Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/major.h>
27 #include <linux/root_dev.h>
28 #include <linux/kernel.h>
29 #include <linux/hrtimer.h>
30 #include <linux/tick.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/abs_addr.h>
47 #include <asm/iseries/hv_lp_config.h>
48 #include <asm/iseries/hv_call_event.h>
49 #include <asm/iseries/hv_call_xm.h>
50 #include <asm/iseries/it_lp_queue.h>
51 #include <asm/iseries/mf.h>
52 #include <asm/iseries/hv_lp_event.h>
53 #include <asm/iseries/lpar_map.h>
54 #include <asm/udbg.h>
55 #include <asm/irq.h>
56
57 #include "naca.h"
58 #include "setup.h"
59 #include "irq.h"
60 #include "vpd_areas.h"
61 #include "processor_vpd.h"
62 #include "it_lp_naca.h"
63 #include "main_store.h"
64 #include "call_sm.h"
65 #include "call_hpt.h"
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
82
83
84 struct MemoryBlock {
85         unsigned long absStart;
86         unsigned long absEnd;
87         unsigned long logicalStart;
88         unsigned long logicalEnd;
89 };
90
91 /*
92  * Process the main store vpd to determine where the holes in memory are
93  * and return the number of physical blocks and fill in the array of
94  * block data.
95  */
96 static unsigned long iSeries_process_Condor_mainstore_vpd(
97                 struct MemoryBlock *mb_array, unsigned long max_entries)
98 {
99         unsigned long holeFirstChunk, holeSizeChunks;
100         unsigned long numMemoryBlocks = 1;
101         struct IoHriMainStoreSegment4 *msVpd =
102                 (struct IoHriMainStoreSegment4 *)xMsVpd;
103         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
104         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
105         unsigned long holeSize = holeEnd - holeStart;
106
107         printk("Mainstore_VPD: Condor\n");
108         /*
109          * Determine if absolute memory has any
110          * holes so that we can interpret the
111          * access map we get back from the hypervisor
112          * correctly.
113          */
114         mb_array[0].logicalStart = 0;
115         mb_array[0].logicalEnd = 0x100000000;
116         mb_array[0].absStart = 0;
117         mb_array[0].absEnd = 0x100000000;
118
119         if (holeSize) {
120                 numMemoryBlocks = 2;
121                 holeStart = holeStart & 0x000fffffffffffff;
122                 holeStart = addr_to_chunk(holeStart);
123                 holeFirstChunk = holeStart;
124                 holeSize = addr_to_chunk(holeSize);
125                 holeSizeChunks = holeSize;
126                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
127                                 holeFirstChunk, holeSizeChunks );
128                 mb_array[0].logicalEnd = holeFirstChunk;
129                 mb_array[0].absEnd = holeFirstChunk;
130                 mb_array[1].logicalStart = holeFirstChunk;
131                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
132                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
133                 mb_array[1].absEnd = 0x100000000;
134         }
135         return numMemoryBlocks;
136 }
137
138 #define MaxSegmentAreas                 32
139 #define MaxSegmentAdrRangeBlocks        128
140 #define MaxAreaRangeBlocks              4
141
142 static unsigned long iSeries_process_Regatta_mainstore_vpd(
143                 struct MemoryBlock *mb_array, unsigned long max_entries)
144 {
145         struct IoHriMainStoreSegment5 *msVpdP =
146                 (struct IoHriMainStoreSegment5 *)xMsVpd;
147         unsigned long numSegmentBlocks = 0;
148         u32 existsBits = msVpdP->msAreaExists;
149         unsigned long area_num;
150
151         printk("Mainstore_VPD: Regatta\n");
152
153         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
154                 unsigned long numAreaBlocks;
155                 struct IoHriMainStoreArea4 *currentArea;
156
157                 if (existsBits & 0x80000000) {
158                         unsigned long block_num;
159
160                         currentArea = &msVpdP->msAreaArray[area_num];
161                         numAreaBlocks = currentArea->numAdrRangeBlocks;
162                         printk("ms_vpd: processing area %2ld  blocks=%ld",
163                                         area_num, numAreaBlocks);
164                         for (block_num = 0; block_num < numAreaBlocks;
165                                         ++block_num ) {
166                                 /* Process an address range block */
167                                 struct MemoryBlock tempBlock;
168                                 unsigned long i;
169
170                                 tempBlock.absStart =
171                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
172                                 tempBlock.absEnd =
173                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
174                                 tempBlock.logicalStart = 0;
175                                 tempBlock.logicalEnd   = 0;
176                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
177                                                 block_num, tempBlock.absStart,
178                                                 tempBlock.absEnd);
179
