1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
38 #include "blockcheck.h"
41 #include "extent_map.h"
42 #include "heartbeat.h"
45 #include "localalloc.h"
51 #include "buffer_head_io.h"
53 DEFINE_SPINLOCK(trans_inc_lock);
55 static int ocfs2_force_read_journal(struct inode *inode);
56 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 int node_num, int slot_num);
58 static int __ocfs2_recovery_thread(void *arg);
59 static int ocfs2_commit_cache(struct ocfs2_super *osb);
60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 int dirty, int replayed);
63 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
65 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
67 static int ocfs2_commit_thread(void *arg);
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 return __ocfs2_wait_on_mount(osb, 0);
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 return __ocfs2_wait_on_mount(osb, 1);
82 * The recovery_list is a simple linked list of node numbers to recover.
83 * It is protected by the recovery_lock.
86 struct ocfs2_recovery_map {
88 unsigned int *rm_entries;
91 int ocfs2_recovery_init(struct ocfs2_super *osb)
93 struct ocfs2_recovery_map *rm;
95 mutex_init(&osb->recovery_lock);
96 osb->disable_recovery = 0;
97 osb->recovery_thread_task = NULL;
98 init_waitqueue_head(&osb->recovery_event);
100 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
101 osb->max_slots * sizeof(unsigned int),
108 rm->rm_entries = (unsigned int *)((char *)rm +
109 sizeof(struct ocfs2_recovery_map));
110 osb->recovery_map = rm;
115 /* we can't grab the goofy sem lock from inside wait_event, so we use
116 * memory barriers to make sure that we'll see the null task before
118 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
121 return osb->recovery_thread_task != NULL;
124 void ocfs2_recovery_exit(struct ocfs2_super *osb)
126 struct ocfs2_recovery_map *rm;
128 /* disable any new recovery threads and wait for any currently
129 * running ones to exit. Do this before setting the vol_state. */
130 mutex_lock(&osb->recovery_lock);
131 osb->disable_recovery = 1;
132 mutex_unlock(&osb->recovery_lock);
133 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
135 /* At this point, we know that no more recovery threads can be
136 * launched, so wait for any recovery completion work to
138 flush_workqueue(ocfs2_wq);
141 * Now that recovery is shut down, and the osb is about to be
142 * freed, the osb_lock is not taken here.
144 rm = osb->recovery_map;
145 /* XXX: Should we bug if there are dirty entries? */
150 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
151 unsigned int node_num)
154 struct ocfs2_recovery_map *rm = osb->recovery_map;
156 assert_spin_locked(&osb->osb_lock);
158 for (i = 0; i < rm->rm_used; i++) {
159 if (rm->rm_entries[i] == node_num)
166 /* Behaves like test-and-set. Returns the previous value */
167 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
168 unsigned int node_num)
170 struct ocfs2_recovery_map *rm = osb->recovery_map;
172 spin_lock(&osb->osb_lock);
173 if (__ocfs2_recovery_map_test(osb, node_num)) {
174 spin_unlock(&osb->osb_lock);
178 /* XXX: Can this be exploited? Not from o2dlm... */
179 BUG_ON(rm->rm_used >= osb->max_slots);
181 rm->rm_entries[rm->rm_used] = node_num;
183 spin_unlock(&osb->osb_lock);
188 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
189 unsigned int node_num)
192 struct ocfs2_recovery_map *rm = osb->recovery_map;
194 spin_lock(&osb->osb_lock);
196 for (i = 0; i < rm->rm_used; i++) {
197 if (rm->rm_entries[i] == node_num)
201 if (i < rm->rm_used) {
202 /* XXX: be careful with the pointer math */
203 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
204 (rm->rm_used - i - 1) * sizeof(unsigned int));
208 spin_unlock(&osb->osb_lock);
211 static int ocfs2_commit_cache(struct ocfs2_super *osb)
214 unsigned int flushed;
215 unsigned long old_id;
216 struct ocfs2_journal *journal = NULL;
220 journal = osb->journal;
222 /* Flush all pending commits and checkpoint the journal. */
223 down_write(&journal->j_trans_barrier);
225 if (atomic_read(&journal->j_num_trans) == 0) {
226 up_write(&journal->j_trans_barrier);
227 mlog(0, "No transactions for me to flush!\n");
231 jbd2_journal_lock_updates(journal->j_journal);
232 status = jbd2_journal_flush(journal->j_journal);
233 jbd2_journal_unlock_updates(journal->j_journal);
235 up_write(&journal->j_trans_barrier);
240 old_id = ocfs2_inc_trans_id(journal);
242 flushed = atomic_read(&journal->j_num_trans);
243 atomic_set(&journal->j_num_trans, 0);
244 up_write(&journal->j_trans_barrier);
246 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
247 journal->j_trans_id, flushed);
249 ocfs2_wake_downconvert_thread(osb);
250 wake_up(&journal->j_checkpointed);
256 /* pass it NULL and it will allocate a new handle object for you. If
257 * you pass it a handle however, it may still return error, in which
258 * case it has free'd the passed handle for you. */
259 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
261 journal_t *journal = osb->journal->j_journal;
264 BUG_ON(!osb || !osb->journal->j_journal);
266 if (ocfs2_is_hard_readonly(osb))
267 return ERR_PTR(-EROFS);
269 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
270 BUG_ON(max_buffs <= 0);
272 /* Nested transaction? Just return the handle... */
273 if (journal_current_handle())
274 return jbd2_journal_start(journal, max_buffs);
276 down_read(&osb->journal->j_trans_barrier);
278 handle = jbd2_journal_start(journal, max_buffs);
279 if (IS_ERR(handle)) {
280 up_read(&osb->journal->j_trans_barrier);
282 mlog_errno(PTR_ERR(handle));
284 if (is_journal_aborted(journal)) {
285 ocfs2_abort(osb->sb, "Detected aborted journal");
286 handle = ERR_PTR(-EROFS);
289 if (!ocfs2_mount_local(osb))
290 atomic_inc(&(osb->journal->j_num_trans));
296 int ocfs2_commit_trans(struct ocfs2_super *osb,
300 struct ocfs2_journal *journal = osb->journal;
304 nested = handle->h_ref > 1;
305 ret = jbd2_journal_stop(handle);
310 up_read(&journal->j_trans_barrier);
316 * 'nblocks' is what you want to add to the current
317 * transaction. extend_trans will either extend the current handle by
318 * nblocks, or commit it and start a new one with nblocks credits.
