1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
43 #ifdef CONFIG_IPW2200_DEBUG
49 #ifdef CONFIG_IPW2200_MONITOR
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
61 #ifdef CONFIG_IPW2200_RADIOTAP
67 #ifdef CONFIG_IPW2200_QOS
73 #define IPW2200_VERSION "1.2.0" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
87 static int channel = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
224 out += snprintf(buf + out, count - out, "%c", c);
228 out += snprintf(buf + out, count - out, " ");
234 static void printk_buf(int level, const u8 * data, u32 len)
238 if (!(ipw_debug_level & level))
242 snprint_line(line, sizeof(line), &data[ofs],
244 printk(KERN_DEBUG "%s\n", line);
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
263 len -= min_t(size_t, len, 16U);
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
571 case IPW_FW_ERROR_OK:
573 case IPW_FW_ERROR_FAIL:
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
593 case IPW_FW_ERROR_DINO_ERROR:
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
747 priv->table2_addr + (ord << 3) +
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
923 if (priv->config & CFG_NO_LED)
926 if (priv->status & STATUS_RF_KILL_MASK)
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
954 void ipw_led_activity_on(struct ipw_priv *priv)
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
963 static void ipw_led_activity_off(struct ipw_priv *priv)
968 if (priv->config & CFG_NO_LED)
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1159 char *p = (char *)buf;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 if (p[0] == 'x' || p[0] == 'X')
1166 val = simple_strtoul(p, &p, 16);
1168 val = simple_strtoul(p, &p, 10);
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 IPW_ERROR("Memory allocation for firmware error log "
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 struct ipw_event log[log_len];
1239 ipw_capture_event_log(priv, log_len, log);
1241 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242 for (i = 0; i < log_len; i++)
1243 len += snprintf(buf + len, PAGE_SIZE - len,
1245 log[i].time, log[i].event, log[i].data);
1246 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1252 static ssize_t show_error(struct device *d,
1253 struct device_attribute *attr, char *buf)
1255 struct ipw_priv *priv = dev_get_drvdata(d);
1259 len += snprintf(buf + len, PAGE_SIZE - len,
1260 "%08lX%08X%08X%08X",
1261 priv->error->jiffies,
1262 priv->error->status,
1263 priv->error->config, priv->error->elem_len);
1264 for (i = 0; i < priv->error->elem_len; i++)
1265 len += snprintf(buf + len, PAGE_SIZE - len,
1266 "\n%08X%08X%08X%08X%08X%08X%08X",
1267 priv->error->elem[i].time,
1268 priv->error->elem[i].desc,
1269 priv->error->elem[i].blink1,
1270 priv->error->elem[i].blink2,
1271 priv->error->elem[i].link1,
1272 priv->error->elem[i].link2,
1273 priv->error->elem[i].data);
1275 len += snprintf(buf + len, PAGE_SIZE - len,
1276 "\n%08X", priv->error->log_len);
1277 for (i = 0; i < priv->error->log_len; i++)
1278 len += snprintf(buf + len, PAGE_SIZE - len,
1280 priv->error->log[i].time,
1281 priv->error->log[i].event,
1282 priv->error->log[i].data);
1283 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1287 static ssize_t clear_error(struct device *d,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count)
1291 struct ipw_priv *priv = dev_get_drvdata(d);
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1300 static ssize_t show_cmd_log(struct device *d,
1301 struct device_attribute *attr, char *buf)
1303 struct ipw_priv *priv = dev_get_drvdata(d);
1307 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309 i = (i + 1) % priv->cmdlog_len) {
1311 snprintf(buf + len, PAGE_SIZE - len,
1312 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314 priv->cmdlog[i].cmd.len);
1316 snprintk_buf(buf + len, PAGE_SIZE - len,
1317 (u8 *) priv->cmdlog[i].cmd.param,
1318 priv->cmdlog[i].cmd.len);
1319 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331 struct device_attribute *attr,
1332 const char *buf, size_t count)
1334 struct ipw_priv *priv = dev_get_drvdata(d);
1345 if (netif_running(priv->prom_net_dev)) {
1346 IPW_WARNING("Interface is up. Cannot unregister.\n");
1350 ipw_prom_free(priv);
1358 rc = ipw_prom_alloc(priv);
1368 IPW_ERROR("Failed to register promiscuous network "
1369 "device (error %d).\n", rc);
1375 static ssize_t show_rtap_iface(struct device *d,
1376 struct device_attribute *attr,
1379 struct ipw_priv *priv = dev_get_drvdata(d);
1381 return sprintf(buf, "%s", priv->prom_net_dev->name);
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1393 static ssize_t store_rtap_filter(struct device *d,
1394 struct device_attribute *attr,
1395 const char *buf, size_t count)
1397 struct ipw_priv *priv = dev_get_drvdata(d);
1399 if (!priv->prom_priv) {
1400 IPW_ERROR("Attempting to set filter without "
1401 "rtap_iface enabled.\n");
1405 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1407 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408 BIT_ARG16(priv->prom_priv->filter));
1413 static ssize_t show_rtap_filter(struct device *d,
1414 struct device_attribute *attr,
1417 struct ipw_priv *priv = dev_get_drvdata(d);
1418 return sprintf(buf, "0x%04X",
1419 priv->prom_priv ? priv->prom_priv->filter : 0);
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434 const char *buf, size_t count)
1436 struct ipw_priv *priv = dev_get_drvdata(d);
1437 struct net_device *dev = priv->net_dev;
1438 char buffer[] = "00000000";
1440 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1444 IPW_DEBUG_INFO("enter\n");
1446 strncpy(buffer, buf, len);
1449 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1451 if (p[0] == 'x' || p[0] == 'X')
1453 val = simple_strtoul(p, &p, 16);
1455 val = simple_strtoul(p, &p, 10);
1457 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1459 priv->ieee->scan_age = val;
1460 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1463 IPW_DEBUG_INFO("exit\n");
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1472 struct ipw_priv *priv = dev_get_drvdata(d);
1473 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477 const char *buf, size_t count)
1479 struct ipw_priv *priv = dev_get_drvdata(d);
1481 IPW_DEBUG_INFO("enter\n");
1487 IPW_DEBUG_LED("Disabling LED control.\n");
1488 priv->config |= CFG_NO_LED;
1489 ipw_led_shutdown(priv);
1491 IPW_DEBUG_LED("Enabling LED control.\n");
1492 priv->config &= ~CFG_NO_LED;
1496 IPW_DEBUG_INFO("exit\n");
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1502 static ssize_t show_status(struct device *d,
1503 struct device_attribute *attr, char *buf)
1505 struct ipw_priv *p = d->driver_data;
1506 return sprintf(buf, "0x%08x\n", (int)p->status);
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1514 struct ipw_priv *p = d->driver_data;
1515 return sprintf(buf, "0x%08x\n", (int)p->config);
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1520 static ssize_t show_nic_type(struct device *d,
1521 struct device_attribute *attr, char *buf)
1523 struct ipw_priv *priv = d->driver_data;
1524 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1529 static ssize_t show_ucode_version(struct device *d,
1530 struct device_attribute *attr, char *buf)
1532 u32 len = sizeof(u32), tmp = 0;
1533 struct ipw_priv *p = d->driver_data;
1535 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1538 return sprintf(buf, "0x%08x\n", tmp);
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1546 u32 len = sizeof(u32), tmp = 0;
1547 struct ipw_priv *p = d->driver_data;
1549 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1552 return sprintf(buf, "0x%08x\n", tmp);
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1558 * Add a device attribute to view/control the delay between eeprom
1561 static ssize_t show_eeprom_delay(struct device *d,
1562 struct device_attribute *attr, char *buf)
1564 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565 return sprintf(buf, "%i\n", n);
1567 static ssize_t store_eeprom_delay(struct device *d,
1568 struct device_attribute *attr,
1569 const char *buf, size_t count)
1571 struct ipw_priv *p = d->driver_data;
1572 sscanf(buf, "%i", &p->eeprom_delay);
1573 return strnlen(buf, count);
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577 show_eeprom_delay, store_eeprom_delay);
1579 static ssize_t show_command_event_reg(struct device *d,
1580 struct device_attribute *attr, char *buf)
1583 struct ipw_priv *p = d->driver_data;
1585 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586 return sprintf(buf, "0x%08x\n", reg);
1588 static ssize_t store_command_event_reg(struct device *d,
1589 struct device_attribute *attr,
1590 const char *buf, size_t count)
1593 struct ipw_priv *p = d->driver_data;
1595 sscanf(buf, "%x", ®);
1596 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597 return strnlen(buf, count);
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601 show_command_event_reg, store_command_event_reg);
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604 struct device_attribute *attr, char *buf)
1607 struct ipw_priv *p = d->driver_data;
1609 reg = ipw_read_reg32(p, 0x301100);
1610 return sprintf(buf, "0x%08x\n", reg);
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613 struct device_attribute *attr,
1614 const char *buf, size_t count)
1617 struct ipw_priv *p = d->driver_data;
1619 sscanf(buf, "%x", ®);
1620 ipw_write_reg32(p, 0x301100, reg);
1621 return strnlen(buf, count);
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625 show_mem_gpio_reg, store_mem_gpio_reg);
1627 static ssize_t show_indirect_dword(struct device *d,
1628 struct device_attribute *attr, char *buf)
1631 struct ipw_priv *priv = d->driver_data;
1633 if (priv->status & STATUS_INDIRECT_DWORD)
1634 reg = ipw_read_reg32(priv, priv->indirect_dword);
1638 return sprintf(buf, "0x%08x\n", reg);
1640 static ssize_t store_indirect_dword(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1644 struct ipw_priv *priv = d->driver_data;
1646 sscanf(buf, "%x", &priv->indirect_dword);
1647 priv->status |= STATUS_INDIRECT_DWORD;
1648 return strnlen(buf, count);
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652 show_indirect_dword, store_indirect_dword);
1654 static ssize_t show_indirect_byte(struct device *d,
1655 struct device_attribute *attr, char *buf)
1658 struct ipw_priv *priv = d->driver_data;
1660 if (priv->status & STATUS_INDIRECT_BYTE)
1661 reg = ipw_read_reg8(priv, priv->indirect_byte);
1665 return sprintf(buf, "0x%02x\n", reg);
1667 static ssize_t store_indirect_byte(struct device *d,
1668 struct device_attribute *attr,
1669 const char *buf, size_t count)
1671 struct ipw_priv *priv = d->driver_data;
1673 sscanf(buf, "%x", &priv->indirect_byte);
1674 priv->status |= STATUS_INDIRECT_BYTE;
1675 return strnlen(buf, count);
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679 show_indirect_byte, store_indirect_byte);
1681 static ssize_t show_direct_dword(struct device *d,
1682 struct device_attribute *attr, char *buf)
1685 struct ipw_priv *priv = d->driver_data;
1687 if (priv->status & STATUS_DIRECT_DWORD)
1688 reg = ipw_read32(priv, priv->direct_dword);
1692 return sprintf(buf, "0x%08x\n", reg);
1694 static ssize_t store_direct_dword(struct device *d,
1695 struct device_attribute *attr,
1696 const char *buf, size_t count)
1698 struct ipw_priv *priv = d->driver_data;
1700 sscanf(buf, "%x", &priv->direct_dword);
1701 priv->status |= STATUS_DIRECT_DWORD;
1702 return strnlen(buf, count);
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706 show_direct_dword, store_direct_dword);
1708 static int rf_kill_active(struct ipw_priv *priv)
1710 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711 priv->status |= STATUS_RF_KILL_HW;
1713 priv->status &= ~STATUS_RF_KILL_HW;
1715 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1721 /* 0 - RF kill not enabled
1722 1 - SW based RF kill active (sysfs)
1723 2 - HW based RF kill active
1724 3 - Both HW and SW baed RF kill active */
1725 struct ipw_priv *priv = d->driver_data;
1726 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727 (rf_kill_active(priv) ? 0x2 : 0x0);
1728 return sprintf(buf, "%i\n", val);
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1733 if ((disable_radio ? 1 : 0) ==
1734 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1737 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1738 disable_radio ? "OFF" : "ON");
1740 if (disable_radio) {
1741 priv->status |= STATUS_RF_KILL_SW;
1743 if (priv->workqueue)
1744 cancel_delayed_work(&priv->request_scan);
1745 queue_work(priv->workqueue, &priv->down);
1747 priv->status &= ~STATUS_RF_KILL_SW;
1748 if (rf_kill_active(priv)) {
1749 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750 "disabled by HW switch\n");
1751 /* Make sure the RF_KILL check timer is running */
1752 cancel_delayed_work(&priv->rf_kill);
1753 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754 round_jiffies(2 * HZ));
1756 queue_work(priv->workqueue, &priv->up);
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763 const char *buf, size_t count)
1765 struct ipw_priv *priv = d->driver_data;
1767 ipw_radio_kill_sw(priv, buf[0] == '1');
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1777 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778 int pos = 0, len = 0;
1779 if (priv->config & CFG_SPEED_SCAN) {
1780 while (priv->speed_scan[pos] != 0)
1781 len += sprintf(&buf[len], "%d ",
1782 priv->speed_scan[pos++]);
1783 return len + sprintf(&buf[len], "\n");
1786 return sprintf(buf, "0\n");
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790 const char *buf, size_t count)
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int channel, pos = 0;
1794 const char *p = buf;
1796 /* list of space separated channels to scan, optionally ending with 0 */
1797 while ((channel = simple_strtol(p, NULL, 0))) {
1798 if (pos == MAX_SPEED_SCAN - 1) {
1799 priv->speed_scan[pos] = 0;
1803 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804 priv->speed_scan[pos++] = channel;
1806 IPW_WARNING("Skipping invalid channel request: %d\n",
1811 while (*p == ' ' || *p == '\t')
1816 priv->config &= ~CFG_SPEED_SCAN;
1818 priv->speed_scan_pos = 0;
1819 priv->config |= CFG_SPEED_SCAN;
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1831 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836 const char *buf, size_t count)
1838 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1840 priv->config |= CFG_NET_STATS;
1842 priv->config &= ~CFG_NET_STATS;
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848 show_net_stats, store_net_stats);
1850 static ssize_t show_channels(struct device *d,
1851 struct device_attribute *attr,
1854 struct ipw_priv *priv = dev_get_drvdata(d);
1855 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1858 len = sprintf(&buf[len],
1859 "Displaying %d channels in 2.4Ghz band "
1860 "(802.11bg):\n", geo->bg_channels);
1862 for (i = 0; i < geo->bg_channels; i++) {
1863 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1865 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1866 " (radar spectrum)" : "",
1867 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1868 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1870 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1871 "passive only" : "active/passive",
1872 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1876 len += sprintf(&buf[len],
1877 "Displaying %d channels in 5.2Ghz band "
1878 "(802.11a):\n", geo->a_channels);
1879 for (i = 0; i < geo->a_channels; i++) {
1880 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1882 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1883 " (radar spectrum)" : "",
1884 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1885 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1887 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1888 "passive only" : "active/passive");
1894 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1896 static void notify_wx_assoc_event(struct ipw_priv *priv)
1898 union iwreq_data wrqu;
1899 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1900 if (priv->status & STATUS_ASSOCIATED)
1901 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1903 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1904 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1907 static void ipw_irq_tasklet(struct ipw_priv *priv)
1909 u32 inta, inta_mask, handled = 0;
1910 unsigned long flags;
1913 spin_lock_irqsave(&priv->irq_lock, flags);
1915 inta = ipw_read32(priv, IPW_INTA_RW);
1916 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1917 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1919 /* Add any cached INTA values that need to be handled */
1920 inta |= priv->isr_inta;
1922 spin_unlock_irqrestore(&priv->irq_lock, flags);
1924 spin_lock_irqsave(&priv->lock, flags);
1926 /* handle all the justifications for the interrupt */
1927 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1929 handled |= IPW_INTA_BIT_RX_TRANSFER;
1932 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1933 IPW_DEBUG_HC("Command completed.\n");
1934 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1935 priv->status &= ~STATUS_HCMD_ACTIVE;
1936 wake_up_interruptible(&priv->wait_command_queue);
1937 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1940 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1941 IPW_DEBUG_TX("TX_QUEUE_1\n");
1942 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1943 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1946 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1947 IPW_DEBUG_TX("TX_QUEUE_2\n");
1948 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1949 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1952 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1953 IPW_DEBUG_TX("TX_QUEUE_3\n");
1954 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1955 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1958 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1959 IPW_DEBUG_TX("TX_QUEUE_4\n");
1960 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1961 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1964 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1965 IPW_WARNING("STATUS_CHANGE\n");
1966 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1969 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1970 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1971 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1974 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1975 IPW_WARNING("HOST_CMD_DONE\n");
1976 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1979 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1980 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1981 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1984 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1985 IPW_WARNING("PHY_OFF_DONE\n");
1986 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1989 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1990 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1991 priv->status |= STATUS_RF_KILL_HW;
1992 wake_up_interruptible(&priv->wait_command_queue);
1993 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1994 cancel_delayed_work(&priv->request_scan);
1995 schedule_work(&priv->link_down);
1996 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1997 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2000 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2001 IPW_WARNING("Firmware error detected. Restarting.\n");
2003 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2004 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2005 struct ipw_fw_error *error =
2006 ipw_alloc_error_log(priv);
2007 ipw_dump_error_log(priv, error);
2011 priv->error = ipw_alloc_error_log(priv);
2013 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2015 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2017 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2018 ipw_dump_error_log(priv, priv->error);
2021 /* XXX: If hardware encryption is for WPA/WPA2,
2022 * we have to notify the supplicant. */
2023 if (priv->ieee->sec.encrypt) {
2024 priv->status &= ~STATUS_ASSOCIATED;
2025 notify_wx_assoc_event(priv);
2028 /* Keep the restart process from trying to send host
2029 * commands by clearing the INIT status bit */
2030 priv->status &= ~STATUS_INIT;
2032 /* Cancel currently queued command. */
2033 priv->status &= ~STATUS_HCMD_ACTIVE;
2034 wake_up_interruptible(&priv->wait_command_queue);
2036 queue_work(priv->workqueue, &priv->adapter_restart);
2037 handled |= IPW_INTA_BIT_FATAL_ERROR;
2040 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2041 IPW_ERROR("Parity error\n");
2042 handled |= IPW_INTA_BIT_PARITY_ERROR;
2045 if (handled != inta) {
2046 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2049 spin_unlock_irqrestore(&priv->lock, flags);
2051 /* enable all interrupts */
2052 ipw_enable_interrupts(priv);
2055 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2056 static char *get_cmd_string(u8 cmd)
2059 IPW_CMD(HOST_COMPLETE);
2060 IPW_CMD(POWER_DOWN);
2061 IPW_CMD(SYSTEM_CONFIG);
2062 IPW_CMD(MULTICAST_ADDRESS);
2064 IPW_CMD(ADAPTER_ADDRESS);
2066 IPW_CMD(RTS_THRESHOLD);
2067 IPW_CMD(FRAG_THRESHOLD);
2068 IPW_CMD(POWER_MODE);
2070 IPW_CMD(TGI_TX_KEY);
2071 IPW_CMD(SCAN_REQUEST);
2072 IPW_CMD(SCAN_REQUEST_EXT);
2074 IPW_CMD(SUPPORTED_RATES);
2075 IPW_CMD(SCAN_ABORT);
2077 IPW_CMD(QOS_PARAMETERS);
2078 IPW_CMD(DINO_CONFIG);
2079 IPW_CMD(RSN_CAPABILITIES);
2081 IPW_CMD(CARD_DISABLE);
2082 IPW_CMD(SEED_NUMBER);
2084 IPW_CMD(COUNTRY_INFO);
2085 IPW_CMD(AIRONET_INFO);
2086 IPW_CMD(AP_TX_POWER);
2088 IPW_CMD(CCX_VER_INFO);
2089 IPW_CMD(SET_CALIBRATION);
2090 IPW_CMD(SENSITIVITY_CALIB);
2091 IPW_CMD(RETRY_LIMIT);
2092 IPW_CMD(IPW_PRE_POWER_DOWN);
2093 IPW_CMD(VAP_BEACON_TEMPLATE);
2094 IPW_CMD(VAP_DTIM_PERIOD);
2095 IPW_CMD(EXT_SUPPORTED_RATES);
2096 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2097 IPW_CMD(VAP_QUIET_INTERVALS);
2098 IPW_CMD(VAP_CHANNEL_SWITCH);
2099 IPW_CMD(VAP_MANDATORY_CHANNELS);
2100 IPW_CMD(VAP_CELL_PWR_LIMIT);
2101 IPW_CMD(VAP_CF_PARAM_SET);
2102 IPW_CMD(VAP_SET_BEACONING_STATE);
2103 IPW_CMD(MEASUREMENT);
2104 IPW_CMD(POWER_CAPABILITY);
2105 IPW_CMD(SUPPORTED_CHANNELS);
2106 IPW_CMD(TPC_REPORT);
2108 IPW_CMD(PRODUCTION_COMMAND);
2114 #define HOST_COMPLETE_TIMEOUT HZ
2116 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2119 unsigned long flags;
2121 spin_lock_irqsave(&priv->lock, flags);
2122 if (priv->status & STATUS_HCMD_ACTIVE) {
2123 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2124 get_cmd_string(cmd->cmd));
2125 spin_unlock_irqrestore(&priv->lock, flags);
2129 priv->status |= STATUS_HCMD_ACTIVE;
2132 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2133 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2134 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2135 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2137 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2140 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2141 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2144 #ifndef DEBUG_CMD_WEP_KEY
2145 if (cmd->cmd == IPW_CMD_WEP_KEY)
2146 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2149 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2151 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2153 priv->status &= ~STATUS_HCMD_ACTIVE;
2154 IPW_ERROR("Failed to send %s: Reason %d\n",
2155 get_cmd_string(cmd->cmd), rc);
2156 spin_unlock_irqrestore(&priv->lock, flags);
2159 spin_unlock_irqrestore(&priv->lock, flags);
2161 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2163 status & STATUS_HCMD_ACTIVE),
2164 HOST_COMPLETE_TIMEOUT);
2166 spin_lock_irqsave(&priv->lock, flags);
2167 if (priv->status & STATUS_HCMD_ACTIVE) {
2168 IPW_ERROR("Failed to send %s: Command timed out.\n",
2169 get_cmd_string(cmd->cmd));
2170 priv->status &= ~STATUS_HCMD_ACTIVE;
2171 spin_unlock_irqrestore(&priv->lock, flags);
2175 spin_unlock_irqrestore(&priv->lock, flags);
2179 if (priv->status & STATUS_RF_KILL_HW) {
2180 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2181 get_cmd_string(cmd->cmd));
2188 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2189 priv->cmdlog_pos %= priv->cmdlog_len;
2194 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2196 struct host_cmd cmd = {
2200 return __ipw_send_cmd(priv, &cmd);
2203 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2206 struct host_cmd cmd = {
2212 return __ipw_send_cmd(priv, &cmd);
2215 static int ipw_send_host_complete(struct ipw_priv *priv)
2218 IPW_ERROR("Invalid args\n");
2222 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2225 static int ipw_send_system_config(struct ipw_priv *priv)
2227 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2228 sizeof(priv->sys_config),
2232 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2234 if (!priv || !ssid) {
2235 IPW_ERROR("Invalid args\n");
2239 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2243 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2245 if (!priv || !mac) {
2246 IPW_ERROR("Invalid args\n");
2250 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2251 priv->net_dev->name, MAC_ARG(mac));
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2257 * NOTE: This must be executed from our workqueue as it results in udelay
2258 * being called which may corrupt the keyboard if executed on default
2261 static void ipw_adapter_restart(void *adapter)
2263 struct ipw_priv *priv = adapter;
2265 if (priv->status & STATUS_RF_KILL_MASK)
2270 if (priv->assoc_network &&
2271 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2272 ipw_remove_current_network(priv);
2275 IPW_ERROR("Failed to up device\n");
2280 static void ipw_bg_adapter_restart(struct work_struct *work)
2282 struct ipw_priv *priv =
2283 container_of(work, struct ipw_priv, adapter_restart);
2284 mutex_lock(&priv->mutex);
2285 ipw_adapter_restart(priv);
2286 mutex_unlock(&priv->mutex);
2289 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2291 static void ipw_scan_check(void *data)
2293 struct ipw_priv *priv = data;
2294 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2295 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2296 "adapter after (%dms).\n",
2297 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2298 queue_work(priv->workqueue, &priv->adapter_restart);
2302 static void ipw_bg_scan_check(struct work_struct *work)
2304 struct ipw_priv *priv =
2305 container_of(work, struct ipw_priv, scan_check.work);
2306 mutex_lock(&priv->mutex);
2307 ipw_scan_check(priv);
2308 mutex_unlock(&priv->mutex);
2311 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2312 struct ipw_scan_request_ext *request)
2314 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2315 sizeof(*request), request);
2318 static int ipw_send_scan_abort(struct ipw_priv *priv)
2321 IPW_ERROR("Invalid args\n");
2325 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2328 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2330 struct ipw_sensitivity_calib calib = {
2331 .beacon_rssi_raw = cpu_to_le16(sens),
2334 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2338 static int ipw_send_associate(struct ipw_priv *priv,
2339 struct ipw_associate *associate)
2341 struct ipw_associate tmp_associate;
2343 if (!priv || !associate) {
2344 IPW_ERROR("Invalid args\n");
2348 memcpy(&tmp_associate, associate, sizeof(*associate));
2349 tmp_associate.policy_support =
2350 cpu_to_le16(tmp_associate.policy_support);
2351 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2352 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2353 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2354 tmp_associate.listen_interval =
2355 cpu_to_le16(tmp_associate.listen_interval);
2356 tmp_associate.beacon_interval =
2357 cpu_to_le16(tmp_associate.beacon_interval);
2358 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2360 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365 struct ipw_supported_rates *rates)
2367 if (!priv || !rates) {
2368 IPW_ERROR("Invalid args\n");
2372 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2381 IPW_ERROR("Invalid args\n");
2385 get_random_bytes(&val, sizeof(val));
2387 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2393 IPW_ERROR("Invalid args\n");
2397 phy_off = cpu_to_le32(phy_off);
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2402 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2404 if (!priv || !power) {
2405 IPW_ERROR("Invalid args\n");
2409 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2412 static int ipw_set_tx_power(struct ipw_priv *priv)
2414 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2415 struct ipw_tx_power tx_power;
2419 memset(&tx_power, 0, sizeof(tx_power));
2421 /* configure device for 'G' band */
2422 tx_power.ieee_mode = IPW_G_MODE;
2423 tx_power.num_channels = geo->bg_channels;
2424 for (i = 0; i < geo->bg_channels; i++) {
2425 max_power = geo->bg[i].max_power;
2426 tx_power.channels_tx_power[i].channel_number =
2428 tx_power.channels_tx_power[i].tx_power = max_power ?
2429 min(max_power, priv->tx_power) : priv->tx_power;
2431 if (ipw_send_tx_power(priv, &tx_power))
2434 /* configure device to also handle 'B' band */
2435 tx_power.ieee_mode = IPW_B_MODE;
2436 if (ipw_send_tx_power(priv, &tx_power))
2439 /* configure device to also handle 'A' band */
2440 if (priv->ieee->abg_true) {
2441 tx_power.ieee_mode = IPW_A_MODE;
2442 tx_power.num_channels = geo->a_channels;
2443 for (i = 0; i < tx_power.num_channels; i++) {
2444 max_power = geo->a[i].max_power;
2445 tx_power.channels_tx_power[i].channel_number =
2447 tx_power.channels_tx_power[i].tx_power = max_power ?
2448 min(max_power, priv->tx_power) : priv->tx_power;
2450 if (ipw_send_tx_power(priv, &tx_power))
2456 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2458 struct ipw_rts_threshold rts_threshold = {
2459 .rts_threshold = cpu_to_le16(rts),
2463 IPW_ERROR("Invalid args\n");
2467 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2468 sizeof(rts_threshold), &rts_threshold);
2471 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2473 struct ipw_frag_threshold frag_threshold = {
2474 .frag_threshold = cpu_to_le16(frag),
2478 IPW_ERROR("Invalid args\n");
2482 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2483 sizeof(frag_threshold), &frag_threshold);
2486 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2491 IPW_ERROR("Invalid args\n");
2495 /* If on battery, set to 3, if AC set to CAM, else user
2498 case IPW_POWER_BATTERY:
2499 param = IPW_POWER_INDEX_3;
2502 param = IPW_POWER_MODE_CAM;
2509 param = cpu_to_le32(mode);
2510 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2514 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2516 struct ipw_retry_limit retry_limit = {
2517 .short_retry_limit = slimit,
2518 .long_retry_limit = llimit
2522 IPW_ERROR("Invalid args\n");
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2531 * The IPW device contains a Microwire compatible EEPROM that stores
2532 * various data like the MAC address. Usually the firmware has exclusive
2533 * access to the eeprom, but during device initialization (before the
2534 * device driver has sent the HostComplete command to the firmware) the
2535 * device driver has read access to the EEPROM by way of indirect addressing
2536 * through a couple of memory mapped registers.
2538 * The following is a simplified implementation for pulling data out of the
2539 * the eeprom, along with some helper functions to find information in
2540 * the per device private data's copy of the eeprom.
2542 * NOTE: To better understand how these functions work (i.e what is a chip
2543 * select and why do have to keep driving the eeprom clock?), read
2544 * just about any data sheet for a Microwire compatible EEPROM.
2547 /* write a 32 bit value into the indirect accessor register */
2548 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2550 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2552 /* the eeprom requires some time to complete the operation */
2553 udelay(p->eeprom_delay);
2558 /* perform a chip select operation */
2559 static void eeprom_cs(struct ipw_priv *priv)
2561 eeprom_write_reg(priv, 0);
2562 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2567 /* perform a chip select operation */
2568 static void eeprom_disable_cs(struct ipw_priv *priv)
2570 eeprom_write_reg(priv, EEPROM_BIT_CS);
2571 eeprom_write_reg(priv, 0);
2572 eeprom_write_reg(priv, EEPROM_BIT_SK);
2575 /* push a single bit down to the eeprom */
2576 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2578 int d = (bit ? EEPROM_BIT_DI : 0);
2579 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2580 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583 /* push an opcode followed by an address down to the eeprom */
2584 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2589 eeprom_write_bit(priv, 1);
2590 eeprom_write_bit(priv, op & 2);
2591 eeprom_write_bit(priv, op & 1);
2592 for (i = 7; i >= 0; i--) {
2593 eeprom_write_bit(priv, addr & (1 << i));
2597 /* pull 16 bits off the eeprom, one bit at a time */
2598 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2603 /* Send READ Opcode */
2604 eeprom_op(priv, EEPROM_CMD_READ, addr);
2606 /* Send dummy bit */
2607 eeprom_write_reg(priv, EEPROM_BIT_CS);
2609 /* Read the byte off the eeprom one bit at a time */
2610 for (i = 0; i < 16; i++) {
2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2615 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618 /* Send another dummy bit */
2619 eeprom_write_reg(priv, 0);
2620 eeprom_disable_cs(priv);
2625 /* helper function for pulling the mac address out of the private */
2626 /* data's copy of the eeprom data */
2627 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2629 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2633 * Either the device driver (i.e. the host) or the firmware can
2634 * load eeprom data into the designated region in SRAM. If neither
2635 * happens then the FW will shutdown with a fatal error.
