Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54         ext4_fsblk_t block;
55
56         block = le32_to_cpu(ex->ee_start_lo);
57         block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58         return block;
59 }
60
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67         ext4_fsblk_t block;
68
69         block = le32_to_cpu(ix->ei_leaf_lo);
70         block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71         return block;
72 }
73
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81         ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82         ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92         ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93         ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98         int err;
99
100         if (!ext4_handle_valid(handle))
101                 return 0;
102         if (handle->h_buffer_credits > needed)
103                 return 0;
104         err = ext4_journal_extend(handle, needed);
105         if (err <= 0)
106                 return err;
107         return ext4_journal_restart(handle, needed);
108 }
109
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  */
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116                                 struct ext4_ext_path *path)
117 {
118         if (path->p_bh) {
119                 /* path points to block */
120                 return ext4_journal_get_write_access(handle, path->p_bh);
121         }
122         /* path points to leaf/index in inode body */
123         /* we use in-core data, no need to protect them */
124         return 0;
125 }
126
127 /*
128  * could return:
129  *  - EROFS
130  *  - ENOMEM
131  *  - EIO
132  */
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134                                 struct ext4_ext_path *path)
135 {
136         int err;
137         if (path->p_bh) {
138                 /* path points to block */
139                 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140         } else {
141                 /* path points to leaf/index in inode body */
142                 err = ext4_mark_inode_dirty(handle, inode);
143         }
144         return err;
145 }
146
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148                               struct ext4_ext_path *path,
149                               ext4_lblk_t block)
150 {
151         struct ext4_inode_info *ei = EXT4_I(inode);
152         ext4_fsblk_t bg_start;
153         ext4_fsblk_t last_block;
154         ext4_grpblk_t colour;
155         ext4_group_t block_group;
156         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
157         int depth;
158
159         if (path) {
160                 struct ext4_extent *ex;
161                 depth = path->p_depth;
162
163                 /* try to predict block placement */
164                 ex = path[depth].p_ext;
165                 if (ex)
166                         return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
167
168                 /* it looks like index is empty;
169                  * try to find starting block from index itself */
170                 if (path[depth].p_bh)
171                         return path[depth].p_bh->b_blocknr;
172         }
173
174         /* OK. use inode's group */
175         block_group = ei->i_block_group;
176         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
177                 /*
178                  * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
179                  * block groups per flexgroup, reserve the first block 
180                  * group for directories and special files.  Regular 
181                  * files will start at the second block group.  This
182                  * tends to speed up directory access and improves 
183                  * fsck times.
184                  */
185                 block_group &= ~(flex_size-1);
186                 if (S_ISREG(inode->i_mode))
187                         block_group++;
188         }
189         bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
190                 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
191         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
192
193         /*
194          * If we are doing delayed allocation, we don't need take
195          * colour into account.
196          */
197         if (test_opt(inode->i_sb, DELALLOC))
198                 return bg_start;
199
200         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
201                 colour = (current->pid % 16) *
202                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
203         else
204                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
205         return bg_start + colour + block;
206 }
207
208 /*
209  * Allocation for a meta data block
210  */
211 static ext4_fsblk_t
212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
213                         struct ext4_ext_path *path,
214                         struct ext4_extent *ex, int *err)
215 {
216         ext4_fsblk_t goal, newblock;
217
218         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
219         newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
220         return newblock;
221 }
222
223 static int ext4_ext_space_block(struct inode *inode)
224 {
225         int size;
226
227         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
228                         / sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230         if (size > 6)
231                 size = 6;
232 #endif
233         return size;
234 }
235
236 static int ext4_ext_space_block_idx(struct inode *inode)
237 {
238         int size;
239
240         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241                         / sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243         if (size > 5)
244                 size = 5;
245 #endif
246         return size;
247 }
248
249 static int ext4_ext_space_root(struct inode *inode)
250 {
251         int size;
252
253         size = sizeof(EXT4_I(inode)->i_data);
254         size -= sizeof(struct ext4_extent_header);
255         size /= sizeof(struct ext4_extent);
256 #ifdef AGGRESSIVE_TEST
257         if (size > 3)
258                 size = 3;
259 #endif
260         return size;
261 }
262
263 static int ext4_ext_space_root_idx(struct inode *inode)
264 {
265         int size;
266
267         size = sizeof(EXT4_I(inode)->i_data);
268         size -= sizeof(struct ext4_extent_header);