320 * This might call jbd2_journal_restart() which will commit dirty buffers
321 * and then restart the transaction. Before calling
322 * ocfs2_extend_trans(), any changed blocks should have been
323 * dirtied. After calling it, all blocks which need to be changed must
324 * go through another set of journal_access/journal_dirty calls.
326 * WARNING: This will not release any semaphores or disk locks taken
327 * during the transaction, so make sure they were taken *before*
328 * start_trans or we'll have ordering deadlocks.
330 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
331 * good because transaction ids haven't yet been recorded on the
332 * cluster locks associated with this handle.
334 int ocfs2_extend_trans(handle_t *handle, int nblocks)
343 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
345 #ifdef CONFIG_OCFS2_DEBUG_FS
348 status = jbd2_journal_extend(handle, nblocks);
357 "jbd2_journal_extend failed, trying "
358 "jbd2_journal_restart\n");
359 status = jbd2_journal_restart(handle, nblocks);
373 struct ocfs2_triggers {
374 struct jbd2_buffer_trigger_type ot_triggers;
378 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
380 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
383 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
384 struct buffer_head *bh,
385 void *data, size_t size)
387 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
390 * We aren't guaranteed to have the superblock here, so we
391 * must unconditionally compute the ecc data.
392 * __ocfs2_journal_access() will only set the triggers if
393 * metaecc is enabled.
395 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
399 * Quota blocks have their own trigger because the struct ocfs2_block_check
400 * offset depends on the blocksize.
402 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
403 struct buffer_head *bh,
404 void *data, size_t size)
406 struct ocfs2_disk_dqtrailer *dqt =
407 ocfs2_block_dqtrailer(size, data);
410 * We aren't guaranteed to have the superblock here, so we
411 * must unconditionally compute the ecc data.
412 * __ocfs2_journal_access() will only set the triggers if
413 * metaecc is enabled.
415 ocfs2_block_check_compute(data, size, &dqt->dq_check);
419 * Directory blocks also have their own trigger because the
420 * struct ocfs2_block_check offset depends on the blocksize.
422 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
423 struct buffer_head *bh,
424 void *data, size_t size)
426 struct ocfs2_dir_block_trailer *trailer =
427 ocfs2_dir_trailer_from_size(size, data);
430 * We aren't guaranteed to have the superblock here, so we
431 * must unconditionally compute the ecc data.
432 * __ocfs2_journal_access() will only set the triggers if
433 * metaecc is enabled.