2637 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2638 * bit needs region of shared SRAM needs to be non-zero.
2640 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643 u16 *eeprom = (u16 *) priv->eeprom;
2645 IPW_DEBUG_TRACE(">>\n");
2647 /* read entire contents of eeprom into private buffer */
2648 for (i = 0; i < 128; i++)
2649 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2652 If the data looks correct, then copy it to our private
2653 copy. Otherwise let the firmware know to perform the operation
2656 if (priv->eeprom[EEPROM_VERSION] != 0) {
2657 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2659 /* write the eeprom data to sram */
2660 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2661 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2663 /* Do not load eeprom data on fatal error or suspend */
2664 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2666 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2668 /* Load eeprom data on fatal error or suspend */
2669 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672 IPW_DEBUG_TRACE("<<\n");
2675 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2680 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2682 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2687 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2688 CB_NUMBER_OF_ELEMENTS_SMALL *
2689 sizeof(struct command_block));
2692 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2693 { /* start dma engine but no transfers yet */
2695 IPW_DEBUG_FW(">> : \n");
2698 ipw_fw_dma_reset_command_blocks(priv);
2700 /* Write CB base address */
2701 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2703 IPW_DEBUG_FW("<< : \n");
2707 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 IPW_DEBUG_FW(">> :\n");
2713 /* set the Stop and Abort bit */
2714 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2715 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2716 priv->sram_desc.last_cb_index = 0;
2718 IPW_DEBUG_FW("<< \n");
2721 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2722 struct command_block *cb)
2725 IPW_SHARED_SRAM_DMA_CONTROL +
2726 (sizeof(struct command_block) * index);
2727 IPW_DEBUG_FW(">> :\n");
2729 ipw_write_indirect(priv, address, (u8 *) cb,
2730 (int)sizeof(struct command_block));
2732 IPW_DEBUG_FW("<< :\n");
2737 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2742 IPW_DEBUG_FW(">> :\n");
2744 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2745 ipw_fw_dma_write_command_block(priv, index,
2746 &priv->sram_desc.cb_list[index]);
2748 /* Enable the DMA in the CSR register */
2749 ipw_clear_bit(priv, IPW_RESET_REG,
2750 IPW_RESET_REG_MASTER_DISABLED |
2751 IPW_RESET_REG_STOP_MASTER);
2753 /* Set the Start bit. */
2754 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2755 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2757 IPW_DEBUG_FW("<< :\n");
2761 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764 u32 register_value = 0;
2765 u32 cb_fields_address = 0;
2767 IPW_DEBUG_FW(">> :\n");
2768 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2769 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2771 /* Read the DMA Controlor register */
2772 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2773 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2775 /* Print the CB values */
2776 cb_fields_address = address;
2777 register_value = ipw_read_reg32(priv, cb_fields_address);
2778 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2780 cb_fields_address += sizeof(u32);
2781 register_value = ipw_read_reg32(priv, cb_fields_address);
2782 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2784 cb_fields_address += sizeof(u32);
2785 register_value = ipw_read_reg32(priv, cb_fields_address);
2786 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 cb_fields_address += sizeof(u32);
2790 register_value = ipw_read_reg32(priv, cb_fields_address);
2791 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2793 IPW_DEBUG_FW(">> :\n");
2796 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2798 u32 current_cb_address = 0;
2799 u32 current_cb_index = 0;
2801 IPW_DEBUG_FW("<< :\n");
2802 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2804 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2805 sizeof(struct command_block);
2807 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2808 current_cb_index, current_cb_address);
2810 IPW_DEBUG_FW(">> :\n");
2811 return current_cb_index;
2815 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2819 int interrupt_enabled, int is_last)
2822 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2823 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2825 struct command_block *cb;
2826 u32 last_cb_element = 0;
2828 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2829 src_address, dest_address, length);
2831 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 last_cb_element = priv->sram_desc.last_cb_index;
2835 cb = &priv->sram_desc.cb_list[last_cb_element];
2836 priv->sram_desc.last_cb_index++;
2838 /* Calculate the new CB control word */
2839 if (interrupt_enabled)
2840 control |= CB_INT_ENABLED;
2843 control |= CB_LAST_VALID;
2847 /* Calculate the CB Element's checksum value */
2848 cb->status = control ^ src_address ^ dest_address;
2850 /* Copy the Source and Destination addresses */
2851 cb->dest_addr = dest_address;
2852 cb->source_addr = src_address;
2854 /* Copy the Control Word last */
2855 cb->control = control;
2860 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2861 u32 src_phys, u32 dest_address, u32 length)
2863 u32 bytes_left = length;
2865 u32 dest_offset = 0;
2867 IPW_DEBUG_FW(">> \n");
2868 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2869 src_phys, dest_address, length);
2870 while (bytes_left > CB_MAX_LENGTH) {
2871 status = ipw_fw_dma_add_command_block(priv,
2872 src_phys + src_offset,
2875 CB_MAX_LENGTH, 0, 0);
2877 IPW_DEBUG_FW_INFO(": Failed\n");
2880 IPW_DEBUG_FW_INFO(": Added new cb\n");
2882 src_offset += CB_MAX_LENGTH;
2883 dest_offset += CB_MAX_LENGTH;
2884 bytes_left -= CB_MAX_LENGTH;
2887 /* add the buffer tail */
2888 if (bytes_left > 0) {
2890 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2891 dest_address + dest_offset,
2894 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2898 (": Adding new cb - the buffer tail\n");
2901 IPW_DEBUG_FW("<< \n");
2905 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2907 u32 current_index = 0, previous_index;
2910 IPW_DEBUG_FW(">> : \n");
2912 current_index = ipw_fw_dma_command_block_index(priv);
2913 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2914 (int)priv->sram_desc.last_cb_index);
2916 while (current_index < priv->sram_desc.last_cb_index) {
2918 previous_index = current_index;
2919 current_index = ipw_fw_dma_command_block_index(priv);
2921 if (previous_index < current_index) {
2925 if (++watchdog > 400) {
2926 IPW_DEBUG_FW_INFO("Timeout\n");
2927 ipw_fw_dma_dump_command_block(priv);
2928 ipw_fw_dma_abort(priv);
2933 ipw_fw_dma_abort(priv);
2935 /*Disable the DMA in the CSR register */
2936 ipw_set_bit(priv, IPW_RESET_REG,
2937 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2939 IPW_DEBUG_FW("<< dmaWaitSync \n");
2943 static void ipw_remove_current_network(struct ipw_priv *priv)
2945 struct list_head *element, *safe;
2946 struct ieee80211_network *network = NULL;
2947 unsigned long flags;
2949 spin_lock_irqsave(&priv->ieee->lock, flags);
2950 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2951 network = list_entry(element, struct ieee80211_network, list);
2952 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2954 list_add_tail(&network->list,
2955 &priv->ieee->network_free_list);
2958 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2962 * Check that card is still alive.
2963 * Reads debug register from domain0.
2964 * If card is present, pre-defined value should
2968 * @return 1 if card is present, 0 otherwise
2970 static inline int ipw_alive(struct ipw_priv *priv)
2972 return ipw_read32(priv, 0x90) == 0xd55555d5;
2975 /* timeout in msec, attempted in 10-msec quanta */
2976 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2982 if ((ipw_read32(priv, addr) & mask) == mask)
2986 } while (i < timeout);
2991 /* These functions load the firmware and micro code for the operation of
2992 * the ipw hardware. It assumes the buffer has all the bits for the
2993 * image and the caller is handling the memory allocation and clean up.
2996 static int ipw_stop_master(struct ipw_priv *priv)
3000 IPW_DEBUG_TRACE(">> \n");
3001 /* stop master. typical delay - 0 */
3002 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3004 /* timeout is in msec, polled in 10-msec quanta */
3005 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3006 IPW_RESET_REG_MASTER_DISABLED, 100);
3008 IPW_ERROR("wait for stop master failed after 100ms\n");
3012 IPW_DEBUG_INFO("stop master %dms\n", rc);
3017 static void ipw_arc_release(struct ipw_priv *priv)
3019 IPW_DEBUG_TRACE(">> \n");
3022 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3024 /* no one knows timing, for safety add some delay */
3033 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3035 int rc = 0, i, addr;
3039 image = (u16 *) data;
3041 IPW_DEBUG_TRACE(">> \n");
3043 rc = ipw_stop_master(priv);
3048 for (addr = IPW_SHARED_LOWER_BOUND;
3049 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3050 ipw_write32(priv, addr, 0);
3053 /* no ucode (yet) */
3054 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3055 /* destroy DMA queues */
3056 /* reset sequence */
3058 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3059 ipw_arc_release(priv);
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3064 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 /* enable ucode store */
3071 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3072 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3078 * Do NOT set indirect address register once and then
3079 * store data to indirect data register in the loop.
3080 * It seems very reasonable, but in this case DINO do not
3081 * accept ucode. It is essential to set address each time.
3083 /* load new ipw uCode */
3084 for (i = 0; i < len / 2; i++)
3085 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3086 cpu_to_le16(image[i]));
3089 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3090 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3092 /* this is where the igx / win driver deveates from the VAP driver. */
3094 /* wait for alive response */
3095 for (i = 0; i < 100; i++) {
3096 /* poll for incoming data */
3097 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3098 if (cr & DINO_RXFIFO_DATA)
3103 if (cr & DINO_RXFIFO_DATA) {
3104 /* alive_command_responce size is NOT multiple of 4 */
3105 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3107 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3108 response_buffer[i] =
3109 le32_to_cpu(ipw_read_reg32(priv,
3110 IPW_BASEBAND_RX_FIFO_READ));
3111 memcpy(&priv->dino_alive, response_buffer,
3112 sizeof(priv->dino_alive));
3113 if (priv->dino_alive.alive_command == 1
3114 && priv->dino_alive.ucode_valid == 1) {
3117 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3118 "of %02d/%02d/%02d %02d:%02d\n",
3119 priv->dino_alive.software_revision,
3120 priv->dino_alive.software_revision,
3121 priv->dino_alive.device_identifier,
3122 priv->dino_alive.device_identifier,
3123 priv->dino_alive.time_stamp[0],
3124 priv->dino_alive.time_stamp[1],
3125 priv->dino_alive.time_stamp[2],
3126 priv->dino_alive.time_stamp[3],
3127 priv->dino_alive.time_stamp[4]);
3129 IPW_DEBUG_INFO("Microcode is not alive\n");
3133 IPW_DEBUG_INFO("No alive response from DINO\n");
3137 /* disable DINO, otherwise for some reason
3138 firmware have problem getting alive resp. */
3139 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 struct fw_chunk *chunk;
3149 dma_addr_t shared_phys;
3152 IPW_DEBUG_TRACE("<< : \n");
3153 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3158 memmove(shared_virt, data, len);
3161 rc = ipw_fw_dma_enable(priv);
3163 if (priv->sram_desc.last_cb_index > 0) {
3164 /* the DMA is already ready this would be a bug. */
3170 chunk = (struct fw_chunk *)(data + offset);
3171 offset += sizeof(struct fw_chunk);
3172 /* build DMA packet and queue up for sending */
3173 /* dma to chunk->address, the chunk->length bytes from data +
3176 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3177 le32_to_cpu(chunk->address),
3178 le32_to_cpu(chunk->length));
3180 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3184 offset += le32_to_cpu(chunk->length);
3185 } while (offset < len);
3187 /* Run the DMA and wait for the answer */
3188 rc = ipw_fw_dma_kick(priv);
3190 IPW_ERROR("dmaKick Failed\n");
3194 rc = ipw_fw_dma_wait(priv);
3196 IPW_ERROR("dmaWaitSync Failed\n");
3200 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3205 static int ipw_stop_nic(struct ipw_priv *priv)
3210 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3212 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3213 IPW_RESET_REG_MASTER_DISABLED, 500);
3215 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3219 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3224 static void ipw_start_nic(struct ipw_priv *priv)
3226 IPW_DEBUG_TRACE(">>\n");
3228 /* prvHwStartNic release ARC */
3229 ipw_clear_bit(priv, IPW_RESET_REG,
3230 IPW_RESET_REG_MASTER_DISABLED |
3231 IPW_RESET_REG_STOP_MASTER |
3232 CBD_RESET_REG_PRINCETON_RESET);
3234 /* enable power management */
3235 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3236 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3238 IPW_DEBUG_TRACE("<<\n");
3241 static int ipw_init_nic(struct ipw_priv *priv)
3245 IPW_DEBUG_TRACE(">>\n");
3248 /* set "initialization complete" bit to move adapter to D0 state */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3251 /* low-level PLL activation */
3252 ipw_write32(priv, IPW_READ_INT_REGISTER,
3253 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3255 /* wait for clock stabilization */
3256 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3257 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3259 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3261 /* assert SW reset */
3262 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266 /* set "initialization complete" bit to move adapter to D0 state */
3267 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3269 IPW_DEBUG_TRACE(">>\n");
3273 /* Call this function from process context, it will sleep in request_firmware.
3274 * Probe is an ok place to call this from.
3276 static int ipw_reset_nic(struct ipw_priv *priv)
3279 unsigned long flags;
3281 IPW_DEBUG_TRACE(">>\n");
3283 rc = ipw_init_nic(priv);
3285 spin_lock_irqsave(&priv->lock, flags);
3286 /* Clear the 'host command active' bit... */
3287 priv->status &= ~STATUS_HCMD_ACTIVE;
3288 wake_up_interruptible(&priv->wait_command_queue);
3289 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3290 wake_up_interruptible(&priv->wait_state);
3291 spin_unlock_irqrestore(&priv->lock, flags);
3293 IPW_DEBUG_TRACE("<<\n");
3306 static int ipw_get_fw(struct ipw_priv *priv,
3307 const struct firmware **raw, const char *name)
3312 /* ask firmware_class module to get the boot firmware off disk */
3313 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3315 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3319 if ((*raw)->size < sizeof(*fw)) {
3320 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3324 fw = (void *)(*raw)->data;
3326 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3327 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3328 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3329 name, (*raw)->size);
3333 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3335 le32_to_cpu(fw->ver) >> 16,
3336 le32_to_cpu(fw->ver) & 0xff,
3337 (*raw)->size - sizeof(*fw));
3341 #define IPW_RX_BUF_SIZE (3000)
3343 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3344 struct ipw_rx_queue *rxq)
3346 unsigned long flags;
3349 spin_lock_irqsave(&rxq->lock, flags);
3351 INIT_LIST_HEAD(&rxq->rx_free);
3352 INIT_LIST_HEAD(&rxq->rx_used);
3354 /* Fill the rx_used queue with _all_ of the Rx buffers */
3355 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3356 /* In the reset function, these buffers may have been allocated
3357 * to an SKB, so we need to unmap and free potential storage */
3358 if (rxq->pool[i].skb != NULL) {
3359 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3360 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3361 dev_kfree_skb(rxq->pool[i].skb);
3362 rxq->pool[i].skb = NULL;
3364 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367 /* Set us so that we have processed and used all buffers, but have
3368 * not restocked the Rx queue with fresh buffers */
3369 rxq->read = rxq->write = 0;
3370 rxq->processed = RX_QUEUE_SIZE - 1;
3371 rxq->free_count = 0;
3372 spin_unlock_irqrestore(&rxq->lock, flags);
3376 static int fw_loaded = 0;
3377 static const struct firmware *raw = NULL;
3379 static void free_firmware(void)
3382 release_firmware(raw);
3388 #define free_firmware() do {} while (0)
3391 static int ipw_load(struct ipw_priv *priv)
3394 const struct firmware *raw = NULL;
3397 u8 *boot_img, *ucode_img, *fw_img;
3399 int rc = 0, retries = 3;
3401 switch (priv->ieee->iw_mode) {
3403 name = "ipw2200-ibss.fw";
3405 #ifdef CONFIG_IPW2200_MONITOR
3406 case IW_MODE_MONITOR:
3407 name = "ipw2200-sniffer.fw";
3411 name = "ipw2200-bss.fw";
3423 rc = ipw_get_fw(priv, &raw, name);
3430 fw = (void *)raw->data;
3431 boot_img = &fw->data[0];
3432 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3433 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3434 le32_to_cpu(fw->ucode_size)];
3440 priv->rxq = ipw_rx_queue_alloc(priv);
3442 ipw_rx_queue_reset(priv, priv->rxq);
3444 IPW_ERROR("Unable to initialize Rx queue\n");
3449 /* Ensure interrupts are disabled */
3450 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3451 priv->status &= ~STATUS_INT_ENABLED;
3453 /* ack pending interrupts */
3454 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3458 rc = ipw_reset_nic(priv);
3460 IPW_ERROR("Unable to reset NIC\n");
3464 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3465 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467 /* DMA the initial boot firmware into the device */
3468 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3474 /* kick start the device */
3475 ipw_start_nic(priv);
3477 /* wait for the device to finish its initial startup sequence */
3478 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3479 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 IPW_ERROR("device failed to boot initial fw image\n");
3484 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486 /* ack fw init done interrupt */
3487 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489 /* DMA the ucode into the device */
3490 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 IPW_ERROR("Unable to load ucode: %d\n", rc);
3499 /* DMA bss firmware into the device */
3500 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 IPW_ERROR("Unable to load firmware: %d\n", rc);
3509 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511 rc = ipw_queue_reset(priv);
3513 IPW_ERROR("Unable to initialize queues\n");
3517 /* Ensure interrupts are disabled */
3518 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519 /* ack pending interrupts */
3520 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522 /* kick start the device */
3523 ipw_start_nic(priv);
3525 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 IPW_WARNING("Parity error. Retrying init.\n");
3532 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3537 /* wait for the device */
3538 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3539 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 IPW_ERROR("device failed to start within 500ms\n");
3544 IPW_DEBUG_INFO("device response after %dms\n", rc);
3546 /* ack fw init done interrupt */
3547 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549 /* read eeprom data and initialize the eeprom region of sram */
3550 priv->eeprom_delay = 1;
3551 ipw_eeprom_init_sram(priv);
3553 /* enable interrupts */
3554 ipw_enable_interrupts(priv);
3556 /* Ensure our queue has valid packets */
3557 ipw_rx_queue_replenish(priv);
3559 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561 /* ack pending interrupts */
3562 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3565 release_firmware(raw);
3571 ipw_rx_queue_free(priv, priv->rxq);
3574 ipw_tx_queue_free(priv);
3576 release_firmware(raw);
3588 * Theory of operation
3590 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3591 * 2 empty entries always kept in the buffer to protect from overflow.
3593 * For Tx queue, there are low mark and high mark limits. If, after queuing
3594 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3595 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3598 * The IPW operates with six queues, one receive queue in the device's
3599 * sram, one transmit queue for sending commands to the device firmware,
3600 * and four transmit queues for data.
3602 * The four transmit queues allow for performing quality of service (qos)
3603 * transmissions as per the 802.11 protocol. Currently Linux does not
3604 * provide a mechanism to the user for utilizing prioritized queues, so
3605 * we only utilize the first data transmit queue (queue1).
3609 * Driver allocates buffers of this size for Rx
3612 static inline int ipw_queue_space(const struct clx2_queue *q)
3614 int s = q->last_used - q->first_empty;
3617 s -= 2; /* keep some reserve to not confuse empty and full situations */
3623 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3625 return (++index == n_bd) ? 0 : index;
3629 * Initialize common DMA queue structure
3631 * @param q queue to init
3632 * @param count Number of BD's to allocate. Should be power of 2
3633 * @param read_register Address for 'read' register
3634 * (not offset within BAR, full address)
3635 * @param write_register Address for 'write' register
3636 * (not offset within BAR, full address)
3637 * @param base_register Address for 'base' register
3638 * (not offset within BAR, full address)
3639 * @param size Address for 'size' register
3640 * (not offset within BAR, full address)
3642 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3643 int count, u32 read, u32 write, u32 base, u32 size)
3647 q->low_mark = q->n_bd / 4;
3648 if (q->low_mark < 4)
3651 q->high_mark = q->n_bd / 8;
3652 if (q->high_mark < 2)
3655 q->first_empty = q->last_used = 0;
3659 ipw_write32(priv, base, q->dma_addr);
3660 ipw_write32(priv, size, count);
3661 ipw_write32(priv, read, 0);
3662 ipw_write32(priv, write, 0);
3664 _ipw_read32(priv, 0x90);
3667 static int ipw_queue_tx_init(struct ipw_priv *priv,
3668 struct clx2_tx_queue *q,
3669 int count, u32 read, u32 write, u32 base, u32 size)
3671 struct pci_dev *dev = priv->pci_dev;
3673 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3675 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3680 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3682 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3683 sizeof(q->bd[0]) * count);
3689 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3694 * Free one TFD, those at index [txq->q.last_used].
3695 * Do NOT advance any indexes
3700 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3701 struct clx2_tx_queue *txq)
3703 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3704 struct pci_dev *dev = priv->pci_dev;
3708 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3709 /* nothing to cleanup after for host commands */
3713 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3714 IPW_ERROR("Too many chunks: %i\n",
3715 le32_to_cpu(bd->u.data.num_chunks));
3716 /** @todo issue fatal error, it is quite serious situation */
3720 /* unmap chunks if any */
3721 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3722 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3723 le16_to_cpu(bd->u.data.chunk_len[i]),
3725 if (txq->txb[txq->q.last_used]) {
3726 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3727 txq->txb[txq->q.last_used] = NULL;
3733 * Deallocate DMA queue.
3735 * Empty queue by removing and destroying all BD's.
3741 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3743 struct clx2_queue *q = &txq->q;
3744 struct pci_dev *dev = priv->pci_dev;
3749 /* first, empty all BD's */
3750 for (; q->first_empty != q->last_used;
3751 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3752 ipw_queue_tx_free_tfd(priv, txq);
3755 /* free buffers belonging to queue itself */
3756 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3760 /* 0 fill whole structure */
3761 memset(txq, 0, sizeof(*txq));
3765 * Destroy all DMA queues and structures
3769 static void ipw_tx_queue_free(struct ipw_priv *priv)
3772 ipw_queue_tx_free(priv, &priv->txq_cmd);
3775 ipw_queue_tx_free(priv, &priv->txq[0]);
3776 ipw_queue_tx_free(priv, &priv->txq[1]);
3777 ipw_queue_tx_free(priv, &priv->txq[2]);
3778 ipw_queue_tx_free(priv, &priv->txq[3]);
3781 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3783 /* First 3 bytes are manufacturer */
3784 bssid[0] = priv->mac_addr[0];
3785 bssid[1] = priv->mac_addr[1];
3786 bssid[2] = priv->mac_addr[2];
3788 /* Last bytes are random */
3789 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3791 bssid[0] &= 0xfe; /* clear multicast bit */
3792 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3795 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3797 struct ipw_station_entry entry;
3800 for (i = 0; i < priv->num_stations; i++) {
3801 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3802 /* Another node is active in network */
3803 priv->missed_adhoc_beacons = 0;
3804 if (!(priv->config & CFG_STATIC_CHANNEL))
3805 /* when other nodes drop out, we drop out */
3806 priv->config &= ~CFG_ADHOC_PERSIST;
3812 if (i == MAX_STATIONS)
3813 return IPW_INVALID_STATION;
3815 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3818 entry.support_mode = 0;
3819 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3820 memcpy(priv->stations[i], bssid, ETH_ALEN);
3821 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3822 &entry, sizeof(entry));
3823 priv->num_stations++;
3828 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3832 for (i = 0; i < priv->num_stations; i++)
3833 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3836 return IPW_INVALID_STATION;
3839 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3843 if (priv->status & STATUS_ASSOCIATING) {
3844 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3845 queue_work(priv->workqueue, &priv->disassociate);
3849 if (!(priv->status & STATUS_ASSOCIATED)) {
3850 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3854 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3856 MAC_ARG(priv->assoc_request.bssid),
3857 priv->assoc_request.channel);
3859 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3860 priv->status |= STATUS_DISASSOCIATING;
3863 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3865 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3867 err = ipw_send_associate(priv, &priv->assoc_request);
3869 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3876 static int ipw_disassociate(void *data)
3878 struct ipw_priv *priv = data;
3879 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3881 ipw_send_disassociate(data, 0);
3885 static void ipw_bg_disassociate(struct work_struct *work)
3887 struct ipw_priv *priv =
3888 container_of(work, struct ipw_priv, disassociate);
3889 mutex_lock(&priv->mutex);
3890 ipw_disassociate(priv);
3891 mutex_unlock(&priv->mutex);
3894 static void ipw_system_config(struct work_struct *work)
3896 struct ipw_priv *priv =
3897 container_of(work, struct ipw_priv, system_config);
3899 #ifdef CONFIG_IPW2200_PROMISCUOUS
3900 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3901 priv->sys_config.accept_all_data_frames = 1;
3902 priv->sys_config.accept_non_directed_frames = 1;
3903 priv->sys_config.accept_all_mgmt_bcpr = 1;
3904 priv->sys_config.accept_all_mgmt_frames = 1;
3908 ipw_send_system_config(priv);
3911 struct ipw_status_code {
3916 static const struct ipw_status_code ipw_status_codes[] = {
3917 {0x00, "Successful"},
3918 {0x01, "Unspecified failure"},
3919 {0x0A, "Cannot support all requested capabilities in the "
3920 "Capability information field"},
3921 {0x0B, "Reassociation denied due to inability to confirm that "
3922 "association exists"},
3923 {0x0C, "Association denied due to reason outside the scope of this "
3926 "Responding station does not support the specified authentication "
3929 "Received an Authentication frame with authentication sequence "
3930 "transaction sequence number out of expected sequence"},
3931 {0x0F, "Authentication rejected because of challenge failure"},
3932 {0x10, "Authentication rejected due to timeout waiting for next "
3933 "frame in sequence"},
3934 {0x11, "Association denied because AP is unable to handle additional "
3935 "associated stations"},
3937 "Association denied due to requesting station not supporting all "
3938 "of the datarates in the BSSBasicServiceSet Parameter"},
3940 "Association denied due to requesting station not supporting "
3941 "short preamble operation"},
3943 "Association denied due to requesting station not supporting "
3946 "Association denied due to requesting station not supporting "
3949 "Association denied due to requesting station not supporting "
3950 "short slot operation"},
3952 "Association denied due to requesting station not supporting "
3953 "DSSS-OFDM operation"},
3954 {0x28, "Invalid Information Element"},
3955 {0x29, "Group Cipher is not valid"},
3956 {0x2A, "Pairwise Cipher is not valid"},
3957 {0x2B, "AKMP is not valid"},
3958 {0x2C, "Unsupported RSN IE version"},
3959 {0x2D, "Invalid RSN IE Capabilities"},
3960 {0x2E, "Cipher suite is rejected per security policy"},
3963 static const char *ipw_get_status_code(u16 status)
3966 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3967 if (ipw_status_codes[i].status == (status & 0xff))
3968 return ipw_status_codes[i].reason;
3969 return "Unknown status value.";
3972 static void inline average_init(struct average *avg)
3974 memset(avg, 0, sizeof(*avg));
3977 #define DEPTH_RSSI 8
3978 #define DEPTH_NOISE 16
3979 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3981 return ((depth-1)*prev_avg + val)/depth;
3984 static void average_add(struct average *avg, s16 val)
3986 avg->sum -= avg->entries[avg->pos];
3988 avg->entries[avg->pos++] = val;
3989 if (unlikely(avg->pos == AVG_ENTRIES)) {
3995 static s16 average_value(struct average *avg)
3997 if (!unlikely(avg->init)) {
3999 return avg->sum / avg->pos;
4003 return avg->sum / AVG_ENTRIES;
4006 static void ipw_reset_stats(struct ipw_priv *priv)
4008 u32 len = sizeof(u32);
4012 average_init(&priv->average_missed_beacons);
4013 priv->exp_avg_rssi = -60;
4014 priv->exp_avg_noise = -85 + 0x100;
4016 priv->last_rate = 0;
4017 priv->last_missed_beacons = 0;
4018 priv->last_rx_packets = 0;
4019 priv->last_tx_packets = 0;
4020 priv->last_tx_failures = 0;
4022 /* Firmware managed, reset only when NIC is restarted, so we have to
4023 * normalize on the current value */
4024 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4025 &priv->last_rx_err, &len);
4026 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4027 &priv->last_tx_failures, &len);
4029 /* Driver managed, reset with each association */
4030 priv->missed_adhoc_beacons = 0;
4031 priv->missed_beacons = 0;
4032 priv->tx_packets = 0;
4033 priv->rx_packets = 0;
4037 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4040 u32 mask = priv->rates_mask;
4041 /* If currently associated in B mode, restrict the maximum
4042 * rate match to B rates */
4043 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4044 mask &= IEEE80211_CCK_RATES_MASK;
4046 /* TODO: Verify that the rate is supported by the current rates
4049 while (i && !(mask & i))
4052 case IEEE80211_CCK_RATE_1MB_MASK:
4054 case IEEE80211_CCK_RATE_2MB_MASK:
4056 case IEEE80211_CCK_RATE_5MB_MASK:
4058 case IEEE80211_OFDM_RATE_6MB_MASK:
4060 case IEEE80211_OFDM_RATE_9MB_MASK:
4062 case IEEE80211_CCK_RATE_11MB_MASK:
4064 case IEEE80211_OFDM_RATE_12MB_MASK:
4066 case IEEE80211_OFDM_RATE_18MB_MASK:
4068 case IEEE80211_OFDM_RATE_24MB_MASK:
4070 case IEEE80211_OFDM_RATE_36MB_MASK:
4072 case IEEE80211_OFDM_RATE_48MB_MASK:
4074 case IEEE80211_OFDM_RATE_54MB_MASK:
4078 if (priv->ieee->mode == IEEE_B)
4084 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4086 u32 rate, len = sizeof(rate);
4089 if (!(priv->status & STATUS_ASSOCIATED))
4092 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4093 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4096 IPW_DEBUG_INFO("failed querying ordinals.\n");
4100 return ipw_get_max_rate(priv);
4103 case IPW_TX_RATE_1MB:
4105 case IPW_TX_RATE_2MB:
4107 case IPW_TX_RATE_5MB:
4109 case IPW_TX_RATE_6MB:
4111 case IPW_TX_RATE_9MB:
4113 case IPW_TX_RATE_11MB:
4115 case IPW_TX_RATE_12MB:
4117 case IPW_TX_RATE_18MB:
4119 case IPW_TX_RATE_24MB:
4121 case IPW_TX_RATE_36MB:
4123 case IPW_TX_RATE_48MB:
4125 case IPW_TX_RATE_54MB:
4132 #define IPW_STATS_INTERVAL (2 * HZ)
4133 static void ipw_gather_stats(struct ipw_priv *priv)
4135 u32 rx_err, rx_err_delta, rx_packets_delta;
4136 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4137 u32 missed_beacons_percent, missed_beacons_delta;
4139 u32 len = sizeof(u32);
4141 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4145 if (!(priv->status & STATUS_ASSOCIATED)) {
4150 /* Update the statistics */
4151 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4152 &priv->missed_beacons, &len);
4153 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4154 priv->last_missed_beacons = priv->missed_beacons;
4155 if (priv->assoc_request.beacon_interval) {
4156 missed_beacons_percent = missed_beacons_delta *
4157 (HZ * priv->assoc_request.beacon_interval) /
4158 (IPW_STATS_INTERVAL * 10);
4160 missed_beacons_percent = 0;
4162 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4164 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4165 rx_err_delta = rx_err - priv->last_rx_err;
4166 priv->last_rx_err = rx_err;
4168 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4169 tx_failures_delta = tx_failures - priv->last_tx_failures;
4170 priv->last_tx_failures = tx_failures;
4172 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4173 priv->last_rx_packets = priv->rx_packets;
4175 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4176 priv->last_tx_packets = priv->tx_packets;
4178 /* Calculate quality based on the following:
4180 * Missed beacon: 100% = 0, 0% = 70% missed
4181 * Rate: 60% = 1Mbs, 100% = Max
4182 * Rx and Tx errors represent a straight % of total Rx/Tx
4183 * RSSI: 100% = > -50, 0% = < -80
4184 * Rx errors: 100% = 0, 0% = 50% missed
4186 * The lowest computed quality is used.