269         size /= sizeof(struct ext4_extent_idx);
270 #ifdef AGGRESSIVE_TEST
271         if (size > 4)
272                 size = 4;
273 #endif
274         return size;
275 }
276
277 /*
278  * Calculate the number of metadata blocks needed
279  * to allocate @blocks
280  * Worse case is one block per extent
281  */
282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
283 {
284         int lcap, icap, rcap, leafs, idxs, num;
285         int newextents = blocks;
286
287         rcap = ext4_ext_space_root_idx(inode);
288         lcap = ext4_ext_space_block(inode);
289         icap = ext4_ext_space_block_idx(inode);
290
291         /* number of new leaf blocks needed */
292         num = leafs = (newextents + lcap - 1) / lcap;
293
294         /*
295          * Worse case, we need separate index block(s)
296          * to link all new leaf blocks
297          */
298         idxs = (leafs + icap - 1) / icap;
299         do {
300                 num += idxs;
301                 idxs = (idxs + icap - 1) / icap;
302         } while (idxs > rcap);
303
304         return num;
305 }
306
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
309 {
310         int max;
311
312         if (depth == ext_depth(inode)) {
313                 if (depth == 0)
314                         max = ext4_ext_space_root(inode);
315                 else
316                         max = ext4_ext_space_root_idx(inode);
317         } else {
318                 if (depth == 0)
319                         max = ext4_ext_space_block(inode);
320                 else
321                         max = ext4_ext_space_block_idx(inode);
322         }
323
324         return max;
325 }
326
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
328 {
329         ext4_fsblk_t block = ext_pblock(ext), valid_block;
330         int len = ext4_ext_get_actual_len(ext);
331         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
332
333         valid_block = le32_to_cpu(es->s_first_data_block) +
334                 EXT4_SB(inode->i_sb)->s_gdb_count;
335         if (unlikely(block <= valid_block ||
336                      ((block + len) > ext4_blocks_count(es))))
337                 return 0;
338         else
339                 return 1;
340 }
341
342 static int ext4_valid_extent_idx(struct inode *inode,
343                                 struct ext4_extent_idx *ext_idx)
344 {
345         ext4_fsblk_t block = idx_pblock(ext_idx), valid_block;
346         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
347
348         valid_block = le32_to_cpu(es->s_first_data_block) +
349                 EXT4_SB(inode->i_sb)->s_gdb_count;
350         if (unlikely(block <= valid_block ||
351                      (block >= ext4_blocks_count(es))))
352                 return 0;
353         else
354                 return 1;
355 }
356
357 static int ext4_valid_extent_entries(struct inode *inode,
358                                 struct ext4_extent_header *eh,
359                                 int depth)
360 {
361         struct ext4_extent *ext;
362         struct ext4_extent_idx *ext_idx;
363         unsigned short entries;
364         if (eh->eh_entries == 0)
365                 return 1;
366
367         entries = le16_to_cpu(eh->eh_entries);
368
369         if (depth == 0) {
370                 /* leaf entries */
371                 ext = EXT_FIRST_EXTENT(eh);
372                 while (entries) {
373                         if (!ext4_valid_extent(inode, ext))
374                                 return 0;
375                         ext++;
376                         entries--;
377                 }
378         } else {
379                 ext_idx = EXT_FIRST_INDEX(eh);
380                 while (entries) {
381                         if (!ext4_valid_extent_idx(inode, ext_idx))
382                                 return 0;
383                         ext_idx++;
384                         entries--;
385                 }
386         }
387         return 1;
388 }
389
390 static int __ext4_ext_check(const char *function, struct inode *inode,
391                                         struct ext4_extent_header *eh,
392                                         int depth)
393 {
394         const char *error_msg;
395         int max = 0;
396
397         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
398                 error_msg = "invalid magic";
399                 goto corrupted;
400         }
401         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
402                 error_msg = "unexpected eh_depth";
403                 goto corrupted;
404         }
405         if (unlikely(eh->eh_max == 0)) {
406                 error_msg = "invalid eh_max";
407                 goto corrupted;
408         }
409         max = ext4_ext_max_entries(inode, depth);
410         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
411                 error_msg = "too large eh_max";
412                 goto corrupted;
413         }
414         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
415                 error_msg = "invalid eh_entries";
416                 goto corrupted;
417         }
418         if (!ext4_valid_extent_entries(inode, eh, depth)) {
419                 error_msg = "invalid extent entries";
420                 goto corrupted;
421         }
422         return 0;
423
424 corrupted:
425         ext4_error(inode->i_sb, function,
426                         "bad header/extent in inode #%lu: %s - magic %x, "
427                         "entries %u, max %u(%u), depth %u(%u)",
428                         inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
429                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
430                         max, le16_to_cpu(eh->eh_depth), depth);
431
432         return -EIO;
433 }
434
435 #define ext4_ext_check(inode, eh, depth)        \
436         __ext4_ext_check(__func__, inode, eh, depth)
437
438 int ext4_ext_check_inode(struct inode *inode)
439 {
440         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
441 }
442
443 #ifdef EXT_DEBUG
444 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
445 {
446         int k, l = path->p_depth;
447
448         ext_debug("path:");
449         for (k = 0; k <= l; k++, path++) {
450                 if (path->p_idx) {
451                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
452                             idx_pblock(path->p_idx));
453                 } else if (path->p_ext) {
454                         ext_debug("  %d:%d:%llu ",