435 ocfs2_block_check_compute(data, size, &trailer->db_check);
438 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
439 struct buffer_head *bh)
442 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
443 "bh->b_blocknr = %llu\n",
445 (unsigned long long)bh->b_blocknr);
447 /* We aren't guaranteed to have the superblock here - but if we
448 * don't, it'll just crash. */
449 ocfs2_error(bh->b_assoc_map->host->i_sb,
450 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
453 static struct ocfs2_triggers di_triggers = {
455 .t_commit = ocfs2_commit_trigger,
456 .t_abort = ocfs2_abort_trigger,
458 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
461 static struct ocfs2_triggers eb_triggers = {
463 .t_commit = ocfs2_commit_trigger,
464 .t_abort = ocfs2_abort_trigger,
466 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
469 static struct ocfs2_triggers gd_triggers = {
471 .t_commit = ocfs2_commit_trigger,
472 .t_abort = ocfs2_abort_trigger,
474 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
477 static struct ocfs2_triggers db_triggers = {
479 .t_commit = ocfs2_db_commit_trigger,
480 .t_abort = ocfs2_abort_trigger,
484 static struct ocfs2_triggers xb_triggers = {
486 .t_commit = ocfs2_commit_trigger,
487 .t_abort = ocfs2_abort_trigger,
489 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
492 static struct ocfs2_triggers dq_triggers = {
494 .t_commit = ocfs2_dq_commit_trigger,
495 .t_abort = ocfs2_abort_trigger,
499 static int __ocfs2_journal_access(handle_t *handle,
501 struct buffer_head *bh,
502 struct ocfs2_triggers *triggers,
511 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
512 (unsigned long long)bh->b_blocknr, type,
513 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
514 "OCFS2_JOURNAL_ACCESS_CREATE" :
515 "OCFS2_JOURNAL_ACCESS_WRITE",
518 /* we can safely remove this assertion after testing. */
519 if (!buffer_uptodate(bh)) {
520 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
521 mlog(ML_ERROR, "b_blocknr=%llu\n",
522 (unsigned long long)bh->b_blocknr);
526 /* Set the current transaction information on the inode so
527 * that the locking code knows whether it can drop it's locks
528 * on this inode or not. We're protected from the commit
529 * thread updating the current transaction id until
530 * ocfs2_commit_trans() because ocfs2_start_trans() took
531 * j_trans_barrier for us. */
532 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
534 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
536 case OCFS2_JOURNAL_ACCESS_CREATE:
537 case OCFS2_JOURNAL_ACCESS_WRITE:
538 status = jbd2_journal_get_write_access(handle, bh);
541 case OCFS2_JOURNAL_ACCESS_UNDO:
542 status = jbd2_journal_get_undo_access(handle, bh);
547 mlog(ML_ERROR, "Uknown access type!\n");
549 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
550 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
551 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
554 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
561 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
562 struct buffer_head *bh, int type)
564 return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
568 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
569 struct buffer_head *bh, int type)
571 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
575 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
576 struct buffer_head *bh, int type)
578 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
582 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
583 struct buffer_head *bh, int type)
585 return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
589 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
590 struct buffer_head *bh, int type)
592 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
596 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
597 struct buffer_head *bh, int type)
599 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
603 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
604 struct buffer_head *bh, int type)
606 return __ocfs2_journal_access(handle, inode, bh, NULL, type);
609 int ocfs2_journal_dirty(handle_t *handle,
610 struct buffer_head *bh)
614 mlog_entry("(bh->b_blocknr=%llu)\n",
615 (unsigned long long)bh->b_blocknr);
617 status = jbd2_journal_dirty_metadata(handle, bh);
619 mlog(ML_ERROR, "Could not dirty metadata buffer. "
620 "(bh->b_blocknr=%llu)\n",
621 (unsigned long long)bh->b_blocknr);
627 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
629 void ocfs2_set_journal_params(struct ocfs2_super *osb)
631 journal_t *journal = osb->journal->j_journal;
632 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
634 if (osb->osb_commit_interval)
635 commit_interval = osb->osb_commit_interval;
637 spin_lock(&journal->j_state_lock);
638 journal->j_commit_interval = commit_interval;
639 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
640 journal->j_flags |= JBD2_BARRIER;
642 journal->j_flags &= ~JBD2_BARRIER;
643 spin_unlock(&journal->j_state_lock);
646 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
649 struct inode *inode = NULL; /* the journal inode */
650 journal_t *j_journal = NULL;
651 struct ocfs2_dinode *di = NULL;
652 struct buffer_head *bh = NULL;
653 struct ocfs2_super *osb;
660 osb = journal->j_osb;
662 /* already have the inode for our journal */
663 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
670 if (is_bad_inode(inode)) {
671 mlog(ML_ERROR, "access error (bad inode)\n");
678 SET_INODE_JOURNAL(inode);
679 OCFS2_I(inode)->ip_open_count++;
681 /* Skip recovery waits here - journal inode metadata never
682 * changes in a live cluster so it can be considered an
683 * exception to the rule. */
684 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
686 if (status != -ERESTARTSYS)
687 mlog(ML_ERROR, "Could not get lock on journal!\n");
692 di = (struct ocfs2_dinode *)bh->b_data;
694 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
695 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
701 mlog(0, "inode->i_size = %lld\n", inode->i_size);
702 mlog(0, "inode->i_blocks = %llu\n",
703 (unsigned long long)inode->i_blocks);
704 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
706 /* call the kernels journal init function now */
707 j_journal = jbd2_journal_init_inode(inode);
708 if (j_journal == NULL) {
709 mlog(ML_ERROR, "Linux journal layer error\n");
714 mlog(0, "Returned from jbd2_journal_init_inode\n");
715 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
717 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
718 OCFS2_JOURNAL_DIRTY_FL);
720 journal->j_journal = j_journal;
721 journal->j_inode = inode;
724 ocfs2_set_journal_params(osb);
726 journal->j_state = OCFS2_JOURNAL_LOADED;
732 ocfs2_inode_unlock(inode, 1);
735 OCFS2_I(inode)->ip_open_count--;
744 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
746 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
749 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
751 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
754 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
755 int dirty, int replayed)
759 struct ocfs2_journal *journal = osb->journal;
760 struct buffer_head *bh = journal->j_bh;
761 struct ocfs2_dinode *fe;
765 fe = (struct ocfs2_dinode *)bh->b_data;
767 /* The journal bh on the osb always comes from ocfs2_journal_init()
768 * and was validated there inside ocfs2_inode_lock_full(). It's a
769 * code bug if we mess it up. */
770 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
772 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
774 flags |= OCFS2_JOURNAL_DIRTY_FL;
776 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
777 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
780 ocfs2_bump_recovery_generation(fe);
782 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
783 status = ocfs2_write_block(osb, bh, journal->j_inode);
792 * If the journal has been kmalloc'd it needs to be freed after this
795 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
797 struct ocfs2_journal *journal = NULL;
799 struct inode *inode = NULL;
800 int num_running_trans = 0;
806 journal = osb->journal;
810 inode = journal->j_inode;
812 if (journal->j_state != OCFS2_JOURNAL_LOADED)
815 /* need to inc inode use count - jbd2_journal_destroy will iput. */
819 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
820 if (num_running_trans > 0)
821 mlog(0, "Shutting down journal: must wait on %d "
822 "running transactions!\n",
825 /* Do a commit_cache here. It will flush our journal, *and*
826 * release any locks that are still held.