4189 #define BEACON_THRESHOLD 5
4190 beacon_quality = 100 - missed_beacons_percent;
4191 if (beacon_quality < BEACON_THRESHOLD)
4194 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4195 (100 - BEACON_THRESHOLD);
4196 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4197 beacon_quality, missed_beacons_percent);
4199 priv->last_rate = ipw_get_current_rate(priv);
4200 max_rate = ipw_get_max_rate(priv);
4201 rate_quality = priv->last_rate * 40 / max_rate + 60;
4202 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4203 rate_quality, priv->last_rate / 1000000);
4205 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4206 rx_quality = 100 - (rx_err_delta * 100) /
4207 (rx_packets_delta + rx_err_delta);
4210 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4211 rx_quality, rx_err_delta, rx_packets_delta);
4213 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4214 tx_quality = 100 - (tx_failures_delta * 100) /
4215 (tx_packets_delta + tx_failures_delta);
4218 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4219 tx_quality, tx_failures_delta, tx_packets_delta);
4221 rssi = priv->exp_avg_rssi;
4224 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4225 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4226 (priv->ieee->perfect_rssi - rssi) *
4227 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4228 62 * (priv->ieee->perfect_rssi - rssi))) /
4229 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4231 if (signal_quality > 100)
4232 signal_quality = 100;
4233 else if (signal_quality < 1)
4236 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4237 signal_quality, rssi);
4239 quality = min(beacon_quality,
4241 min(tx_quality, min(rx_quality, signal_quality))));
4242 if (quality == beacon_quality)
4243 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4245 if (quality == rate_quality)
4246 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4248 if (quality == tx_quality)
4249 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4251 if (quality == rx_quality)
4252 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4254 if (quality == signal_quality)
4255 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4258 priv->quality = quality;
4260 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4261 IPW_STATS_INTERVAL);
4264 static void ipw_bg_gather_stats(struct work_struct *work)
4266 struct ipw_priv *priv =
4267 container_of(work, struct ipw_priv, gather_stats.work);
4268 mutex_lock(&priv->mutex);
4269 ipw_gather_stats(priv);
4270 mutex_unlock(&priv->mutex);
4273 /* Missed beacon behavior:
4274 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4275 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4276 * Above disassociate threshold, give up and stop scanning.
4277 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4278 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4281 priv->notif_missed_beacons = missed_count;
4283 if (missed_count > priv->disassociate_threshold &&
4284 priv->status & STATUS_ASSOCIATED) {
4285 /* If associated and we've hit the missed
4286 * beacon threshold, disassociate, turn
4287 * off roaming, and abort any active scans */
4288 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4289 IPW_DL_STATE | IPW_DL_ASSOC,
4290 "Missed beacon: %d - disassociate\n", missed_count);
4291 priv->status &= ~STATUS_ROAMING;
4292 if (priv->status & STATUS_SCANNING) {
4293 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4295 "Aborting scan with missed beacon.\n");
4296 queue_work(priv->workqueue, &priv->abort_scan);
4299 queue_work(priv->workqueue, &priv->disassociate);
4303 if (priv->status & STATUS_ROAMING) {
4304 /* If we are currently roaming, then just
4305 * print a debug statement... */
4306 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4307 "Missed beacon: %d - roam in progress\n",
4313 (missed_count > priv->roaming_threshold &&
4314 missed_count <= priv->disassociate_threshold)) {
4315 /* If we are not already roaming, set the ROAM
4316 * bit in the status and kick off a scan.
4317 * This can happen several times before we reach
4318 * disassociate_threshold. */
4319 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4320 "Missed beacon: %d - initiate "
4321 "roaming\n", missed_count);
4322 if (!(priv->status & STATUS_ROAMING)) {
4323 priv->status |= STATUS_ROAMING;
4324 if (!(priv->status & STATUS_SCANNING))
4325 queue_delayed_work(priv->workqueue,
4326 &priv->request_scan, 0);
4331 if (priv->status & STATUS_SCANNING) {
4332 /* Stop scan to keep fw from getting
4333 * stuck (only if we aren't roaming --
4334 * otherwise we'll never scan more than 2 or 3
4336 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4337 "Aborting scan with missed beacon.\n");
4338 queue_work(priv->workqueue, &priv->abort_scan);
4341 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4345 * Handle host notification packet.
4346 * Called from interrupt routine
4348 static void ipw_rx_notification(struct ipw_priv *priv,
4349 struct ipw_rx_notification *notif)
4351 notif->size = le16_to_cpu(notif->size);
4353 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4355 switch (notif->subtype) {
4356 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4357 struct notif_association *assoc = ¬if->u.assoc;
4359 switch (assoc->state) {
4360 case CMAS_ASSOCIATED:{
4361 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4363 "associated: '%s' " MAC_FMT
4365 escape_essid(priv->essid,
4367 MAC_ARG(priv->bssid));
4369 switch (priv->ieee->iw_mode) {
4371 memcpy(priv->ieee->bssid,
4372 priv->bssid, ETH_ALEN);
4376 memcpy(priv->ieee->bssid,
4377 priv->bssid, ETH_ALEN);
4379 /* clear out the station table */
4380 priv->num_stations = 0;
4383 ("queueing adhoc check\n");
4384 queue_delayed_work(priv->
4394 priv->status &= ~STATUS_ASSOCIATING;
4395 priv->status |= STATUS_ASSOCIATED;
4396 queue_work(priv->workqueue,
4397 &priv->system_config);
4399 #ifdef CONFIG_IPW2200_QOS
4400 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4401 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4402 if ((priv->status & STATUS_AUTH) &&
4403 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4404 == IEEE80211_STYPE_ASSOC_RESP)) {
4407 ieee80211_assoc_response)
4409 && (notif->size <= 2314)) {
4422 ieee80211_rx_mgt(priv->
4427 ¬if->u.raw, &stats);
4432 schedule_work(&priv->link_up);
4437 case CMAS_AUTHENTICATED:{
4439 status & (STATUS_ASSOCIATED |
4441 struct notif_authenticate *auth
4443 IPW_DEBUG(IPW_DL_NOTIF |
4446 "deauthenticated: '%s' "
4448 ": (0x%04X) - %s \n",
4453 MAC_ARG(priv->bssid),
4454 ntohs(auth->status),
4460 ~(STATUS_ASSOCIATING |
4464 schedule_work(&priv->link_down);
4468 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4470 "authenticated: '%s' " MAC_FMT
4472 escape_essid(priv->essid,
4474 MAC_ARG(priv->bssid));
4479 if (priv->status & STATUS_AUTH) {
4481 ieee80211_assoc_response
4485 ieee80211_assoc_response
4487 IPW_DEBUG(IPW_DL_NOTIF |
4490 "association failed (0x%04X): %s\n",
4491 ntohs(resp->status),
4497 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4499 "disassociated: '%s' " MAC_FMT
4501 escape_essid(priv->essid,
4503 MAC_ARG(priv->bssid));
4506 ~(STATUS_DISASSOCIATING |
4507 STATUS_ASSOCIATING |
4508 STATUS_ASSOCIATED | STATUS_AUTH);
4509 if (priv->assoc_network
4510 && (priv->assoc_network->
4512 WLAN_CAPABILITY_IBSS))
4513 ipw_remove_current_network
4516 schedule_work(&priv->link_down);
4521 case CMAS_RX_ASSOC_RESP:
4525 IPW_ERROR("assoc: unknown (%d)\n",
4533 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4534 struct notif_authenticate *auth = ¬if->u.auth;
4535 switch (auth->state) {
4536 case CMAS_AUTHENTICATED:
4537 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4538 "authenticated: '%s' " MAC_FMT " \n",
4539 escape_essid(priv->essid,
4541 MAC_ARG(priv->bssid));
4542 priv->status |= STATUS_AUTH;
4546 if (priv->status & STATUS_AUTH) {
4547 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549 "authentication failed (0x%04X): %s\n",
4550 ntohs(auth->status),
4551 ipw_get_status_code(ntohs
4555 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557 "deauthenticated: '%s' " MAC_FMT "\n",
4558 escape_essid(priv->essid,
4560 MAC_ARG(priv->bssid));
4562 priv->status &= ~(STATUS_ASSOCIATING |
4566 schedule_work(&priv->link_down);
4569 case CMAS_TX_AUTH_SEQ_1:
4570 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4573 case CMAS_RX_AUTH_SEQ_2:
4574 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4575 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4577 case CMAS_AUTH_SEQ_1_PASS:
4578 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4579 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4581 case CMAS_AUTH_SEQ_1_FAIL:
4582 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4583 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4585 case CMAS_TX_AUTH_SEQ_3:
4586 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4589 case CMAS_RX_AUTH_SEQ_4:
4590 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4591 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4593 case CMAS_AUTH_SEQ_2_PASS:
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4597 case CMAS_AUTH_SEQ_2_FAIL:
4598 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4599 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4602 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4603 IPW_DL_ASSOC, "TX_ASSOC\n");
4605 case CMAS_RX_ASSOC_RESP:
4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4610 case CMAS_ASSOCIATED:
4611 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612 IPW_DL_ASSOC, "ASSOCIATED\n");
4615 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4622 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4623 struct notif_channel_result *x =
4624 ¬if->u.channel_result;
4626 if (notif->size == sizeof(*x)) {
4627 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4630 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4631 "(should be %zd)\n",
4632 notif->size, sizeof(*x));
4637 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4638 struct notif_scan_complete *x = ¬if->u.scan_complete;
4639 if (notif->size == sizeof(*x)) {
4641 ("Scan completed: type %d, %d channels, "
4642 "%d status\n", x->scan_type,
4643 x->num_channels, x->status);
4645 IPW_ERROR("Scan completed of wrong size %d "
4646 "(should be %zd)\n",
4647 notif->size, sizeof(*x));
4651 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4653 wake_up_interruptible(&priv->wait_state);
4654 cancel_delayed_work(&priv->scan_check);
4656 if (priv->status & STATUS_EXIT_PENDING)
4659 priv->ieee->scans++;
4661 #ifdef CONFIG_IPW2200_MONITOR
4662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4663 priv->status |= STATUS_SCAN_FORCED;
4664 queue_delayed_work(priv->workqueue,
4665 &priv->request_scan, 0);
4668 priv->status &= ~STATUS_SCAN_FORCED;
4669 #endif /* CONFIG_IPW2200_MONITOR */
4671 if (!(priv->status & (STATUS_ASSOCIATED |
4672 STATUS_ASSOCIATING |
4674 STATUS_DISASSOCIATING)))
4675 queue_work(priv->workqueue, &priv->associate);
4676 else if (priv->status & STATUS_ROAMING) {
4677 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4678 /* If a scan completed and we are in roam mode, then
4679 * the scan that completed was the one requested as a
4680 * result of entering roam... so, schedule the
4682 queue_work(priv->workqueue,
4685 /* Don't schedule if we aborted the scan */
4686 priv->status &= ~STATUS_ROAMING;
4687 } else if (priv->status & STATUS_SCAN_PENDING)
4688 queue_delayed_work(priv->workqueue,
4689 &priv->request_scan, 0);
4690 else if (priv->config & CFG_BACKGROUND_SCAN
4691 && priv->status & STATUS_ASSOCIATED)
4692 queue_delayed_work(priv->workqueue,
4693 &priv->request_scan,
4696 /* Send an empty event to user space.
4697 * We don't send the received data on the event because
4698 * it would require us to do complex transcoding, and
4699 * we want to minimise the work done in the irq handler
4700 * Use a request to extract the data.
4701 * Also, we generate this even for any scan, regardless
4702 * on how the scan was initiated. User space can just
4703 * sync on periodic scan to get fresh data...
4705 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4706 union iwreq_data wrqu;
4708 wrqu.data.length = 0;
4709 wrqu.data.flags = 0;
4710 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4716 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4717 struct notif_frag_length *x = ¬if->u.frag_len;
4719 if (notif->size == sizeof(*x))
4720 IPW_ERROR("Frag length: %d\n",
4721 le16_to_cpu(x->frag_length));
4723 IPW_ERROR("Frag length of wrong size %d "
4724 "(should be %zd)\n",
4725 notif->size, sizeof(*x));
4729 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4730 struct notif_link_deterioration *x =
4731 ¬if->u.link_deterioration;
4733 if (notif->size == sizeof(*x)) {
4734 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4735 "link deterioration: type %d, cnt %d\n",
4736 x->silence_notification_type,
4738 memcpy(&priv->last_link_deterioration, x,
4741 IPW_ERROR("Link Deterioration of wrong size %d "
4742 "(should be %zd)\n",
4743 notif->size, sizeof(*x));
4748 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4749 IPW_ERROR("Dino config\n");
4751 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4752 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4757 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4758 struct notif_beacon_state *x = ¬if->u.beacon_state;
4759 if (notif->size != sizeof(*x)) {
4761 ("Beacon state of wrong size %d (should "
4762 "be %zd)\n", notif->size, sizeof(*x));
4766 if (le32_to_cpu(x->state) ==
4767 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4768 ipw_handle_missed_beacon(priv,
4775 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4776 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4777 if (notif->size == sizeof(*x)) {
4778 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4779 "0x%02x station %d\n",
4780 x->key_state, x->security_type,
4786 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4787 notif->size, sizeof(*x));
4791 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4792 struct notif_calibration *x = ¬if->u.calibration;
4794 if (notif->size == sizeof(*x)) {
4795 memcpy(&priv->calib, x, sizeof(*x));
4796 IPW_DEBUG_INFO("TODO: Calibration\n");
4801 ("Calibration of wrong size %d (should be %zd)\n",
4802 notif->size, sizeof(*x));
4806 case HOST_NOTIFICATION_NOISE_STATS:{
4807 if (notif->size == sizeof(u32)) {
4808 priv->exp_avg_noise =
4809 exponential_average(priv->exp_avg_noise,
4810 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4816 ("Noise stat is wrong size %d (should be %zd)\n",
4817 notif->size, sizeof(u32));
4822 IPW_DEBUG_NOTIF("Unknown notification: "
4823 "subtype=%d,flags=0x%2x,size=%d\n",
4824 notif->subtype, notif->flags, notif->size);
4829 * Destroys all DMA structures and initialise them again
4832 * @return error code
4834 static int ipw_queue_reset(struct ipw_priv *priv)
4837 /** @todo customize queue sizes */
4838 int nTx = 64, nTxCmd = 8;
4839 ipw_tx_queue_free(priv);
4841 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4842 IPW_TX_CMD_QUEUE_READ_INDEX,
4843 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4844 IPW_TX_CMD_QUEUE_BD_BASE,
4845 IPW_TX_CMD_QUEUE_BD_SIZE);
4847 IPW_ERROR("Tx Cmd queue init failed\n");
4851 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4852 IPW_TX_QUEUE_0_READ_INDEX,
4853 IPW_TX_QUEUE_0_WRITE_INDEX,
4854 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4856 IPW_ERROR("Tx 0 queue init failed\n");
4859 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4860 IPW_TX_QUEUE_1_READ_INDEX,
4861 IPW_TX_QUEUE_1_WRITE_INDEX,
4862 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4864 IPW_ERROR("Tx 1 queue init failed\n");
4867 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4868 IPW_TX_QUEUE_2_READ_INDEX,
4869 IPW_TX_QUEUE_2_WRITE_INDEX,
4870 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4872 IPW_ERROR("Tx 2 queue init failed\n");
4875 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4876 IPW_TX_QUEUE_3_READ_INDEX,
4877 IPW_TX_QUEUE_3_WRITE_INDEX,
4878 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4880 IPW_ERROR("Tx 3 queue init failed\n");
4884 priv->rx_bufs_min = 0;
4885 priv->rx_pend_max = 0;
4889 ipw_tx_queue_free(priv);
4894 * Reclaim Tx queue entries no more used by NIC.
4896 * When FW adwances 'R' index, all entries between old and
4897 * new 'R' index need to be reclaimed. As result, some free space
4898 * forms. If there is enough free space (> low mark), wake Tx queue.
4900 * @note Need to protect against garbage in 'R' index
4904 * @return Number of used entries remains in the queue
4906 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4907 struct clx2_tx_queue *txq, int qindex)
4911 struct clx2_queue *q = &txq->q;
4913 hw_tail = ipw_read32(priv, q->reg_r);
4914 if (hw_tail >= q->n_bd) {
4916 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4920 for (; q->last_used != hw_tail;
4921 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4922 ipw_queue_tx_free_tfd(priv, txq);
4926 if ((ipw_queue_space(q) > q->low_mark) &&
4928 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4929 netif_wake_queue(priv->net_dev);
4930 used = q->first_empty - q->last_used;
4937 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4940 struct clx2_tx_queue *txq = &priv->txq_cmd;
4941 struct clx2_queue *q = &txq->q;
4942 struct tfd_frame *tfd;
4944 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4945 IPW_ERROR("No space for Tx\n");
4949 tfd = &txq->bd[q->first_empty];
4950 txq->txb[q->first_empty] = NULL;
4952 memset(tfd, 0, sizeof(*tfd));
4953 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4954 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4956 tfd->u.cmd.index = hcmd;
4957 tfd->u.cmd.length = len;
4958 memcpy(tfd->u.cmd.payload, buf, len);
4959 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4960 ipw_write32(priv, q->reg_w, q->first_empty);
4961 _ipw_read32(priv, 0x90);
4967 * Rx theory of operation
4969 * The host allocates 32 DMA target addresses and passes the host address
4970 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4974 * The host/firmware share two index registers for managing the Rx buffers.
4976 * The READ index maps to the first position that the firmware may be writing
4977 * to -- the driver can read up to (but not including) this position and get
4979 * The READ index is managed by the firmware once the card is enabled.
4981 * The WRITE index maps to the last position the driver has read from -- the
4982 * position preceding WRITE is the last slot the firmware can place a packet.
4984 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4987 * During initialization the host sets up the READ queue position to the first
4988 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4990 * When the firmware places a packet in a buffer it will advance the READ index
4991 * and fire the RX interrupt. The driver can then query the READ index and
4992 * process as many packets as possible, moving the WRITE index forward as it
4993 * resets the Rx queue buffers with new memory.
4995 * The management in the driver is as follows:
4996 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4997 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4998 * to replensish the ipw->rxq->rx_free.
4999 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5000 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5001 * 'processed' and 'read' driver indexes as well)
5002 * + A received packet is processed and handed to the kernel network stack,
5003 * detached from the ipw->rxq. The driver 'processed' index is updated.
5004 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5005 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5006 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5007 * were enough free buffers and RX_STALLED is set it is cleared.
5012 * ipw_rx_queue_alloc() Allocates rx_free
5013 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5014 * ipw_rx_queue_restock
5015 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5016 * queue, updates firmware pointers, and updates
5017 * the WRITE index. If insufficient rx_free buffers
5018 * are available, schedules ipw_rx_queue_replenish
5020 * -- enable interrupts --
5021 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5022 * READ INDEX, detaching the SKB from the pool.
5023 * Moves the packet buffer from queue to rx_used.
5024 * Calls ipw_rx_queue_restock to refill any empty
5031 * If there are slots in the RX queue that need to be restocked,
5032 * and we have free pre-allocated buffers, fill the ranks as much
5033 * as we can pulling from rx_free.
5035 * This moves the 'write' index forward to catch up with 'processed', and
5036 * also updates the memory address in the firmware to reference the new
5039 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5041 struct ipw_rx_queue *rxq = priv->rxq;
5042 struct list_head *element;
5043 struct ipw_rx_mem_buffer *rxb;
5044 unsigned long flags;
5047 spin_lock_irqsave(&rxq->lock, flags);
5049 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5050 element = rxq->rx_free.next;
5051 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5054 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5056 rxq->queue[rxq->write] = rxb;
5057 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5060 spin_unlock_irqrestore(&rxq->lock, flags);
5062 /* If the pre-allocated buffer pool is dropping low, schedule to
5064 if (rxq->free_count <= RX_LOW_WATERMARK)
5065 queue_work(priv->workqueue, &priv->rx_replenish);
5067 /* If we've added more space for the firmware to place data, tell it */
5068 if (write != rxq->write)
5069 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5073 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5074 * Also restock the Rx queue via ipw_rx_queue_restock.
5076 * This is called as a scheduled work item (except for during intialization)
5078 static void ipw_rx_queue_replenish(void *data)
5080 struct ipw_priv *priv = data;
5081 struct ipw_rx_queue *rxq = priv->rxq;
5082 struct list_head *element;
5083 struct ipw_rx_mem_buffer *rxb;
5084 unsigned long flags;
5086 spin_lock_irqsave(&rxq->lock, flags);
5087 while (!list_empty(&rxq->rx_used)) {
5088 element = rxq->rx_used.next;
5089 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5090 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5092 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5093 priv->net_dev->name);
5094 /* We don't reschedule replenish work here -- we will
5095 * call the restock method and if it still needs
5096 * more buffers it will schedule replenish */
5102 pci_map_single(priv->pci_dev, rxb->skb->data,
5103 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5105 list_add_tail(&rxb->list, &rxq->rx_free);
5108 spin_unlock_irqrestore(&rxq->lock, flags);
5110 ipw_rx_queue_restock(priv);
5113 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5115 struct ipw_priv *priv =
5116 container_of(work, struct ipw_priv, rx_replenish);
5117 mutex_lock(&priv->mutex);
5118 ipw_rx_queue_replenish(priv);
5119 mutex_unlock(&priv->mutex);
5122 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5123 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5124 * This free routine walks the list of POOL entries and if SKB is set to
5125 * non NULL it is unmapped and freed
5127 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5134 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5135 if (rxq->pool[i].skb != NULL) {
5136 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5137 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5138 dev_kfree_skb(rxq->pool[i].skb);
5145 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5147 struct ipw_rx_queue *rxq;
5150 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5151 if (unlikely(!rxq)) {
5152 IPW_ERROR("memory allocation failed\n");
5155 spin_lock_init(&rxq->lock);
5156 INIT_LIST_HEAD(&rxq->rx_free);
5157 INIT_LIST_HEAD(&rxq->rx_used);
5159 /* Fill the rx_used queue with _all_ of the Rx buffers */
5160 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5161 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5163 /* Set us so that we have processed and used all buffers, but have
5164 * not restocked the Rx queue with fresh buffers */
5165 rxq->read = rxq->write = 0;
5166 rxq->processed = RX_QUEUE_SIZE - 1;
5167 rxq->free_count = 0;
5172 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5174 rate &= ~IEEE80211_BASIC_RATE_MASK;
5175 if (ieee_mode == IEEE_A) {
5177 case IEEE80211_OFDM_RATE_6MB:
5178 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5180 case IEEE80211_OFDM_RATE_9MB:
5181 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5183 case IEEE80211_OFDM_RATE_12MB:
5185 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5186 case IEEE80211_OFDM_RATE_18MB:
5188 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5189 case IEEE80211_OFDM_RATE_24MB:
5191 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5192 case IEEE80211_OFDM_RATE_36MB:
5194 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5195 case IEEE80211_OFDM_RATE_48MB:
5197 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5198 case IEEE80211_OFDM_RATE_54MB:
5200 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5208 case IEEE80211_CCK_RATE_1MB:
5209 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5210 case IEEE80211_CCK_RATE_2MB:
5211 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5212 case IEEE80211_CCK_RATE_5MB:
5213 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5214 case IEEE80211_CCK_RATE_11MB:
5215 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5218 /* If we are limited to B modulations, bail at this point */
5219 if (ieee_mode == IEEE_B)
5224 case IEEE80211_OFDM_RATE_6MB:
5225 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5226 case IEEE80211_OFDM_RATE_9MB:
5227 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_12MB:
5229 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5230 case IEEE80211_OFDM_RATE_18MB:
5231 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5232 case IEEE80211_OFDM_RATE_24MB:
5233 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5235 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5236 case IEEE80211_OFDM_RATE_48MB:
5237 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5238 case IEEE80211_OFDM_RATE_54MB:
5239 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5245 static int ipw_compatible_rates(struct ipw_priv *priv,
5246 const struct ieee80211_network *network,
5247 struct ipw_supported_rates *rates)
5251 memset(rates, 0, sizeof(*rates));
5252 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5253 rates->num_rates = 0;
5254 for (i = 0; i < num_rates; i++) {
5255 if (!ipw_is_rate_in_mask(priv, network->mode,
5256 network->rates[i])) {
5258 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5259 IPW_DEBUG_SCAN("Adding masked mandatory "
5262 rates->supported_rates[rates->num_rates++] =
5267 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5268 network->rates[i], priv->rates_mask);
5272 rates->supported_rates[rates->num_rates++] = network->rates[i];
5275 num_rates = min(network->rates_ex_len,
5276 (u8) (IPW_MAX_RATES - num_rates));
5277 for (i = 0; i < num_rates; i++) {
5278 if (!ipw_is_rate_in_mask(priv, network->mode,
5279 network->rates_ex[i])) {
5280 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5281 IPW_DEBUG_SCAN("Adding masked mandatory "
5283 network->rates_ex[i]);
5284 rates->supported_rates[rates->num_rates++] =
5289 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5290 network->rates_ex[i], priv->rates_mask);
5294 rates->supported_rates[rates->num_rates++] =
5295 network->rates_ex[i];
5301 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5302 const struct ipw_supported_rates *src)
5305 for (i = 0; i < src->num_rates; i++)
5306 dest->supported_rates[i] = src->supported_rates[i];
5307 dest->num_rates = src->num_rates;
5310 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5311 * mask should ever be used -- right now all callers to add the scan rates are
5312 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5313 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5314 u8 modulation, u32 rate_mask)
5316 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5317 IEEE80211_BASIC_RATE_MASK : 0;
5319 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5320 rates->supported_rates[rates->num_rates++] =
5321 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5323 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5324 rates->supported_rates[rates->num_rates++] =
5325 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5327 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5328 rates->supported_rates[rates->num_rates++] = basic_mask |
5329 IEEE80211_CCK_RATE_5MB;
5331 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5332 rates->supported_rates[rates->num_rates++] = basic_mask |
5333 IEEE80211_CCK_RATE_11MB;
5336 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5337 u8 modulation, u32 rate_mask)
5339 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5340 IEEE80211_BASIC_RATE_MASK : 0;
5342 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5343 rates->supported_rates[rates->num_rates++] = basic_mask |
5344 IEEE80211_OFDM_RATE_6MB;
5346 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5347 rates->supported_rates[rates->num_rates++] =
5348 IEEE80211_OFDM_RATE_9MB;
5350 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5351 rates->supported_rates[rates->num_rates++] = basic_mask |
5352 IEEE80211_OFDM_RATE_12MB;
5354 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5355 rates->supported_rates[rates->num_rates++] =
5356 IEEE80211_OFDM_RATE_18MB;
5358 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5359 rates->supported_rates[rates->num_rates++] = basic_mask |
5360 IEEE80211_OFDM_RATE_24MB;
5362 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5363 rates->supported_rates[rates->num_rates++] =
5364 IEEE80211_OFDM_RATE_36MB;
5366 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5367 rates->supported_rates[rates->num_rates++] =
5368 IEEE80211_OFDM_RATE_48MB;
5370 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5371 rates->supported_rates[rates->num_rates++] =
5372 IEEE80211_OFDM_RATE_54MB;
5375 struct ipw_network_match {
5376 struct ieee80211_network *network;
5377 struct ipw_supported_rates rates;
5380 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5381 struct ipw_network_match *match,
5382 struct ieee80211_network *network,
5385 struct ipw_supported_rates rates;
5387 /* Verify that this network's capability is compatible with the
5388 * current mode (AdHoc or Infrastructure) */
5389 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5390 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5391 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5392 "capability mismatch.\n",
5393 escape_essid(network->ssid, network->ssid_len),
5394 MAC_ARG(network->bssid));
5398 /* If we do not have an ESSID for this AP, we can not associate with
5400 if (network->flags & NETWORK_EMPTY_ESSID) {
5401 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5402 "because of hidden ESSID.\n",
5403 escape_essid(network->ssid, network->ssid_len),
5404 MAC_ARG(network->bssid));
5408 if (unlikely(roaming)) {
5409 /* If we are roaming, then ensure check if this is a valid
5410 * network to try and roam to */
5411 if ((network->ssid_len != match->network->ssid_len) ||
5412 memcmp(network->ssid, match->network->ssid,
5413 network->ssid_len)) {
5414 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5415 "because of non-network ESSID.\n",
5416 escape_essid(network->ssid,
5418 MAC_ARG(network->bssid));
5422 /* If an ESSID has been configured then compare the broadcast
5424 if ((priv->config & CFG_STATIC_ESSID) &&
5425 ((network->ssid_len != priv->essid_len) ||
5426 memcmp(network->ssid, priv->essid,
5427 min(network->ssid_len, priv->essid_len)))) {
5428 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5431 escape_essid(network->ssid, network->ssid_len),
5433 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5434 "because of ESSID mismatch: '%s'.\n",
5435 escaped, MAC_ARG(network->bssid),
5436 escape_essid(priv->essid,
5442 /* If the old network rate is better than this one, don't bother
5443 * testing everything else. */
5445 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5446 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5447 "current network.\n",
5448 escape_essid(match->network->ssid,
5449 match->network->ssid_len));
5451 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5452 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5453 "current network.\n",
5454 escape_essid(match->network->ssid,
5455 match->network->ssid_len));
5459 /* Now go through and see if the requested network is valid... */
5460 if (priv->ieee->scan_age != 0 &&
5461 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5462 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5463 "because of age: %ums.\n",
5464 escape_essid(network->ssid, network->ssid_len),
5465 MAC_ARG(network->bssid),
5466 jiffies_to_msecs(jiffies -
5467 network->last_scanned));
5471 if ((priv->config & CFG_STATIC_CHANNEL) &&
5472 (network->channel != priv->channel)) {
5473 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5474 "because of channel mismatch: %d != %d.\n",
5475 escape_essid(network->ssid, network->ssid_len),
5476 MAC_ARG(network->bssid),
5477 network->channel, priv->channel);
5481 /* Verify privacy compatability */
5482 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5483 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5484 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5485 "because of privacy mismatch: %s != %s.\n",
5486 escape_essid(network->ssid, network->ssid_len),
5487 MAC_ARG(network->bssid),
5489 capability & CAP_PRIVACY_ON ? "on" : "off",
5491 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5496 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5497 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5498 "because of the same BSSID match: " MAC_FMT
5499 ".\n", escape_essid(network->ssid,
5501 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5505 /* Filter out any incompatible freq / mode combinations */
5506 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5507 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5508 "because of invalid frequency/mode "
5510 escape_essid(network->ssid, network->ssid_len),
5511 MAC_ARG(network->bssid));
5515 /* Ensure that the rates supported by the driver are compatible with
5516 * this AP, including verification of basic rates (mandatory) */
5517 if (!ipw_compatible_rates(priv, network, &rates)) {
5518 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5519 "because configured rate mask excludes "
5520 "AP mandatory rate.\n",
5521 escape_essid(network->ssid, network->ssid_len),
5522 MAC_ARG(network->bssid));
5526 if (rates.num_rates == 0) {
5527 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5528 "because of no compatible rates.\n",
5529 escape_essid(network->ssid, network->ssid_len),
5530 MAC_ARG(network->bssid));
5534 /* TODO: Perform any further minimal comparititive tests. We do not
5535 * want to put too much policy logic here; intelligent scan selection
5536 * should occur within a generic IEEE 802.11 user space tool. */
5538 /* Set up 'new' AP to this network */
5539 ipw_copy_rates(&match->rates, &rates);
5540 match->network = network;
5541 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5542 escape_essid(network->ssid, network->ssid_len),
5543 MAC_ARG(network->bssid));
5548 static void ipw_merge_adhoc_network(struct work_struct *work)
5550 struct ipw_priv *priv =
5551 container_of(work, struct ipw_priv, merge_networks);
5552 struct ieee80211_network *network = NULL;
5553 struct ipw_network_match match = {
5554 .network = priv->assoc_network
5557 if ((priv->status & STATUS_ASSOCIATED) &&
5558 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5559 /* First pass through ROAM process -- look for a better
5561 unsigned long flags;
5563 spin_lock_irqsave(&priv->ieee->lock, flags);
5564 list_for_each_entry(network, &priv->ieee->network_list, list) {
5565 if (network != priv->assoc_network)
5566 ipw_find_adhoc_network(priv, &match, network,
5569 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5571 if (match.network == priv->assoc_network) {
5572 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5577 mutex_lock(&priv->mutex);
5578 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5579 IPW_DEBUG_MERGE("remove network %s\n",
5580 escape_essid(priv->essid,
5582 ipw_remove_current_network(priv);
5585 ipw_disassociate(priv);
5586 priv->assoc_network = match.network;
5587 mutex_unlock(&priv->mutex);
5592 static int ipw_best_network(struct ipw_priv *priv,
5593 struct ipw_network_match *match,
5594 struct ieee80211_network *network, int roaming)
5596 struct ipw_supported_rates rates;
5598 /* Verify that this network's capability is compatible with the
5599 * current mode (AdHoc or Infrastructure) */
5600 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5601 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5602 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5603 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5604 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5605 "capability mismatch.\n",
5606 escape_essid(network->ssid, network->ssid_len),
5607 MAC_ARG(network->bssid));
5611 /* If we do not have an ESSID for this AP, we can not associate with
5613 if (network->flags & NETWORK_EMPTY_ESSID) {
5614 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5615 "because of hidden ESSID.\n",
5616 escape_essid(network->ssid, network->ssid_len),
5617 MAC_ARG(network->bssid));
5621 if (unlikely(roaming)) {
5622 /* If we are roaming, then ensure check if this is a valid
5623 * network to try and roam to */
5624 if ((network->ssid_len != match->network->ssid_len) ||
5625 memcmp(network->ssid, match->network->ssid,
5626 network->ssid_len)) {
5627 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5628 "because of non-network ESSID.\n",
5629 escape_essid(network->ssid,
5631 MAC_ARG(network->bssid));
5635 /* If an ESSID has been configured then compare the broadcast
5637 if ((priv->config & CFG_STATIC_ESSID) &&
5638 ((network->ssid_len != priv->essid_len) ||
5639 memcmp(network->ssid, priv->essid,
5640 min(network->ssid_len, priv->essid_len)))) {
5641 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5643 escape_essid(network->ssid, network->ssid_len),
5645 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5646 "because of ESSID mismatch: '%s'.\n",
5647 escaped, MAC_ARG(network->bssid),
5648 escape_essid(priv->essid,
5654 /* If the old network rate is better than this one, don't bother
5655 * testing everything else. */
5656 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5657 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5659 escape_essid(network->ssid, network->ssid_len),
5661 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5662 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5663 escaped, MAC_ARG(network->bssid),
5664 escape_essid(match->network->ssid,
5665 match->network->ssid_len),
5666 MAC_ARG(match->network->bssid));
5670 /* If this network has already had an association attempt within the
5671 * last 3 seconds, do not try and associate again... */
5672 if (network->last_associate &&
5673 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5674 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5675 "because of storming (%ums since last "
5676 "assoc attempt).\n",
5677 escape_essid(network->ssid, network->ssid_len),
5678 MAC_ARG(network->bssid),
5679 jiffies_to_msecs(jiffies -
5680 network->last_associate));
5684 /* Now go through and see if the requested network is valid... */
5685 if (priv->ieee->scan_age != 0 &&
5686 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5687 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5688 "because of age: %ums.\n",
5689 escape_essid(network->ssid, network->ssid_len),
5690 MAC_ARG(network->bssid),
5691 jiffies_to_msecs(jiffies -
5692 network->last_scanned));
5696 if ((priv->config & CFG_STATIC_CHANNEL) &&
5697 (network->channel != priv->channel)) {
5698 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5699 "because of channel mismatch: %d != %d.\n",
5700 escape_essid(network->ssid, network->ssid_len),
5701 MAC_ARG(network->bssid),
5702 network->channel, priv->channel);
5706 /* Verify privacy compatability */
5707 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5708 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5709 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5710 "because of privacy mismatch: %s != %s.\n",
5711 escape_essid(network->ssid, network->ssid_len),
5712 MAC_ARG(network->bssid),
5713 priv->capability & CAP_PRIVACY_ON ? "on" :
5715 network->capability &
5716 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5720 if ((priv->config & CFG_STATIC_BSSID) &&
5721 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5722 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5723 "because of BSSID mismatch: " MAC_FMT ".\n",
5724 escape_essid(network->ssid, network->ssid_len),
5725 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5729 /* Filter out any incompatible freq / mode combinations */
5730 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5731 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5732 "because of invalid frequency/mode "
5734 escape_essid(network->ssid, network->ssid_len),
5735 MAC_ARG(network->bssid));
5739 /* Filter out invalid channel in current GEO */
5740 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5741 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5742 "because of invalid channel in current GEO\n",
5743 escape_essid(network->ssid, network->ssid_len),
5744 MAC_ARG(network->bssid));
5748 /* Ensure that the rates supported by the driver are compatible with
5749 * this AP, including verification of basic rates (mandatory) */
5750 if (!ipw_compatible_rates(priv, network, &rates)) {
5751 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5752 "because configured rate mask excludes "
5753 "AP mandatory rate.\n",
5754 escape_essid(network->ssid, network->ssid_len),
5755 MAC_ARG(network->bssid));
5759 if (rates.num_rates == 0) {
5760 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5761 "because of no compatible rates.\n",
5762 escape_essid(network->ssid, network->ssid_len),
5763 MAC_ARG(network->bssid));
5767 /* TODO: Perform any further minimal comparititive tests. We do not
5768 * want to put too much policy logic here; intelligent scan selection
5769 * should occur within a generic IEEE 802.11 user space tool. */
5771 /* Set up 'new' AP to this network */
5772 ipw_copy_rates(&match->rates, &rates);
5773 match->network = network;
5775 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5776 escape_essid(network->ssid, network->ssid_len),
5777 MAC_ARG(network->bssid));
5782 static void ipw_adhoc_create(struct ipw_priv *priv,
5783 struct ieee80211_network *network)
5785 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5789 * For the purposes of scanning, we can set our wireless mode
5790 * to trigger scans across combinations of bands, but when it
5791 * comes to creating a new ad-hoc network, we have tell the FW
5792 * exactly which band to use.