455                                   le32_to_cpu(path->p_ext->ee_block),
456                                   ext4_ext_get_actual_len(path->p_ext),
457                                   ext_pblock(path->p_ext));
458                 } else
459                         ext_debug("  []");
460         }
461         ext_debug("\n");
462 }
463
464 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
465 {
466         int depth = ext_depth(inode);
467         struct ext4_extent_header *eh;
468         struct ext4_extent *ex;
469         int i;
470
471         if (!path)
472                 return;
473
474         eh = path[depth].p_hdr;
475         ex = EXT_FIRST_EXTENT(eh);
476
477         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
478                 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
479                           ext4_ext_get_actual_len(ex), ext_pblock(ex));
480         }
481         ext_debug("\n");
482 }
483 #else
484 #define ext4_ext_show_path(inode, path)
485 #define ext4_ext_show_leaf(inode, path)
486 #endif
487
488 void ext4_ext_drop_refs(struct ext4_ext_path *path)
489 {
490         int depth = path->p_depth;
491         int i;
492
493         for (i = 0; i <= depth; i++, path++)
494                 if (path->p_bh) {
495                         brelse(path->p_bh);
496                         path->p_bh = NULL;
497                 }
498 }
499
500 /*
501  * ext4_ext_binsearch_idx:
502  * binary search for the closest index of the given block
503  * the header must be checked before calling this
504  */
505 static void
506 ext4_ext_binsearch_idx(struct inode *inode,
507                         struct ext4_ext_path *path, ext4_lblk_t block)
508 {
509         struct ext4_extent_header *eh = path->p_hdr;
510         struct ext4_extent_idx *r, *l, *m;
511
512
513         ext_debug("binsearch for %u(idx):  ", block);
514
515         l = EXT_FIRST_INDEX(eh) + 1;
516         r = EXT_LAST_INDEX(eh);
517         while (l <= r) {
518                 m = l + (r - l) / 2;
519                 if (block < le32_to_cpu(m->ei_block))
520                         r = m - 1;
521                 else
522                         l = m + 1;
523                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
524                                 m, le32_to_cpu(m->ei_block),
525                                 r, le32_to_cpu(r->ei_block));
526         }
527
528         path->p_idx = l - 1;
529         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
530                   idx_pblock(path->p_idx));
531
532 #ifdef CHECK_BINSEARCH
533         {
534                 struct ext4_extent_idx *chix, *ix;
535                 int k;
536
537                 chix = ix = EXT_FIRST_INDEX(eh);
538                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
539                   if (k != 0 &&
540                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
541                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
542                                        "first=0x%p\n", k,
543                                        ix, EXT_FIRST_INDEX(eh));
544                                 printk(KERN_DEBUG "%u <= %u\n",
545                                        le32_to_cpu(ix->ei_block),
546                                        le32_to_cpu(ix[-1].ei_block));
547                         }
548                         BUG_ON(k && le32_to_cpu(ix->ei_block)
549                                            <= le32_to_cpu(ix[-1].ei_block));
550                         if (block < le32_to_cpu(ix->ei_block))
551                                 break;
552                         chix = ix;
553                 }
554                 BUG_ON(chix != path->p_idx);
555         }
556 #endif
557
558 }
559
560 /*
561  * ext4_ext_binsearch:
562  * binary search for closest extent of the given block
563  * the header must be checked before calling this
564  */
565 static void
566 ext4_ext_binsearch(struct inode *inode,
567                 struct ext4_ext_path *path, ext4_lblk_t block)
568 {
569         struct ext4_extent_header *eh = path->p_hdr;
570         struct ext4_extent *r, *l, *m;
571
572         if (eh->eh_entries == 0) {
573                 /*
574                  * this leaf is empty:
575                  * we get such a leaf in split/add case
576                  */
577                 return;
578         }
579
580         ext_debug("binsearch for %u:  ", block);
581
582         l = EXT_FIRST_EXTENT(eh) + 1;
583         r = EXT_LAST_EXTENT(eh);
584
585         while (l <= r) {
586                 m = l + (r - l) / 2;
587                 if (block < le32_to_cpu(m->ee_block))
588                         r = m - 1;
589                 else
590                         l = m + 1;
591                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
592                                 m, le32_to_cpu(m->ee_block),
593                                 r, le32_to_cpu(r->ee_block));
594         }
595
596         path->p_ext = l - 1;
597         ext_debug("  -> %d:%llu:%d ",
598                         le32_to_cpu(path->p_ext->ee_block),
599                         ext_pblock(path->p_ext),
600                         ext4_ext_get_actual_len(path->p_ext));
601
602 #ifdef CHECK_BINSEARCH
603         {
604                 struct ext4_extent *chex, *ex;
605                 int k;
606
607                 chex = ex = EXT_FIRST_EXTENT(eh);
608                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
609                         BUG_ON(k && le32_to_cpu(ex->ee_block)
610                                           <= le32_to_cpu(ex[-1].ee_block));
611                         if (block < le32_to_cpu(ex->ee_block))
612                                 break;
613                         chex = ex;
614                 }
615                 BUG_ON(chex != path->p_ext);
616         }
617 #endif
618
619 }
620
621 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
622 {
623         struct ext4_extent_header *eh;
624
625         eh = ext_inode_hdr(inode);
626         eh->eh_depth = 0;
627         eh->eh_entries = 0;
628         eh->eh_magic = EXT4_EXT_MAGIC;
629         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
630         ext4_mark_inode_dirty(handle, inode);
631         ext4_ext_invalidate_cache(inode);
632         return 0;
633 }
634
635 struct ext4_ext_path *
636 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
637                                         struct ext4_ext_path *path)
638 {