827 * set the SHUTDOWN flag and release the trans lock.
828 * the commit thread will take the trans lock for us below. */
829 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
831 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
832 * drop the trans_lock (which we want to hold until we
833 * completely destroy the journal. */
834 if (osb->commit_task) {
835 /* Wait for the commit thread */
836 mlog(0, "Waiting for ocfs2commit to exit....\n");
837 kthread_stop(osb->commit_task);
838 osb->commit_task = NULL;
841 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
843 if (ocfs2_mount_local(osb)) {
844 jbd2_journal_lock_updates(journal->j_journal);
845 status = jbd2_journal_flush(journal->j_journal);
846 jbd2_journal_unlock_updates(journal->j_journal);
853 * Do not toggle if flush was unsuccessful otherwise
854 * will leave dirty metadata in a "clean" journal
856 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
861 /* Shutdown the kernel journal system */
862 jbd2_journal_destroy(journal->j_journal);
863 journal->j_journal = NULL;
865 OCFS2_I(inode)->ip_open_count--;
867 /* unlock our journal */
868 ocfs2_inode_unlock(inode, 1);
870 brelse(journal->j_bh);
871 journal->j_bh = NULL;
873 journal->j_state = OCFS2_JOURNAL_FREE;
875 // up_write(&journal->j_trans_barrier);
882 static void ocfs2_clear_journal_error(struct super_block *sb,
888 olderr = jbd2_journal_errno(journal);
890 mlog(ML_ERROR, "File system error %d recorded in "
891 "journal %u.\n", olderr, slot);
892 mlog(ML_ERROR, "File system on device %s needs checking.\n",
895 jbd2_journal_ack_err(journal);
896 jbd2_journal_clear_err(journal);
900 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
903 struct ocfs2_super *osb;
909 osb = journal->j_osb;
911 status = jbd2_journal_load(journal->j_journal);
913 mlog(ML_ERROR, "Failed to load journal!\n");
917 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
919 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
925 /* Launch the commit thread */
927 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
929 if (IS_ERR(osb->commit_task)) {
930 status = PTR_ERR(osb->commit_task);
931 osb->commit_task = NULL;
932 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
937 osb->commit_task = NULL;
945 /* 'full' flag tells us whether we clear out all blocks or if we just
946 * mark the journal clean */
947 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
955 status = jbd2_journal_wipe(journal->j_journal, full);
961 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
970 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
973 struct ocfs2_recovery_map *rm = osb->recovery_map;
975 spin_lock(&osb->osb_lock);
976 empty = (rm->rm_used == 0);
977 spin_unlock(&osb->osb_lock);
982 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
984 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
988 * JBD Might read a cached version of another nodes journal file. We
989 * don't want this as this file changes often and we get no
990 * notification on those changes. The only way to be sure that we've
991 * got the most up to date version of those blocks then is to force
992 * read them off disk. Just searching through the buffer cache won't
993 * work as there may be pages backing this file which are still marked
994 * up to date. We know things can't change on this file underneath us
995 * as we have the lock by now :)
997 static int ocfs2_force_read_journal(struct inode *inode)
1001 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1002 #define CONCURRENT_JOURNAL_FILL 32ULL
1003 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1007 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1009 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1011 while (v_blkno < num_blocks) {
1012 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1013 &p_blkno, &p_blocks, NULL);
1019 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1020 p_blocks = CONCURRENT_JOURNAL_FILL;
1022 /* We are reading journal data which should not
1023 * be put in the uptodate cache */
1024 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1025 p_blkno, p_blocks, bhs);
1031 for(i = 0; i < p_blocks; i++) {
1036 v_blkno += p_blocks;
1040 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1046 struct ocfs2_la_recovery_item {
1047 struct list_head lri_list;
1049 struct ocfs2_dinode *lri_la_dinode;
1050 struct ocfs2_dinode *lri_tl_dinode;
1051 struct ocfs2_quota_recovery *lri_qrec;
1054 /* Does the second half of the recovery process. By this point, the
1055 * node is marked clean and can actually be considered recovered,
1056 * hence it's no longer in the recovery map, but there's still some
1057 * cleanup we can do which shouldn't happen within the recovery thread
1058 * as locking in that context becomes very difficult if we are to take
1059 * recovering nodes into account.
