2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
38 #include <linux/acpi.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
65 struct acpi_cpufreq_data {
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
69 unsigned int cpu_feature;
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
74 struct acpi_msr_data {
75 u64 saved_aperf, saved_mperf;
78 static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
80 DEFINE_TRACE(power_mark);
82 /* acpi_perf_data is a pointer to percpu data. */
83 static struct acpi_processor_performance *acpi_perf_data;
85 static struct cpufreq_driver acpi_cpufreq_driver;
87 static unsigned int acpi_pstate_strict;
89 static int check_est_cpu(unsigned int cpuid)
91 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
93 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
94 !cpu_has(cpu, X86_FEATURE_EST))
100 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
102 struct acpi_processor_performance *perf;
105 perf = data->acpi_data;
107 for (i = 0; i < perf->state_count; i++) {
108 if (value == perf->states[i].status)
109 return data->freq_table[i].frequency;
114 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
117 struct acpi_processor_performance *perf;
119 msr &= INTEL_MSR_RANGE;
120 perf = data->acpi_data;
122 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
123 if (msr == perf->states[data->freq_table[i].index].status)
124 return data->freq_table[i].frequency;
126 return data->freq_table[0].frequency;
129 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
131 switch (data->cpu_feature) {
132 case SYSTEM_INTEL_MSR_CAPABLE:
133 return extract_msr(val, data);
134 case SYSTEM_IO_CAPABLE:
135 return extract_io(val, data);
152 const struct cpumask *mask;
160 /* Called via smp_call_function_single(), on the target CPU */
161 static void do_drv_read(void *_cmd)
163 struct drv_cmd *cmd = _cmd;
167 case SYSTEM_INTEL_MSR_CAPABLE:
168 rdmsr(cmd->addr.msr.reg, cmd->val, h);
170 case SYSTEM_IO_CAPABLE:
171 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
173 (u32)cmd->addr.io.bit_width);
180 /* Called via smp_call_function_many(), on the target CPUs */
181 static void do_drv_write(void *_cmd)
183 struct drv_cmd *cmd = _cmd;
187 case SYSTEM_INTEL_MSR_CAPABLE:
188 rdmsr(cmd->addr.msr.reg, lo, hi);
189 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
190 wrmsr(cmd->addr.msr.reg, lo, hi);
192 case SYSTEM_IO_CAPABLE:
193 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
195 (u32)cmd->addr.io.bit_width);
202 static void drv_read(struct drv_cmd *cmd)
206 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
209 static void drv_write(struct drv_cmd *cmd)
213 this_cpu = get_cpu();
214 if (cpumask_test_cpu(this_cpu, cmd->mask))
216 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
220 static u32 get_cur_val(const struct cpumask *mask)
222 struct acpi_processor_performance *perf;
225 if (unlikely(cpumask_empty(mask)))
228 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
229 case SYSTEM_INTEL_MSR_CAPABLE:
230 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
231 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
233 case SYSTEM_IO_CAPABLE:
234 cmd.type = SYSTEM_IO_CAPABLE;
235 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
236 cmd.addr.io.port = perf->control_register.address;
237 cmd.addr.io.bit_width = perf->control_register.bit_width;
246 dprintk("get_cur_val = %u\n", cmd.val);
261 /* Called via smp_call_function_single(), on the target CPU */
262 static void read_measured_perf_ctrs(void *_cur)
264 struct perf_pair *cur = _cur;
266 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
267 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
271 * Return the measured active (C0) frequency on this CPU since last call
274 * Return: Average CPU frequency in terms of max frequency (zero on error)
276 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
277 * over a period of time, while CPU is in C0 state.
278 * IA32_MPERF counts at the rate of max advertised frequency
279 * IA32_APERF counts at the rate of actual CPU frequency
280 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
281 * no meaning should be associated with absolute values of these MSRs.
283 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
286 struct perf_pair readin, cur;
287 unsigned int perf_percent;
290 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
293 cur.aperf.whole = readin.aperf.whole -
294 per_cpu(msr_data, cpu).saved_aperf;
295 cur.mperf.whole = readin.mperf.whole -
296 per_cpu(msr_data, cpu).saved_mperf;
297 per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
298 per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
302 * We dont want to do 64 bit divide with 32 bit kernel
303 * Get an approximate value. Return failure in case we cannot get
304 * an approximate value.
306 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
310 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
311 shift_count = fls(h);
313 cur.aperf.whole >>= shift_count;
314 cur.mperf.whole >>= shift_count;
317 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
319 cur.aperf.split.lo >>= shift_count;
320 cur.mperf.split.lo >>= shift_count;
323 if (cur.aperf.split.lo && cur.mperf.split.lo)
324 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
329 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
331 cur.aperf.whole >>= shift_count;
332 cur.mperf.whole >>= shift_count;
335 if (cur.aperf.whole && cur.mperf.whole)
336 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
342 retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
347 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
349 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
351 unsigned int cached_freq;
353 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
355 if (unlikely(data == NULL ||
356 data->acpi_data == NULL || data->freq_table == NULL)) {
360 cached_freq = data->freq_table[data->acpi_data->state].frequency;
361 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
362 if (freq != cached_freq) {
364 * The dreaded BIOS frequency change behind our back.