639         struct ext4_extent_header *eh;
640         struct buffer_head *bh;
641         short int depth, i, ppos = 0, alloc = 0;
642
643         eh = ext_inode_hdr(inode);
644         depth = ext_depth(inode);
645
646         /* account possible depth increase */
647         if (!path) {
648                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
649                                 GFP_NOFS);
650                 if (!path)
651                         return ERR_PTR(-ENOMEM);
652                 alloc = 1;
653         }
654         path[0].p_hdr = eh;
655         path[0].p_bh = NULL;
656
657         i = depth;
658         /* walk through the tree */
659         while (i) {
660                 int need_to_validate = 0;
661
662                 ext_debug("depth %d: num %d, max %d\n",
663                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
664
665                 ext4_ext_binsearch_idx(inode, path + ppos, block);
666                 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
667                 path[ppos].p_depth = i;
668                 path[ppos].p_ext = NULL;
669
670                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
671                 if (unlikely(!bh))
672                         goto err;
673                 if (!bh_uptodate_or_lock(bh)) {
674                         if (bh_submit_read(bh) < 0) {
675                                 put_bh(bh);
676                                 goto err;
677                         }
678                         /* validate the extent entries */
679                         need_to_validate = 1;
680                 }
681                 eh = ext_block_hdr(bh);
682                 ppos++;
683                 BUG_ON(ppos > depth);
684                 path[ppos].p_bh = bh;
685                 path[ppos].p_hdr = eh;
686                 i--;
687
688                 if (need_to_validate && ext4_ext_check(inode, eh, i))
689                         goto err;
690         }
691
692         path[ppos].p_depth = i;
693         path[ppos].p_ext = NULL;
694         path[ppos].p_idx = NULL;
695
696         /* find extent */
697         ext4_ext_binsearch(inode, path + ppos, block);
698         /* if not an empty leaf */
699         if (path[ppos].p_ext)
700                 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
701
702         ext4_ext_show_path(inode, path);
703
704         return path;
705
706 err:
707         ext4_ext_drop_refs(path);
708         if (alloc)
709                 kfree(path);
710         return ERR_PTR(-EIO);
711 }
712
713 /*
714  * ext4_ext_insert_index:
715  * insert new index [@logical;@ptr] into the block at @curp;
716  * check where to insert: before @curp or after @curp
717  */
718 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
719                                 struct ext4_ext_path *curp,
720                                 int logical, ext4_fsblk_t ptr)
721 {
722         struct ext4_extent_idx *ix;
723         int len, err;
724
725         err = ext4_ext_get_access(handle, inode, curp);
726         if (err)
727                 return err;
728
729         BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
730         len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
731         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
732                 /* insert after */
733                 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
734                         len = (len - 1) * sizeof(struct ext4_extent_idx);
735                         len = len < 0 ? 0 : len;
736                         ext_debug("insert new index %d after: %llu. "
737                                         "move %d from 0x%p to 0x%p\n",
738                                         logical, ptr, len,
739                                         (curp->p_idx + 1), (curp->p_idx + 2));
740                         memmove(curp->p_idx + 2, curp->p_idx + 1, len);
741                 }
742                 ix = curp->p_idx + 1;
743         } else {
744                 /* insert before */
745                 len = len * sizeof(struct ext4_extent_idx);
746                 len = len < 0 ? 0 : len;
747                 ext_debug("insert new index %d before: %llu. "
748                                 "move %d from 0x%p to 0x%p\n",
749                                 logical, ptr, len,
750                                 curp->p_idx, (curp->p_idx + 1));
751                 memmove(curp->p_idx + 1, curp->p_idx, len);
752                 ix = curp->p_idx;
753         }
754
755         ix->ei_block = cpu_to_le32(logical);
756         ext4_idx_store_pblock(ix, ptr);
757         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
758
759         BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
760                              > le16_to_cpu(curp->p_hdr->eh_max));
761         BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
762
763         err = ext4_ext_dirty(handle, inode, curp);
764         ext4_std_error(inode->i_sb, err);
765
766         return err;
767 }
768
769 /*
770  * ext4_ext_split:
771  * inserts new subtree into the path, using free index entry
772  * at depth @at:
773  * - allocates all needed blocks (new leaf and all intermediate index blocks)
774  * - makes decision where to split
775  * - moves remaining extents and index entries (right to the split point)
776  *   into the newly allocated blocks
777  * - initializes subtree
778  */
779 static int ext4_ext_split(handle_t *handle, struct inode *inode,
780                                 struct ext4_ext_path *path,
781                                 struct ext4_extent *newext, int at)
782 {
783         struct buffer_head *bh = NULL;
784         int depth = ext_depth(inode);
785         struct ext4_extent_header *neh;
786         struct ext4_extent_idx *fidx;
787         struct ext4_extent *ex;
788         int i = at, k, m, a;
789         ext4_fsblk_t newblock, oldblock;
790         __le32 border;
791         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
792         int err = 0;
793
794         /* make decision: where to split? */
795         /* FIXME: now decision is simplest: at current extent */
796
797         /* if current leaf will be split, then we should use
798          * border from split point */
799         BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
800         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
801                 border = path[depth].p_ext[1].ee_block;
802                 ext_debug("leaf will be split."