1061 * NOTE: This function can and will sleep on recovery of other nodes
1062 * during cluster locking, just like any other ocfs2 process.
1064 void ocfs2_complete_recovery(struct work_struct *work)
1067 struct ocfs2_journal *journal =
1068 container_of(work, struct ocfs2_journal, j_recovery_work);
1069 struct ocfs2_super *osb = journal->j_osb;
1070 struct ocfs2_dinode *la_dinode, *tl_dinode;
1071 struct ocfs2_la_recovery_item *item, *n;
1072 struct ocfs2_quota_recovery *qrec;
1073 LIST_HEAD(tmp_la_list);
1077 mlog(0, "completing recovery from keventd\n");
1079 spin_lock(&journal->j_lock);
1080 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1081 spin_unlock(&journal->j_lock);
1083 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1084 list_del_init(&item->lri_list);
1086 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1088 ocfs2_wait_on_quotas(osb);
1090 la_dinode = item->lri_la_dinode;
1092 mlog(0, "Clean up local alloc %llu\n",
1093 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1095 ret = ocfs2_complete_local_alloc_recovery(osb,
1103 tl_dinode = item->lri_tl_dinode;
1105 mlog(0, "Clean up truncate log %llu\n",
1106 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1108 ret = ocfs2_complete_truncate_log_recovery(osb,
1116 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1120 qrec = item->lri_qrec;
1122 mlog(0, "Recovering quota files");
1123 ret = ocfs2_finish_quota_recovery(osb, qrec,
1127 /* Recovery info is already freed now */
1133 mlog(0, "Recovery completion\n");
1137 /* NOTE: This function always eats your references to la_dinode and
1138 * tl_dinode, either manually on error, or by passing them to
1139 * ocfs2_complete_recovery */
1140 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1142 struct ocfs2_dinode *la_dinode,
1143 struct ocfs2_dinode *tl_dinode,
1144 struct ocfs2_quota_recovery *qrec)
1146 struct ocfs2_la_recovery_item *item;
1148 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1150 /* Though we wish to avoid it, we are in fact safe in
1151 * skipping local alloc cleanup as fsck.ocfs2 is more
1152 * than capable of reclaiming unused space. */
1160 ocfs2_free_quota_recovery(qrec);
1162 mlog_errno(-ENOMEM);
1166 INIT_LIST_HEAD(&item->lri_list);
1167 item->lri_la_dinode = la_dinode;
1168 item->lri_slot = slot_num;
1169 item->lri_tl_dinode = tl_dinode;
1170 item->lri_qrec = qrec;
1172 spin_lock(&journal->j_lock);
1173 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1174 queue_work(ocfs2_wq, &journal->j_recovery_work);
1175 spin_unlock(&journal->j_lock);
1178 /* Called by the mount code to queue recovery the last part of
1179 * recovery for it's own slot. */
1180 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1182 struct ocfs2_journal *journal = osb->journal;
1185 /* No need to queue up our truncate_log as regular
1186 * cleanup will catch that. */
1187 ocfs2_queue_recovery_completion(journal,
1189 osb->local_alloc_copy,
1192 ocfs2_schedule_truncate_log_flush(osb, 0);
1194 osb->local_alloc_copy = NULL;
1199 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1201 if (osb->quota_rec) {
1202 ocfs2_queue_recovery_completion(osb->journal,
1207 osb->quota_rec = NULL;
1211 static int __ocfs2_recovery_thread(void *arg)
1213 int status, node_num, slot_num;
1214 struct ocfs2_super *osb = arg;
1215 struct ocfs2_recovery_map *rm = osb->recovery_map;
1216 int *rm_quota = NULL;
1217 int rm_quota_used = 0, i;
1218 struct ocfs2_quota_recovery *qrec;
1222 status = ocfs2_wait_on_mount(osb);
1227 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1233 status = ocfs2_super_lock(osb, 1);
1239 spin_lock(&osb->osb_lock);
1240 while (rm->rm_used) {
1241 /* It's always safe to remove entry zero, as we won't
1242 * clear it until ocfs2_recover_node() has succeeded. */
1243 node_num = rm->rm_entries[0];
1244 spin_unlock(&osb->osb_lock);
1245 mlog(0, "checking node %d\n", node_num);
1246 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1247 if (slot_num == -ENOENT) {
1249 mlog(0, "no slot for this node, so no recovery"
1253 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1255 /* It is a bit subtle with quota recovery. We cannot do it
1256 * immediately because we have to obtain cluster locks from
1257 * quota files and we also don't want to just skip it because
1258 * then quota usage would be out of sync until some node takes
1259 * the slot. So we remember which nodes need quota recovery
1260 * and when everything else is done, we recover quotas. */
1261 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1262 if (i == rm_quota_used)
1263 rm_quota[rm_quota_used++] = slot_num;
1265 status = ocfs2_recover_node(osb, node_num, slot_num);
1268 ocfs2_recovery_map_clear(osb, node_num);
1271 "Error %d recovering node %d on device (%u,%u)!\n",
1273 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1274 mlog(ML_ERROR, "Volume requires unmount.\n");
1277 spin_lock(&osb->osb_lock);
1279 spin_unlock(&osb->osb_lock);
1280 mlog(0, "All nodes recovered\n");
1282 /* Refresh all journal recovery generations from disk */
1283 status = ocfs2_check_journals_nolocks(osb);
1284 status = (status == -EROFS) ? 0 : status;
1288 /* Now it is right time to recover quotas... We have to do this under
1289 * superblock lock so that noone can start using the slot (and crash)
1290 * before we recover it */
1291 for (i = 0; i < rm_quota_used; i++) {
1292 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1294 status = PTR_ERR(qrec);
1298 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1302 ocfs2_super_unlock(osb, 1);