180                                 for (i = 0; i < numSegmentBlocks; ++i) {
181                                         if (mb_array[i].absStart ==
182                                                         tempBlock.absStart)
183                                                 break;
184                                 }
185                                 if (i == numSegmentBlocks) {
186                                         if (numSegmentBlocks == max_entries)
187                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
188                                         mb_array[numSegmentBlocks] = tempBlock;
189                                         ++numSegmentBlocks;
190                                 } else
191                                         printk(" (duplicate)");
192                         }
193                         printk("\n");
194                 }
195                 existsBits <<= 1;
196         }
197         /* Now sort the blocks found into ascending sequence */
198         if (numSegmentBlocks > 1) {
199                 unsigned long m, n;
200
201                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
202                         for (n = numSegmentBlocks - 1; m < n; --n) {
203                                 if (mb_array[n].absStart <
204                                                 mb_array[n-1].absStart) {
205                                         struct MemoryBlock tempBlock;
206
207                                         tempBlock = mb_array[n];
208                                         mb_array[n] = mb_array[n-1];
209                                         mb_array[n-1] = tempBlock;
210                                 }
211                         }
212                 }
213         }
214         /*
215          * Assign "logical" addresses to each block.  These
216          * addresses correspond to the hypervisor "bitmap" space.
217          * Convert all addresses into units of 256K chunks.
218          */
219         {
220         unsigned long i, nextBitmapAddress;
221
222         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
223         nextBitmapAddress = 0;
224         for (i = 0; i < numSegmentBlocks; ++i) {
225                 unsigned long length = mb_array[i].absEnd -
226                         mb_array[i].absStart;
227
228                 mb_array[i].logicalStart = nextBitmapAddress;
229                 mb_array[i].logicalEnd = nextBitmapAddress + length;
230                 nextBitmapAddress += length;
231                 printk("          Bitmap range: %016lx - %016lx\n"
232                                 "        Absolute range: %016lx - %016lx\n",
233                                 mb_array[i].logicalStart,
234                                 mb_array[i].logicalEnd,
235                                 mb_array[i].absStart, mb_array[i].absEnd);
236                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
237                                 0x000fffffffffffff);
238                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
239                                 0x000fffffffffffff);
240                 mb_array[i].logicalStart =
241                         addr_to_chunk(mb_array[i].logicalStart);
242                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
243         }
244         }
245
246         return numSegmentBlocks;
247 }
248
249 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
250                 unsigned long max_entries)
251 {
252         unsigned long i;
253         unsigned long mem_blocks = 0;
254
255         if (cpu_has_feature(CPU_FTR_SLB))
256                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
257                                 max_entries);
258         else
259                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
260                                 max_entries);
261
262         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
263         for (i = 0; i < mem_blocks; ++i) {
264                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
265                        "                             abs chunks %016lx - %016lx\n",
266                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
267                         mb_array[i].absStart, mb_array[i].absEnd);
268         }
269         return mem_blocks;
270 }
271
272 static void __init iSeries_get_cmdline(void)
273 {
274         char *p, *q;
275
276         /* copy the command line parameter from the primary VSP  */
277         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
278                         HvLpDma_Direction_RemoteToLocal);
279
280         p = cmd_line;
281         q = cmd_line + 255;
282         while(p < q) {
283                 if (!*p || *p == '\n')
284                         break;
285                 ++p;
286         }
287         *p = 0;
288 }
289
290 static void __init iSeries_init_early(void)
291 {
292         DBG(" -> iSeries_init_early()\n");
293
294         /* Snapshot the timebase, for use in later recalibration */
295         iSeries_time_init_early();
296
297         /*
298          * Initialize the DMA/TCE management
299          */
300         iommu_init_early_iSeries();
301