803                                 " next leaf starts at %d\n",
804                                   le32_to_cpu(border));
805         } else {
806                 border = newext->ee_block;
807                 ext_debug("leaf will be added."
808                                 " next leaf starts at %d\n",
809                                 le32_to_cpu(border));
810         }
811
812         /*
813          * If error occurs, then we break processing
814          * and mark filesystem read-only. index won't
815          * be inserted and tree will be in consistent
816          * state. Next mount will repair buffers too.
817          */
818
819         /*
820          * Get array to track all allocated blocks.
821          * We need this to handle errors and free blocks
822          * upon them.
823          */
824         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
825         if (!ablocks)
826                 return -ENOMEM;
827
828         /* allocate all needed blocks */
829         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
830         for (a = 0; a < depth - at; a++) {
831                 newblock = ext4_ext_new_meta_block(handle, inode, path,
832                                                    newext, &err);
833                 if (newblock == 0)
834                         goto cleanup;
835                 ablocks[a] = newblock;
836         }
837
838         /* initialize new leaf */
839         newblock = ablocks[--a];
840         BUG_ON(newblock == 0);
841         bh = sb_getblk(inode->i_sb, newblock);
842         if (!bh) {
843                 err = -EIO;
844                 goto cleanup;
845         }
846         lock_buffer(bh);
847
848         err = ext4_journal_get_create_access(handle, bh);
849         if (err)
850                 goto cleanup;
851
852         neh = ext_block_hdr(bh);
853         neh->eh_entries = 0;
854         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
855         neh->eh_magic = EXT4_EXT_MAGIC;
856         neh->eh_depth = 0;
857         ex = EXT_FIRST_EXTENT(neh);
858
859         /* move remainder of path[depth] to the new leaf */
860         BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
861         /* start copy from next extent */
862         /* TODO: we could do it by single memmove */
863         m = 0;
864         path[depth].p_ext++;
865         while (path[depth].p_ext <=
866                         EXT_MAX_EXTENT(path[depth].p_hdr)) {
867                 ext_debug("move %d:%llu:%d in new leaf %llu\n",
868                                 le32_to_cpu(path[depth].p_ext->ee_block),
869                                 ext_pblock(path[depth].p_ext),
870                                 ext4_ext_get_actual_len(path[depth].p_ext),
871                                 newblock);
872                 /*memmove(ex++, path[depth].p_ext++,
873                                 sizeof(struct ext4_extent));
874                 neh->eh_entries++;*/
875                 path[depth].p_ext++;
876                 m++;
877         }
878         if (m) {
879                 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
880                 le16_add_cpu(&neh->eh_entries, m);
881         }
882
883         set_buffer_uptodate(bh);
884         unlock_buffer(bh);
885
886         err = ext4_handle_dirty_metadata(handle, inode, bh);
887         if (err)
888                 goto cleanup;
889         brelse(bh);
890         bh = NULL;
891
892         /* correct old leaf */
893         if (m) {
894                 err = ext4_ext_get_access(handle, inode, path + depth);
895                 if (err)
896                         goto cleanup;
897                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
898                 err = ext4_ext_dirty(handle, inode, path + depth);
899                 if (err)
900                         goto cleanup;
901
902         }
903
904         /* create intermediate indexes */
905         k = depth - at - 1;
906         BUG_ON(k < 0);
907         if (k)
908                 ext_debug("create %d intermediate indices\n", k);
909         /* insert new index into current index block */
910         /* current depth stored in i var */
911         i = depth - 1;
912         while (k--) {
913                 oldblock = newblock;
914                 newblock = ablocks[--a];
915                 bh = sb_getblk(inode->i_sb, newblock);
916                 if (!bh) {
917                         err = -EIO;
918                         goto cleanup;
919                 }
920                 lock_buffer(bh);
921
922                 err = ext4_journal_get_create_access(handle, bh);
923                 if (err)
924                         goto cleanup;
925
926                 neh = ext_block_hdr(bh);
927                 neh->eh_entries = cpu_to_le16(1);
928                 neh->eh_magic = EXT4_EXT_MAGIC;
929                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
930                 neh->eh_depth = cpu_to_le16(depth - i);
931                 fidx = EXT_FIRST_INDEX(neh);
932                 fidx->ei_block = border;
933                 ext4_idx_store_pblock(fidx, oldblock);
934
935                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
936                                 i, newblock, le32_to_cpu(border), oldblock);
937                 /* copy indexes */
938                 m = 0;
939                 path[i].p_idx++;
940
941                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
942                                 EXT_MAX_INDEX(path[i].p_hdr));
943                 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
944                                 EXT_LAST_INDEX(path[i].p_hdr));
945                 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
946                         ext_debug("%d: move %d:%llu in new index %llu\n", i,
947                                         le32_to_cpu(path[i].p_idx->ei_block),
