr) {
1589 /* We have now completed this vma: mark it so */
1590 vma->vm_truncate_count = details->truncate_count;
1594 /* Note restart_addr in vma's truncate_count field */
1595 vma->vm_truncate_count = restart_addr;
1600 spin_unlock(details->i_mmap_lock);
1602 spin_lock(details->i_mmap_lock);
1606 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1607 struct zap_details *details)
1609 struct vm_area_struct *vma;
1610 struct prio_tree_iter iter;
1611 pgoff_t vba, vea, zba, zea;
1614 vma_prio_tree_foreach(vma, &iter, root,
1615 details->first_index, details->last_index) {
1616 /* Skip quickly over those we have already dealt with */
1617 if (vma->vm_truncate_count == details->truncate_count)
1620 vba = vma->vm_pgoff;
1621 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1622 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1623 zba = details->first_index;
1626 zea = details->last_index;
1630 if (unmap_mapping_range_vma(vma,
1631 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1632 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1638 static inline void unmap_mapping_range_list(struct list_head *head,
1639 struct zap_details *details)
1641 struct vm_area_struct *vma;
1644 * In nonlinear VMAs there is no correspondence between virtual address
1645 * offset and file offset. So we must perform an exhaustive search
1646 * across *all* the pages in each nonlinear VMA, not just the pages
1647 * whose virtual address lies outside the file truncation point.
1650 list_for_each_entry(vma, head, shared.vm_set.list) {
1651 /* Skip quickly over those we have already dealt with */
1652 if (vma->vm_truncate_count == details->truncate_count)
1654 details->nonlinear_vma = vma;
1655 if (unmap_mapping_range_vma(vma, vma->vm_start,
1656 vma->vm_end, details) < 0)
1662 * unmap_mapping_range - unmap the portion of all mmaps
1663 * in the specified address_space corresponding to the specified
1664 * page range in the underlying file.
1665 * @mapping: the address space containing mmaps to be unmapped.
1666 * @holebegin: byte in first page to unmap, relative to the start of
1667 * the underlying file. This will be rounded down to a PAGE_SIZE
1668 * boundary. Note that this is different from vmtruncate(), which
1669 * must keep the partial page. In contrast, we must get rid of
1671 * @holelen: size of prospective hole in bytes. This will be rounded
1672 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1674 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1675 * but 0 when invalidating pagecache, don't throw away private data.
1677 void unmap_mapping_range(struct address_space *mapping,
1678 loff_t const holebegin, loff_t const holelen, int even_cows)
1680 struct zap_details details;
1681 pgoff_t hba = holebegin >> PAGE_SHIFT;
1682 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1684 /* Check for overflow. */
1685 if (sizeof(holelen) > sizeof(hlen)) {
1687 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1688 if (holeend & ~(long long)ULONG_MAX)
1689 hlen = ULONG_MAX - hba + 1;
1692 details.check_mapping = even_cows? NULL: mapping;
1693 details.nonlinear_vma = NULL;
1694 details.first_index = hba;
1695 details.last_index = hba + hlen - 1;
1696 if (details.last_index < details.first_index)
1697 details.last_index = ULONG_MAX;
1698 details.i_mmap_lock = &mapping->i_mmap_lock;
1700 spin_lock(&mapping->i_mmap_lock);
1702 /* serialize i_size write against truncate_count write */
1704 /* Protect against page faults, and endless unmapping loops */
1705 mapping->truncate_count++;
1707 * For archs where spin_lock has inclusive semantics like ia64
1708 * this smp_mb() will prevent to read pagetable contents
1709 * before the truncate_count increment is visible to
1713 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1714 if (mapping->truncate_count == 0)
1715 reset_vma_truncate_counts(mapping);
1716 mapping->truncate_count++;
1718 details.truncate_count = mapping->truncate_count;
1720 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1721 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1722 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1723 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1724 spin_unlock(&mapping->i_mmap_lock);
1726 EXPORT_SYMBOL(unmap_mapping_range);
1729 * Handle all mappings that got truncated by a "truncate()"
1732 * NOTE! We have to be ready to update the memory sharing
1733 * between the file and the memory map for a potential last
1734 * incomplete page. Ugly, but necessary.