365 * Force set the frequency on next target call.
370 dprintk("cur freq = %u\n", freq);
375 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
376 struct acpi_cpufreq_data *data)
378 unsigned int cur_freq;
381 for (i = 0; i < 100; i++) {
382 cur_freq = extract_freq(get_cur_val(mask), data);
383 if (cur_freq == freq)
390 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
391 unsigned int target_freq, unsigned int relation)
393 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
394 struct acpi_processor_performance *perf;
395 struct cpufreq_freqs freqs;
397 unsigned int next_state = 0; /* Index into freq_table */
398 unsigned int next_perf_state = 0; /* Index into perf table */
401 struct power_trace it;
403 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
405 if (unlikely(data == NULL ||
406 data->acpi_data == NULL || data->freq_table == NULL)) {
410 perf = data->acpi_data;
411 result = cpufreq_frequency_table_target(policy,
414 relation, &next_state);
415 if (unlikely(result)) {
420 next_perf_state = data->freq_table[next_state].index;
421 if (perf->state == next_perf_state) {
422 if (unlikely(data->resume)) {
423 dprintk("Called after resume, resetting to P%d\n",
427 dprintk("Already at target state (P%d)\n",
433 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
435 switch (data->cpu_feature) {
436 case SYSTEM_INTEL_MSR_CAPABLE:
437 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
438 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
439 cmd.val = (u32) perf->states[next_perf_state].control;
441 case SYSTEM_IO_CAPABLE:
442 cmd.type = SYSTEM_IO_CAPABLE;
443 cmd.addr.io.port = perf->control_register.address;
444 cmd.addr.io.bit_width = perf->control_register.bit_width;
445 cmd.val = (u32) perf->states[next_perf_state].control;
452 /* cpufreq holds the hotplug lock, so we are safe from here on */
453 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
454 cmd.mask = policy->cpus;
456 cmd.mask = cpumask_of(policy->cpu);
458 freqs.old = perf->states[perf->state].core_frequency * 1000;
459 freqs.new = data->freq_table[next_state].frequency;
460 for_each_cpu(i, cmd.mask) {
462 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
467 if (acpi_pstate_strict) {
468 if (!check_freqs(cmd.mask, freqs.new, data)) {
469 dprintk("acpi_cpufreq_target failed (%d)\n",
476 for_each_cpu(i, cmd.mask) {
478 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
480 perf->state = next_perf_state;
486 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
488 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
490 dprintk("acpi_cpufreq_verify\n");
492 return cpufreq_frequency_table_verify(policy, data->freq_table);
496 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
498 struct acpi_processor_performance *perf = data->acpi_data;
501 /* search the closest match to cpu_khz */
504 unsigned long freqn = perf->states[0].core_frequency * 1000;
506 for (i = 0; i < (perf->state_count-1); i++) {
508 freqn = perf->states[i+1].core_frequency * 1000;
509 if ((2 * cpu_khz) > (freqn + freq)) {
514 perf->state = perf->state_count-1;
517 /* assume CPU is at P0... */
519 return perf->states[0].core_frequency * 1000;
523 static void free_acpi_perf_data(void)
527 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
528 for_each_possible_cpu(i)
529 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
531 free_percpu(acpi_perf_data);
535 * acpi_cpufreq_early_init - initialize ACPI P-States library
537 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
538 * in order to determine correct frequency and voltage pairings. We can
539 * do _PDC and _PSD and find out the processor dependency for the
540 * actual init that will happen later...
542 static int __init acpi_cpufreq_early_init(void)
545 dprintk("acpi_cpufreq_early_init\n");
547 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
548 if (!acpi_perf_data) {
549 dprintk("Memory allocation error for acpi_perf_data.\n");
552 for_each_possible_cpu(i) {
553 if (!zalloc_cpumask_var_node(
554 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
555 GFP_KERNEL, cpu_to_node(i))) {
557 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
558 free_acpi_perf_data();
563 /* Do initialization in ACPI core */
564 acpi_processor_preregister_performance(acpi_perf_data);
570 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
571 * or do it in BIOS firmware and won't inform about it to OS. If not
572 * detected, this has a side effect of making CPU run at a different speed
573 * than OS intended it to run at. Detect it and handle it cleanly.
575 static int bios_with_sw_any_bug;
577 static int sw_any_bug_found(const struct dmi_system_id *d)
579 bios_with_sw_any_bug = 1;
583 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
585 .callback = sw_any_bug_found,
586 .ident = "Supermicro Server X6DLP",
588 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
589 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
590 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
597 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
600 unsigned int valid_states = 0;
601 unsigned int cpu = policy->cpu;
602 struct acpi_cpufreq_data *data;
603 unsigned int result = 0;
604 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
605 struct acpi_processor_performance *perf;
607 dprintk("acpi_cpufreq_cpu_init\n");
609 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
613 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
614 per_cpu(drv_data, cpu) = data;
616 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
617 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
619 result = acpi_processor_register_performance(data->acpi_data, cpu);
623 perf = data->acpi_data;
624 policy->shared_type = perf->shared_type;
627 * Will let policy->cpus know about dependency only when software
628 * coordination is required.