1304 /* We always run recovery on our own orphan dir - the dead
1305 * node(s) may have disallowd a previos inode delete. Re-processing
1306 * is therefore required. */
1307 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1311 mutex_lock(&osb->recovery_lock);
1312 if (!status && !ocfs2_recovery_completed(osb)) {
1313 mutex_unlock(&osb->recovery_lock);
1317 osb->recovery_thread_task = NULL;
1318 mb(); /* sync with ocfs2_recovery_thread_running */
1319 wake_up(&osb->recovery_event);
1321 mutex_unlock(&osb->recovery_lock);
1327 /* no one is callint kthread_stop() for us so the kthread() api
1328 * requires that we call do_exit(). And it isn't exported, but
1329 * complete_and_exit() seems to be a minimal wrapper around it. */
1330 complete_and_exit(NULL, status);
1334 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1336 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1337 node_num, osb->node_num);
1339 mutex_lock(&osb->recovery_lock);
1340 if (osb->disable_recovery)
1343 /* People waiting on recovery will wait on
1344 * the recovery map to empty. */
1345 if (ocfs2_recovery_map_set(osb, node_num))
1346 mlog(0, "node %d already in recovery map.\n", node_num);
1348 mlog(0, "starting recovery thread...\n");
1350 if (osb->recovery_thread_task)
1353 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1355 if (IS_ERR(osb->recovery_thread_task)) {
1356 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1357 osb->recovery_thread_task = NULL;
1361 mutex_unlock(&osb->recovery_lock);
1362 wake_up(&osb->recovery_event);
1367 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1369 struct buffer_head **bh,
1370 struct inode **ret_inode)
1372 int status = -EACCES;
1373 struct inode *inode = NULL;
1375 BUG_ON(slot_num >= osb->max_slots);
1377 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1379 if (!inode || is_bad_inode(inode)) {
1383 SET_INODE_JOURNAL(inode);
1385 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1395 if (status || !ret_inode)
1403 /* Does the actual journal replay and marks the journal inode as
1404 * clean. Will only replay if the journal inode is marked dirty. */
1405 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1412 struct inode *inode = NULL;
1413 struct ocfs2_dinode *fe;
1414 journal_t *journal = NULL;
1415 struct buffer_head *bh = NULL;
1418 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1424 fe = (struct ocfs2_dinode *)bh->b_data;
1425 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1430 * As the fs recovery is asynchronous, there is a small chance that
1431 * another node mounted (and recovered) the slot before the recovery
1432 * thread could get the lock. To handle that, we dirty read the journal
1433 * inode for that slot to get the recovery generation. If it is
1434 * different than what we expected, the slot has been recovered.
1435 * If not, it needs recovery.
1437 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1438 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1439 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1440 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1445 /* Continue with recovery as the journal has not yet been recovered */
1447 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1449 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1450 if (status != -ERESTARTSYS)
1451 mlog(ML_ERROR, "Could not lock journal!\n");
1456 fe = (struct ocfs2_dinode *) bh->b_data;
1458 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1459 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1461 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1462 mlog(0, "No recovery required for node %d\n", node_num);
1463 /* Refresh recovery generation for the slot */
1464 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1468 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1470 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1472 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1474 status = ocfs2_force_read_journal(inode);
1480 mlog(0, "calling journal_init_inode\n");
1481 journal = jbd2_journal_init_inode(inode);
1482 if (journal == NULL) {
1483 mlog(ML_ERROR, "Linux journal layer error\n");
1488 status = jbd2_journal_load(journal);
1493 jbd2_journal_destroy(journal);
1497 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1499 /* wipe the journal */
1500 mlog(0, "flushing the journal.\n");
1501 jbd2_journal_lock_updates(journal);
1502 status = jbd2_journal_flush(journal);
1503 jbd2_journal_unlock_updates(journal);
1507 /* This will mark the node clean */
1508 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1509 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1510 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1512 /* Increment recovery generation to indicate successful recovery */
1513 ocfs2_bump_recovery_generation(fe);
1514 osb->slot_recovery_generations[slot_num] =
1515 ocfs2_get_recovery_generation(fe);
1517 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1518 status = ocfs2_write_block(osb, bh, inode);
1525 jbd2_journal_destroy(journal);
1528 /* drop the lock on this nodes journal */
1530 ocfs2_inode_unlock(inode, 1);
1542 * Do the most important parts of node recovery:
1543 * - Replay it's journal
1544 * - Stamp a clean local allocator file
1545 * - Stamp a clean truncate log
1546 * - Mark the node clean
1548 * If this function completes without error, a node in OCFS2 can be
1549 * said to have been safely recovered. As a result, failure during the
1550 * second part of a nodes recovery process (local alloc recovery) is
1551 * far less concerning.