1736 int vmtruncate(struct inode * inode, loff_t offset)
1738 struct address_space *mapping = inode->i_mapping;
1739 unsigned long limit;
1741 if (inode->i_size < offset)
1744 * truncation of in-use swapfiles is disallowed - it would cause
1745 * subsequent swapout to scribble on the now-freed blocks.
1747 if (IS_SWAPFILE(inode))
1749 i_size_write(inode, offset);
1750 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1751 truncate_inode_pages(mapping, offset);
1755 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1756 if (limit != RLIM_INFINITY && offset > limit)
1758 if (offset > inode->i_sb->s_maxbytes)
1760 i_size_write(inode, offset);
1763 if (inode->i_op && inode->i_op->truncate)
1764 inode->i_op->truncate(inode);
1767 send_sig(SIGXFSZ, current, 0);
1774 EXPORT_SYMBOL(vmtruncate);
1777 * Primitive swap readahead code. We simply read an aligned block of
1778 * (1 << page_cluster) entries in the swap area. This method is chosen
1779 * because it doesn't cost us any seek time. We also make sure to queue
1780 * the 'original' request together with the readahead ones...
1782 * This has been extended to use the NUMA policies from the mm triggering
1785 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1787 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1790 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1793 struct page *new_page;
1794 unsigned long offset;
1797 * Get the number of handles we should do readahead io to.
1799 num = valid_swaphandles(entry, &offset);
1800 for (i = 0; i < num; offset++, i++) {
1801 /* Ok, do the async read-ahead now */
1802 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1803 offset), vma, addr);
1806 page_cache_release(new_page);
1809 * Find the next applicable VMA for the NUMA policy.
1815 if (addr >= vma->vm_end) {
1817 next_vma = vma ? vma->vm_next : NULL;
1819 if (vma && addr < vma->vm_start)
1822 if (next_vma && addr >= next_vma->vm_start) {
1824 next_vma = vma->vm_next;
1829 lru_add_drain(); /* Push any new pages onto the LRU now */
1833 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1834 * but allow concurrent faults), and pte mapped but not yet locked.
1835 * We return with mmap_sem still held, but pte unmapped and unlocked.
1837 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1838 unsigned long address, pte_t *page_table, pmd_t *pmd,
1839 int write_access, pte_t orig_pte)
1845 int ret = VM_FAULT_MINOR;
1847 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1850 entry = pte_to_swp_entry(orig_pte);
1851 page = lookup_swap_cache(entry);
1853 swapin_readahead(entry, address, vma);
1854 page = read_swap_cache_async(entry, vma, address);
1857 * Back out if somebody else faulted in this pte
1858 * while we released the pte lock.
1860 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1861 if (likely(pte_same(*page_table, orig_pte)))
1866 /* Had to read the page from swap area: Major fault */
1867 ret = VM_FAULT_MAJOR;
1868 inc_page_state(pgmajfault);
1872 mark_page_accessed(page);
1876 * Back out if somebody else already faulted in this pte.
1878 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1879 if (unlikely(!pte_same(*page_table, orig_pte)))
1882 if (unlikely(!PageUptodate(page))) {
1883 ret = VM_FAULT_SIGBUS;
1887 /* The page isn't present yet, go ahead with the fault. */
1889 inc_mm_counter(mm, anon_rss);
1890 pte = mk_pte(page, vma->vm_page_prot);
1891 if (write_access && can_share_swap_page(page)) {
1892 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1896 flush_icache_page(vma, page);
1897 set_pte_at(mm, address, page_table, pte);
1898 page_add_anon_rmap(page, vma, address);
1902 remove_exclusive_swap_page(page);
1906 if (do_wp_page(mm, vma, address,
1907 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1912 /* No need to invalidate - it was non-present before */
1913 update_mmu_cache(vma, address, pte);
1914 lazy_mmu_prot_update(pte);
1916 pte_unmap_unlock(page_table, ptl);
1920 pte_unmap_unlock(page_table, ptl);
1922 page_cache_release(page);
1927 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1928 * but allow concurrent faults), and pte mapped but not yet locked.