302         /* Initialize machine-dependency vectors */
303 #ifdef CONFIG_SMP
304         smp_init_iSeries();
305 #endif
306
307         /* Associate Lp Event Queue 0 with processor 0 */
308         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
309
310         mf_init();
311
312         DBG(" <- iSeries_init_early()\n");
313 }
314
315 struct mschunks_map mschunks_map = {
316         /* XXX We don't use these, but Piranha might need them. */
317         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
318         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
319         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
320 };
321 EXPORT_SYMBOL(mschunks_map);
322
323 void mschunks_alloc(unsigned long num_chunks)
324 {
325         klimit = _ALIGN(klimit, sizeof(u32));
326         mschunks_map.mapping = (u32 *)klimit;
327         klimit += num_chunks * sizeof(u32);
328         mschunks_map.num_chunks = num_chunks;
329 }
330
331 /*
332  * The iSeries may have very large memories ( > 128 GB ) and a partition
333  * may get memory in "chunks" that may be anywhere in the 2**52 real
334  * address space.  The chunks are 256K in size.  To map this to the
335  * memory model Linux expects, the AS/400 specific code builds a
336  * translation table to translate what Linux thinks are "physical"
337  * addresses to the actual real addresses.  This allows us to make
338  * it appear to Linux that we have contiguous memory starting at
339  * physical address zero while in fact this could be far from the truth.
340  * To avoid confusion, I'll let the words physical and/or real address
341  * apply to the Linux addresses while I'll use "absolute address" to
342  * refer to the actual hardware real address.
343  *
344  * build_iSeries_Memory_Map gets information from the Hypervisor and
345  * looks at the Main Store VPD to determine the absolute addresses
346  * of the memory that has been assigned to our partition and builds
347  * a table used to translate Linux's physical addresses to these
348  * absolute addresses.  Absolute addresses are needed when
349  * communicating with the hypervisor (e.g. to build HPT entries)
350  *
351  * Returns the physical memory size
352  */
353
354 static unsigned long __init build_iSeries_Memory_Map(void)
355 {
356         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
357         u32 nextPhysChunk;
358         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
359         u32 totalChunks,moreChunks;
360         u32 currChunk, thisChunk, absChunk;
361         u32 currDword;
362         u32 chunkBit;
363         u64 map;
364         struct MemoryBlock mb[32];
365         unsigned long numMemoryBlocks, curBlock;
366
367         /* Chunk size on iSeries is 256K bytes */
368         totalChunks = (u32)HvLpConfig_getMsChunks();
369         mschunks_alloc(totalChunks);
370
371         /*
372          * Get absolute address of our load area
373          * and map it to physical address 0
374          * This guarantees that the loadarea ends up at physical 0
375          * otherwise, it might not be returned by PLIC as the first
376          * chunks
377          */
378
379         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
380         loadAreaSize =  itLpNaca.xLoadAreaChunks;
381
382         /*
383          * Only add the pages already mapped here.
384          * Otherwise we might add the hpt pages
385          * The rest of the pages of the load area
386          * aren't in the HPT yet and can still
387          * be assigned an arbitrary physical address
388          */
389         if ((loadAreaSize * 64) > HvPagesToMap)
390                 loadAreaSize = HvPagesToMap / 64;
391
392         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
393
394         /*
395          * TODO Do we need to do something if the HPT is in the 64MB load area?
396          * This would be required if the itLpNaca.xLoadAreaChunks includes
397          * the HPT size
398          */
399
400         printk("Mapping load area - physical addr = 0000000000000000\n"
401                 "                    absolute addr = %016lx\n",
402                 chunk_to_addr(loadAreaFirstChunk));
403         printk("Load area size %dK\n", loadAreaSize * 256);
404
405         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
406                 mschunks_map.mapping[nextPhysChunk] =
407                         loadAreaFirstChunk + nextPhysChunk;
408
409         /*
410          * Get absolute address of our HPT and remember it so
411          * we won't map it to any physical address
412          */
413         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
414         hptSizePages = (u32)HvCallHpt_getHptPages();
415         hptSizeChunks = hptSizePages >>
416                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
417         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
418
419         printk("HPT absolute addr = %016lx, size = %dK\n",
420                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
421
422         /*
423          * Determine if absolute memory has any
424          * holes so that we can interpret the
425          * access map we get back from the hypervisor
426          * correctly.