948                                         idx_pblock(path[i].p_idx),
949                                         newblock);
950                         /*memmove(++fidx, path[i].p_idx++,
951                                         sizeof(struct ext4_extent_idx));
952                         neh->eh_entries++;
953                         BUG_ON(neh->eh_entries > neh->eh_max);*/
954                         path[i].p_idx++;
955                         m++;
956                 }
957                 if (m) {
958                         memmove(++fidx, path[i].p_idx - m,
959                                 sizeof(struct ext4_extent_idx) * m);
960                         le16_add_cpu(&neh->eh_entries, m);
961                 }
962                 set_buffer_uptodate(bh);
963                 unlock_buffer(bh);
964
965                 err = ext4_handle_dirty_metadata(handle, inode, bh);
966                 if (err)
967                         goto cleanup;
968                 brelse(bh);
969                 bh = NULL;
970
971                 /* correct old index */
972                 if (m) {
973                         err = ext4_ext_get_access(handle, inode, path + i);
974                         if (err)
975                                 goto cleanup;
976                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
977                         err = ext4_ext_dirty(handle, inode, path + i);
978                         if (err)
979                                 goto cleanup;
980                 }
981
982                 i--;
983         }
984
985         /* insert new index */
986         err = ext4_ext_insert_index(handle, inode, path + at,
987                                     le32_to_cpu(border), newblock);
988
989 cleanup:
990         if (bh) {
991                 if (buffer_locked(bh))
992                         unlock_buffer(bh);
993                 brelse(bh);
994         }
995
996         if (err) {
997                 /* free all allocated blocks in error case */
998                 for (i = 0; i < depth; i++) {
999                         if (!ablocks[i])
1000                                 continue;
1001                         ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
1002                 }
1003         }
1004         kfree(ablocks);
1005
1006         return err;
1007 }
1008
1009 /*
1010  * ext4_ext_grow_indepth:
1011  * implements tree growing procedure:
1012  * - allocates new block
1013  * - moves top-level data (index block or leaf) into the new block
1014  * - initializes new top-level, creating index that points to the
1015  *   just created block
1016  */
1017 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1018                                         struct ext4_ext_path *path,
1019                                         struct ext4_extent *newext)
1020 {
1021         struct ext4_ext_path *curp = path;
1022         struct ext4_extent_header *neh;
1023         struct ext4_extent_idx *fidx;
1024         struct buffer_head *bh;
1025         ext4_fsblk_t newblock;
1026         int err = 0;
1027
1028         newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1029         if (newblock == 0)
1030                 return err;
1031
1032         bh = sb_getblk(inode->i_sb, newblock);
1033         if (!bh) {
1034                 err = -EIO;
1035                 ext4_std_error(inode->i_sb, err);
1036                 return err;
1037         }
1038         lock_buffer(bh);
1039
1040         err = ext4_journal_get_create_access(handle, bh);
1041         if (err) {
1042                 unlock_buffer(bh);
1043                 goto out;
1044         }
1045
1046         /* move top-level index/leaf into new block */
1047         memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1048
1049         /* set size of new block */
1050         neh = ext_block_hdr(bh);
1051         /* old root could have indexes or leaves
1052          * so calculate e_max right way */
1053         if (ext_depth(inode))
1054           neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
1055         else
1056           neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
1057         neh->eh_magic = EXT4_EXT_MAGIC;
1058         set_buffer_uptodate(bh);
1059         unlock_buffer(bh);
1060
1061         err = ext4_handle_dirty_metadata(handle, inode, bh);
1062         if (err)
1063                 goto out;
1064
1065         /* create index in new top-level index: num,max,pointer */
1066         err = ext4_ext_get_access(handle, inode, curp);
1067         if (err)
1068                 goto out;
1069
1070         curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1071         curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
1072         curp->p_hdr->eh_entries = cpu_to_le16(1);
1073         curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1074
1075         if (path[0].p_hdr->eh_depth)
1076                 curp->p_idx->ei_block =
1077                         EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1078         else
1079                 curp->p_idx->ei_block =
1080                         EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1081         ext4_idx_store_pblock(curp->p_idx, newblock);
1082
1083         neh = ext_inode_hdr(inode);
1084         fidx = EXT_FIRST_INDEX(neh);
1085         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1086                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1087                   le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1088
1089         neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1090         err = ext4_ext_dirty(handle, inode, curp);
1091 out:
1092         brelse(bh);
1093
1094         return err;
1095 }
1096
1097 /*
1098  * ext4_ext_create_new_leaf:
1099  * finds empty index and adds new leaf.
1100  * if no free index is found, then it requests in-depth growing.