1929 * We return with mmap_sem still held, but pte unmapped and unlocked.
1931 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1932 unsigned long address, pte_t *page_table, pmd_t *pmd,
1940 /* Allocate our own private page. */
1941 pte_unmap(page_table);
1943 if (unlikely(anon_vma_prepare(vma)))
1945 page = alloc_zeroed_user_highpage(vma, address);
1949 entry = mk_pte(page, vma->vm_page_prot);
1950 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1953 if (!pte_none(*page_table))
1955 inc_mm_counter(mm, anon_rss);
1956 lru_cache_add_active(page);
1957 SetPageReferenced(page);
1958 page_add_anon_rmap(page, vma, address);
1960 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1961 page = ZERO_PAGE(address);
1962 page_cache_get(page);
1963 entry = mk_pte(page, vma->vm_page_prot);
1965 ptl = pte_lockptr(mm, pmd);
1967 if (!pte_none(*page_table))
1969 inc_mm_counter(mm, file_rss);
1970 page_add_file_rmap(page);
1973 set_pte_at(mm, address, page_table, entry);
1975 /* No need to invalidate - it was non-present before */
1976 update_mmu_cache(vma, address, entry);
1977 lazy_mmu_prot_update(entry);
1979 pte_unmap_unlock(page_table, ptl);
1980 return VM_FAULT_MINOR;
1982 page_cache_release(page);
1985 return VM_FAULT_OOM;
1989 * do_no_page() tries to create a new page mapping. It aggressively
1990 * tries to share with existing pages, but makes a separate copy if
1991 * the "write_access" parameter is true in order to avoid the next
1994 * As this is called only for pages that do not currently exist, we
1995 * do not need to flush old virtual caches or the TLB.
1997 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1998 * but allow concurrent faults), and pte mapped but not yet locked.
1999 * We return with mmap_sem still held, but pte unmapped and unlocked.
2001 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2002 unsigned long address, pte_t *page_table, pmd_t *pmd,
2006 struct page *new_page;
2007 struct address_space *mapping = NULL;
2009 unsigned int sequence = 0;
2010 int ret = VM_FAULT_MINOR;
2013 pte_unmap(page_table);
2014 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017 mapping = vma->vm_file->f_mapping;
2018 sequence = mapping->truncate_count;
2019 smp_rmb(); /* serializes i_size against truncate_count */
2022 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2024 * No smp_rmb is needed here as long as there's a full
2025 * spin_lock/unlock sequence inside the ->nopage callback
2026 * (for the pagecache lookup) that acts as an implicit
2027 * smp_mb() and prevents the i_size read to happen
2028 * after the next truncate_count read.
2031 /* no page was available -- either SIGBUS or OOM */
2032 if (new_page == NOPAGE_SIGBUS)
2033 return VM_FAULT_SIGBUS;
2034 if (new_page == NOPAGE_OOM)
2035 return VM_FAULT_OOM;
2038 * Should we do an early C-O-W break?
2040 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2043 if (unlikely(anon_vma_prepare(vma)))
2045 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2048 copy_user_highpage(page, new_page, address);
2049 page_cache_release(new_page);
2054 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2056 * For a file-backed vma, someone could have truncated or otherwise
2057 * invalidated this page. If unmap_mapping_range got called,
2058 * retry getting the page.
2060 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2061 pte_unmap_unlock(page_table, ptl);
2062 page_cache_release(new_page);
2064 sequence = mapping->truncate_count;
2070 * This silly early PAGE_DIRTY setting removes a race
2071 * due to the bad i386 page protection. But it's valid
2072 * for other architectures too.
2074 * Note that if write_access is true, we either now have
2075 * an exclusive copy of the page, or this is a shared mapping,
2076 * so we can make it writable and dirty to avoid having to
2077 * handle that later.