1553 static int ocfs2_recover_node(struct ocfs2_super *osb,
1554 int node_num, int slot_num)
1557 struct ocfs2_dinode *la_copy = NULL;
1558 struct ocfs2_dinode *tl_copy = NULL;
1560 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1561 node_num, slot_num, osb->node_num);
1563 /* Should not ever be called to recover ourselves -- in that
1564 * case we should've called ocfs2_journal_load instead. */
1565 BUG_ON(osb->node_num == node_num);
1567 status = ocfs2_replay_journal(osb, node_num, slot_num);
1569 if (status == -EBUSY) {
1570 mlog(0, "Skipping recovery for slot %u (node %u) "
1571 "as another node has recovered it\n", slot_num,
1580 /* Stamp a clean local alloc file AFTER recovering the journal... */
1581 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1587 /* An error from begin_truncate_log_recovery is not
1588 * serious enough to warrant halting the rest of
1590 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1594 /* Likewise, this would be a strange but ultimately not so
1595 * harmful place to get an error... */
1596 status = ocfs2_clear_slot(osb, slot_num);
1600 /* This will kfree the memory pointed to by la_copy and tl_copy */
1601 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1611 /* Test node liveness by trylocking his journal. If we get the lock,
1612 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1613 * still alive (we couldn't get the lock) and < 0 on error. */
1614 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1618 struct inode *inode = NULL;
1620 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1622 if (inode == NULL) {
1623 mlog(ML_ERROR, "access error\n");
1627 if (is_bad_inode(inode)) {
1628 mlog(ML_ERROR, "access error (bad inode)\n");
1634 SET_INODE_JOURNAL(inode);
1636 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1637 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1639 if (status != -EAGAIN)
1644 ocfs2_inode_unlock(inode, 1);
1652 /* Call this underneath ocfs2_super_lock. It also assumes that the
1653 * slot info struct has been updated from disk. */
1654 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1656 unsigned int node_num;
1659 struct buffer_head *bh = NULL;
1660 struct ocfs2_dinode *di;
1662 /* This is called with the super block cluster lock, so we
1663 * know that the slot map can't change underneath us. */
1665 for (i = 0; i < osb->max_slots; i++) {
1666 /* Read journal inode to get the recovery generation */
1667 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1672 di = (struct ocfs2_dinode *)bh->b_data;
1673 gen = ocfs2_get_recovery_generation(di);
1677 spin_lock(&osb->osb_lock);
1678 osb->slot_recovery_generations[i] = gen;
1680 mlog(0, "Slot %u recovery generation is %u\n", i,
1681 osb->slot_recovery_generations[i]);
1683 if (i == osb->slot_num) {
1684 spin_unlock(&osb->osb_lock);
1688 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1689 if (status == -ENOENT) {
1690 spin_unlock(&osb->osb_lock);
1694 if (__ocfs2_recovery_map_test(osb, node_num)) {
1695 spin_unlock(&osb->osb_lock);
1698 spin_unlock(&osb->osb_lock);
1700 /* Ok, we have a slot occupied by another node which
1701 * is not in the recovery map. We trylock his journal
1702 * file here to test if he's alive. */
1703 status = ocfs2_trylock_journal(osb, i);
1705 /* Since we're called from mount, we know that
1706 * the recovery thread can't race us on
1707 * setting / checking the recovery bits. */
1708 ocfs2_recovery_thread(osb, node_num);
1709 } else if ((status < 0) && (status != -EAGAIN)) {
1721 struct ocfs2_orphan_filldir_priv {
1723 struct ocfs2_super *osb;
1726 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1727 loff_t pos, u64 ino, unsigned type)
1729 struct ocfs2_orphan_filldir_priv *p = priv;
1732 if (name_len == 1 && !strncmp(".", name, 1))
1734 if (name_len == 2 && !strncmp("..", name, 2))
1737 /* Skip bad inodes so that recovery can continue */
1738 iter = ocfs2_iget(p->osb, ino,
1739 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1743 mlog(0, "queue orphan %llu\n",
1744 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1745 /* No locking is required for the next_orphan queue as there
1746 * is only ever a single process doing orphan recovery. */
1747 OCFS2_I(iter)->ip_next_orphan = p->head;
1753 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1755 struct inode **head)
1758 struct inode *orphan_dir_inode = NULL;
1759 struct ocfs2_orphan_filldir_priv priv;
1765 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1766 ORPHAN_DIR_SYSTEM_INODE,
1768 if (!orphan_dir_inode) {
1774 mutex_lock(&orphan_dir_inode->i_mutex);
1775 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1781 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1782 ocfs2_orphan_filldir);
1791 ocfs2_inode_unlock(orphan_dir_inode, 0);
1793 mutex_unlock(&orphan_dir_inode->i_mutex);
1794 iput(orphan_dir_inode);
1798 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1803 spin_lock(&osb->osb_lock);