5794 * We also have the possibility of an invalid channel for the
5795 * chossen band. Attempting to create a new ad-hoc network
5796 * with an invalid channel for wireless mode will trigger a
5800 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5801 case IEEE80211_52GHZ_BAND:
5802 network->mode = IEEE_A;
5803 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5805 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5806 IPW_WARNING("Overriding invalid channel\n");
5807 priv->channel = geo->a[0].channel;
5811 case IEEE80211_24GHZ_BAND:
5812 if (priv->ieee->mode & IEEE_G)
5813 network->mode = IEEE_G;
5815 network->mode = IEEE_B;
5816 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5818 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5819 IPW_WARNING("Overriding invalid channel\n");
5820 priv->channel = geo->bg[0].channel;
5825 IPW_WARNING("Overriding invalid channel\n");
5826 if (priv->ieee->mode & IEEE_A) {
5827 network->mode = IEEE_A;
5828 priv->channel = geo->a[0].channel;
5829 } else if (priv->ieee->mode & IEEE_G) {
5830 network->mode = IEEE_G;
5831 priv->channel = geo->bg[0].channel;
5833 network->mode = IEEE_B;
5834 priv->channel = geo->bg[0].channel;
5839 network->channel = priv->channel;
5840 priv->config |= CFG_ADHOC_PERSIST;
5841 ipw_create_bssid(priv, network->bssid);
5842 network->ssid_len = priv->essid_len;
5843 memcpy(network->ssid, priv->essid, priv->essid_len);
5844 memset(&network->stats, 0, sizeof(network->stats));
5845 network->capability = WLAN_CAPABILITY_IBSS;
5846 if (!(priv->config & CFG_PREAMBLE_LONG))
5847 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5848 if (priv->capability & CAP_PRIVACY_ON)
5849 network->capability |= WLAN_CAPABILITY_PRIVACY;
5850 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5851 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5852 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5853 memcpy(network->rates_ex,
5854 &priv->rates.supported_rates[network->rates_len],
5855 network->rates_ex_len);
5856 network->last_scanned = 0;
5858 network->last_associate = 0;
5859 network->time_stamp[0] = 0;
5860 network->time_stamp[1] = 0;
5861 network->beacon_interval = 100; /* Default */
5862 network->listen_interval = 10; /* Default */
5863 network->atim_window = 0; /* Default */
5864 network->wpa_ie_len = 0;
5865 network->rsn_ie_len = 0;
5868 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5870 struct ipw_tgi_tx_key key;
5872 if (!(priv->ieee->sec.flags & (1 << index)))
5876 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5877 key.security_type = type;
5878 key.station_index = 0; /* always 0 for BSS */
5880 /* 0 for new key; previous value of counter (after fatal error) */
5881 key.tx_counter[0] = cpu_to_le32(0);
5882 key.tx_counter[1] = cpu_to_le32(0);
5884 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5887 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5889 struct ipw_wep_key key;
5892 key.cmd_id = DINO_CMD_WEP_KEY;
5895 /* Note: AES keys cannot be set for multiple times.
5896 * Only set it at the first time. */
5897 for (i = 0; i < 4; i++) {
5898 key.key_index = i | type;
5899 if (!(priv->ieee->sec.flags & (1 << i))) {
5904 key.key_size = priv->ieee->sec.key_sizes[i];
5905 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5907 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5911 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5913 if (priv->ieee->host_encrypt)
5918 priv->sys_config.disable_unicast_decryption = 0;
5919 priv->ieee->host_decrypt = 0;
5922 priv->sys_config.disable_unicast_decryption = 1;
5923 priv->ieee->host_decrypt = 1;
5926 priv->sys_config.disable_unicast_decryption = 0;
5927 priv->ieee->host_decrypt = 0;
5930 priv->sys_config.disable_unicast_decryption = 1;
5937 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5939 if (priv->ieee->host_encrypt)
5944 priv->sys_config.disable_multicast_decryption = 0;
5947 priv->sys_config.disable_multicast_decryption = 1;
5950 priv->sys_config.disable_multicast_decryption = 0;
5953 priv->sys_config.disable_multicast_decryption = 1;
5960 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5962 switch (priv->ieee->sec.level) {
5964 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5965 ipw_send_tgi_tx_key(priv,
5966 DCT_FLAG_EXT_SECURITY_CCM,
5967 priv->ieee->sec.active_key);
5969 if (!priv->ieee->host_mc_decrypt)
5970 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5973 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5974 ipw_send_tgi_tx_key(priv,
5975 DCT_FLAG_EXT_SECURITY_TKIP,
5976 priv->ieee->sec.active_key);
5979 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5980 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5981 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5989 static void ipw_adhoc_check(void *data)
5991 struct ipw_priv *priv = data;
5993 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5994 !(priv->config & CFG_ADHOC_PERSIST)) {
5995 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5996 IPW_DL_STATE | IPW_DL_ASSOC,
5997 "Missed beacon: %d - disassociate\n",
5998 priv->missed_adhoc_beacons);
5999 ipw_remove_current_network(priv);
6000 ipw_disassociate(priv);
6004 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6005 priv->assoc_request.beacon_interval);
6008 static void ipw_bg_adhoc_check(struct work_struct *work)
6010 struct ipw_priv *priv =
6011 container_of(work, struct ipw_priv, adhoc_check.work);
6012 mutex_lock(&priv->mutex);
6013 ipw_adhoc_check(priv);
6014 mutex_unlock(&priv->mutex);
6017 static void ipw_debug_config(struct ipw_priv *priv)
6019 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6020 "[CFG 0x%08X]\n", priv->config);
6021 if (priv->config & CFG_STATIC_CHANNEL)
6022 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6024 IPW_DEBUG_INFO("Channel unlocked.\n");
6025 if (priv->config & CFG_STATIC_ESSID)
6026 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6027 escape_essid(priv->essid, priv->essid_len));
6029 IPW_DEBUG_INFO("ESSID unlocked.\n");
6030 if (priv->config & CFG_STATIC_BSSID)
6031 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6032 MAC_ARG(priv->bssid));
6034 IPW_DEBUG_INFO("BSSID unlocked.\n");
6035 if (priv->capability & CAP_PRIVACY_ON)
6036 IPW_DEBUG_INFO("PRIVACY on\n");
6038 IPW_DEBUG_INFO("PRIVACY off\n");
6039 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6042 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6044 /* TODO: Verify that this works... */
6045 struct ipw_fixed_rate fr = {
6046 .tx_rates = priv->rates_mask
6051 /* Identify 'current FW band' and match it with the fixed
6054 switch (priv->ieee->freq_band) {
6055 case IEEE80211_52GHZ_BAND: /* A only */
6057 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6058 /* Invalid fixed rate mask */
6060 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6065 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6068 default: /* 2.4Ghz or Mixed */
6070 if (mode == IEEE_B) {
6071 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6072 /* Invalid fixed rate mask */
6074 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6081 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6082 IEEE80211_OFDM_RATES_MASK)) {
6083 /* Invalid fixed rate mask */
6085 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6090 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6091 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6092 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6095 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6096 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6097 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6100 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6101 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6102 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6105 fr.tx_rates |= mask;
6109 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6110 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6113 static void ipw_abort_scan(struct ipw_priv *priv)
6117 if (priv->status & STATUS_SCAN_ABORTING) {
6118 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6121 priv->status |= STATUS_SCAN_ABORTING;
6123 err = ipw_send_scan_abort(priv);
6125 IPW_DEBUG_HC("Request to abort scan failed.\n");
6128 static void ipw_add_scan_channels(struct ipw_priv *priv,
6129 struct ipw_scan_request_ext *scan,
6132 int channel_index = 0;
6133 const struct ieee80211_geo *geo;
6136 geo = ieee80211_get_geo(priv->ieee);
6138 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6139 int start = channel_index;
6140 for (i = 0; i < geo->a_channels; i++) {
6141 if ((priv->status & STATUS_ASSOCIATED) &&
6142 geo->a[i].channel == priv->channel)
6145 scan->channels_list[channel_index] = geo->a[i].channel;
6146 ipw_set_scan_type(scan, channel_index,
6148 flags & IEEE80211_CH_PASSIVE_ONLY ?
6149 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6153 if (start != channel_index) {
6154 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6155 (channel_index - start);
6160 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6161 int start = channel_index;
6162 if (priv->config & CFG_SPEED_SCAN) {
6164 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6165 /* nop out the list */
6170 while (channel_index < IPW_SCAN_CHANNELS) {
6172 priv->speed_scan[priv->speed_scan_pos];
6174 priv->speed_scan_pos = 0;
6175 channel = priv->speed_scan[0];
6177 if ((priv->status & STATUS_ASSOCIATED) &&
6178 channel == priv->channel) {
6179 priv->speed_scan_pos++;
6183 /* If this channel has already been
6184 * added in scan, break from loop
6185 * and this will be the first channel
6188 if (channels[channel - 1] != 0)
6191 channels[channel - 1] = 1;
6192 priv->speed_scan_pos++;
6194 scan->channels_list[channel_index] = channel;
6196 ieee80211_channel_to_index(priv->ieee, channel);
6197 ipw_set_scan_type(scan, channel_index,
6200 IEEE80211_CH_PASSIVE_ONLY ?
6201 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6205 for (i = 0; i < geo->bg_channels; i++) {
6206 if ((priv->status & STATUS_ASSOCIATED) &&
6207 geo->bg[i].channel == priv->channel)
6210 scan->channels_list[channel_index] =
6212 ipw_set_scan_type(scan, channel_index,
6215 IEEE80211_CH_PASSIVE_ONLY ?
6216 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6221 if (start != channel_index) {
6222 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6223 (channel_index - start);
6228 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6230 struct ipw_scan_request_ext scan;
6231 int err = 0, scan_type;
6233 if (!(priv->status & STATUS_INIT) ||
6234 (priv->status & STATUS_EXIT_PENDING))
6237 mutex_lock(&priv->mutex);
6239 if (priv->status & STATUS_SCANNING) {
6240 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6241 priv->status |= STATUS_SCAN_PENDING;
6245 if (!(priv->status & STATUS_SCAN_FORCED) &&
6246 priv->status & STATUS_SCAN_ABORTING) {
6247 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6248 priv->status |= STATUS_SCAN_PENDING;
6252 if (priv->status & STATUS_RF_KILL_MASK) {
6253 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6254 priv->status |= STATUS_SCAN_PENDING;
6258 memset(&scan, 0, sizeof(scan));
6259 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6261 if (type == IW_SCAN_TYPE_PASSIVE) {
6262 IPW_DEBUG_WX("use passive scanning\n");
6263 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6264 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6266 ipw_add_scan_channels(priv, &scan, scan_type);
6270 /* Use active scan by default. */
6271 if (priv->config & CFG_SPEED_SCAN)
6272 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6275 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6278 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6281 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6283 #ifdef CONFIG_IPW2200_MONITOR
6284 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6288 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6289 case IEEE80211_52GHZ_BAND:
6290 band = (u8) (IPW_A_MODE << 6) | 1;
6291 channel = priv->channel;
6294 case IEEE80211_24GHZ_BAND:
6295 band = (u8) (IPW_B_MODE << 6) | 1;
6296 channel = priv->channel;
6300 band = (u8) (IPW_B_MODE << 6) | 1;
6305 scan.channels_list[0] = band;
6306 scan.channels_list[1] = channel;
6307 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6309 /* NOTE: The card will sit on this channel for this time
6310 * period. Scan aborts are timing sensitive and frequently
6311 * result in firmware restarts. As such, it is best to
6312 * set a small dwell_time here and just keep re-issuing
6313 * scans. Otherwise fast channel hopping will not actually
6316 * TODO: Move SPEED SCAN support to all modes and bands */
6317 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6320 #endif /* CONFIG_IPW2200_MONITOR */
6321 /* If we are roaming, then make this a directed scan for the
6322 * current network. Otherwise, ensure that every other scan
6323 * is a fast channel hop scan */
6324 if ((priv->status & STATUS_ROAMING)
6325 || (!(priv->status & STATUS_ASSOCIATED)
6326 && (priv->config & CFG_STATIC_ESSID)
6327 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6328 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6330 IPW_DEBUG_HC("Attempt to send SSID command "
6335 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6337 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6339 ipw_add_scan_channels(priv, &scan, scan_type);
6340 #ifdef CONFIG_IPW2200_MONITOR
6345 err = ipw_send_scan_request_ext(priv, &scan);
6347 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6351 priv->status |= STATUS_SCANNING;
6352 priv->status &= ~STATUS_SCAN_PENDING;
6353 queue_delayed_work(priv->workqueue, &priv->scan_check,
6354 IPW_SCAN_CHECK_WATCHDOG);
6356 mutex_unlock(&priv->mutex);
6360 static void ipw_request_passive_scan(struct work_struct *work)
6362 struct ipw_priv *priv =
6363 container_of(work, struct ipw_priv, request_passive_scan);
6364 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6367 static void ipw_request_scan(struct work_struct *work)
6369 struct ipw_priv *priv =
6370 container_of(work, struct ipw_priv, request_scan.work);
6371 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6374 static void ipw_bg_abort_scan(struct work_struct *work)
6376 struct ipw_priv *priv =
6377 container_of(work, struct ipw_priv, abort_scan);
6378 mutex_lock(&priv->mutex);
6379 ipw_abort_scan(priv);
6380 mutex_unlock(&priv->mutex);
6383 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6385 /* This is called when wpa_supplicant loads and closes the driver
6387 priv->ieee->wpa_enabled = value;
6391 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6393 struct ieee80211_device *ieee = priv->ieee;
6394 struct ieee80211_security sec = {
6395 .flags = SEC_AUTH_MODE,
6399 if (value & IW_AUTH_ALG_SHARED_KEY) {
6400 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6402 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6403 sec.auth_mode = WLAN_AUTH_OPEN;
6405 } else if (value & IW_AUTH_ALG_LEAP) {
6406 sec.auth_mode = WLAN_AUTH_LEAP;
6411 if (ieee->set_security)
6412 ieee->set_security(ieee->dev, &sec);
6419 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6422 /* make sure WPA is enabled */
6423 ipw_wpa_enable(priv, 1);
6426 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6427 char *capabilities, int length)
6429 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6431 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6440 static int ipw_wx_set_genie(struct net_device *dev,
6441 struct iw_request_info *info,
6442 union iwreq_data *wrqu, char *extra)
6444 struct ipw_priv *priv = ieee80211_priv(dev);
6445 struct ieee80211_device *ieee = priv->ieee;
6449 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6450 (wrqu->data.length && extra == NULL))
6453 if (wrqu->data.length) {
6454 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6460 memcpy(buf, extra, wrqu->data.length);
6461 kfree(ieee->wpa_ie);
6463 ieee->wpa_ie_len = wrqu->data.length;
6465 kfree(ieee->wpa_ie);
6466 ieee->wpa_ie = NULL;
6467 ieee->wpa_ie_len = 0;
6470 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6476 static int ipw_wx_get_genie(struct net_device *dev,
6477 struct iw_request_info *info,
6478 union iwreq_data *wrqu, char *extra)
6480 struct ipw_priv *priv = ieee80211_priv(dev);
6481 struct ieee80211_device *ieee = priv->ieee;
6484 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6485 wrqu->data.length = 0;
6489 if (wrqu->data.length < ieee->wpa_ie_len) {
6494 wrqu->data.length = ieee->wpa_ie_len;
6495 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6501 static int wext_cipher2level(int cipher)
6504 case IW_AUTH_CIPHER_NONE:
6506 case IW_AUTH_CIPHER_WEP40:
6507 case IW_AUTH_CIPHER_WEP104:
6509 case IW_AUTH_CIPHER_TKIP:
6511 case IW_AUTH_CIPHER_CCMP:
6519 static int ipw_wx_set_auth(struct net_device *dev,
6520 struct iw_request_info *info,
6521 union iwreq_data *wrqu, char *extra)
6523 struct ipw_priv *priv = ieee80211_priv(dev);
6524 struct ieee80211_device *ieee = priv->ieee;
6525 struct iw_param *param = &wrqu->param;
6526 struct ieee80211_crypt_data *crypt;
6527 unsigned long flags;
6530 switch (param->flags & IW_AUTH_INDEX) {
6531 case IW_AUTH_WPA_VERSION:
6533 case IW_AUTH_CIPHER_PAIRWISE:
6534 ipw_set_hw_decrypt_unicast(priv,
6535 wext_cipher2level(param->value));
6537 case IW_AUTH_CIPHER_GROUP:
6538 ipw_set_hw_decrypt_multicast(priv,
6539 wext_cipher2level(param->value));
6541 case IW_AUTH_KEY_MGMT:
6543 * ipw2200 does not use these parameters
6547 case IW_AUTH_TKIP_COUNTERMEASURES:
6548 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6549 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6552 flags = crypt->ops->get_flags(crypt->priv);
6555 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6557 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6559 crypt->ops->set_flags(flags, crypt->priv);
6563 case IW_AUTH_DROP_UNENCRYPTED:{
6566 * wpa_supplicant calls set_wpa_enabled when the driver
6567 * is loaded and unloaded, regardless of if WPA is being
6568 * used. No other calls are made which can be used to
6569 * determine if encryption will be used or not prior to
6570 * association being expected. If encryption is not being
6571 * used, drop_unencrypted is set to false, else true -- we
6572 * can use this to determine if the CAP_PRIVACY_ON bit should
6575 struct ieee80211_security sec = {
6576 .flags = SEC_ENABLED,
6577 .enabled = param->value,
6579 priv->ieee->drop_unencrypted = param->value;
6580 /* We only change SEC_LEVEL for open mode. Others
6581 * are set by ipw_wpa_set_encryption.
6583 if (!param->value) {
6584 sec.flags |= SEC_LEVEL;
6585 sec.level = SEC_LEVEL_0;
6587 sec.flags |= SEC_LEVEL;
6588 sec.level = SEC_LEVEL_1;
6590 if (priv->ieee->set_security)
6591 priv->ieee->set_security(priv->ieee->dev, &sec);
6595 case IW_AUTH_80211_AUTH_ALG:
6596 ret = ipw_wpa_set_auth_algs(priv, param->value);
6599 case IW_AUTH_WPA_ENABLED:
6600 ret = ipw_wpa_enable(priv, param->value);
6601 ipw_disassociate(priv);
6604 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6605 ieee->ieee802_1x = param->value;
6608 case IW_AUTH_PRIVACY_INVOKED:
6609 ieee->privacy_invoked = param->value;
6619 static int ipw_wx_get_auth(struct net_device *dev,
6620 struct iw_request_info *info,
6621 union iwreq_data *wrqu, char *extra)
6623 struct ipw_priv *priv = ieee80211_priv(dev);
6624 struct ieee80211_device *ieee = priv->ieee;
6625 struct ieee80211_crypt_data *crypt;
6626 struct iw_param *param = &wrqu->param;
6629 switch (param->flags & IW_AUTH_INDEX) {
6630 case IW_AUTH_WPA_VERSION:
6631 case IW_AUTH_CIPHER_PAIRWISE:
6632 case IW_AUTH_CIPHER_GROUP:
6633 case IW_AUTH_KEY_MGMT:
6635 * wpa_supplicant will control these internally
6640 case IW_AUTH_TKIP_COUNTERMEASURES:
6641 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6642 if (!crypt || !crypt->ops->get_flags)
6645 param->value = (crypt->ops->get_flags(crypt->priv) &
6646 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6650 case IW_AUTH_DROP_UNENCRYPTED:
6651 param->value = ieee->drop_unencrypted;
6654 case IW_AUTH_80211_AUTH_ALG:
6655 param->value = ieee->sec.auth_mode;
6658 case IW_AUTH_WPA_ENABLED:
6659 param->value = ieee->wpa_enabled;
6662 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6663 param->value = ieee->ieee802_1x;
6666 case IW_AUTH_ROAMING_CONTROL:
6667 case IW_AUTH_PRIVACY_INVOKED:
6668 param->value = ieee->privacy_invoked;
6677 /* SIOCSIWENCODEEXT */
6678 static int ipw_wx_set_encodeext(struct net_device *dev,
6679 struct iw_request_info *info,
6680 union iwreq_data *wrqu, char *extra)
6682 struct ipw_priv *priv = ieee80211_priv(dev);
6683 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6686 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6687 /* IPW HW can't build TKIP MIC,
6688 host decryption still needed */
6689 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6690 priv->ieee->host_mc_decrypt = 1;
6692 priv->ieee->host_encrypt = 0;
6693 priv->ieee->host_encrypt_msdu = 1;
6694 priv->ieee->host_decrypt = 1;
6697 priv->ieee->host_encrypt = 0;
6698 priv->ieee->host_encrypt_msdu = 0;
6699 priv->ieee->host_decrypt = 0;
6700 priv->ieee->host_mc_decrypt = 0;
6704 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6707 /* SIOCGIWENCODEEXT */
6708 static int ipw_wx_get_encodeext(struct net_device *dev,
6709 struct iw_request_info *info,
6710 union iwreq_data *wrqu, char *extra)
6712 struct ipw_priv *priv = ieee80211_priv(dev);
6713 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6717 static int ipw_wx_set_mlme(struct net_device *dev,
6718 struct iw_request_info *info,
6719 union iwreq_data *wrqu, char *extra)
6721 struct ipw_priv *priv = ieee80211_priv(dev);
6722 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6725 reason = cpu_to_le16(mlme->reason_code);
6727 switch (mlme->cmd) {
6728 case IW_MLME_DEAUTH:
6729 /* silently ignore */
6732 case IW_MLME_DISASSOC:
6733 ipw_disassociate(priv);
6742 #ifdef CONFIG_IPW2200_QOS
6746 * get the modulation type of the current network or
6747 * the card current mode
6749 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6753 if (priv->status & STATUS_ASSOCIATED) {
6754 unsigned long flags;
6756 spin_lock_irqsave(&priv->ieee->lock, flags);
6757 mode = priv->assoc_network->mode;
6758 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6760 mode = priv->ieee->mode;
6762 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6767 * Handle management frame beacon and probe response
6769 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6771 struct ieee80211_network *network)
6773 u32 size = sizeof(struct ieee80211_qos_parameters);
6775 if (network->capability & WLAN_CAPABILITY_IBSS)
6776 network->qos_data.active = network->qos_data.supported;
6778 if (network->flags & NETWORK_HAS_QOS_MASK) {
6779 if (active_network &&
6780 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6781 network->qos_data.active = network->qos_data.supported;
6783 if ((network->qos_data.active == 1) && (active_network == 1) &&
6784 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6785 (network->qos_data.old_param_count !=
6786 network->qos_data.param_count)) {
6787 network->qos_data.old_param_count =
6788 network->qos_data.param_count;
6789 schedule_work(&priv->qos_activate);
6790 IPW_DEBUG_QOS("QoS parameters change call "
6794 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6795 memcpy(&network->qos_data.parameters,
6796 &def_parameters_CCK, size);
6798 memcpy(&network->qos_data.parameters,
6799 &def_parameters_OFDM, size);
6801 if ((network->qos_data.active == 1) && (active_network == 1)) {
6802 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6803 schedule_work(&priv->qos_activate);
6806 network->qos_data.active = 0;
6807 network->qos_data.supported = 0;
6809 if ((priv->status & STATUS_ASSOCIATED) &&
6810 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6811 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6812 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6813 !(network->flags & NETWORK_EMPTY_ESSID))
6814 if ((network->ssid_len ==
6815 priv->assoc_network->ssid_len) &&
6816 !memcmp(network->ssid,
6817 priv->assoc_network->ssid,
6818 network->ssid_len)) {
6819 queue_work(priv->workqueue,
6820 &priv->merge_networks);
6828 * This function set up the firmware to support QoS. It sends
6829 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6831 static int ipw_qos_activate(struct ipw_priv *priv,
6832 struct ieee80211_qos_data *qos_network_data)
6835 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6836 struct ieee80211_qos_parameters *active_one = NULL;
6837 u32 size = sizeof(struct ieee80211_qos_parameters);
6842 type = ipw_qos_current_mode(priv);
6844 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6845 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6846 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6847 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6849 if (qos_network_data == NULL) {
6850 if (type == IEEE_B) {
6851 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6852 active_one = &def_parameters_CCK;
6854 active_one = &def_parameters_OFDM;
6856 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6857 burst_duration = ipw_qos_get_burst_duration(priv);
6858 for (i = 0; i < QOS_QUEUE_NUM; i++)
6859 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6860 (u16)burst_duration;
6861 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6862 if (type == IEEE_B) {
6863 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6865 if (priv->qos_data.qos_enable == 0)
6866 active_one = &def_parameters_CCK;
6868 active_one = priv->qos_data.def_qos_parm_CCK;
6870 if (priv->qos_data.qos_enable == 0)
6871 active_one = &def_parameters_OFDM;
6873 active_one = priv->qos_data.def_qos_parm_OFDM;
6875 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6877 unsigned long flags;
6880 spin_lock_irqsave(&priv->ieee->lock, flags);
6881 active_one = &(qos_network_data->parameters);
6882 qos_network_data->old_param_count =
6883 qos_network_data->param_count;
6884 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6885 active = qos_network_data->supported;
6886 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6889 burst_duration = ipw_qos_get_burst_duration(priv);
6890 for (i = 0; i < QOS_QUEUE_NUM; i++)
6891 qos_parameters[QOS_PARAM_SET_ACTIVE].