1101  */
1102 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1103                                         struct ext4_ext_path *path,
1104                                         struct ext4_extent *newext)
1105 {
1106         struct ext4_ext_path *curp;
1107         int depth, i, err = 0;
1108
1109 repeat:
1110         i = depth = ext_depth(inode);
1111
1112         /* walk up to the tree and look for free index entry */
1113         curp = path + depth;
1114         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1115                 i--;
1116                 curp--;
1117         }
1118
1119         /* we use already allocated block for index block,
1120          * so subsequent data blocks should be contiguous */
1121         if (EXT_HAS_FREE_INDEX(curp)) {
1122                 /* if we found index with free entry, then use that
1123                  * entry: create all needed subtree and add new leaf */
1124                 err = ext4_ext_split(handle, inode, path, newext, i);
1125                 if (err)
1126                         goto out;
1127
1128                 /* refill path */
1129                 ext4_ext_drop_refs(path);
1130                 path = ext4_ext_find_extent(inode,
1131                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1132                                     path);
1133                 if (IS_ERR(path))
1134                         err = PTR_ERR(path);
1135         } else {
1136                 /* tree is full, time to grow in depth */
1137                 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1138                 if (err)
1139                         goto out;
1140
1141                 /* refill path */
1142                 ext4_ext_drop_refs(path);
1143                 path = ext4_ext_find_extent(inode,
1144                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1145                                     path);
1146                 if (IS_ERR(path)) {
1147                         err = PTR_ERR(path);
1148                         goto out;
1149                 }
1150
1151                 /*
1152                  * only first (depth 0 -> 1) produces free space;
1153                  * in all other cases we have to split the grown tree
1154                  */
1155                 depth = ext_depth(inode);
1156                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1157                         /* now we need to split */
1158                         goto repeat;
1159                 }
1160         }
1161
1162 out:
1163         return err;
1164 }
1165
1166 /*
1167  * search the closest allocated block to the left for *logical
1168  * and returns it at @logical + it's physical address at @phys
1169  * if *logical is the smallest allocated block, the function
1170  * returns 0 at @phys
1171  * return value contains 0 (success) or error code
1172  */
1173 int
1174 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1175                         ext4_lblk_t *logical, ext4_fsblk_t *phys)
1176 {
1177         struct ext4_extent_idx *ix;
1178         struct ext4_extent *ex;
1179         int depth, ee_len;
1180
1181         BUG_ON(path == NULL);
1182         depth = path->p_depth;
1183         *phys = 0;
1184
1185         if (depth == 0 && path->p_ext == NULL)
1186                 return 0;
1187
1188         /* usually extent in the path covers blocks smaller
1189          * then *logical, but it can be that extent is the
1190          * first one in the file */
1191
1192         ex = path[depth].p_ext;
1193         ee_len = ext4_ext_get_actual_len(ex);
1194         if (*logical < le32_to_cpu(ex->ee_block)) {
1195                 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1196                 while (--depth >= 0) {
1197                         ix = path[depth].p_idx;
1198                         BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1199                 }
1200                 return 0;
1201         }
1202
1203         BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1204
1205         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1206         *phys = ext_pblock(ex) + ee_len - 1;
1207         return 0;
1208 }
1209
1210 /*
1211  * search the closest allocated block to the right for *logical
1212  * and returns it at @logical + it's physical address at @phys
1213  * if *logical is the smallest allocated block, the function
1214  * returns 0 at @phys
1215  * return value contains 0 (success) or error code
1216  */
1217 int
1218 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1219                         ext4_lblk_t *logical, ext4_fsblk_t *phys)
1220 {
1221         struct buffer_head *bh = NULL;
1222         struct ext4_extent_header *eh;
1223         struct ext4_extent_idx *ix;
1224         struct ext4_extent *ex;
1225         ext4_fsblk_t block;
1226         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1227         int ee_len;
1228
1229         BUG_ON(path == NULL);
1230         depth = path->p_depth;
1231         *phys = 0;
1232
1233         if (depth == 0 && path->p_ext == NULL)
1234                 return 0;
1235
1236         /* usually extent in the path covers blocks smaller
1237          * then *logical, but it can be that extent is the
1238          * first one in the file */
1239
1240         ex = path[depth].p_ext;
1241         ee_len = ext4_ext_get_actual_len(ex);
1242         if (*logical < le32_to_cpu(ex->ee_block)) {
1243                 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1244                 while (--depth >= 0) {
1245                         ix = path[depth].p_idx;
1246                         BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1247                 }
1248                 *logical = le32_to_cpu(ex->ee_block);
1249                 *phys = ext_pblock(ex);
1250                 return 0;
1251         }
1252
1253         BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1254
1255         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1256                 /* next allocated block in this leaf */
1257                 ex++;
1258                 *logical = le32_to_cpu(ex->ee_block);
1259                 *phys = ext_pblock(ex);
1260                 return 0;
1261         }
1262
1263         /* go up and search for index to the right */
1264         while (--depth >= 0) {
1265                 ix = path[depth].p_idx;
1266                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1267                         goto got_index;
1268         }
1269
1270         /* we've gone up to the root and found no index to the right */
1271         return 0;
1272
1273 got_index:
1274         /* we've found index to the right, let's
1275          * follow it and find the closest allocated
1276          * block to the right */
1277         ix++;
1278         block = idx_pblock(ix);
1279         while (++depth < path->p_depth) {
1280                 bh = sb_bread(inode->i_sb, block);
1281                 if (bh == NULL)
1282                         return -EIO;
1283                 eh = ext_block_hdr(bh);
1284                 /* subtract from p_depth to get proper eh_depth */
1285                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1286                         put_bh(bh);
1287                         return -EIO;
1288                 }
1289                 ix = EXT_FIRST_INDEX(eh);
1290                 block = idx_pblock(ix);
1291                 put_bh(bh);
1292         }
1293
1294         bh = sb_bread(inode->i_sb, block);
1295         if (bh == NULL)
1296                 return -EIO;
1297         eh = ext_block_hdr(bh);
1298         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1299                 put_bh(bh);
1300                 return -EIO;
1301         }
1302         ex = EXT_FIRST_EXTENT(eh);
1303         *logical = le32_to_cpu(ex->ee_block);
1304         *phys = ext_pblock(ex);
1305         put_bh(bh);
1306         return 0;
1307 }
1308
1309 /*
1310  * ext4_ext_next_allocated_block:
1311  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1312  * NOTE: it considers block number from index entry as
1313  * allocated block. Thus, index entries have to be consistent
1314  * with leaves.