1804 ret = !osb->osb_orphan_wipes[slot];
1805 spin_unlock(&osb->osb_lock);
1809 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1812 spin_lock(&osb->osb_lock);
1813 /* Mark ourselves such that new processes in delete_inode()
1814 * know to quit early. */
1815 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1816 while (osb->osb_orphan_wipes[slot]) {
1817 /* If any processes are already in the middle of an
1818 * orphan wipe on this dir, then we need to wait for
1820 spin_unlock(&osb->osb_lock);
1821 wait_event_interruptible(osb->osb_wipe_event,
1822 ocfs2_orphan_recovery_can_continue(osb, slot));
1823 spin_lock(&osb->osb_lock);
1825 spin_unlock(&osb->osb_lock);
1828 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1831 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1835 * Orphan recovery. Each mounted node has it's own orphan dir which we
1836 * must run during recovery. Our strategy here is to build a list of
1837 * the inodes in the orphan dir and iget/iput them. The VFS does
1838 * (most) of the rest of the work.
1840 * Orphan recovery can happen at any time, not just mount so we have a
1841 * couple of extra considerations.
1843 * - We grab as many inodes as we can under the orphan dir lock -
1844 * doing iget() outside the orphan dir risks getting a reference on
1846 * - We must be sure not to deadlock with other processes on the
1847 * system wanting to run delete_inode(). This can happen when they go
1848 * to lock the orphan dir and the orphan recovery process attempts to
1849 * iget() inside the orphan dir lock. This can be avoided by
1850 * advertising our state to ocfs2_delete_inode().
1852 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1856 struct inode *inode = NULL;
1858 struct ocfs2_inode_info *oi;
1860 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1862 ocfs2_mark_recovering_orphan_dir(osb, slot);
1863 ret = ocfs2_queue_orphans(osb, slot, &inode);
1864 ocfs2_clear_recovering_orphan_dir(osb, slot);
1866 /* Error here should be noted, but we want to continue with as
1867 * many queued inodes as we've got. */
1872 oi = OCFS2_I(inode);
1873 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1875 iter = oi->ip_next_orphan;
1877 spin_lock(&oi->ip_lock);
1878 /* The remote delete code may have set these on the
1879 * assumption that the other node would wipe them
1880 * successfully. If they are still in the node's
1881 * orphan dir, we need to reset that state. */
1882 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1884 /* Set the proper information to get us going into
1885 * ocfs2_delete_inode. */
1886 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1887 spin_unlock(&oi->ip_lock);
1897 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
1899 /* This check is good because ocfs2 will wait on our recovery
1900 * thread before changing it to something other than MOUNTED
1902 wait_event(osb->osb_mount_event,
1903 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
1904 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
1905 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1907 /* If there's an error on mount, then we may never get to the
1908 * MOUNTED flag, but this is set right before
1909 * dismount_volume() so we can trust it. */
1910 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1911 mlog(0, "mount error, exiting!\n");
1918 static int ocfs2_commit_thread(void *arg)
1921 struct ocfs2_super *osb = arg;
1922 struct ocfs2_journal *journal = osb->journal;
1924 /* we can trust j_num_trans here because _should_stop() is only set in
1925 * shutdown and nobody other than ourselves should be able to start
1926 * transactions. committing on shutdown might take a few iterations
1927 * as final transactions put deleted inodes on the list */
1928 while (!(kthread_should_stop() &&
1929 atomic_read(&journal->j_num_trans) == 0)) {
1931 wait_event_interruptible(osb->checkpoint_event,
1932 atomic_read(&journal->j_num_trans)
1933 || kthread_should_stop());
1935 status = ocfs2_commit_cache(osb);
1939 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1941 "commit_thread: %u transactions pending on "
1943 atomic_read(&journal->j_num_trans));
1950 /* Reads all the journal inodes without taking any cluster locks. Used
1951 * for hard readonly access to determine whether any journal requires
1952 * recovery. Also used to refresh the recovery generation numbers after
1953 * a journal has been recovered by another node.
1955 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1959 struct buffer_head *di_bh = NULL;
1960 struct ocfs2_dinode *di;
1961 int journal_dirty = 0;
1963 for(slot = 0; slot < osb->max_slots; slot++) {
1964 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1970 di = (struct ocfs2_dinode *) di_bh->b_data;
1972 osb->slot_recovery_generations[slot] =
1973 ocfs2_get_recovery_generation(di);
1975 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1976 OCFS2_JOURNAL_DIRTY_FL)