6892 tx_op_limit[i] = (u16)burst_duration;
6896 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6897 for (i = 0; i < 3; i++) {
6899 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6900 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6901 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6902 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6906 err = ipw_send_qos_params_command(priv,
6907 (struct ieee80211_qos_parameters *)
6908 &(qos_parameters[0]));
6910 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6916 * send IPW_CMD_WME_INFO to the firmware
6918 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6921 struct ieee80211_qos_information_element qos_info;
6926 qos_info.elementID = QOS_ELEMENT_ID;
6927 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6929 qos_info.version = QOS_VERSION_1;
6930 qos_info.ac_info = 0;
6932 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6933 qos_info.qui_type = QOS_OUI_TYPE;
6934 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6936 ret = ipw_send_qos_info_command(priv, &qos_info);
6938 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6944 * Set the QoS parameter with the association request structure
6946 static int ipw_qos_association(struct ipw_priv *priv,
6947 struct ieee80211_network *network)
6950 struct ieee80211_qos_data *qos_data = NULL;
6951 struct ieee80211_qos_data ibss_data = {
6956 switch (priv->ieee->iw_mode) {
6958 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6960 qos_data = &ibss_data;
6964 qos_data = &network->qos_data;
6972 err = ipw_qos_activate(priv, qos_data);
6974 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6978 if (priv->qos_data.qos_enable && qos_data->supported) {
6979 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6980 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6981 return ipw_qos_set_info_element(priv);
6988 * handling the beaconing responses. if we get different QoS setting
6989 * off the network from the associated setting, adjust the QoS
6992 static int ipw_qos_association_resp(struct ipw_priv *priv,
6993 struct ieee80211_network *network)
6996 unsigned long flags;
6997 u32 size = sizeof(struct ieee80211_qos_parameters);
6998 int set_qos_param = 0;
7000 if ((priv == NULL) || (network == NULL) ||
7001 (priv->assoc_network == NULL))
7004 if (!(priv->status & STATUS_ASSOCIATED))
7007 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7010 spin_lock_irqsave(&priv->ieee->lock, flags);
7011 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7012 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7013 sizeof(struct ieee80211_qos_data));
7014 priv->assoc_network->qos_data.active = 1;
7015 if ((network->qos_data.old_param_count !=
7016 network->qos_data.param_count)) {
7018 network->qos_data.old_param_count =
7019 network->qos_data.param_count;
7023 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7024 memcpy(&priv->assoc_network->qos_data.parameters,
7025 &def_parameters_CCK, size);
7027 memcpy(&priv->assoc_network->qos_data.parameters,
7028 &def_parameters_OFDM, size);
7029 priv->assoc_network->qos_data.active = 0;
7030 priv->assoc_network->qos_data.supported = 0;
7034 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7036 if (set_qos_param == 1)
7037 schedule_work(&priv->qos_activate);
7042 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7049 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7050 ret = priv->qos_data.burst_duration_CCK;
7052 ret = priv->qos_data.burst_duration_OFDM;
7058 * Initialize the setting of QoS global
7060 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7061 int burst_enable, u32 burst_duration_CCK,
7062 u32 burst_duration_OFDM)
7064 priv->qos_data.qos_enable = enable;
7066 if (priv->qos_data.qos_enable) {
7067 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7068 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7069 IPW_DEBUG_QOS("QoS is enabled\n");
7071 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7072 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7073 IPW_DEBUG_QOS("QoS is not enabled\n");
7076 priv->qos_data.burst_enable = burst_enable;
7079 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7080 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7082 priv->qos_data.burst_duration_CCK = 0;
7083 priv->qos_data.burst_duration_OFDM = 0;
7088 * map the packet priority to the right TX Queue
7090 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7092 if (priority > 7 || !priv->qos_data.qos_enable)
7095 return from_priority_to_tx_queue[priority] - 1;
7098 static int ipw_is_qos_active(struct net_device *dev,
7099 struct sk_buff *skb)
7101 struct ipw_priv *priv = ieee80211_priv(dev);
7102 struct ieee80211_qos_data *qos_data = NULL;
7103 int active, supported;
7104 u8 *daddr = skb->data + ETH_ALEN;
7105 int unicast = !is_multicast_ether_addr(daddr);
7107 if (!(priv->status & STATUS_ASSOCIATED))
7110 qos_data = &priv->assoc_network->qos_data;
7112 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7114 qos_data->active = 0;
7116 qos_data->active = qos_data->supported;
7118 active = qos_data->active;
7119 supported = qos_data->supported;
7120 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7122 priv->qos_data.qos_enable, active, supported, unicast);
7123 if (active && priv->qos_data.qos_enable)
7130 * add QoS parameter to the TX command
7132 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7134 struct tfd_data *tfd)
7136 int tx_queue_id = 0;
7139 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7140 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7142 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7143 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7144 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7150 * background support to run QoS activate functionality
7152 static void ipw_bg_qos_activate(struct work_struct *work)
7154 struct ipw_priv *priv =
7155 container_of(work, struct ipw_priv, qos_activate);
7160 mutex_lock(&priv->mutex);
7162 if (priv->status & STATUS_ASSOCIATED)
7163 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7165 mutex_unlock(&priv->mutex);
7168 static int ipw_handle_probe_response(struct net_device *dev,
7169 struct ieee80211_probe_response *resp,
7170 struct ieee80211_network *network)
7172 struct ipw_priv *priv = ieee80211_priv(dev);
7173 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7174 (network == priv->assoc_network));
7176 ipw_qos_handle_probe_response(priv, active_network, network);
7181 static int ipw_handle_beacon(struct net_device *dev,
7182 struct ieee80211_beacon *resp,
7183 struct ieee80211_network *network)
7185 struct ipw_priv *priv = ieee80211_priv(dev);
7186 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7187 (network == priv->assoc_network));
7189 ipw_qos_handle_probe_response(priv, active_network, network);
7194 static int ipw_handle_assoc_response(struct net_device *dev,
7195 struct ieee80211_assoc_response *resp,
7196 struct ieee80211_network *network)
7198 struct ipw_priv *priv = ieee80211_priv(dev);
7199 ipw_qos_association_resp(priv, network);
7203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7206 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7207 sizeof(*qos_param) * 3, qos_param);
7210 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7213 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7217 #endif /* CONFIG_IPW2200_QOS */
7219 static int ipw_associate_network(struct ipw_priv *priv,
7220 struct ieee80211_network *network,
7221 struct ipw_supported_rates *rates, int roaming)
7225 if (priv->config & CFG_FIXED_RATE)
7226 ipw_set_fixed_rate(priv, network->mode);
7228 if (!(priv->config & CFG_STATIC_ESSID)) {
7229 priv->essid_len = min(network->ssid_len,
7230 (u8) IW_ESSID_MAX_SIZE);
7231 memcpy(priv->essid, network->ssid, priv->essid_len);
7234 network->last_associate = jiffies;
7236 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7237 priv->assoc_request.channel = network->channel;
7238 priv->assoc_request.auth_key = 0;
7240 if ((priv->capability & CAP_PRIVACY_ON) &&
7241 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7242 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7243 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7245 if (priv->ieee->sec.level == SEC_LEVEL_1)
7246 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7248 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7249 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7250 priv->assoc_request.auth_type = AUTH_LEAP;
7252 priv->assoc_request.auth_type = AUTH_OPEN;
7254 if (priv->ieee->wpa_ie_len) {
7255 priv->assoc_request.policy_support = 0x02; /* RSN active */
7256 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7257 priv->ieee->wpa_ie_len);
7261 * It is valid for our ieee device to support multiple modes, but
7262 * when it comes to associating to a given network we have to choose
7265 if (network->mode & priv->ieee->mode & IEEE_A)
7266 priv->assoc_request.ieee_mode = IPW_A_MODE;
7267 else if (network->mode & priv->ieee->mode & IEEE_G)
7268 priv->assoc_request.ieee_mode = IPW_G_MODE;
7269 else if (network->mode & priv->ieee->mode & IEEE_B)
7270 priv->assoc_request.ieee_mode = IPW_B_MODE;
7272 priv->assoc_request.capability = network->capability;
7273 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7274 && !(priv->config & CFG_PREAMBLE_LONG)) {
7275 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7277 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7279 /* Clear the short preamble if we won't be supporting it */
7280 priv->assoc_request.capability &=
7281 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7284 /* Clear capability bits that aren't used in Ad Hoc */
7285 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7286 priv->assoc_request.capability &=
7287 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7289 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7290 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7291 roaming ? "Rea" : "A",
7292 escape_essid(priv->essid, priv->essid_len),
7294 ipw_modes[priv->assoc_request.ieee_mode],
7296 (priv->assoc_request.preamble_length ==
7297 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7298 network->capability &
7299 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7300 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7301 priv->capability & CAP_PRIVACY_ON ?
7302 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7304 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7305 priv->capability & CAP_PRIVACY_ON ?
7306 '1' + priv->ieee->sec.active_key : '.',
7307 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7309 priv->assoc_request.beacon_interval = network->beacon_interval;
7310 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7311 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7312 priv->assoc_request.assoc_type = HC_IBSS_START;
7313 priv->assoc_request.assoc_tsf_msw = 0;
7314 priv->assoc_request.assoc_tsf_lsw = 0;
7316 if (unlikely(roaming))
7317 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7319 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7320 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7321 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7324 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7326 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7327 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7328 priv->assoc_request.atim_window = network->atim_window;
7330 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7331 priv->assoc_request.atim_window = 0;
7334 priv->assoc_request.listen_interval = network->listen_interval;
7336 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7338 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7342 rates->ieee_mode = priv->assoc_request.ieee_mode;
7343 rates->purpose = IPW_RATE_CONNECT;
7344 ipw_send_supported_rates(priv, rates);
7346 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7347 priv->sys_config.dot11g_auto_detection = 1;
7349 priv->sys_config.dot11g_auto_detection = 0;
7351 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7352 priv->sys_config.answer_broadcast_ssid_probe = 1;
7354 priv->sys_config.answer_broadcast_ssid_probe = 0;
7356 err = ipw_send_system_config(priv);
7358 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7362 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7363 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7365 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7370 * If preemption is enabled, it is possible for the association
7371 * to complete before we return from ipw_send_associate. Therefore
7372 * we have to be sure and update our priviate data first.
7374 priv->channel = network->channel;
7375 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7376 priv->status |= STATUS_ASSOCIATING;
7377 priv->status &= ~STATUS_SECURITY_UPDATED;
7379 priv->assoc_network = network;
7381 #ifdef CONFIG_IPW2200_QOS
7382 ipw_qos_association(priv, network);
7385 err = ipw_send_associate(priv, &priv->assoc_request);
7387 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7391 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7392 escape_essid(priv->essid, priv->essid_len),
7393 MAC_ARG(priv->bssid));
7398 static void ipw_roam(void *data)
7400 struct ipw_priv *priv = data;
7401 struct ieee80211_network *network = NULL;
7402 struct ipw_network_match match = {
7403 .network = priv->assoc_network
7406 /* The roaming process is as follows:
7408 * 1. Missed beacon threshold triggers the roaming process by
7409 * setting the status ROAM bit and requesting a scan.
7410 * 2. When the scan completes, it schedules the ROAM work
7411 * 3. The ROAM work looks at all of the known networks for one that
7412 * is a better network than the currently associated. If none
7413 * found, the ROAM process is over (ROAM bit cleared)
7414 * 4. If a better network is found, a disassociation request is
7416 * 5. When the disassociation completes, the roam work is again
7417 * scheduled. The second time through, the driver is no longer
7418 * associated, and the newly selected network is sent an
7419 * association request.
7420 * 6. At this point ,the roaming process is complete and the ROAM
7421 * status bit is cleared.
7424 /* If we are no longer associated, and the roaming bit is no longer
7425 * set, then we are not actively roaming, so just return */
7426 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7429 if (priv->status & STATUS_ASSOCIATED) {
7430 /* First pass through ROAM process -- look for a better
7432 unsigned long flags;
7433 u8 rssi = priv->assoc_network->stats.rssi;
7434 priv->assoc_network->stats.rssi = -128;
7435 spin_lock_irqsave(&priv->ieee->lock, flags);
7436 list_for_each_entry(network, &priv->ieee->network_list, list) {
7437 if (network != priv->assoc_network)
7438 ipw_best_network(priv, &match, network, 1);
7440 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7441 priv->assoc_network->stats.rssi = rssi;
7443 if (match.network == priv->assoc_network) {
7444 IPW_DEBUG_ASSOC("No better APs in this network to "
7446 priv->status &= ~STATUS_ROAMING;
7447 ipw_debug_config(priv);
7451 ipw_send_disassociate(priv, 1);
7452 priv->assoc_network = match.network;
7457 /* Second pass through ROAM process -- request association */
7458 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7459 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7460 priv->status &= ~STATUS_ROAMING;
7463 static void ipw_bg_roam(struct work_struct *work)
7465 struct ipw_priv *priv =
7466 container_of(work, struct ipw_priv, roam);
7467 mutex_lock(&priv->mutex);
7469 mutex_unlock(&priv->mutex);
7472 static int ipw_associate(void *data)
7474 struct ipw_priv *priv = data;
7476 struct ieee80211_network *network = NULL;
7477 struct ipw_network_match match = {
7480 struct ipw_supported_rates *rates;
7481 struct list_head *element;
7482 unsigned long flags;
7484 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7485 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7489 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7490 IPW_DEBUG_ASSOC("Not attempting association (already in "
7495 if (priv->status & STATUS_DISASSOCIATING) {
7496 IPW_DEBUG_ASSOC("Not attempting association (in "
7497 "disassociating)\n ");
7498 queue_work(priv->workqueue, &priv->associate);
7502 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7503 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7508 if (!(priv->config & CFG_ASSOCIATE) &&
7509 !(priv->config & (CFG_STATIC_ESSID |
7510 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7511 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7515 /* Protect our use of the network_list */
7516 spin_lock_irqsave(&priv->ieee->lock, flags);
7517 list_for_each_entry(network, &priv->ieee->network_list, list)
7518 ipw_best_network(priv, &match, network, 0);
7520 network = match.network;
7521 rates = &match.rates;
7523 if (network == NULL &&
7524 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7525 priv->config & CFG_ADHOC_CREATE &&
7526 priv->config & CFG_STATIC_ESSID &&
7527 priv->config & CFG_STATIC_CHANNEL &&
7528 !list_empty(&priv->ieee->network_free_list)) {
7529 element = priv->ieee->network_free_list.next;
7530 network = list_entry(element, struct ieee80211_network, list);
7531 ipw_adhoc_create(priv, network);
7532 rates = &priv->rates;
7534 list_add_tail(&network->list, &priv->ieee->network_list);
7536 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7538 /* If we reached the end of the list, then we don't have any valid
7541 ipw_debug_config(priv);
7543 if (!(priv->status & STATUS_SCANNING)) {
7544 if (!(priv->config & CFG_SPEED_SCAN))
7545 queue_delayed_work(priv->workqueue,
7546 &priv->request_scan,
7549 queue_delayed_work(priv->workqueue,
7550 &priv->request_scan, 0);
7556 ipw_associate_network(priv, network, rates, 0);
7561 static void ipw_bg_associate(struct work_struct *work)
7563 struct ipw_priv *priv =
7564 container_of(work, struct ipw_priv, associate);
7565 mutex_lock(&priv->mutex);
7566 ipw_associate(priv);
7567 mutex_unlock(&priv->mutex);
7570 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7571 struct sk_buff *skb)
7573 struct ieee80211_hdr *hdr;
7576 hdr = (struct ieee80211_hdr *)skb->data;
7577 fc = le16_to_cpu(hdr->frame_ctl);
7578 if (!(fc & IEEE80211_FCTL_PROTECTED))
7581 fc &= ~IEEE80211_FCTL_PROTECTED;
7582 hdr->frame_ctl = cpu_to_le16(fc);
7583 switch (priv->ieee->sec.level) {
7585 /* Remove CCMP HDR */
7586 memmove(skb->data + IEEE80211_3ADDR_LEN,
7587 skb->data + IEEE80211_3ADDR_LEN + 8,
7588 skb->len - IEEE80211_3ADDR_LEN - 8);
7589 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7595 memmove(skb->data + IEEE80211_3ADDR_LEN,
7596 skb->data + IEEE80211_3ADDR_LEN + 4,
7597 skb->len - IEEE80211_3ADDR_LEN - 4);
7598 skb_trim(skb, skb->len - 8); /* IV + ICV */
7603 printk(KERN_ERR "Unknow security level %d\n",
7604 priv->ieee->sec.level);
7609 static void ipw_handle_data_packet(struct ipw_priv *priv,
7610 struct ipw_rx_mem_buffer *rxb,
7611 struct ieee80211_rx_stats *stats)
7613 struct ieee80211_hdr_4addr *hdr;
7614 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7616 /* We received data from the HW, so stop the watchdog */
7617 priv->net_dev->trans_start = jiffies;
7619 /* We only process data packets if the
7620 * interface is open */
7621 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7622 skb_tailroom(rxb->skb))) {
7623 priv->ieee->stats.rx_errors++;
7624 priv->wstats.discard.misc++;
7625 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7627 } else if (unlikely(!netif_running(priv->net_dev))) {
7628 priv->ieee->stats.rx_dropped++;
7629 priv->wstats.discard.misc++;
7630 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7634 /* Advance skb->data to the start of the actual payload */
7635 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7637 /* Set the size of the skb to the size of the frame */
7638 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7640 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7642 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7643 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7644 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7645 (is_multicast_ether_addr(hdr->addr1) ?
7646 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7647 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7649 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7650 priv->ieee->stats.rx_errors++;
7651 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7653 __ipw_led_activity_on(priv);
7657 #ifdef CONFIG_IPW2200_RADIOTAP
7658 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7659 struct ipw_rx_mem_buffer *rxb,
7660 struct ieee80211_rx_stats *stats)
7662 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7663 struct ipw_rx_frame *frame = &pkt->u.frame;
7665 /* initial pull of some data */
7666 u16 received_channel = frame->received_channel;
7667 u8 antennaAndPhy = frame->antennaAndPhy;
7668 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7669 u16 pktrate = frame->rate;
7671 /* Magic struct that slots into the radiotap header -- no reason
7672 * to build this manually element by element, we can write it much
7673 * more efficiently than we can parse it. ORDER MATTERS HERE */
7674 struct ipw_rt_hdr *ipw_rt;
7676 short len = le16_to_cpu(pkt->u.frame.length);
7678 /* We received data from the HW, so stop the watchdog */
7679 priv->net_dev->trans_start = jiffies;
7681 /* We only process data packets if the
7682 * interface is open */
7683 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7684 skb_tailroom(rxb->skb))) {
7685 priv->ieee->stats.rx_errors++;
7686 priv->wstats.discard.misc++;
7687 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7689 } else if (unlikely(!netif_running(priv->net_dev))) {
7690 priv->ieee->stats.rx_dropped++;
7691 priv->wstats.discard.misc++;
7692 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7696 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7698 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7699 /* FIXME: Should alloc bigger skb instead */
7700 priv->ieee->stats.rx_dropped++;
7701 priv->wstats.discard.misc++;
7702 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7706 /* copy the frame itself */
7707 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7708 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7710 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7711 * part of our real header, saves a little time.
7713 * No longer necessary since we fill in all our data. Purge before merging
7715 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7716 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7719 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7721 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7722 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7723 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7725 /* Big bitfield of all the fields we provide in radiotap */
7726 ipw_rt->rt_hdr.it_present =
7727 ((1 << IEEE80211_RADIOTAP_TSFT) |
7728 (1 << IEEE80211_RADIOTAP_FLAGS) |
7729 (1 << IEEE80211_RADIOTAP_RATE) |
7730 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7731 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7732 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7733 (1 << IEEE80211_RADIOTAP_ANTENNA));
7735 /* Zero the flags, we'll add to them as we go */
7736 ipw_rt->rt_flags = 0;
7737 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7738 frame->parent_tsf[2] << 16 |
7739 frame->parent_tsf[1] << 8 |
7740 frame->parent_tsf[0]);
7742 /* Convert signal to DBM */
7743 ipw_rt->rt_dbmsignal = antsignal;
7744 ipw_rt->rt_dbmnoise = frame->noise;
7746 /* Convert the channel data and set the flags */
7747 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7748 if (received_channel > 14) { /* 802.11a */
7749 ipw_rt->rt_chbitmask =
7750 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7751 } else if (antennaAndPhy & 32) { /* 802.11b */
7752 ipw_rt->rt_chbitmask =
7753 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7754 } else { /* 802.11g */
7755 ipw_rt->rt_chbitmask =
7756 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7759 /* set the rate in multiples of 500k/s */
7761 case IPW_TX_RATE_1MB:
7762 ipw_rt->rt_rate = 2;
7764 case IPW_TX_RATE_2MB:
7765 ipw_rt->rt_rate = 4;
7767 case IPW_TX_RATE_5MB:
7768 ipw_rt->rt_rate = 10;
7770 case IPW_TX_RATE_6MB:
7771 ipw_rt->rt_rate = 12;
7773 case IPW_TX_RATE_9MB:
7774 ipw_rt->rt_rate = 18;
7776 case IPW_TX_RATE_11MB:
7777 ipw_rt->rt_rate = 22;
7779 case IPW_TX_RATE_12MB:
7780 ipw_rt->rt_rate = 24;
7782 case IPW_TX_RATE_18MB:
7783 ipw_rt->rt_rate = 36;
7785 case IPW_TX_RATE_24MB:
7786 ipw_rt->rt_rate = 48;
7788 case IPW_TX_RATE_36MB:
7789 ipw_rt->rt_rate = 72;
7791 case IPW_TX_RATE_48MB:
7792 ipw_rt->rt_rate = 96;
7794 case IPW_TX_RATE_54MB:
7795 ipw_rt->rt_rate = 108;
7798 ipw_rt->rt_rate = 0;
7802 /* antenna number */
7803 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7805 /* set the preamble flag if we have it */
7806 if ((antennaAndPhy & 64))
7807 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7809 /* Set the size of the skb to the size of the frame */
7810 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7812 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7814 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7815 priv->ieee->stats.rx_errors++;
7816 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7818 /* no LED during capture */
7823 #ifdef CONFIG_IPW2200_PROMISCUOUS
7824 #define ieee80211_is_probe_response(fc) \
7825 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7826 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7828 #define ieee80211_is_management(fc) \
7829 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7831 #define ieee80211_is_control(fc) \
7832 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7834 #define ieee80211_is_data(fc) \
7835 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7837 #define ieee80211_is_assoc_request(fc) \
7838 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7840 #define ieee80211_is_reassoc_request(fc) \
7841 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7843 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7844 struct ipw_rx_mem_buffer *rxb,
7845 struct ieee80211_rx_stats *stats)
7847 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7848 struct ipw_rx_frame *frame = &pkt->u.frame;
7849 struct ipw_rt_hdr *ipw_rt;
7851 /* First cache any information we need before we overwrite
7852 * the information provided in the skb from the hardware */
7853 struct ieee80211_hdr *hdr;
7854 u16 channel = frame->received_channel;
7855 u8 phy_flags = frame->antennaAndPhy;
7856 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7857 s8 noise = frame->noise;
7858 u8 rate = frame->rate;
7859 short len = le16_to_cpu(pkt->u.frame.length);
7860 struct sk_buff *skb;
7862 u16 filter = priv->prom_priv->filter;
7864 /* If the filter is set to not include Rx frames then return */
7865 if (filter & IPW_PROM_NO_RX)
7868 /* We received data from the HW, so stop the watchdog */
7869 priv->prom_net_dev->trans_start = jiffies;
7871 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7872 priv->prom_priv->ieee->stats.rx_errors++;
7873 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7877 /* We only process data packets if the interface is open */
7878 if (unlikely(!netif_running(priv->prom_net_dev))) {
7879 priv->prom_priv->ieee->stats.rx_dropped++;
7880 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7884 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7886 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7887 /* FIXME: Should alloc bigger skb instead */
7888 priv->prom_priv->ieee->stats.rx_dropped++;
7889 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7893 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7894 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7895 if (filter & IPW_PROM_NO_MGMT)
7897 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7899 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7900 if (filter & IPW_PROM_NO_CTL)
7902 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7904 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7905 if (filter & IPW_PROM_NO_DATA)
7907 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7911 /* Copy the SKB since this is for the promiscuous side */
7912 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7914 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7918 /* copy the frame data to write after where the radiotap header goes */
7919 ipw_rt = (void *)skb->data;
7922 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7924 memcpy(ipw_rt->payload, hdr, len);
7926 /* Zero the radiotap static buffer ... We only need to zero the bytes
7927 * NOT part of our real header, saves a little time.
7929 * No longer necessary since we fill in all our data. Purge before
7930 * merging patch officially.
7931 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7932 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7935 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7936 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7937 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7939 /* Set the size of the skb to the size of the frame */
7940 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7942 /* Big bitfield of all the fields we provide in radiotap */
7943 ipw_rt->rt_hdr.it_present =
7944 ((1 << IEEE80211_RADIOTAP_TSFT) |
7945 (1 << IEEE80211_RADIOTAP_FLAGS) |
7946 (1 << IEEE80211_RADIOTAP_RATE) |
7947 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7948 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7949 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7950 (1 << IEEE80211_RADIOTAP_ANTENNA));
7952 /* Zero the flags, we'll add to them as we go */
7953 ipw_rt->rt_flags = 0;
7954 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7955 frame->parent_tsf[2] << 16 |
7956 frame->parent_tsf[1] << 8 |
7957 frame->parent_tsf[0]);
7959 /* Convert to DBM */
7960 ipw_rt->rt_dbmsignal = signal;
7961 ipw_rt->rt_dbmnoise = noise;
7963 /* Convert the channel data and set the flags */
7964 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7965 if (channel > 14) { /* 802.11a */
7966 ipw_rt->rt_chbitmask =
7967 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7968 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7969 ipw_rt->rt_chbitmask =
7970 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7971 } else { /* 802.11g */
7972 ipw_rt->rt_chbitmask =
7973 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7976 /* set the rate in multiples of 500k/s */
7978 case IPW_TX_RATE_1MB:
7979 ipw_rt->rt_rate = 2;
7981 case IPW_TX_RATE_2MB:
7982 ipw_rt->rt_rate = 4;
7984 case IPW_TX_RATE_5MB:
7985 ipw_rt->rt_rate = 10;
7987 case IPW_TX_RATE_6MB:
7988 ipw_rt->rt_rate = 12;
7990 case IPW_TX_RATE_9MB:
7991 ipw_rt->rt_rate = 18;
7993 case IPW_TX_RATE_11MB:
7994 ipw_rt->rt_rate = 22;
7996 case IPW_TX_RATE_12MB:
7997 ipw_rt->rt_rate = 24;
7999 case IPW_TX_RATE_18MB:
8000 ipw_rt->rt_rate = 36;
8002 case IPW_TX_RATE_24MB:
8003 ipw_rt->rt_rate = 48;
8005 case IPW_TX_RATE_36MB:
8006 ipw_rt->rt_rate = 72;
8008 case IPW_TX_RATE_48MB:
8009 ipw_rt->rt_rate = 96;
8011 case IPW_TX_RATE_54MB:
8012 ipw_rt->rt_rate = 108;
8015 ipw_rt->rt_rate = 0;
8019 /* antenna number */
8020 ipw_rt->rt_antenna = (phy_flags & 3);
8022 /* set the preamble flag if we have it */
8023 if (phy_flags & (1 << 6))
8024 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8026 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8028 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8029 priv->prom_priv->ieee->stats.rx_errors++;
8030 dev_kfree_skb_any(skb);
8035 static int is_network_packet(struct ipw_priv *priv,
8036 struct ieee80211_hdr_4addr *header)
8038 /* Filter incoming packets to determine if they are targetted toward
8039 * this network, discarding packets coming from ourselves */
8040 switch (priv->ieee->iw_mode) {
8041 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8042 /* packets from our adapter are dropped (echo) */
8043 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8046 /* {broad,multi}cast packets to our BSSID go through */
8047 if (is_multicast_ether_addr(header->addr1))
8048 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8050 /* packets to our adapter go through */
8051 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8054 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8055 /* packets from our adapter are dropped (echo) */
8056 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8059 /* {broad,multi}cast packets to our BSS go through */
8060 if (is_multicast_ether_addr(header->addr1))
8061 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8063 /* packets to our adapter go through */
8064 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8071 #define IPW_PACKET_RETRY_TIME HZ
8073 static int is_duplicate_packet(struct ipw_priv *priv,
8074 struct ieee80211_hdr_4addr *header)
8076 u16 sc = le16_to_cpu(header->seq_ctl);
8077 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8078 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8079 u16 *last_seq, *last_frag;
8080 unsigned long *last_time;
8082 switch (priv->ieee->iw_mode) {
8085 struct list_head *p;
8086 struct ipw_ibss_seq *entry = NULL;
8087 u8 *mac = header->addr2;
8088 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8090 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8092 list_entry(p, struct ipw_ibss_seq, list);
8093 if (!memcmp(entry->mac, mac, ETH_ALEN))
8096 if (p == &priv->ibss_mac_hash[index]) {
8097 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8100 ("Cannot malloc new mac entry\n");
8103 memcpy(entry->mac, mac, ETH_ALEN);
8104 entry->seq_num = seq;
8105 entry->frag_num = frag;
8106 entry->packet_time = jiffies;
8107 list_add(&entry->list,
8108 &priv->ibss_mac_hash[index]);
8111 last_seq = &entry->seq_num;
8112 last_frag = &entry->frag_num;
8113 last_time = &entry->packet_time;
8117 last_seq = &priv->last_seq_num;
8118 last_frag = &priv->last_frag_num;
8119 last_time = &priv->last_packet_time;
8124 if ((*last_seq == seq) &&
8125 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8126 if (*last_frag == frag)
8128 if (*last_frag + 1 != frag)
8129 /* out-of-order fragment */
8135 *last_time = jiffies;
8139 /* Comment this line now since we observed the card receives
8140 * duplicate packets but the FCTL_RETRY bit is not set in the
8141 * IBSS mode with fragmentation enabled.