427          */
428         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
429
430         /*
431          * Process the main store access map from the hypervisor
432          * to build up our physical -> absolute translation table
433          */
434         curBlock = 0;
435         currChunk = 0;
436         currDword = 0;
437         moreChunks = totalChunks;
438
439         while (moreChunks) {
440                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
441                                 currDword);
442                 thisChunk = currChunk;
443                 while (map) {
444                         chunkBit = map >> 63;
445                         map <<= 1;
446                         if (chunkBit) {
447                                 --moreChunks;
448                                 while (thisChunk >= mb[curBlock].logicalEnd) {
449                                         ++curBlock;
450                                         if (curBlock >= numMemoryBlocks)
451                                                 panic("out of memory blocks");
452                                 }
453                                 if (thisChunk < mb[curBlock].logicalStart)
454                                         panic("memory block error");
455
456                                 absChunk = mb[curBlock].absStart +
457                                         (thisChunk - mb[curBlock].logicalStart);
458                                 if (((absChunk < hptFirstChunk) ||
459                                      (absChunk > hptLastChunk)) &&
460                                     ((absChunk < loadAreaFirstChunk) ||
461                                      (absChunk > loadAreaLastChunk))) {
462                                         mschunks_map.mapping[nextPhysChunk] =
463                                                 absChunk;
464                                         ++nextPhysChunk;
465                                 }
466                         }
467                         ++thisChunk;
468                 }
469                 ++currDword;
470                 currChunk += 64;
471         }
472
473         /*
474          * main store size (in chunks) is
475          *   totalChunks - hptSizeChunks
476          * which should be equal to
477          *   nextPhysChunk
478          */
479         return chunk_to_addr(nextPhysChunk);
480 }
481
482 /*
483  * Document me.
484  */
485 static void __init iSeries_setup_arch(void)
486 {
487         if (get_lppaca()->shared_proc) {
488                 ppc_md.idle_loop = iseries_shared_idle;
489                 printk(KERN_DEBUG "Using shared processor idle loop\n");
490         } else {
491                 ppc_md.idle_loop = iseries_dedicated_idle;
492                 printk(KERN_DEBUG "Using dedicated idle loop\n");
493         }
494
495         /* Setup the Lp Event Queue */
496         setup_hvlpevent_queue();
497
498         printk("Max  logical processors = %d\n",
499                         itVpdAreas.xSlicMaxLogicalProcs);
500         printk("Max physical processors = %d\n",
501                         itVpdAreas.xSlicMaxPhysicalProcs);
502 }
503
504 static void iSeries_show_cpuinfo(struct seq_file *m)
505 {
506         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
507 }
508
509 static void __init iSeries_progress(char * st, unsigned short code)
510 {
511         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
512         mf_display_progress(code);
513 }
514
515 static void __init iSeries_fixup_klimit(void)
516 {
517         /*
518          * Change klimit to take into account any ram disk
519          * that may be included
520          */
521         if (naca.xRamDisk)
522                 klimit = KERNELBASE + (u64)naca.xRamDisk +
523                         (naca.xRamDiskSize * HW_PAGE_SIZE);
524 }
525
526 static int __init iSeries_src_init(void)
527 {
528         /* clear the progress line */
529         if (firmware_has_feature(FW_FEATURE_ISERIES))
530                 ppc_md.progress(" ", 0xffff);
531         return 0;
532 }
533
534 late_initcall(iSeries_src_init);
535
536 static inline void process_iSeries_events(void)
537 {
538         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
539 }
540
541 static void yield_shared_processor(void)
542 {
543         unsigned long tb;
544
545         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
546                                     HvCall_MaskLpEvent |
547                                     HvCall_MaskLpProd |
548                                     HvCall_MaskTimeout);
549
550         tb = get_tb();
551         /* Compute future tb value when yield should expire */
552         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
553
554         /*
555          * The decrementer stops during the yield.  Force a fake decrementer
556          * here and let the timer_interrupt code sort out the actual time.