2079 /* Only go through if we didn't race with anybody else... */
2080 if (pte_none(*page_table)) {
2081 flush_icache_page(vma, new_page);
2082 entry = mk_pte(new_page, vma->vm_page_prot);
2084 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2085 set_pte_at(mm, address, page_table, entry);
2087 inc_mm_counter(mm, anon_rss);
2088 lru_cache_add_active(new_page);
2089 page_add_anon_rmap(new_page, vma, address);
2091 inc_mm_counter(mm, file_rss);
2092 page_add_file_rmap(new_page);
2095 /* One of our sibling threads was faster, back out. */
2096 page_cache_release(new_page);
2100 /* no need to invalidate: a not-present page shouldn't be cached */
2101 update_mmu_cache(vma, address, entry);
2102 lazy_mmu_prot_update(entry);
2104 pte_unmap_unlock(page_table, ptl);
2107 page_cache_release(new_page);
2108 return VM_FAULT_OOM;
2112 * Fault of a previously existing named mapping. Repopulate the pte
2113 * from the encoded file_pte if possible. This enables swappable
2116 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2117 * but allow concurrent faults), and pte mapped but not yet locked.
2118 * We return with mmap_sem still held, but pte unmapped and unlocked.
2120 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2121 unsigned long address, pte_t *page_table, pmd_t *pmd,
2122 int write_access, pte_t orig_pte)
2127 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2128 return VM_FAULT_MINOR;
2130 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2132 * Page table corrupted: show pte and kill process.
2134 print_bad_pte(vma, orig_pte, address);
2135 return VM_FAULT_OOM;
2137 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2139 pgoff = pte_to_pgoff(orig_pte);
2140 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2141 vma->vm_page_prot, pgoff, 0);
2143 return VM_FAULT_OOM;
2145 return VM_FAULT_SIGBUS;
2146 return VM_FAULT_MAJOR;
2150 * These routines also need to handle stuff like marking pages dirty
2151 * and/or accessed for architectures that don't do it in hardware (most
2152 * RISC architectures). The early dirtying is also good on the i386.
2154 * There is also a hook called "update_mmu_cache()" that architectures
2155 * with external mmu caches can use to update those (ie the Sparc or
2156 * PowerPC hashed page tables that act as extended TLBs).
2158 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2159 * but allow concurrent faults), and pte mapped but not yet locked.
2160 * We return with mmap_sem still held, but pte unmapped and unlocked.
2162 static inline int handle_pte_fault(struct mm_struct *mm,
2163 struct vm_area_struct *vma, unsigned long address,
2164 pte_t *pte, pmd_t *pmd, int write_access)
2170 old_entry = entry = *pte;
2171 if (!pte_present(entry)) {
2172 if (pte_none(entry)) {
2173 if (!vma->vm_ops || !vma->vm_ops->nopage)
2174 return do_anonymous_page(mm, vma, address,
2175 pte, pmd, write_access);
2176 return do_no_page(mm, vma, address,
2177 pte, pmd, write_access);
2179 if (pte_file(entry))
2180 return do_file_page(mm, vma, address,
2181 pte, pmd, write_access, entry);
2182 return do_swap_page(mm, vma, address,
2183 pte, pmd, write_access, entry);
2186 ptl = pte_lockptr(mm, pmd);
2188 if (unlikely(!pte_same(*pte, entry)))
2191 if (!pte_write(entry))
2192 return do_wp_page(mm, vma, address,
2193 pte, pmd, ptl, entry);
2194 entry = pte_mkdirty(entry);
2196 entry = pte_mkyoung(entry);
2197 if (!pte_same(old_entry, entry)) {
2198 ptep_set_access_flags(vma, address, pte, entry, write_access);
2199 update_mmu_cache(vma, address, entry);
2200 lazy_mmu_prot_update(entry);
2203 * This is needed only for protection faults but the arch code
2204 * is not yet telling us if this is a protection fault or not.