8142 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8146 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8147 struct ipw_rx_mem_buffer *rxb,
8148 struct ieee80211_rx_stats *stats)
8150 struct sk_buff *skb = rxb->skb;
8151 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8152 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8153 (skb->data + IPW_RX_FRAME_SIZE);
8155 ieee80211_rx_mgt(priv->ieee, header, stats);
8157 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8158 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8159 IEEE80211_STYPE_PROBE_RESP) ||
8160 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8161 IEEE80211_STYPE_BEACON))) {
8162 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8163 ipw_add_station(priv, header->addr2);
8166 if (priv->config & CFG_NET_STATS) {
8167 IPW_DEBUG_HC("sending stat packet\n");
8169 /* Set the size of the skb to the size of the full
8170 * ipw header and 802.11 frame */
8171 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8174 /* Advance past the ipw packet header to the 802.11 frame */
8175 skb_pull(skb, IPW_RX_FRAME_SIZE);
8177 /* Push the ieee80211_rx_stats before the 802.11 frame */
8178 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8180 skb->dev = priv->ieee->dev;
8182 /* Point raw at the ieee80211_stats */
8183 skb_reset_mac_header(skb);
8185 skb->pkt_type = PACKET_OTHERHOST;
8186 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8187 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8194 * Main entry function for recieving a packet with 80211 headers. This
8195 * should be called when ever the FW has notified us that there is a new
8196 * skb in the recieve queue.
8198 static void ipw_rx(struct ipw_priv *priv)
8200 struct ipw_rx_mem_buffer *rxb;
8201 struct ipw_rx_packet *pkt;
8202 struct ieee80211_hdr_4addr *header;
8206 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8207 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8208 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8211 rxb = priv->rxq->queue[i];
8212 if (unlikely(rxb == NULL)) {
8213 printk(KERN_CRIT "Queue not allocated!\n");
8216 priv->rxq->queue[i] = NULL;
8218 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8220 PCI_DMA_FROMDEVICE);
8222 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8223 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8224 pkt->header.message_type,
8225 pkt->header.rx_seq_num, pkt->header.control_bits);
8227 switch (pkt->header.message_type) {
8228 case RX_FRAME_TYPE: /* 802.11 frame */ {
8229 struct ieee80211_rx_stats stats = {
8230 .rssi = pkt->u.frame.rssi_dbm -
8233 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8234 IPW_RSSI_TO_DBM + 0x100,
8236 le16_to_cpu(pkt->u.frame.noise),
8237 .rate = pkt->u.frame.rate,
8238 .mac_time = jiffies,
8240 pkt->u.frame.received_channel,
8243 control & (1 << 0)) ?
8244 IEEE80211_24GHZ_BAND :
8245 IEEE80211_52GHZ_BAND,
8246 .len = le16_to_cpu(pkt->u.frame.length),
8249 if (stats.rssi != 0)
8250 stats.mask |= IEEE80211_STATMASK_RSSI;
8251 if (stats.signal != 0)
8252 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8253 if (stats.noise != 0)
8254 stats.mask |= IEEE80211_STATMASK_NOISE;
8255 if (stats.rate != 0)
8256 stats.mask |= IEEE80211_STATMASK_RATE;
8260 #ifdef CONFIG_IPW2200_PROMISCUOUS
8261 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8262 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8265 #ifdef CONFIG_IPW2200_MONITOR
8266 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8267 #ifdef CONFIG_IPW2200_RADIOTAP
8269 ipw_handle_data_packet_monitor(priv,
8273 ipw_handle_data_packet(priv, rxb,
8281 (struct ieee80211_hdr_4addr *)(rxb->skb->
8284 /* TODO: Check Ad-Hoc dest/source and make sure
8285 * that we are actually parsing these packets
8286 * correctly -- we should probably use the
8287 * frame control of the packet and disregard
8288 * the current iw_mode */
8291 is_network_packet(priv, header);
8292 if (network_packet && priv->assoc_network) {
8293 priv->assoc_network->stats.rssi =
8295 priv->exp_avg_rssi =
8296 exponential_average(priv->exp_avg_rssi,
8297 stats.rssi, DEPTH_RSSI);
8300 IPW_DEBUG_RX("Frame: len=%u\n",
8301 le16_to_cpu(pkt->u.frame.length));
8303 if (le16_to_cpu(pkt->u.frame.length) <
8304 ieee80211_get_hdrlen(le16_to_cpu(
8305 header->frame_ctl))) {
8307 ("Received packet is too small. "
8309 priv->ieee->stats.rx_errors++;
8310 priv->wstats.discard.misc++;
8314 switch (WLAN_FC_GET_TYPE
8315 (le16_to_cpu(header->frame_ctl))) {
8317 case IEEE80211_FTYPE_MGMT:
8318 ipw_handle_mgmt_packet(priv, rxb,
8322 case IEEE80211_FTYPE_CTL:
8325 case IEEE80211_FTYPE_DATA:
8326 if (unlikely(!network_packet ||
8327 is_duplicate_packet(priv,
8330 IPW_DEBUG_DROP("Dropping: "
8343 ipw_handle_data_packet(priv, rxb,
8351 case RX_HOST_NOTIFICATION_TYPE:{
8353 ("Notification: subtype=%02X flags=%02X size=%d\n",
8354 pkt->u.notification.subtype,
8355 pkt->u.notification.flags,
8356 le16_to_cpu(pkt->u.notification.size));
8357 ipw_rx_notification(priv, &pkt->u.notification);
8362 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8363 pkt->header.message_type);
8367 /* For now we just don't re-use anything. We can tweak this
8368 * later to try and re-use notification packets and SKBs that
8369 * fail to Rx correctly */
8370 if (rxb->skb != NULL) {
8371 dev_kfree_skb_any(rxb->skb);
8375 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8376 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8377 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8379 i = (i + 1) % RX_QUEUE_SIZE;
8382 /* Backtrack one entry */
8383 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8385 ipw_rx_queue_restock(priv);
8388 #define DEFAULT_RTS_THRESHOLD 2304U
8389 #define MIN_RTS_THRESHOLD 1U
8390 #define MAX_RTS_THRESHOLD 2304U
8391 #define DEFAULT_BEACON_INTERVAL 100U
8392 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8393 #define DEFAULT_LONG_RETRY_LIMIT 4U
8397 * @option: options to control different reset behaviour
8398 * 0 = reset everything except the 'disable' module_param
8399 * 1 = reset everything and print out driver info (for probe only)
8400 * 2 = reset everything
8402 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8404 int band, modulation;
8405 int old_mode = priv->ieee->iw_mode;
8407 /* Initialize module parameter values here */
8410 /* We default to disabling the LED code as right now it causes
8411 * too many systems to lock up... */
8413 priv->config |= CFG_NO_LED;
8416 priv->config |= CFG_ASSOCIATE;
8418 IPW_DEBUG_INFO("Auto associate disabled.\n");
8421 priv->config |= CFG_ADHOC_CREATE;
8423 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8425 priv->config &= ~CFG_STATIC_ESSID;
8426 priv->essid_len = 0;
8427 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8429 if (disable && option) {
8430 priv->status |= STATUS_RF_KILL_SW;
8431 IPW_DEBUG_INFO("Radio disabled.\n");
8435 priv->config |= CFG_STATIC_CHANNEL;
8436 priv->channel = channel;
8437 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8438 /* TODO: Validate that provided channel is in range */
8440 #ifdef CONFIG_IPW2200_QOS
8441 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8442 burst_duration_CCK, burst_duration_OFDM);
8443 #endif /* CONFIG_IPW2200_QOS */
8447 priv->ieee->iw_mode = IW_MODE_ADHOC;
8448 priv->net_dev->type = ARPHRD_ETHER;
8451 #ifdef CONFIG_IPW2200_MONITOR
8453 priv->ieee->iw_mode = IW_MODE_MONITOR;
8454 #ifdef CONFIG_IPW2200_RADIOTAP
8455 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8457 priv->net_dev->type = ARPHRD_IEEE80211;
8463 priv->net_dev->type = ARPHRD_ETHER;
8464 priv->ieee->iw_mode = IW_MODE_INFRA;
8469 priv->ieee->host_encrypt = 0;
8470 priv->ieee->host_encrypt_msdu = 0;
8471 priv->ieee->host_decrypt = 0;
8472 priv->ieee->host_mc_decrypt = 0;
8474 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8476 /* IPW2200/2915 is abled to do hardware fragmentation. */
8477 priv->ieee->host_open_frag = 0;
8479 if ((priv->pci_dev->device == 0x4223) ||
8480 (priv->pci_dev->device == 0x4224)) {
8482 printk(KERN_INFO DRV_NAME
8483 ": Detected Intel PRO/Wireless 2915ABG Network "
8485 priv->ieee->abg_true = 1;
8486 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8487 modulation = IEEE80211_OFDM_MODULATION |
8488 IEEE80211_CCK_MODULATION;
8489 priv->adapter = IPW_2915ABG;
8490 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8493 printk(KERN_INFO DRV_NAME
8494 ": Detected Intel PRO/Wireless 2200BG Network "
8497 priv->ieee->abg_true = 0;
8498 band = IEEE80211_24GHZ_BAND;
8499 modulation = IEEE80211_OFDM_MODULATION |
8500 IEEE80211_CCK_MODULATION;
8501 priv->adapter = IPW_2200BG;
8502 priv->ieee->mode = IEEE_G | IEEE_B;
8505 priv->ieee->freq_band = band;
8506 priv->ieee->modulation = modulation;
8508 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8510 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8511 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8513 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8514 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8515 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8517 /* If power management is turned on, default to AC mode */
8518 priv->power_mode = IPW_POWER_AC;
8519 priv->tx_power = IPW_TX_POWER_DEFAULT;
8521 return old_mode == priv->ieee->iw_mode;
8525 * This file defines the Wireless Extension handlers. It does not
8526 * define any methods of hardware manipulation and relies on the
8527 * functions defined in ipw_main to provide the HW interaction.
8529 * The exception to this is the use of the ipw_get_ordinal()
8530 * function used to poll the hardware vs. making unecessary calls.
8534 static int ipw_wx_get_name(struct net_device *dev,
8535 struct iw_request_info *info,
8536 union iwreq_data *wrqu, char *extra)
8538 struct ipw_priv *priv = ieee80211_priv(dev);
8539 mutex_lock(&priv->mutex);
8540 if (priv->status & STATUS_RF_KILL_MASK)
8541 strcpy(wrqu->name, "radio off");
8542 else if (!(priv->status & STATUS_ASSOCIATED))
8543 strcpy(wrqu->name, "unassociated");
8545 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8546 ipw_modes[priv->assoc_request.ieee_mode]);
8547 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8548 mutex_unlock(&priv->mutex);
8552 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8555 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8556 priv->config &= ~CFG_STATIC_CHANNEL;
8557 IPW_DEBUG_ASSOC("Attempting to associate with new "
8559 ipw_associate(priv);
8563 priv->config |= CFG_STATIC_CHANNEL;
8565 if (priv->channel == channel) {
8566 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8571 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8572 priv->channel = channel;
8574 #ifdef CONFIG_IPW2200_MONITOR
8575 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8577 if (priv->status & STATUS_SCANNING) {
8578 IPW_DEBUG_SCAN("Scan abort triggered due to "
8579 "channel change.\n");
8580 ipw_abort_scan(priv);
8583 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8586 if (priv->status & STATUS_SCANNING)
8587 IPW_DEBUG_SCAN("Still scanning...\n");
8589 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8594 #endif /* CONFIG_IPW2200_MONITOR */
8596 /* Network configuration changed -- force [re]association */
8597 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8598 if (!ipw_disassociate(priv))
8599 ipw_associate(priv);
8604 static int ipw_wx_set_freq(struct net_device *dev,
8605 struct iw_request_info *info,
8606 union iwreq_data *wrqu, char *extra)
8608 struct ipw_priv *priv = ieee80211_priv(dev);
8609 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8610 struct iw_freq *fwrq = &wrqu->freq;
8616 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8617 mutex_lock(&priv->mutex);
8618 ret = ipw_set_channel(priv, 0);
8619 mutex_unlock(&priv->mutex);
8622 /* if setting by freq convert to channel */
8624 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8630 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8633 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8634 i = ieee80211_channel_to_index(priv->ieee, channel);
8638 flags = (band == IEEE80211_24GHZ_BAND) ?
8639 geo->bg[i].flags : geo->a[i].flags;
8640 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8641 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8646 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8647 mutex_lock(&priv->mutex);
8648 ret = ipw_set_channel(priv, channel);
8649 mutex_unlock(&priv->mutex);
8653 static int ipw_wx_get_freq(struct net_device *dev,
8654 struct iw_request_info *info,
8655 union iwreq_data *wrqu, char *extra)
8657 struct ipw_priv *priv = ieee80211_priv(dev);
8661 /* If we are associated, trying to associate, or have a statically
8662 * configured CHANNEL then return that; otherwise return ANY */
8663 mutex_lock(&priv->mutex);
8664 if (priv->config & CFG_STATIC_CHANNEL ||
8665 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8668 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8672 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8673 case IEEE80211_52GHZ_BAND:
8674 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8677 case IEEE80211_24GHZ_BAND:
8678 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8687 mutex_unlock(&priv->mutex);
8688 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8692 static int ipw_wx_set_mode(struct net_device *dev,
8693 struct iw_request_info *info,
8694 union iwreq_data *wrqu, char *extra)
8696 struct ipw_priv *priv = ieee80211_priv(dev);
8699 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8701 switch (wrqu->mode) {
8702 #ifdef CONFIG_IPW2200_MONITOR
8703 case IW_MODE_MONITOR:
8709 wrqu->mode = IW_MODE_INFRA;
8714 if (wrqu->mode == priv->ieee->iw_mode)
8717 mutex_lock(&priv->mutex);
8719 ipw_sw_reset(priv, 0);
8721 #ifdef CONFIG_IPW2200_MONITOR
8722 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8723 priv->net_dev->type = ARPHRD_ETHER;
8725 if (wrqu->mode == IW_MODE_MONITOR)
8726 #ifdef CONFIG_IPW2200_RADIOTAP
8727 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8729 priv->net_dev->type = ARPHRD_IEEE80211;
8731 #endif /* CONFIG_IPW2200_MONITOR */
8733 /* Free the existing firmware and reset the fw_loaded
8734 * flag so ipw_load() will bring in the new firmawre */
8737 priv->ieee->iw_mode = wrqu->mode;
8739 queue_work(priv->workqueue, &priv->adapter_restart);
8740 mutex_unlock(&priv->mutex);
8744 static int ipw_wx_get_mode(struct net_device *dev,
8745 struct iw_request_info *info,
8746 union iwreq_data *wrqu, char *extra)
8748 struct ipw_priv *priv = ieee80211_priv(dev);
8749 mutex_lock(&priv->mutex);
8750 wrqu->mode = priv->ieee->iw_mode;
8751 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8752 mutex_unlock(&priv->mutex);
8756 /* Values are in microsecond */
8757 static const s32 timeout_duration[] = {
8765 static const s32 period_duration[] = {
8773 static int ipw_wx_get_range(struct net_device *dev,
8774 struct iw_request_info *info,
8775 union iwreq_data *wrqu, char *extra)
8777 struct ipw_priv *priv = ieee80211_priv(dev);
8778 struct iw_range *range = (struct iw_range *)extra;
8779 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8782 wrqu->data.length = sizeof(*range);
8783 memset(range, 0, sizeof(*range));
8785 /* 54Mbs == ~27 Mb/s real (802.11g) */
8786 range->throughput = 27 * 1000 * 1000;
8788 range->max_qual.qual = 100;
8789 /* TODO: Find real max RSSI and stick here */
8790 range->max_qual.level = 0;
8791 range->max_qual.noise = 0;
8792 range->max_qual.updated = 7; /* Updated all three */
8794 range->avg_qual.qual = 70;
8795 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8796 range->avg_qual.level = 0; /* FIXME to real average level */
8797 range->avg_qual.noise = 0;
8798 range->avg_qual.updated = 7; /* Updated all three */
8799 mutex_lock(&priv->mutex);
8800 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8802 for (i = 0; i < range->num_bitrates; i++)
8803 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8806 range->max_rts = DEFAULT_RTS_THRESHOLD;
8807 range->min_frag = MIN_FRAG_THRESHOLD;
8808 range->max_frag = MAX_FRAG_THRESHOLD;
8810 range->encoding_size[0] = 5;
8811 range->encoding_size[1] = 13;
8812 range->num_encoding_sizes = 2;
8813 range->max_encoding_tokens = WEP_KEYS;
8815 /* Set the Wireless Extension versions */
8816 range->we_version_compiled = WIRELESS_EXT;
8817 range->we_version_source = 18;
8820 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8821 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8822 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8823 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8826 range->freq[i].i = geo->bg[j].channel;
8827 range->freq[i].m = geo->bg[j].freq * 100000;
8828 range->freq[i].e = 1;
8833 if (priv->ieee->mode & IEEE_A) {
8834 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8835 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8836 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8839 range->freq[i].i = geo->a[j].channel;
8840 range->freq[i].m = geo->a[j].freq * 100000;
8841 range->freq[i].e = 1;
8846 range->num_channels = i;
8847 range->num_frequency = i;
8849 mutex_unlock(&priv->mutex);
8851 /* Event capability (kernel + driver) */
8852 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8853 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8854 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8855 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8856 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8858 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8859 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8861 IPW_DEBUG_WX("GET Range\n");
8865 static int ipw_wx_set_wap(struct net_device *dev,
8866 struct iw_request_info *info,
8867 union iwreq_data *wrqu, char *extra)
8869 struct ipw_priv *priv = ieee80211_priv(dev);
8871 static const unsigned char any[] = {
8872 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8874 static const unsigned char off[] = {
8875 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8878 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8880 mutex_lock(&priv->mutex);
8881 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8882 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8883 /* we disable mandatory BSSID association */
8884 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8885 priv->config &= ~CFG_STATIC_BSSID;
8886 IPW_DEBUG_ASSOC("Attempting to associate with new "
8888 ipw_associate(priv);
8889 mutex_unlock(&priv->mutex);
8893 priv->config |= CFG_STATIC_BSSID;
8894 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8895 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8896 mutex_unlock(&priv->mutex);
8900 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8901 MAC_ARG(wrqu->ap_addr.sa_data));
8903 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8905 /* Network configuration changed -- force [re]association */
8906 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8907 if (!ipw_disassociate(priv))
8908 ipw_associate(priv);
8910 mutex_unlock(&priv->mutex);
8914 static int ipw_wx_get_wap(struct net_device *dev,
8915 struct iw_request_info *info,
8916 union iwreq_data *wrqu, char *extra)
8918 struct ipw_priv *priv = ieee80211_priv(dev);
8919 /* If we are associated, trying to associate, or have a statically
8920 * configured BSSID then return that; otherwise return ANY */
8921 mutex_lock(&priv->mutex);
8922 if (priv->config & CFG_STATIC_BSSID ||
8923 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8924 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8925 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8927 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8929 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8930 MAC_ARG(wrqu->ap_addr.sa_data));
8931 mutex_unlock(&priv->mutex);
8935 static int ipw_wx_set_essid(struct net_device *dev,
8936 struct iw_request_info *info,
8937 union iwreq_data *wrqu, char *extra)
8939 struct ipw_priv *priv = ieee80211_priv(dev);
8942 mutex_lock(&priv->mutex);
8944 if (!wrqu->essid.flags)
8946 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8947 ipw_disassociate(priv);
8948 priv->config &= ~CFG_STATIC_ESSID;
8949 ipw_associate(priv);
8950 mutex_unlock(&priv->mutex);
8954 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8956 priv->config |= CFG_STATIC_ESSID;
8958 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8959 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8960 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8961 mutex_unlock(&priv->mutex);
8965 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8968 priv->essid_len = length;
8969 memcpy(priv->essid, extra, priv->essid_len);
8971 /* Network configuration changed -- force [re]association */
8972 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8973 if (!ipw_disassociate(priv))
8974 ipw_associate(priv);
8976 mutex_unlock(&priv->mutex);
8980 static int ipw_wx_get_essid(struct net_device *dev,
8981 struct iw_request_info *info,
8982 union iwreq_data *wrqu, char *extra)
8984 struct ipw_priv *priv = ieee80211_priv(dev);
8986 /* If we are associated, trying to associate, or have a statically
8987 * configured ESSID then return that; otherwise return ANY */
8988 mutex_lock(&priv->mutex);
8989 if (priv->config & CFG_STATIC_ESSID ||
8990 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8991 IPW_DEBUG_WX("Getting essid: '%s'\n",
8992 escape_essid(priv->essid, priv->essid_len));
8993 memcpy(extra, priv->essid, priv->essid_len);
8994 wrqu->essid.length = priv->essid_len;
8995 wrqu->essid.flags = 1; /* active */
8997 IPW_DEBUG_WX("Getting essid: ANY\n");
8998 wrqu->essid.length = 0;
8999 wrqu->essid.flags = 0; /* active */
9001 mutex_unlock(&priv->mutex);
9005 static int ipw_wx_set_nick(struct net_device *dev,
9006 struct iw_request_info *info,
9007 union iwreq_data *wrqu, char *extra)
9009 struct ipw_priv *priv = ieee80211_priv(dev);
9011 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9012 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9014 mutex_lock(&priv->mutex);
9015 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9016 memset(priv->nick, 0, sizeof(priv->nick));
9017 memcpy(priv->nick, extra, wrqu->data.length);
9018 IPW_DEBUG_TRACE("<<\n");
9019 mutex_unlock(&priv->mutex);
9024 static int ipw_wx_get_nick(struct net_device *dev,
9025 struct iw_request_info *info,
9026 union iwreq_data *wrqu, char *extra)
9028 struct ipw_priv *priv = ieee80211_priv(dev);
9029 IPW_DEBUG_WX("Getting nick\n");
9030 mutex_lock(&priv->mutex);
9031 wrqu->data.length = strlen(priv->nick);
9032 memcpy(extra, priv->nick, wrqu->data.length);
9033 wrqu->data.flags = 1; /* active */
9034 mutex_unlock(&priv->mutex);
9038 static int ipw_wx_set_sens(struct net_device *dev,
9039 struct iw_request_info *info,
9040 union iwreq_data *wrqu, char *extra)
9042 struct ipw_priv *priv = ieee80211_priv(dev);
9045 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9046 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9047 mutex_lock(&priv->mutex);
9049 if (wrqu->sens.fixed == 0)
9051 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9052 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9055 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9056 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9061 priv->roaming_threshold = wrqu->sens.value;
9062 priv->disassociate_threshold = 3*wrqu->sens.value;
9064 mutex_unlock(&priv->mutex);
9068 static int ipw_wx_get_sens(struct net_device *dev,
9069 struct iw_request_info *info,
9070 union iwreq_data *wrqu, char *extra)
9072 struct ipw_priv *priv = ieee80211_priv(dev);
9073 mutex_lock(&priv->mutex);
9074 wrqu->sens.fixed = 1;
9075 wrqu->sens.value = priv->roaming_threshold;
9076 mutex_unlock(&priv->mutex);
9078 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9079 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9084 static int ipw_wx_set_rate(struct net_device *dev,
9085 struct iw_request_info *info,
9086 union iwreq_data *wrqu, char *extra)
9088 /* TODO: We should use semaphores or locks for access to priv */
9089 struct ipw_priv *priv = ieee80211_priv(dev);
9090 u32 target_rate = wrqu->bitrate.value;
9093 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9094 /* value = X, fixed = 1 means only rate X */
9095 /* value = X, fixed = 0 means all rates lower equal X */
9097 if (target_rate == -1) {
9099 mask = IEEE80211_DEFAULT_RATES_MASK;
9100 /* Now we should reassociate */
9105 fixed = wrqu->bitrate.fixed;
9107 if (target_rate == 1000000 || !fixed)
9108 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9109 if (target_rate == 1000000)
9112 if (target_rate == 2000000 || !fixed)
9113 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9114 if (target_rate == 2000000)
9117 if (target_rate == 5500000 || !fixed)
9118 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9119 if (target_rate == 5500000)
9122 if (target_rate == 6000000 || !fixed)
9123 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9124 if (target_rate == 6000000)
9127 if (target_rate == 9000000 || !fixed)
9128 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9129 if (target_rate == 9000000)
9132 if (target_rate == 11000000 || !fixed)
9133 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9134 if (target_rate == 11000000)
9137 if (target_rate == 12000000 || !fixed)
9138 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9139 if (target_rate == 12000000)
9142 if (target_rate == 18000000 || !fixed)
9143 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9144 if (target_rate == 18000000)
9147 if (target_rate == 24000000 || !fixed)
9148 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9149 if (target_rate == 24000000)
9152 if (target_rate == 36000000 || !fixed)
9153 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9154 if (target_rate == 36000000)
9157 if (target_rate == 48000000 || !fixed)
9158 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9159 if (target_rate == 48000000)
9162 if (target_rate == 54000000 || !fixed)
9163 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9164 if (target_rate == 54000000)
9167 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9171 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9172 mask, fixed ? "fixed" : "sub-rates");
9173 mutex_lock(&priv->mutex);
9174 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9175 priv->config &= ~CFG_FIXED_RATE;
9176 ipw_set_fixed_rate(priv, priv->ieee->mode);
9178 priv->config |= CFG_FIXED_RATE;
9180 if (priv->rates_mask == mask) {
9181 IPW_DEBUG_WX("Mask set to current mask.\n");
9182 mutex_unlock(&priv->mutex);
9186 priv->rates_mask = mask;
9188 /* Network configuration changed -- force [re]association */
9189 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9190 if (!ipw_disassociate(priv))
9191 ipw_associate(priv);
9193 mutex_unlock(&priv->mutex);
9197 static int ipw_wx_get_rate(struct net_device *dev,
9198 struct iw_request_info *info,
9199 union iwreq_data *wrqu, char *extra)
9201 struct ipw_priv *priv = ieee80211_priv(dev);
9202 mutex_lock(&priv->mutex);
9203 wrqu->bitrate.value = priv->last_rate;
9204 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9205 mutex_unlock(&priv->mutex);
9206 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9210 static int ipw_wx_set_rts(struct net_device *dev,
9211 struct iw_request_info *info,
9212 union iwreq_data *wrqu, char *extra)
9214 struct ipw_priv *priv = ieee80211_priv(dev);
9215 mutex_lock(&priv->mutex);
9216 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9217 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9219 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9220 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9221 mutex_unlock(&priv->mutex);
9224 priv->rts_threshold = wrqu->rts.value;
9227 ipw_send_rts_threshold(priv, priv->rts_threshold);
9228 mutex_unlock(&priv->mutex);
9229 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9233 static int ipw_wx_get_rts(struct net_device *dev,
9234 struct iw_request_info *info,
9235 union iwreq_data *wrqu, char *extra)
9237 struct ipw_priv *priv = ieee80211_priv(dev);
9238 mutex_lock(&priv->mutex);
9239 wrqu->rts.value = priv->rts_threshold;
9240 wrqu->rts.fixed = 0; /* no auto select */
9241 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9242 mutex_unlock(&priv->mutex);
9243 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9247 static int ipw_wx_set_txpow(struct net_device *dev,
9248 struct iw_request_info *info,
9249 union iwreq_data *wrqu, char *extra)
9251 struct ipw_priv *priv = ieee80211_priv(dev);
9254 mutex_lock(&priv->mutex);
9255 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9260 if (!wrqu->power.fixed)
9261 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9263 if (wrqu->power.flags != IW_TXPOW_DBM) {
9268 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9269 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9274 priv->tx_power = wrqu->power.value;
9275 err = ipw_set_tx_power(priv);
9277 mutex_unlock(&priv->mutex);
9281 static int ipw_wx_get_txpow(struct net_device *dev,
9282 struct iw_request_info *info,
9283 union iwreq_data *wrqu, char *extra)
9285 struct ipw_priv *priv = ieee80211_priv(dev);
9286 mutex_lock(&priv->mutex);
9287 wrqu->power.value = priv->tx_power;
9288 wrqu->power.fixed = 1;
9289 wrqu->power.flags = IW_TXPOW_DBM;
9290 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9291 mutex_unlock(&priv->mutex);
9293 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9294 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9299 static int ipw_wx_set_frag(struct net_device *dev,
9300 struct iw_request_info *info,
9301 union iwreq_data *wrqu, char *extra)
9303 struct ipw_priv *priv = ieee80211_priv(dev);
9304 mutex_lock(&priv->mutex);
9305 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9306 priv->ieee->fts = DEFAULT_FTS;
9308 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9309 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9310 mutex_unlock(&priv->mutex);
9314 priv->ieee->fts = wrqu->frag.value & ~0x1;
9317 ipw_send_frag_threshold(priv, wrqu->frag.value);
9318 mutex_unlock(&priv->mutex);
9319 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9323 static int ipw_wx_get_frag(struct net_device *dev,
9324 struct iw_request_info *info,
9325 union iwreq_data *wrqu, char *extra)
9327 struct ipw_priv *priv = ieee80211_priv(dev);
9328 mutex_lock(&priv->mutex);
9329 wrqu->frag.value = priv->ieee->fts;
9330 wrqu->frag.fixed = 0; /* no auto select */
9331 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9332 mutex_unlock(&priv->mutex);
9333 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9338 static int ipw_wx_set_retry(struct net_device *dev,
9339 struct iw_request_info *info,
9340 union iwreq_data *wrqu, char *extra)
9342 struct ipw_priv *priv = ieee80211_priv(dev);
9344 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9347 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9350 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9353 mutex_lock(&priv->mutex);
9354 if (wrqu->retry.flags & IW_RETRY_SHORT)
9355 priv->short_retry_limit = (u8) wrqu->retry.value;
9356 else if (wrqu->retry.flags & IW_RETRY_LONG)
9357 priv->long_retry_limit = (u8) wrqu->retry.value;
9359 priv->short_retry_limit = (u8) wrqu->retry.value;
9360 priv->long_retry_limit = (u8) wrqu->retry.value;
9363 ipw_send_retry_limit(priv, priv->short_retry_limit,
9364 priv->long_retry_limit);
9365 mutex_unlock(&priv->mutex);
9366 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9367 priv->short_retry_limit, priv->long_retry_limit);
9371 static int ipw_wx_get_retry(struct net_device *dev,
9372 struct iw_request_info *info,
9373 union iwreq_data *wrqu, char *extra)
9375 struct ipw_priv *priv = ieee80211_priv(dev);
9377 mutex_lock(&priv->mutex);
9378 wrqu->retry.disabled = 0;
9380 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9381 mutex_unlock(&priv->mutex);
9385 if (wrqu->retry.flags & IW_RETRY_LONG) {
9386 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9387 wrqu->retry.value = priv->long_retry_limit;
9388 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9389 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9390 wrqu->retry.value = priv->short_retry_limit;
9392 wrqu->retry.flags = IW_RETRY_LIMIT;
9393 wrqu->retry.value = priv->short_retry_limit;
9395 mutex_unlock(&priv->mutex);
9397 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9402 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9405 struct ipw_scan_request_ext scan;
9406 int err = 0, scan_type;
9408 if (!(priv->status & STATUS_INIT) ||
9409 (priv->status & STATUS_EXIT_PENDING))
9412 mutex_lock(&priv->mutex);
9414 if (priv->status & STATUS_RF_KILL_MASK) {
9415 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9416 priv->status |= STATUS_SCAN_PENDING;
9420 IPW_DEBUG_HC("starting request direct scan!\n");
9422 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9423 /* We should not sleep here; otherwise we will block most
9424 * of the system (for instance, we hold rtnl_lock when we
9430 memset(&scan, 0, sizeof(scan));
9432 if (priv->config & CFG_SPEED_SCAN)
9433 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9436 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9439 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9441 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9442 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9444 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9446 err = ipw_send_ssid(priv, essid, essid_len);
9448 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9451 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9453 ipw_add_scan_channels(priv, &scan, scan_type);
9455 err = ipw_send_scan_request_ext(priv, &scan);
9457 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9461 priv->status |= STATUS_SCANNING;
9464 mutex_unlock(&priv->mutex);
9468 static int ipw_wx_set_scan(struct net_device *dev,
9469 struct iw_request_info *info,
9470 union iwreq_data *wrqu, char *extra)
9472 struct ipw_priv *priv = ieee80211_priv(dev);
9473 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9475 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9476 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9477 ipw_request_direct_scan(priv, req->essid,
9481 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9482 queue_work(priv->workqueue,
9483 &priv->request_passive_scan);
9488 IPW_DEBUG_WX("Start scan\n");