557          */
558         get_lppaca()->int_dword.fields.decr_int = 1;
559         ppc64_runlatch_on();
560         process_iSeries_events();
561 }
562
563 static void iseries_shared_idle(void)
564 {
565         while (1) {
566                 tick_nohz_stop_sched_tick();
567                 while (!need_resched() && !hvlpevent_is_pending()) {
568                         local_irq_disable();
569                         ppc64_runlatch_off();
570
571                         /* Recheck with irqs off */
572                         if (!need_resched() && !hvlpevent_is_pending())
573                                 yield_shared_processor();
574
575                         HMT_medium();
576                         local_irq_enable();
577                 }
578
579                 ppc64_runlatch_on();
580                 tick_nohz_restart_sched_tick();
581
582                 if (hvlpevent_is_pending())
583                         process_iSeries_events();
584
585                 preempt_enable_no_resched();
586                 schedule();
587                 preempt_disable();
588         }
589 }
590
591 static void iseries_dedicated_idle(void)
592 {
593         set_thread_flag(TIF_POLLING_NRFLAG);
594
595         while (1) {
596                 tick_nohz_stop_sched_tick();
597                 if (!need_resched()) {
598                         while (!need_resched()) {
599                                 ppc64_runlatch_off();
600                                 HMT_low();
601
602                                 if (hvlpevent_is_pending()) {
603                                         HMT_medium();
604                                         ppc64_runlatch_on();
605                                         process_iSeries_events();
606                                 }
607                         }
608
609                         HMT_medium();
610                 }
611
612                 ppc64_runlatch_on();
613                 tick_nohz_restart_sched_tick();
614                 preempt_enable_no_resched();
615                 schedule();
616                 preempt_disable();
617         }
618 }
619
620 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
621                                      unsigned long flags)
622 {
623         return (void __iomem *)address;
624 }
625
626 static void iseries_iounmap(volatile void __iomem *token)
627 {
628 }
629
630 static int __init iseries_probe(void)
631 {
632         unsigned long root = of_get_flat_dt_root();
633         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
634                 return 0;
635
636         hpte_init_iSeries();
637         /* iSeries does not support 16M pages */
638         cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
639
640         return 1;
641 }
642
643 define_machine(iseries) {
644         .name           = "iSeries",
645         .setup_arch     = iSeries_setup_arch,
646         .show_cpuinfo   = iSeries_show_cpuinfo,
647         .init_IRQ       = iSeries_init_IRQ,
648         .get_irq        = iSeries_get_irq,
649         .init_early     = iSeries_init_early,
650         .pcibios_fixup  = iSeries_pci_final_fixup,
651         .restart        = mf_reboot,
652         .power_off      = mf_power_off,
653         .halt           = mf_power_off,
654         .get_boot_time  = iSeries_get_boot_time,
655         .set_rtc_time   = iSeries_set_rtc_time,
656         .get_rtc_time   = iSeries_get_rtc_time,
657         .calibrate_decr = generic_calibrate_decr,
658         .progress       = iSeries_progress,
659         .probe          = iseries_probe,
660         .ioremap        = iseries_ioremap,
661         .iounmap        = iseries_iounmap,
662         /* XXX Implement enable_pmcs for iSeries */
663 };
664
665 void * __init iSeries_early_setup(void)
666 {
667         unsigned long phys_mem_size;
668
669         /* Identify CPU type. This is done again by the common code later
670          * on but calling this function multiple times is fine.
671          */
672         identify_cpu(0, mfspr(SPRN_PVR));
673
674         powerpc_firmware_features |= FW_FEATURE_ISERIES;
675         powerpc_firmware_features |= FW_FEATURE_LPAR;
676
677         iSeries_fixup_klimit();
678
679         /*
680          * Initialize the table which translate Linux physical addresses to
681          * AS/400 absolute addresses
682          */
683         phys_mem_size = build_iSeries_Memory_Map();
684
685         iSeries_get_cmdline();
686
687         return (void *) __pa(build_flat_dt(phys_mem_size));
688 }
689
690 static void hvputc(char c)
691 {
692         if (c == '\n')
693                 hvputc('\r');
694
695         HvCall_writeLogBuffer(&c, 1);
696 }
697
698 void __init udbg_init_iseries(void)
699 {
700         udbg_putc = hvputc;
701 }