2205 * This still avoids useless tlb flushes for .text page faults
2209 flush_tlb_page(vma, address);
2212 pte_unmap_unlock(pte, ptl);
2213 return VM_FAULT_MINOR;
2217 * By the time we get here, we already hold the mm semaphore
2219 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2220 unsigned long address, int write_access)
2227 __set_current_state(TASK_RUNNING);
2229 inc_page_state(pgfault);
2231 if (unlikely(is_vm_hugetlb_page(vma)))
2232 return hugetlb_fault(mm, vma, address, write_access);
2234 pgd = pgd_offset(mm, address);
2235 pud = pud_alloc(mm, pgd, address);
2237 return VM_FAULT_OOM;
2238 pmd = pmd_alloc(mm, pud, address);
2240 return VM_FAULT_OOM;
2241 pte = pte_alloc_map(mm, pmd, address);
2243 return VM_FAULT_OOM;
2245 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2248 #ifndef __PAGETABLE_PUD_FOLDED
2250 * Allocate page upper directory.
2251 * We've already handled the fast-path in-line.
2253 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2255 pud_t *new = pud_alloc_one(mm, address);
2259 spin_lock(&mm->page_table_lock);
2260 if (pgd_present(*pgd)) /* Another has populated it */
2263 pgd_populate(mm, pgd, new);
2264 spin_unlock(&mm->page_table_lock);
2268 /* Workaround for gcc 2.96 */
2269 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2273 #endif /* __PAGETABLE_PUD_FOLDED */
2275 #ifndef __PAGETABLE_PMD_FOLDED
2277 * Allocate page middle directory.
2278 * We've already handled the fast-path in-line.
2280 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2282 pmd_t *new = pmd_alloc_one(mm, address);
2286 spin_lock(&mm->page_table_lock);
2287 #ifndef __ARCH_HAS_4LEVEL_HACK
2288 if (pud_present(*pud)) /* Another has populated it */
2291 pud_populate(mm, pud, new);
2293 if (pgd_present(*pud)) /* Another has populated it */
2296 pgd_populate(mm, pud, new);
2297 #endif /* __ARCH_HAS_4LEVEL_HACK */
2298 spin_unlock(&mm->page_table_lock);
2302 /* Workaround for gcc 2.96 */
2303 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2307 #endif /* __PAGETABLE_PMD_FOLDED */
2309 int make_pages_present(unsigned long addr, unsigned long end)
2311 int ret, len, write;
2312 struct vm_area_struct * vma;
2314 vma = find_vma(current->mm, addr);
2317 write = (vma->vm_flags & VM_WRITE) != 0;
2320 if (end > vma->vm_end)
2322 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2323 ret = get_user_pages(current, current->mm, addr,
2324 len, write, 0, NULL, NULL);
2327 return ret == len ? 0 : -1;
2331 * Map a vmalloc()-space virtual address to the physical page.
2333 struct page * vmalloc_to_page(void * vmalloc_addr)
2335 unsigned long addr = (unsigned long) vmalloc_addr;
2336 struct page *page = NULL;
2337 pgd_t *pgd = pgd_offset_k(addr);
2342 if (!pgd_none(*pgd)) {
2343 pud = pud_offset(pgd, addr);
2344 if (!pud_none(*pud)) {
2345 pmd = pmd_offset(pud, addr);
2346 if (!pmd_none(*pmd)) {
2347 ptep = pte_offset_map(pmd, addr);
2349 if (pte_present(pte))
2350 page = pte_page(pte);
2358 EXPORT_SYMBOL(vmalloc_to_page);
2361 * Map a vmalloc()-space virtual address to the physical page frame number.
2363 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2365 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2368 EXPORT_SYMBOL(vmalloc_to_pfn);
2370 #if !defined(__HAVE_ARCH_GATE_AREA)
2372 #if defined(AT_SYSINFO_EHDR)
2373 static struct vm_area_struct gate_vma;
2375 static int __init gate_vma_init(void)
2377 gate_vma.vm_mm = NULL;
2378 gate_vma.vm_start = FIXADDR_USER_START;
2379 gate_vma.vm_end = FIXADDR_USER_END;
2380 gate_vma.vm_page_prot = PAGE_READONLY;
2381 gate_vma.vm_flags = 0;
2384 __initcall(gate_vma_init);
2387 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2389 #ifdef AT_SYSINFO_EHDR
2396 int in_gate_area_no_task(unsigned long addr)
2398 #ifdef AT_SYSINFO_EHDR
2399 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2405 #endif /* __HAVE_ARCH_GATE_AREA */