9490 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9495 static int ipw_wx_get_scan(struct net_device *dev,
9496 struct iw_request_info *info,
9497 union iwreq_data *wrqu, char *extra)
9499 struct ipw_priv *priv = ieee80211_priv(dev);
9500 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9503 static int ipw_wx_set_encode(struct net_device *dev,
9504 struct iw_request_info *info,
9505 union iwreq_data *wrqu, char *key)
9507 struct ipw_priv *priv = ieee80211_priv(dev);
9509 u32 cap = priv->capability;
9511 mutex_lock(&priv->mutex);
9512 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9514 /* In IBSS mode, we need to notify the firmware to update
9515 * the beacon info after we changed the capability. */
9516 if (cap != priv->capability &&
9517 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9518 priv->status & STATUS_ASSOCIATED)
9519 ipw_disassociate(priv);
9521 mutex_unlock(&priv->mutex);
9525 static int ipw_wx_get_encode(struct net_device *dev,
9526 struct iw_request_info *info,
9527 union iwreq_data *wrqu, char *key)
9529 struct ipw_priv *priv = ieee80211_priv(dev);
9530 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9533 static int ipw_wx_set_power(struct net_device *dev,
9534 struct iw_request_info *info,
9535 union iwreq_data *wrqu, char *extra)
9537 struct ipw_priv *priv = ieee80211_priv(dev);
9539 mutex_lock(&priv->mutex);
9540 if (wrqu->power.disabled) {
9541 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9542 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9544 IPW_DEBUG_WX("failed setting power mode.\n");
9545 mutex_unlock(&priv->mutex);
9548 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9549 mutex_unlock(&priv->mutex);
9553 switch (wrqu->power.flags & IW_POWER_MODE) {
9554 case IW_POWER_ON: /* If not specified */
9555 case IW_POWER_MODE: /* If set all mask */
9556 case IW_POWER_ALL_R: /* If explicitely state all */
9558 default: /* Otherwise we don't support it */
9559 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9561 mutex_unlock(&priv->mutex);
9565 /* If the user hasn't specified a power management mode yet, default
9567 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9568 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9570 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9571 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9573 IPW_DEBUG_WX("failed setting power mode.\n");
9574 mutex_unlock(&priv->mutex);
9578 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9579 mutex_unlock(&priv->mutex);
9583 static int ipw_wx_get_power(struct net_device *dev,
9584 struct iw_request_info *info,
9585 union iwreq_data *wrqu, char *extra)
9587 struct ipw_priv *priv = ieee80211_priv(dev);
9588 mutex_lock(&priv->mutex);
9589 if (!(priv->power_mode & IPW_POWER_ENABLED))
9590 wrqu->power.disabled = 1;
9592 wrqu->power.disabled = 0;
9594 mutex_unlock(&priv->mutex);
9595 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9600 static int ipw_wx_set_powermode(struct net_device *dev,
9601 struct iw_request_info *info,
9602 union iwreq_data *wrqu, char *extra)
9604 struct ipw_priv *priv = ieee80211_priv(dev);
9605 int mode = *(int *)extra;
9607 mutex_lock(&priv->mutex);
9608 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9609 mode = IPW_POWER_AC;
9610 priv->power_mode = mode;
9612 priv->power_mode = IPW_POWER_ENABLED | mode;
9615 if (priv->power_mode != mode) {
9616 err = ipw_send_power_mode(priv, mode);
9619 IPW_DEBUG_WX("failed setting power mode.\n");
9620 mutex_unlock(&priv->mutex);
9624 mutex_unlock(&priv->mutex);
9628 #define MAX_WX_STRING 80
9629 static int ipw_wx_get_powermode(struct net_device *dev,
9630 struct iw_request_info *info,
9631 union iwreq_data *wrqu, char *extra)
9633 struct ipw_priv *priv = ieee80211_priv(dev);
9634 int level = IPW_POWER_LEVEL(priv->power_mode);
9637 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9641 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9643 case IPW_POWER_BATTERY:
9644 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9647 p += snprintf(p, MAX_WX_STRING - (p - extra),
9648 "(Timeout %dms, Period %dms)",
9649 timeout_duration[level - 1] / 1000,
9650 period_duration[level - 1] / 1000);
9653 if (!(priv->power_mode & IPW_POWER_ENABLED))
9654 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9656 wrqu->data.length = p - extra + 1;
9661 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9662 struct iw_request_info *info,
9663 union iwreq_data *wrqu, char *extra)
9665 struct ipw_priv *priv = ieee80211_priv(dev);
9666 int mode = *(int *)extra;
9667 u8 band = 0, modulation = 0;
9669 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9670 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9673 mutex_lock(&priv->mutex);
9674 if (priv->adapter == IPW_2915ABG) {
9675 priv->ieee->abg_true = 1;
9676 if (mode & IEEE_A) {
9677 band |= IEEE80211_52GHZ_BAND;
9678 modulation |= IEEE80211_OFDM_MODULATION;
9680 priv->ieee->abg_true = 0;
9682 if (mode & IEEE_A) {
9683 IPW_WARNING("Attempt to set 2200BG into "
9685 mutex_unlock(&priv->mutex);
9689 priv->ieee->abg_true = 0;
9692 if (mode & IEEE_B) {
9693 band |= IEEE80211_24GHZ_BAND;
9694 modulation |= IEEE80211_CCK_MODULATION;
9696 priv->ieee->abg_true = 0;
9698 if (mode & IEEE_G) {
9699 band |= IEEE80211_24GHZ_BAND;
9700 modulation |= IEEE80211_OFDM_MODULATION;
9702 priv->ieee->abg_true = 0;
9704 priv->ieee->mode = mode;
9705 priv->ieee->freq_band = band;
9706 priv->ieee->modulation = modulation;
9707 init_supported_rates(priv, &priv->rates);
9709 /* Network configuration changed -- force [re]association */
9710 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9711 if (!ipw_disassociate(priv)) {
9712 ipw_send_supported_rates(priv, &priv->rates);
9713 ipw_associate(priv);
9716 /* Update the band LEDs */
9717 ipw_led_band_on(priv);
9719 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9720 mode & IEEE_A ? 'a' : '.',
9721 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9722 mutex_unlock(&priv->mutex);
9726 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9727 struct iw_request_info *info,
9728 union iwreq_data *wrqu, char *extra)
9730 struct ipw_priv *priv = ieee80211_priv(dev);
9731 mutex_lock(&priv->mutex);
9732 switch (priv->ieee->mode) {
9734 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9737 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9739 case IEEE_A | IEEE_B:
9740 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9743 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9745 case IEEE_A | IEEE_G:
9746 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9748 case IEEE_B | IEEE_G:
9749 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9751 case IEEE_A | IEEE_B | IEEE_G:
9752 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9755 strncpy(extra, "unknown", MAX_WX_STRING);
9759 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9761 wrqu->data.length = strlen(extra) + 1;
9762 mutex_unlock(&priv->mutex);
9767 static int ipw_wx_set_preamble(struct net_device *dev,
9768 struct iw_request_info *info,
9769 union iwreq_data *wrqu, char *extra)
9771 struct ipw_priv *priv = ieee80211_priv(dev);
9772 int mode = *(int *)extra;
9773 mutex_lock(&priv->mutex);
9774 /* Switching from SHORT -> LONG requires a disassociation */
9776 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9777 priv->config |= CFG_PREAMBLE_LONG;
9779 /* Network configuration changed -- force [re]association */
9781 ("[re]association triggered due to preamble change.\n");
9782 if (!ipw_disassociate(priv))
9783 ipw_associate(priv);
9789 priv->config &= ~CFG_PREAMBLE_LONG;
9792 mutex_unlock(&priv->mutex);
9796 mutex_unlock(&priv->mutex);
9800 static int ipw_wx_get_preamble(struct net_device *dev,
9801 struct iw_request_info *info,
9802 union iwreq_data *wrqu, char *extra)
9804 struct ipw_priv *priv = ieee80211_priv(dev);
9805 mutex_lock(&priv->mutex);
9806 if (priv->config & CFG_PREAMBLE_LONG)
9807 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9809 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9810 mutex_unlock(&priv->mutex);
9814 #ifdef CONFIG_IPW2200_MONITOR
9815 static int ipw_wx_set_monitor(struct net_device *dev,
9816 struct iw_request_info *info,
9817 union iwreq_data *wrqu, char *extra)
9819 struct ipw_priv *priv = ieee80211_priv(dev);
9820 int *parms = (int *)extra;
9821 int enable = (parms[0] > 0);
9822 mutex_lock(&priv->mutex);
9823 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9825 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9826 #ifdef CONFIG_IPW2200_RADIOTAP
9827 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9829 priv->net_dev->type = ARPHRD_IEEE80211;
9831 queue_work(priv->workqueue, &priv->adapter_restart);
9834 ipw_set_channel(priv, parms[1]);
9836 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9837 mutex_unlock(&priv->mutex);
9840 priv->net_dev->type = ARPHRD_ETHER;
9841 queue_work(priv->workqueue, &priv->adapter_restart);
9843 mutex_unlock(&priv->mutex);
9847 #endif /* CONFIG_IPW2200_MONITOR */
9849 static int ipw_wx_reset(struct net_device *dev,
9850 struct iw_request_info *info,
9851 union iwreq_data *wrqu, char *extra)
9853 struct ipw_priv *priv = ieee80211_priv(dev);
9854 IPW_DEBUG_WX("RESET\n");
9855 queue_work(priv->workqueue, &priv->adapter_restart);
9859 static int ipw_wx_sw_reset(struct net_device *dev,
9860 struct iw_request_info *info,
9861 union iwreq_data *wrqu, char *extra)
9863 struct ipw_priv *priv = ieee80211_priv(dev);
9864 union iwreq_data wrqu_sec = {
9866 .flags = IW_ENCODE_DISABLED,
9871 IPW_DEBUG_WX("SW_RESET\n");
9873 mutex_lock(&priv->mutex);
9875 ret = ipw_sw_reset(priv, 2);
9878 ipw_adapter_restart(priv);
9881 /* The SW reset bit might have been toggled on by the 'disable'
9882 * module parameter, so take appropriate action */
9883 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9885 mutex_unlock(&priv->mutex);
9886 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9887 mutex_lock(&priv->mutex);
9889 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9890 /* Configuration likely changed -- force [re]association */
9891 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9893 if (!ipw_disassociate(priv))
9894 ipw_associate(priv);
9897 mutex_unlock(&priv->mutex);
9902 /* Rebase the WE IOCTLs to zero for the handler array */
9903 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9904 static iw_handler ipw_wx_handlers[] = {
9905 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9906 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9907 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9908 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9909 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9910 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9911 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9912 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9913 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9914 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9915 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9916 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9917 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9918 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9919 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9920 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9921 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9922 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9923 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9924 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9925 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9926 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9927 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9928 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9929 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9930 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9931 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9932 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9933 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9934 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9935 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9936 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9937 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9938 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9939 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9940 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9941 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9942 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9943 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9944 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9945 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9949 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9953 IPW_PRIV_SET_PREAMBLE,
9954 IPW_PRIV_GET_PREAMBLE,
9957 #ifdef CONFIG_IPW2200_MONITOR
9958 IPW_PRIV_SET_MONITOR,
9962 static struct iw_priv_args ipw_priv_args[] = {
9964 .cmd = IPW_PRIV_SET_POWER,
9965 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9966 .name = "set_power"},
9968 .cmd = IPW_PRIV_GET_POWER,
9969 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9970 .name = "get_power"},
9972 .cmd = IPW_PRIV_SET_MODE,
9973 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9974 .name = "set_mode"},
9976 .cmd = IPW_PRIV_GET_MODE,
9977 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9978 .name = "get_mode"},
9980 .cmd = IPW_PRIV_SET_PREAMBLE,
9981 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9982 .name = "set_preamble"},
9984 .cmd = IPW_PRIV_GET_PREAMBLE,
9985 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9986 .name = "get_preamble"},
9989 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9992 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9993 #ifdef CONFIG_IPW2200_MONITOR
9995 IPW_PRIV_SET_MONITOR,
9996 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9997 #endif /* CONFIG_IPW2200_MONITOR */
10000 static iw_handler ipw_priv_handler[] = {
10001 ipw_wx_set_powermode,
10002 ipw_wx_get_powermode,
10003 ipw_wx_set_wireless_mode,
10004 ipw_wx_get_wireless_mode,
10005 ipw_wx_set_preamble,
10006 ipw_wx_get_preamble,
10009 #ifdef CONFIG_IPW2200_MONITOR
10010 ipw_wx_set_monitor,
10014 static struct iw_handler_def ipw_wx_handler_def = {
10015 .standard = ipw_wx_handlers,
10016 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10017 .num_private = ARRAY_SIZE(ipw_priv_handler),
10018 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10019 .private = ipw_priv_handler,
10020 .private_args = ipw_priv_args,
10021 .get_wireless_stats = ipw_get_wireless_stats,
10025 * Get wireless statistics.
10026 * Called by /proc/net/wireless
10027 * Also called by SIOCGIWSTATS
10029 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10031 struct ipw_priv *priv = ieee80211_priv(dev);
10032 struct iw_statistics *wstats;
10034 wstats = &priv->wstats;
10036 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10037 * netdev->get_wireless_stats seems to be called before fw is
10038 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10039 * and associated; if not associcated, the values are all meaningless
10040 * anyway, so set them all to NULL and INVALID */
10041 if (!(priv->status & STATUS_ASSOCIATED)) {
10042 wstats->miss.beacon = 0;
10043 wstats->discard.retries = 0;
10044 wstats->qual.qual = 0;
10045 wstats->qual.level = 0;
10046 wstats->qual.noise = 0;
10047 wstats->qual.updated = 7;
10048 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10049 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10053 wstats->qual.qual = priv->quality;
10054 wstats->qual.level = priv->exp_avg_rssi;
10055 wstats->qual.noise = priv->exp_avg_noise;
10056 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10057 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10059 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10060 wstats->discard.retries = priv->last_tx_failures;
10061 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10063 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10064 goto fail_get_ordinal;
10065 wstats->discard.retries += tx_retry; */
10070 /* net device stuff */
10072 static void init_sys_config(struct ipw_sys_config *sys_config)
10074 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10075 sys_config->bt_coexistence = 0;
10076 sys_config->answer_broadcast_ssid_probe = 0;
10077 sys_config->accept_all_data_frames = 0;
10078 sys_config->accept_non_directed_frames = 1;
10079 sys_config->exclude_unicast_unencrypted = 0;
10080 sys_config->disable_unicast_decryption = 1;
10081 sys_config->exclude_multicast_unencrypted = 0;
10082 sys_config->disable_multicast_decryption = 1;
10083 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10084 antenna = CFG_SYS_ANTENNA_BOTH;
10085 sys_config->antenna_diversity = antenna;
10086 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10087 sys_config->dot11g_auto_detection = 0;
10088 sys_config->enable_cts_to_self = 0;
10089 sys_config->bt_coexist_collision_thr = 0;
10090 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10091 sys_config->silence_threshold = 0x1e;
10094 static int ipw_net_open(struct net_device *dev)
10096 struct ipw_priv *priv = ieee80211_priv(dev);
10097 IPW_DEBUG_INFO("dev->open\n");
10098 /* we should be verifying the device is ready to be opened */
10099 mutex_lock(&priv->mutex);
10100 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10101 (priv->status & STATUS_ASSOCIATED))
10102 netif_start_queue(dev);
10103 mutex_unlock(&priv->mutex);
10107 static int ipw_net_stop(struct net_device *dev)
10109 IPW_DEBUG_INFO("dev->close\n");
10110 netif_stop_queue(dev);
10117 modify to send one tfd per fragment instead of using chunking. otherwise
10118 we need to heavily modify the ieee80211_skb_to_txb.
10121 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10124 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10125 txb->fragments[0]->data;
10127 struct tfd_frame *tfd;
10128 #ifdef CONFIG_IPW2200_QOS
10129 int tx_id = ipw_get_tx_queue_number(priv, pri);
10130 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10132 struct clx2_tx_queue *txq = &priv->txq[0];
10134 struct clx2_queue *q = &txq->q;
10135 u8 id, hdr_len, unicast;
10136 u16 remaining_bytes;
10139 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10140 switch (priv->ieee->iw_mode) {
10141 case IW_MODE_ADHOC:
10142 unicast = !is_multicast_ether_addr(hdr->addr1);
10143 id = ipw_find_station(priv, hdr->addr1);
10144 if (id == IPW_INVALID_STATION) {
10145 id = ipw_add_station(priv, hdr->addr1);
10146 if (id == IPW_INVALID_STATION) {
10147 IPW_WARNING("Attempt to send data to "
10148 "invalid cell: " MAC_FMT "\n",
10149 MAC_ARG(hdr->addr1));
10155 case IW_MODE_INFRA:
10157 unicast = !is_multicast_ether_addr(hdr->addr3);
10162 tfd = &txq->bd[q->first_empty];
10163 txq->txb[q->first_empty] = txb;
10164 memset(tfd, 0, sizeof(*tfd));
10165 tfd->u.data.station_number = id;
10167 tfd->control_flags.message_type = TX_FRAME_TYPE;
10168 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10170 tfd->u.data.cmd_id = DINO_CMD_TX;
10171 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10172 remaining_bytes = txb->payload_size;
10174 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10175 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10177 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10179 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10180 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10182 fc = le16_to_cpu(hdr->frame_ctl);
10183 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10185 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10187 if (likely(unicast))
10188 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10190 if (txb->encrypted && !priv->ieee->host_encrypt) {
10191 switch (priv->ieee->sec.level) {
10193 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10194 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10195 /* XXX: ACK flag must be set for CCMP even if it
10196 * is a multicast/broadcast packet, because CCMP
10197 * group communication encrypted by GTK is
10198 * actually done by the AP. */
10200 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10202 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10203 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10204 tfd->u.data.key_index = 0;
10205 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10208 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10209 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10210 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10211 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10212 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10215 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10216 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10217 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10218 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10220 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10222 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10227 printk(KERN_ERR "Unknow security level %d\n",
10228 priv->ieee->sec.level);
10232 /* No hardware encryption */
10233 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10235 #ifdef CONFIG_IPW2200_QOS
10236 if (fc & IEEE80211_STYPE_QOS_DATA)
10237 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10238 #endif /* CONFIG_IPW2200_QOS */
10241 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10243 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10244 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10245 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10246 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10247 i, le32_to_cpu(tfd->u.data.num_chunks),
10248 txb->fragments[i]->len - hdr_len);
10249 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10250 i, tfd->u.data.num_chunks,
10251 txb->fragments[i]->len - hdr_len);
10252 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10253 txb->fragments[i]->len - hdr_len);
10255 tfd->u.data.chunk_ptr[i] =
10256 cpu_to_le32(pci_map_single
10258 txb->fragments[i]->data + hdr_len,
10259 txb->fragments[i]->len - hdr_len,
10260 PCI_DMA_TODEVICE));
10261 tfd->u.data.chunk_len[i] =
10262 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10265 if (i != txb->nr_frags) {
10266 struct sk_buff *skb;
10267 u16 remaining_bytes = 0;
10270 for (j = i; j < txb->nr_frags; j++)
10271 remaining_bytes += txb->fragments[j]->len - hdr_len;
10273 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10275 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10277 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10278 for (j = i; j < txb->nr_frags; j++) {
10279 int size = txb->fragments[j]->len - hdr_len;
10281 printk(KERN_INFO "Adding frag %d %d...\n",
10283 memcpy(skb_put(skb, size),
10284 txb->fragments[j]->data + hdr_len, size);
10286 dev_kfree_skb_any(txb->fragments[i]);
10287 txb->fragments[i] = skb;
10288 tfd->u.data.chunk_ptr[i] =
10289 cpu_to_le32(pci_map_single
10290 (priv->pci_dev, skb->data,
10291 tfd->u.data.chunk_len[i],
10292 PCI_DMA_TODEVICE));
10294 tfd->u.data.num_chunks =
10295 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10301 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10302 ipw_write32(priv, q->reg_w, q->first_empty);
10304 if (ipw_queue_space(q) < q->high_mark)
10305 netif_stop_queue(priv->net_dev);
10307 return NETDEV_TX_OK;
10310 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10311 ieee80211_txb_free(txb);
10312 return NETDEV_TX_OK;
10315 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10317 struct ipw_priv *priv = ieee80211_priv(dev);
10318 #ifdef CONFIG_IPW2200_QOS
10319 int tx_id = ipw_get_tx_queue_number(priv, pri);
10320 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10322 struct clx2_tx_queue *txq = &priv->txq[0];
10323 #endif /* CONFIG_IPW2200_QOS */
10325 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10331 #ifdef CONFIG_IPW2200_PROMISCUOUS
10332 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10333 struct ieee80211_txb *txb)
10335 struct ieee80211_rx_stats dummystats;
10336 struct ieee80211_hdr *hdr;
10338 u16 filter = priv->prom_priv->filter;
10341 if (filter & IPW_PROM_NO_TX)
10344 memset(&dummystats, 0, sizeof(dummystats));
10346 /* Filtering of fragment chains is done agains the first fragment */
10347 hdr = (void *)txb->fragments[0]->data;
10348 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10349 if (filter & IPW_PROM_NO_MGMT)
10351 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10353 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10354 if (filter & IPW_PROM_NO_CTL)
10356 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10358 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10359 if (filter & IPW_PROM_NO_DATA)
10361 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10365 for(n=0; n<txb->nr_frags; ++n) {
10366 struct sk_buff *src = txb->fragments[n];
10367 struct sk_buff *dst;
10368 struct ieee80211_radiotap_header *rt_hdr;
10372 hdr = (void *)src->data;
10373 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10378 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10379 if (!dst) continue;
10381 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10383 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10384 rt_hdr->it_pad = 0;
10385 rt_hdr->it_present = 0; /* after all, it's just an idea */
10386 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10388 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10389 ieee80211chan2mhz(priv->channel));
10390 if (priv->channel > 14) /* 802.11a */
10391 *(u16*)skb_put(dst, sizeof(u16)) =
10392 cpu_to_le16(IEEE80211_CHAN_OFDM |
10393 IEEE80211_CHAN_5GHZ);
10394 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10395 *(u16*)skb_put(dst, sizeof(u16)) =
10396 cpu_to_le16(IEEE80211_CHAN_CCK |
10397 IEEE80211_CHAN_2GHZ);
10399 *(u16*)skb_put(dst, sizeof(u16)) =
10400 cpu_to_le16(IEEE80211_CHAN_OFDM |
10401 IEEE80211_CHAN_2GHZ);
10403 rt_hdr->it_len = dst->len;
10405 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10407 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10408 dev_kfree_skb_any(dst);
10413 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10414 struct net_device *dev, int pri)
10416 struct ipw_priv *priv = ieee80211_priv(dev);
10417 unsigned long flags;
10420 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10421 spin_lock_irqsave(&priv->lock, flags);
10423 if (!(priv->status & STATUS_ASSOCIATED)) {
10424 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10425 priv->ieee->stats.tx_carrier_errors++;
10426 netif_stop_queue(dev);
10430 #ifdef CONFIG_IPW2200_PROMISCUOUS
10431 if (rtap_iface && netif_running(priv->prom_net_dev))
10432 ipw_handle_promiscuous_tx(priv, txb);
10435 ret = ipw_tx_skb(priv, txb, pri);
10436 if (ret == NETDEV_TX_OK)
10437 __ipw_led_activity_on(priv);
10438 spin_unlock_irqrestore(&priv->lock, flags);
10443 spin_unlock_irqrestore(&priv->lock, flags);
10447 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10449 struct ipw_priv *priv = ieee80211_priv(dev);
10451 priv->ieee->stats.tx_packets = priv->tx_packets;
10452 priv->ieee->stats.rx_packets = priv->rx_packets;
10453 return &priv->ieee->stats;
10456 static void ipw_net_set_multicast_list(struct net_device *dev)
10461 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10463 struct ipw_priv *priv = ieee80211_priv(dev);
10464 struct sockaddr *addr = p;
10465 if (!is_valid_ether_addr(addr->sa_data))
10466 return -EADDRNOTAVAIL;
10467 mutex_lock(&priv->mutex);
10468 priv->config |= CFG_CUSTOM_MAC;
10469 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10470 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10471 priv->net_dev->name, MAC_ARG(priv->mac_addr));
10472 queue_work(priv->workqueue, &priv->adapter_restart);
10473 mutex_unlock(&priv->mutex);
10477 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10478 struct ethtool_drvinfo *info)
10480 struct ipw_priv *p = ieee80211_priv(dev);
10485 strcpy(info->driver, DRV_NAME);
10486 strcpy(info->version, DRV_VERSION);
10488 len = sizeof(vers);
10489 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10490 len = sizeof(date);
10491 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10493 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10495 strcpy(info->bus_info, pci_name(p->pci_dev));
10496 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10499 static u32 ipw_ethtool_get_link(struct net_device *dev)
10501 struct ipw_priv *priv = ieee80211_priv(dev);
10502 return (priv->status & STATUS_ASSOCIATED) != 0;
10505 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10507 return IPW_EEPROM_IMAGE_SIZE;
10510 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10511 struct ethtool_eeprom *eeprom, u8 * bytes)
10513 struct ipw_priv *p = ieee80211_priv(dev);
10515 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10517 mutex_lock(&p->mutex);
10518 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10519 mutex_unlock(&p->mutex);
10523 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10524 struct ethtool_eeprom *eeprom, u8 * bytes)
10526 struct ipw_priv *p = ieee80211_priv(dev);
10529 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10531 mutex_lock(&p->mutex);
10532 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10533 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10534 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10535 mutex_unlock(&p->mutex);
10539 static const struct ethtool_ops ipw_ethtool_ops = {
10540 .get_link = ipw_ethtool_get_link,
10541 .get_drvinfo = ipw_ethtool_get_drvinfo,
10542 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10543 .get_eeprom = ipw_ethtool_get_eeprom,
10544 .set_eeprom = ipw_ethtool_set_eeprom,
10547 static irqreturn_t ipw_isr(int irq, void *data)
10549 struct ipw_priv *priv = data;
10550 u32 inta, inta_mask;
10555 spin_lock(&priv->irq_lock);
10557 if (!(priv->status & STATUS_INT_ENABLED)) {
10562 inta = ipw_read32(priv, IPW_INTA_RW);
10563 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10565 if (inta == 0xFFFFFFFF) {
10566 /* Hardware disappeared */
10567 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10571 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10572 /* Shared interrupt */
10576 /* tell the device to stop sending interrupts */
10577 __ipw_disable_interrupts(priv);
10579 /* ack current interrupts */
10580 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10581 ipw_write32(priv, IPW_INTA_RW, inta);
10583 /* Cache INTA value for our tasklet */
10584 priv->isr_inta = inta;
10586 tasklet_schedule(&priv->irq_tasklet);
10588 spin_unlock(&priv->irq_lock);
10590 return IRQ_HANDLED;
10592 spin_unlock(&priv->irq_lock);
10596 static void ipw_rf_kill(void *adapter)
10598 struct ipw_priv *priv = adapter;
10599 unsigned long flags;
10601 spin_lock_irqsave(&priv->lock, flags);
10603 if (rf_kill_active(priv)) {
10604 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10605 if (priv->workqueue)
10606 queue_delayed_work(priv->workqueue,
10607 &priv->rf_kill, 2 * HZ);
10611 /* RF Kill is now disabled, so bring the device back up */
10613 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10614 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10617 /* we can not do an adapter restart while inside an irq lock */
10618 queue_work(priv->workqueue, &priv->adapter_restart);
10620 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10624 spin_unlock_irqrestore(&priv->lock, flags);
10627 static void ipw_bg_rf_kill(struct work_struct *work)
10629 struct ipw_priv *priv =
10630 container_of(work, struct ipw_priv, rf_kill.work);
10631 mutex_lock(&priv->mutex);
10633 mutex_unlock(&priv->mutex);
10636 static void ipw_link_up(struct ipw_priv *priv)
10638 priv->last_seq_num = -1;
10639 priv->last_frag_num = -1;
10640 priv->last_packet_time = 0;
10642 netif_carrier_on(priv->net_dev);
10643 if (netif_queue_stopped(priv->net_dev)) {
10644 IPW_DEBUG_NOTIF("waking queue\n");
10645 netif_wake_queue(priv->net_dev);
10647 IPW_DEBUG_NOTIF("starting queue\n");
10648 netif_start_queue(priv->net_dev);
10651 cancel_delayed_work(&priv->request_scan);
10652 ipw_reset_stats(priv);
10653 /* Ensure the rate is updated immediately */
10654 priv->last_rate = ipw_get_current_rate(priv);
10655 ipw_gather_stats(priv);
10656 ipw_led_link_up(priv);
10657 notify_wx_assoc_event(priv);
10659 if (priv->config & CFG_BACKGROUND_SCAN)
10660 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10663 static void ipw_bg_link_up(struct work_struct *work)
10665 struct ipw_priv *priv =
10666 container_of(work, struct ipw_priv, link_up);
10667 mutex_lock(&priv->mutex);
10669 mutex_unlock(&priv->mutex);
10672 static void ipw_link_down(struct ipw_priv *priv)
10674 ipw_led_link_down(priv);
10675 netif_carrier_off(priv->net_dev);
10676 netif_stop_queue(priv->net_dev);
10677 notify_wx_assoc_event(priv);
10679 /* Cancel any queued work ... */
10680 cancel_delayed_work(&priv->request_scan);
10681 cancel_delayed_work(&priv->adhoc_check);
10682 cancel_delayed_work(&priv->gather_stats);
10684 ipw_reset_stats(priv);
10686 if (!(priv->status & STATUS_EXIT_PENDING)) {
10687 /* Queue up another scan... */
10688 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10692 static void ipw_bg_link_down(struct work_struct *work)
10694 struct ipw_priv *priv =
10695 container_of(work, struct ipw_priv, link_down);
10696 mutex_lock(&priv->mutex);
10697 ipw_link_down(priv);
10698 mutex_unlock(&priv->mutex);
10701 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10705 priv->workqueue = create_workqueue(DRV_NAME);
10706 init_waitqueue_head(&priv->wait_command_queue);
10707 init_waitqueue_head(&priv->wait_state);
10709 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10710 INIT_WORK(&priv->associate, ipw_bg_associate);
10711 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10712 INIT_WORK(&priv->system_config, ipw_system_config);
10713 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10714 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10715 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10716 INIT_WORK(&priv->up, ipw_bg_up);
10717 INIT_WORK(&priv->down, ipw_bg_down);
10718 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10719 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10720 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10721 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10722 INIT_WORK(&priv->roam, ipw_bg_roam);