630 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
631 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
632 cpumask_copy(policy->cpus, perf->shared_cpu_map);
634 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
637 dmi_check_system(sw_any_bug_dmi_table);
638 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
639 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
640 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
644 /* capability check */
645 if (perf->state_count <= 1) {
646 dprintk("No P-States\n");
651 if (perf->control_register.space_id != perf->status_register.space_id) {
656 switch (perf->control_register.space_id) {
657 case ACPI_ADR_SPACE_SYSTEM_IO:
658 dprintk("SYSTEM IO addr space\n");
659 data->cpu_feature = SYSTEM_IO_CAPABLE;
661 case ACPI_ADR_SPACE_FIXED_HARDWARE:
662 dprintk("HARDWARE addr space\n");
663 if (!check_est_cpu(cpu)) {
667 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
670 dprintk("Unknown addr space %d\n",
671 (u32) (perf->control_register.space_id));
676 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
677 (perf->state_count+1), GFP_KERNEL);
678 if (!data->freq_table) {
683 /* detect transition latency */
684 policy->cpuinfo.transition_latency = 0;
685 for (i = 0; i < perf->state_count; i++) {
686 if ((perf->states[i].transition_latency * 1000) >
687 policy->cpuinfo.transition_latency)
688 policy->cpuinfo.transition_latency =
689 perf->states[i].transition_latency * 1000;
692 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
693 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
694 policy->cpuinfo.transition_latency > 20 * 1000) {
695 policy->cpuinfo.transition_latency = 20 * 1000;
696 printk_once(KERN_INFO
697 "P-state transition latency capped at 20 uS\n");
701 for (i = 0; i < perf->state_count; i++) {
702 if (i > 0 && perf->states[i].core_frequency >=
703 data->freq_table[valid_states-1].frequency / 1000)
706 data->freq_table[valid_states].index = i;
707 data->freq_table[valid_states].frequency =
708 perf->states[i].core_frequency * 1000;
711 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
714 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
718 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
719 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
721 switch (perf->control_register.space_id) {
722 case ACPI_ADR_SPACE_SYSTEM_IO:
723 /* Current speed is unknown and not detectable by IO port */
724 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
726 case ACPI_ADR_SPACE_FIXED_HARDWARE:
727 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
728 policy->cur = get_cur_freq_on_cpu(cpu);
734 /* notify BIOS that we exist */
735 acpi_processor_notify_smm(THIS_MODULE);
737 /* Check for APERF/MPERF support in hardware */
738 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
741 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
742 acpi_cpufreq_driver.getavg = get_measured_perf;
745 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
746 for (i = 0; i < perf->state_count; i++)
747 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
748 (i == perf->state ? '*' : ' '), i,
749 (u32) perf->states[i].core_frequency,
750 (u32) perf->states[i].power,
751 (u32) perf->states[i].transition_latency);
753 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
756 * the first call to ->target() should result in us actually
757 * writing something to the appropriate registers.
764 kfree(data->freq_table);
766 acpi_processor_unregister_performance(perf, cpu);
769 per_cpu(drv_data, cpu) = NULL;
774 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
776 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
778 dprintk("acpi_cpufreq_cpu_exit\n");
781 cpufreq_frequency_table_put_attr(policy->cpu);
782 per_cpu(drv_data, policy->cpu) = NULL;
783 acpi_processor_unregister_performance(data->acpi_data,
791 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
793 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
795 dprintk("acpi_cpufreq_resume\n");
802 static struct freq_attr *acpi_cpufreq_attr[] = {
803 &cpufreq_freq_attr_scaling_available_freqs,
807 static struct cpufreq_driver acpi_cpufreq_driver = {
808 .verify = acpi_cpufreq_verify,
809 .target = acpi_cpufreq_target,
810 .init = acpi_cpufreq_cpu_init,
811 .exit = acpi_cpufreq_cpu_exit,
812 .resume = acpi_cpufreq_resume,
813 .name = "acpi-cpufreq",
814 .owner = THIS_MODULE,
815 .attr = acpi_cpufreq_attr,
818 static int __init acpi_cpufreq_init(void)
825 dprintk("acpi_cpufreq_init\n");
827 ret = acpi_cpufreq_early_init();
831 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
833 free_acpi_perf_data();
838 static void __exit acpi_cpufreq_exit(void)
840 dprintk("acpi_cpufreq_exit\n");
842 cpufreq_unregister_driver(&acpi_cpufreq_driver);
844 free_percpu(acpi_perf_data);
847 module_param(acpi_pstate_strict, uint, 0644);
848 MODULE_PARM_DESC(acpi_pstate_strict,
849 "value 0 or non-zero. non-zero -> strict ACPI checks are "
850 "performed during frequency changes.");
852 late_initcall(acpi_cpufreq_init);
853 module_exit(acpi_cpufreq_exit);
855 MODULE_ALIAS("acpi");