10723 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10724 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10725 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10726 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10727 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10728 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10729 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10731 #ifdef CONFIG_IPW2200_QOS
10732 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10733 #endif /* CONFIG_IPW2200_QOS */
10735 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10736 ipw_irq_tasklet, (unsigned long)priv);
10741 static void shim__set_security(struct net_device *dev,
10742 struct ieee80211_security *sec)
10744 struct ipw_priv *priv = ieee80211_priv(dev);
10746 for (i = 0; i < 4; i++) {
10747 if (sec->flags & (1 << i)) {
10748 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10749 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10750 if (sec->key_sizes[i] == 0)
10751 priv->ieee->sec.flags &= ~(1 << i);
10753 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10754 sec->key_sizes[i]);
10755 priv->ieee->sec.flags |= (1 << i);
10757 priv->status |= STATUS_SECURITY_UPDATED;
10758 } else if (sec->level != SEC_LEVEL_1)
10759 priv->ieee->sec.flags &= ~(1 << i);
10762 if (sec->flags & SEC_ACTIVE_KEY) {
10763 if (sec->active_key <= 3) {
10764 priv->ieee->sec.active_key = sec->active_key;
10765 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10767 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10768 priv->status |= STATUS_SECURITY_UPDATED;
10770 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10772 if ((sec->flags & SEC_AUTH_MODE) &&
10773 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10774 priv->ieee->sec.auth_mode = sec->auth_mode;
10775 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10776 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10777 priv->capability |= CAP_SHARED_KEY;
10779 priv->capability &= ~CAP_SHARED_KEY;
10780 priv->status |= STATUS_SECURITY_UPDATED;
10783 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10784 priv->ieee->sec.flags |= SEC_ENABLED;
10785 priv->ieee->sec.enabled = sec->enabled;
10786 priv->status |= STATUS_SECURITY_UPDATED;
10788 priv->capability |= CAP_PRIVACY_ON;
10790 priv->capability &= ~CAP_PRIVACY_ON;
10793 if (sec->flags & SEC_ENCRYPT)
10794 priv->ieee->sec.encrypt = sec->encrypt;
10796 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10797 priv->ieee->sec.level = sec->level;
10798 priv->ieee->sec.flags |= SEC_LEVEL;
10799 priv->status |= STATUS_SECURITY_UPDATED;
10802 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10803 ipw_set_hwcrypto_keys(priv);
10805 /* To match current functionality of ipw2100 (which works well w/
10806 * various supplicants, we don't force a disassociate if the
10807 * privacy capability changes ... */
10809 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10810 (((priv->assoc_request.capability &
10811 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10812 (!(priv->assoc_request.capability &
10813 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10814 IPW_DEBUG_ASSOC("Disassociating due to capability "
10816 ipw_disassociate(priv);
10821 static int init_supported_rates(struct ipw_priv *priv,
10822 struct ipw_supported_rates *rates)
10824 /* TODO: Mask out rates based on priv->rates_mask */
10826 memset(rates, 0, sizeof(*rates));
10827 /* configure supported rates */
10828 switch (priv->ieee->freq_band) {
10829 case IEEE80211_52GHZ_BAND:
10830 rates->ieee_mode = IPW_A_MODE;
10831 rates->purpose = IPW_RATE_CAPABILITIES;
10832 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10833 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10836 default: /* Mixed or 2.4Ghz */
10837 rates->ieee_mode = IPW_G_MODE;
10838 rates->purpose = IPW_RATE_CAPABILITIES;
10839 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10840 IEEE80211_CCK_DEFAULT_RATES_MASK);
10841 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10842 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10843 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10851 static int ipw_config(struct ipw_priv *priv)
10853 /* This is only called from ipw_up, which resets/reloads the firmware
10854 so, we don't need to first disable the card before we configure
10856 if (ipw_set_tx_power(priv))
10859 /* initialize adapter address */
10860 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10863 /* set basic system config settings */
10864 init_sys_config(&priv->sys_config);
10866 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10867 * Does not support BT priority yet (don't abort or defer our Tx) */
10869 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10871 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10872 priv->sys_config.bt_coexistence
10873 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10874 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10875 priv->sys_config.bt_coexistence
10876 |= CFG_BT_COEXISTENCE_OOB;
10879 #ifdef CONFIG_IPW2200_PROMISCUOUS
10880 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10881 priv->sys_config.accept_all_data_frames = 1;
10882 priv->sys_config.accept_non_directed_frames = 1;
10883 priv->sys_config.accept_all_mgmt_bcpr = 1;
10884 priv->sys_config.accept_all_mgmt_frames = 1;
10888 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10889 priv->sys_config.answer_broadcast_ssid_probe = 1;
10891 priv->sys_config.answer_broadcast_ssid_probe = 0;
10893 if (ipw_send_system_config(priv))
10896 init_supported_rates(priv, &priv->rates);
10897 if (ipw_send_supported_rates(priv, &priv->rates))
10900 /* Set request-to-send threshold */
10901 if (priv->rts_threshold) {
10902 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10905 #ifdef CONFIG_IPW2200_QOS
10906 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10907 ipw_qos_activate(priv, NULL);
10908 #endif /* CONFIG_IPW2200_QOS */
10910 if (ipw_set_random_seed(priv))
10913 /* final state transition to the RUN state */
10914 if (ipw_send_host_complete(priv))
10917 priv->status |= STATUS_INIT;
10919 ipw_led_init(priv);
10920 ipw_led_radio_on(priv);
10921 priv->notif_missed_beacons = 0;
10923 /* Set hardware WEP key if it is configured. */
10924 if ((priv->capability & CAP_PRIVACY_ON) &&
10925 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10926 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10927 ipw_set_hwcrypto_keys(priv);
10938 * These tables have been tested in conjunction with the
10939 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10941 * Altering this values, using it on other hardware, or in geographies
10942 * not intended for resale of the above mentioned Intel adapters has
10945 * Remember to update the table in README.ipw2200 when changing this
10949 static const struct ieee80211_geo ipw_geos[] = {
10953 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954 {2427, 4}, {2432, 5}, {2437, 6},
10955 {2442, 7}, {2447, 8}, {2452, 9},
10956 {2457, 10}, {2462, 11}},
10959 { /* Custom US/Canada */
10962 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10963 {2427, 4}, {2432, 5}, {2437, 6},
10964 {2442, 7}, {2447, 8}, {2452, 9},
10965 {2457, 10}, {2462, 11}},
10971 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10972 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10973 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10974 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10977 { /* Rest of World */
10980 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10981 {2427, 4}, {2432, 5}, {2437, 6},
10982 {2442, 7}, {2447, 8}, {2452, 9},
10983 {2457, 10}, {2462, 11}, {2467, 12},
10987 { /* Custom USA & Europe & High */
10990 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10991 {2427, 4}, {2432, 5}, {2437, 6},
10992 {2442, 7}, {2447, 8}, {2452, 9},
10993 {2457, 10}, {2462, 11}},
10999 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11000 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11001 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11002 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11010 { /* Custom NA & Europe */
11013 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11014 {2427, 4}, {2432, 5}, {2437, 6},
11015 {2442, 7}, {2447, 8}, {2452, 9},
11016 {2457, 10}, {2462, 11}},
11022 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11023 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11024 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11025 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11026 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11027 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11028 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11029 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11030 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11033 { /* Custom Japan */
11036 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11037 {2427, 4}, {2432, 5}, {2437, 6},
11038 {2442, 7}, {2447, 8}, {2452, 9},
11039 {2457, 10}, {2462, 11}},
11041 .a = {{5170, 34}, {5190, 38},
11042 {5210, 42}, {5230, 46}},
11048 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049 {2427, 4}, {2432, 5}, {2437, 6},
11050 {2442, 7}, {2447, 8}, {2452, 9},
11051 {2457, 10}, {2462, 11}},
11057 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058 {2427, 4}, {2432, 5}, {2437, 6},
11059 {2442, 7}, {2447, 8}, {2452, 9},
11060 {2457, 10}, {2462, 11}, {2467, 12},
11067 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11068 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11069 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11070 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11071 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11072 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11073 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11074 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11075 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11076 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11077 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11078 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11079 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11080 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11081 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11084 { /* Custom Japan */
11087 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11088 {2427, 4}, {2432, 5}, {2437, 6},
11089 {2442, 7}, {2447, 8}, {2452, 9},
11090 {2457, 10}, {2462, 11}, {2467, 12},
11091 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11093 .a = {{5170, 34}, {5190, 38},
11094 {5210, 42}, {5230, 46}},
11097 { /* Rest of World */
11100 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11101 {2427, 4}, {2432, 5}, {2437, 6},
11102 {2442, 7}, {2447, 8}, {2452, 9},
11103 {2457, 10}, {2462, 11}, {2467, 12},
11104 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11105 IEEE80211_CH_PASSIVE_ONLY}},
11111 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112 {2427, 4}, {2432, 5}, {2437, 6},
11113 {2442, 7}, {2447, 8}, {2452, 9},
11114 {2457, 10}, {2462, 11},
11115 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11116 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11118 .a = {{5745, 149}, {5765, 153},
11119 {5785, 157}, {5805, 161}},
11122 { /* Custom Europe */
11125 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126 {2427, 4}, {2432, 5}, {2437, 6},
11127 {2442, 7}, {2447, 8}, {2452, 9},
11128 {2457, 10}, {2462, 11},
11129 {2467, 12}, {2472, 13}},
11131 .a = {{5180, 36}, {5200, 40},
11132 {5220, 44}, {5240, 48}},
11138 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11139 {2427, 4}, {2432, 5}, {2437, 6},
11140 {2442, 7}, {2447, 8}, {2452, 9},
11141 {2457, 10}, {2462, 11},
11142 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11143 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11145 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11146 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11147 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11148 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11149 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11150 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11151 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11152 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11153 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11154 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11155 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11156 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11157 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11158 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11159 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11160 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11161 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11162 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11163 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11164 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11165 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11166 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11167 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11168 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11174 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11175 {2427, 4}, {2432, 5}, {2437, 6},
11176 {2442, 7}, {2447, 8}, {2452, 9},
11177 {2457, 10}, {2462, 11}},
11179 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11180 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11181 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11182 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11183 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11184 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11185 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11186 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11187 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11188 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11189 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11190 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11191 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11195 #define MAX_HW_RESTARTS 5
11196 static int ipw_up(struct ipw_priv *priv)
11200 if (priv->status & STATUS_EXIT_PENDING)
11203 if (cmdlog && !priv->cmdlog) {
11204 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11206 if (priv->cmdlog == NULL) {
11207 IPW_ERROR("Error allocating %d command log entries.\n",
11211 priv->cmdlog_len = cmdlog;
11215 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11216 /* Load the microcode, firmware, and eeprom.
11217 * Also start the clocks. */
11218 rc = ipw_load(priv);
11220 IPW_ERROR("Unable to load firmware: %d\n", rc);
11224 ipw_init_ordinals(priv);
11225 if (!(priv->config & CFG_CUSTOM_MAC))
11226 eeprom_parse_mac(priv, priv->mac_addr);
11227 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11229 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11230 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11231 ipw_geos[j].name, 3))
11234 if (j == ARRAY_SIZE(ipw_geos)) {
11235 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11236 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11237 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11238 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11241 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11242 IPW_WARNING("Could not set geography.");
11246 if (priv->status & STATUS_RF_KILL_SW) {
11247 IPW_WARNING("Radio disabled by module parameter.\n");
11249 } else if (rf_kill_active(priv)) {
11250 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11251 "Kill switch must be turned off for "
11252 "wireless networking to work.\n");
11253 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11258 rc = ipw_config(priv);
11260 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11262 /* If configure to try and auto-associate, kick
11264 queue_delayed_work(priv->workqueue,
11265 &priv->request_scan, 0);
11270 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11271 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11272 i, MAX_HW_RESTARTS);
11274 /* We had an error bringing up the hardware, so take it
11275 * all the way back down so we can try again */
11279 /* tried to restart and config the device for as long as our
11280 * patience could withstand */
11281 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11286 static void ipw_bg_up(struct work_struct *work)
11288 struct ipw_priv *priv =
11289 container_of(work, struct ipw_priv, up);
11290 mutex_lock(&priv->mutex);
11292 mutex_unlock(&priv->mutex);
11295 static void ipw_deinit(struct ipw_priv *priv)
11299 if (priv->status & STATUS_SCANNING) {
11300 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11301 ipw_abort_scan(priv);
11304 if (priv->status & STATUS_ASSOCIATED) {
11305 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11306 ipw_disassociate(priv);
11309 ipw_led_shutdown(priv);
11311 /* Wait up to 1s for status to change to not scanning and not
11312 * associated (disassociation can take a while for a ful 802.11
11314 for (i = 1000; i && (priv->status &
11315 (STATUS_DISASSOCIATING |
11316 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11319 if (priv->status & (STATUS_DISASSOCIATING |
11320 STATUS_ASSOCIATED | STATUS_SCANNING))
11321 IPW_DEBUG_INFO("Still associated or scanning...\n");
11323 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11325 /* Attempt to disable the card */
11326 ipw_send_card_disable(priv, 0);
11328 priv->status &= ~STATUS_INIT;
11331 static void ipw_down(struct ipw_priv *priv)
11333 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11335 priv->status |= STATUS_EXIT_PENDING;
11337 if (ipw_is_init(priv))
11340 /* Wipe out the EXIT_PENDING status bit if we are not actually
11341 * exiting the module */
11343 priv->status &= ~STATUS_EXIT_PENDING;
11345 /* tell the device to stop sending interrupts */
11346 ipw_disable_interrupts(priv);
11348 /* Clear all bits but the RF Kill */
11349 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11350 netif_carrier_off(priv->net_dev);
11351 netif_stop_queue(priv->net_dev);
11353 ipw_stop_nic(priv);
11355 ipw_led_radio_off(priv);
11358 static void ipw_bg_down(struct work_struct *work)
11360 struct ipw_priv *priv =
11361 container_of(work, struct ipw_priv, down);
11362 mutex_lock(&priv->mutex);
11364 mutex_unlock(&priv->mutex);
11367 /* Called by register_netdev() */
11368 static int ipw_net_init(struct net_device *dev)
11370 struct ipw_priv *priv = ieee80211_priv(dev);
11371 mutex_lock(&priv->mutex);
11373 if (ipw_up(priv)) {
11374 mutex_unlock(&priv->mutex);
11378 mutex_unlock(&priv->mutex);
11382 /* PCI driver stuff */
11383 static struct pci_device_id card_ids[] = {
11384 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11385 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11386 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11387 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11388 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11389 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11390 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11391 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11392 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11393 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11394 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11395 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11396 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11397 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11398 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11399 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11400 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11401 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11402 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11403 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11404 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11405 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11407 /* required last entry */
11411 MODULE_DEVICE_TABLE(pci, card_ids);
11413 static struct attribute *ipw_sysfs_entries[] = {
11414 &dev_attr_rf_kill.attr,
11415 &dev_attr_direct_dword.attr,
11416 &dev_attr_indirect_byte.attr,
11417 &dev_attr_indirect_dword.attr,
11418 &dev_attr_mem_gpio_reg.attr,
11419 &dev_attr_command_event_reg.attr,
11420 &dev_attr_nic_type.attr,
11421 &dev_attr_status.attr,
11422 &dev_attr_cfg.attr,
11423 &dev_attr_error.attr,
11424 &dev_attr_event_log.attr,
11425 &dev_attr_cmd_log.attr,
11426 &dev_attr_eeprom_delay.attr,
11427 &dev_attr_ucode_version.attr,
11428 &dev_attr_rtc.attr,
11429 &dev_attr_scan_age.attr,
11430 &dev_attr_led.attr,
11431 &dev_attr_speed_scan.attr,
11432 &dev_attr_net_stats.attr,
11433 &dev_attr_channels.attr,
11434 #ifdef CONFIG_IPW2200_PROMISCUOUS
11435 &dev_attr_rtap_iface.attr,
11436 &dev_attr_rtap_filter.attr,
11441 static struct attribute_group ipw_attribute_group = {
11442 .name = NULL, /* put in device directory */
11443 .attrs = ipw_sysfs_entries,
11446 #ifdef CONFIG_IPW2200_PROMISCUOUS
11447 static int ipw_prom_open(struct net_device *dev)
11449 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11450 struct ipw_priv *priv = prom_priv->priv;
11452 IPW_DEBUG_INFO("prom dev->open\n");
11453 netif_carrier_off(dev);
11454 netif_stop_queue(dev);
11456 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11457 priv->sys_config.accept_all_data_frames = 1;
11458 priv->sys_config.accept_non_directed_frames = 1;
11459 priv->sys_config.accept_all_mgmt_bcpr = 1;
11460 priv->sys_config.accept_all_mgmt_frames = 1;
11462 ipw_send_system_config(priv);
11468 static int ipw_prom_stop(struct net_device *dev)
11470 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11471 struct ipw_priv *priv = prom_priv->priv;
11473 IPW_DEBUG_INFO("prom dev->stop\n");
11475 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11476 priv->sys_config.accept_all_data_frames = 0;
11477 priv->sys_config.accept_non_directed_frames = 0;
11478 priv->sys_config.accept_all_mgmt_bcpr = 0;
11479 priv->sys_config.accept_all_mgmt_frames = 0;
11481 ipw_send_system_config(priv);
11487 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11489 IPW_DEBUG_INFO("prom dev->xmit\n");
11490 netif_stop_queue(dev);
11491 return -EOPNOTSUPP;
11494 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11496 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11497 return &prom_priv->ieee->stats;
11500 static int ipw_prom_alloc(struct ipw_priv *priv)
11504 if (priv->prom_net_dev)
11507 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11508 if (priv->prom_net_dev == NULL)
11511 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11512 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11513 priv->prom_priv->priv = priv;
11515 strcpy(priv->prom_net_dev->name, "rtap%d");
11517 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11518 priv->prom_net_dev->open = ipw_prom_open;
11519 priv->prom_net_dev->stop = ipw_prom_stop;
11520 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11521 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11523 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11525 rc = register_netdev(priv->prom_net_dev);
11527 free_ieee80211(priv->prom_net_dev);
11528 priv->prom_net_dev = NULL;
11535 static void ipw_prom_free(struct ipw_priv *priv)
11537 if (!priv->prom_net_dev)
11540 unregister_netdev(priv->prom_net_dev);
11541 free_ieee80211(priv->prom_net_dev);
11543 priv->prom_net_dev = NULL;
11549 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11552 struct net_device *net_dev;
11553 void __iomem *base;
11555 struct ipw_priv *priv;
11558 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11559 if (net_dev == NULL) {
11564 priv = ieee80211_priv(net_dev);
11565 priv->ieee = netdev_priv(net_dev);
11567 priv->net_dev = net_dev;
11568 priv->pci_dev = pdev;
11569 ipw_debug_level = debug;
11570 spin_lock_init(&priv->irq_lock);
11571 spin_lock_init(&priv->lock);
11572 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11573 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11575 mutex_init(&priv->mutex);
11576 if (pci_enable_device(pdev)) {
11578 goto out_free_ieee80211;
11581 pci_set_master(pdev);
11583 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11585 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11587 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11588 goto out_pci_disable_device;
11591 pci_set_drvdata(pdev, priv);
11593 err = pci_request_regions(pdev, DRV_NAME);
11595 goto out_pci_disable_device;
11597 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11598 * PCI Tx retries from interfering with C3 CPU state */
11599 pci_read_config_dword(pdev, 0x40, &val);
11600 if ((val & 0x0000ff00) != 0)
11601 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11603 length = pci_resource_len(pdev, 0);
11604 priv->hw_len = length;
11606 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11609 goto out_pci_release_regions;
11612 priv->hw_base = base;
11613 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11614 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11616 err = ipw_setup_deferred_work(priv);
11618 IPW_ERROR("Unable to setup deferred work\n");
11622 ipw_sw_reset(priv, 1);
11624 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11626 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11627 goto out_destroy_workqueue;
11630 SET_MODULE_OWNER(net_dev);
11631 SET_NETDEV_DEV(net_dev, &pdev->dev);
11633 mutex_lock(&priv->mutex);
11635 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11636 priv->ieee->set_security = shim__set_security;
11637 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11639 #ifdef CONFIG_IPW2200_QOS
11640 priv->ieee->is_qos_active = ipw_is_qos_active;
11641 priv->ieee->handle_probe_response = ipw_handle_beacon;
11642 priv->ieee->handle_beacon = ipw_handle_probe_response;
11643 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11644 #endif /* CONFIG_IPW2200_QOS */
11646 priv->ieee->perfect_rssi = -20;
11647 priv->ieee->worst_rssi = -85;
11649 net_dev->open = ipw_net_open;
11650 net_dev->stop = ipw_net_stop;
11651 net_dev->init = ipw_net_init;
11652 net_dev->get_stats = ipw_net_get_stats;
11653 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11654 net_dev->set_mac_address = ipw_net_set_mac_address;
11655 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11656 net_dev->wireless_data = &priv->wireless_data;
11657 net_dev->wireless_handlers = &ipw_wx_handler_def;
11658 net_dev->ethtool_ops = &ipw_ethtool_ops;
11659 net_dev->irq = pdev->irq;
11660 net_dev->base_addr = (unsigned long)priv->hw_base;
11661 net_dev->mem_start = pci_resource_start(pdev, 0);
11662 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11664 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11666 IPW_ERROR("failed to create sysfs device attributes\n");
11667 mutex_unlock(&priv->mutex);
11668 goto out_release_irq;
11671 mutex_unlock(&priv->mutex);
11672 err = register_netdev(net_dev);
11674 IPW_ERROR("failed to register network device\n");
11675 goto out_remove_sysfs;
11678 #ifdef CONFIG_IPW2200_PROMISCUOUS
11680 err = ipw_prom_alloc(priv);
11682 IPW_ERROR("Failed to register promiscuous network "
11683 "device (error %d).\n", err);
11684 unregister_netdev(priv->net_dev);
11685 goto out_remove_sysfs;
11690 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11691 "channels, %d 802.11a channels)\n",
11692 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11693 priv->ieee->geo.a_channels);
11698 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11700 free_irq(pdev->irq, priv);
11701 out_destroy_workqueue:
11702 destroy_workqueue(priv->workqueue);
11703 priv->workqueue = NULL;
11705 iounmap(priv->hw_base);
11706 out_pci_release_regions:
11707 pci_release_regions(pdev);
11708 out_pci_disable_device:
11709 pci_disable_device(pdev);
11710 pci_set_drvdata(pdev, NULL);
11711 out_free_ieee80211:
11712 free_ieee80211(priv->net_dev);
11717 static void ipw_pci_remove(struct pci_dev *pdev)
11719 struct ipw_priv *priv = pci_get_drvdata(pdev);
11720 struct list_head *p, *q;
11726 mutex_lock(&priv->mutex);
11728 priv->status |= STATUS_EXIT_PENDING;
11730 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11732 mutex_unlock(&priv->mutex);
11734 unregister_netdev(priv->net_dev);
11737 ipw_rx_queue_free(priv, priv->rxq);
11740 ipw_tx_queue_free(priv);
11742 if (priv->cmdlog) {
11743 kfree(priv->cmdlog);
11744 priv->cmdlog = NULL;
11746 /* ipw_down will ensure that there is no more pending work
11747 * in the workqueue's, so we can safely remove them now. */
11748 cancel_delayed_work(&priv->adhoc_check);
11749 cancel_delayed_work(&priv->gather_stats);
11750 cancel_delayed_work(&priv->request_scan);
11751 cancel_delayed_work(&priv->rf_kill);
11752 cancel_delayed_work(&priv->scan_check);
11753 destroy_workqueue(priv->workqueue);
11754 priv->workqueue = NULL;
11756 /* Free MAC hash list for ADHOC */
11757 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11758 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11760 kfree(list_entry(p, struct ipw_ibss_seq, list));
11764 kfree(priv->error);
11765 priv->error = NULL;
11767 #ifdef CONFIG_IPW2200_PROMISCUOUS
11768 ipw_prom_free(priv);
11771 free_irq(pdev->irq, priv);
11772 iounmap(priv->hw_base);
11773 pci_release_regions(pdev);
11774 pci_disable_device(pdev);
11775 pci_set_drvdata(pdev, NULL);
11776 free_ieee80211(priv->net_dev);
11781 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11783 struct ipw_priv *priv = pci_get_drvdata(pdev);
11784 struct net_device *dev = priv->net_dev;
11786 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11788 /* Take down the device; powers it off, etc. */
11791 /* Remove the PRESENT state of the device */
11792 netif_device_detach(dev);
11794 pci_save_state(pdev);
11795 pci_disable_device(pdev);
11796 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11801 static int ipw_pci_resume(struct pci_dev *pdev)
11803 struct ipw_priv *priv = pci_get_drvdata(pdev);
11804 struct net_device *dev = priv->net_dev;
11808 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11810 pci_set_power_state(pdev, PCI_D0);
11811 err = pci_enable_device(pdev);
11813 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11817 pci_restore_state(pdev);
11820 * Suspend/Resume resets the PCI configuration space, so we have to
11821 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11822 * from interfering with C3 CPU state. pci_restore_state won't help
11823 * here since it only restores the first 64 bytes pci config header.
11825 pci_read_config_dword(pdev, 0x40, &val);
11826 if ((val & 0x0000ff00) != 0)
11827 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11829 /* Set the device back into the PRESENT state; this will also wake
11830 * the queue of needed */
11831 netif_device_attach(dev);
11833 /* Bring the device back up */
11834 queue_work(priv->workqueue, &priv->up);
11840 static void ipw_pci_shutdown(struct pci_dev *pdev)
11842 struct ipw_priv *priv = pci_get_drvdata(pdev);
11844 /* Take down the device; powers it off, etc. */
11847 pci_disable_device(pdev);
11850 /* driver initialization stuff */
11851 static struct pci_driver ipw_driver = {
11853 .id_table = card_ids,
11854 .probe = ipw_pci_probe,
11855 .remove = __devexit_p(ipw_pci_remove),
11857 .suspend = ipw_pci_suspend,
11858 .resume = ipw_pci_resume,
11860 .shutdown = ipw_pci_shutdown,
11863 static int __init ipw_init(void)
11867 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11868 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11870 ret = pci_register_driver(&ipw_driver);
11872 IPW_ERROR("Unable to initialize PCI module\n");
11876 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11878 IPW_ERROR("Unable to create driver sysfs file\n");
11879 pci_unregister_driver(&ipw_driver);
11886 static void __exit ipw_exit(void)
11888 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11889 pci_unregister_driver(&ipw_driver);
11892 module_param(disable, int, 0444);
11893 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11895 module_param(associate, int, 0444);
11896 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11898 module_param(auto_create, int, 0444);
11899 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11901 module_param(led, int, 0444);
11902 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11904 module_param(debug, int, 0444);
11905 MODULE_PARM_DESC(debug, "debug output mask");
11907 module_param(channel, int, 0444);
11908 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11910 #ifdef CONFIG_IPW2200_PROMISCUOUS
11911 module_param(rtap_iface, int, 0444);
11912 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11915 #ifdef CONFIG_IPW2200_QOS
11916 module_param(qos_enable, int, 0444);
11917 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11919 module_param(qos_burst_enable, int, 0444);
11920 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11922 module_param(qos_no_ack_mask, int, 0444);
11923 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11925 module_param(burst_duration_CCK, int, 0444);
11926 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11928 module_param(burst_duration_OFDM, int, 0444);
11929 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11930 #endif /* CONFIG_IPW2200_QOS */
11932 #ifdef CONFIG_IPW2200_MONITOR
11933 module_param(mode, int, 0444);
11934 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11936 module_param(mode, int, 0444);
11937 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11940 module_param(bt_coexist, int, 0444);
11941 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11943 module_param(hwcrypto, int, 0444);
11944 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11946 module_param(cmdlog, int, 0444);
11947 MODULE_PARM_DESC(cmdlog,
11948 "allocate a ring buffer for logging firmware commands");
11950 module_param(roaming, int, 0444);
11951 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11953 module_param(antenna, int, 0444);
11954 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11956 module_exit(ipw_exit);
11957 module_init(ipw_init);