1315  */
1316 static ext4_lblk_t
1317 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1318 {
1319         int depth;
1320
1321         BUG_ON(path == NULL);
1322         depth = path->p_depth;
1323
1324         if (depth == 0 && path->p_ext == NULL)
1325                 return EXT_MAX_BLOCK;
1326
1327         while (depth >= 0) {
1328                 if (depth == path->p_depth) {
1329                         /* leaf */
1330                         if (path[depth].p_ext !=
1331                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1332                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1333                 } else {
1334                         /* index */
1335                         if (path[depth].p_idx !=
1336                                         EXT_LAST_INDEX(path[depth].p_hdr))
1337                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1338                 }
1339                 depth--;
1340         }
1341
1342         return EXT_MAX_BLOCK;
1343 }
1344
1345 /*
1346  * ext4_ext_next_leaf_block:
1347  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1348  */
1349 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1350                                         struct ext4_ext_path *path)
1351 {
1352         int depth;
1353
1354         BUG_ON(path == NULL);
1355         depth = path->p_depth;
1356
1357         /* zero-tree has no leaf blocks at all */
1358         if (depth == 0)
1359                 return EXT_MAX_BLOCK;
1360
1361         /* go to index block */
1362         depth--;
1363
1364         while (depth >= 0) {
1365                 if (path[depth].p_idx !=
1366                                 EXT_LAST_INDEX(path[depth].p_hdr))
1367                         return (ext4_lblk_t)
1368                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1369                 depth--;
1370         }
1371
1372         return EXT_MAX_BLOCK;
1373 }
1374
1375 /*
1376  * ext4_ext_correct_indexes:
1377  * if leaf gets modified and modified extent is first in the leaf,
1378  * then we have to correct all indexes above.
1379  * TODO: do we need to correct tree in all cases?
1380  */
1381 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1382                                 struct ext4_ext_path *path)
1383 {
1384         struct ext4_extent_header *eh;
1385         int depth = ext_depth(inode);
1386         struct ext4_extent *ex;
1387         __le32 border;
1388         int k, err = 0;
1389
1390         eh = path[depth].p_hdr;
1391         ex = path[depth].p_ext;
1392         BUG_ON(ex == NULL);
1393         BUG_ON(eh == NULL);
1394
1395         if (depth == 0) {
1396                 /* there is no tree at all */
1397                 return 0;
1398         }
1399
1400         if (ex != EXT_FIRST_EXTENT(eh)) {
1401                 /* we correct tree if first leaf got modified only */
1402                 return 0;
1403         }
1404
1405         /*
1406          * TODO: we need correction if border is smaller than current one
1407          */
1408         k = depth - 1;
1409         border = path[depth].p_ext->ee_block;
1410         err = ext4_ext_get_access(handle, inode, path + k);
1411         if (err)
1412                 return err;
1413         path[k].p_idx->ei_block = border;
1414         err = ext4_ext_dirty(handle, inode, path + k);
1415         if (err)
1416                 return err;
1417
1418         while (k--) {
1419                 /* change all left-side indexes */
1420                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1421                         break;
1422                 err = ext4_ext_get_access(handle, inode, path + k);
1423                 if (err)
1424                         break;
1425                 path[k].p_idx->ei_block = border;
1426                 err = ext4_ext_dirty(handle, inode, path + k);
1427                 if (err)
1428                         break;
1429         }
1430
1431         return err;
1432 }
1433
1434 static int
1435 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1436                                 struct ext4_extent *ex2)
1437 {
1438         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1439
1440         /*
1441          * Make sure that either both extents are uninitialized, or
1442          * both are _not_.
1443          */
1444         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1445                 return 0;
1446
1447         if (ext4_ext_is_uninitialized(ex1))
1448                 max_len = EXT_UNINIT_MAX_LEN;
1449         else
1450                 max_len = EXT_INIT_MAX_LEN;
1451
1452         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1453         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1454
1455         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1456                         le32_to_cpu(ex2->ee_block))
1457                 return 0;
1458
1459         /*
1460          * To allow future support for preallocated extents to be added
1461          * as an RO_COMPAT feature, refuse to merge to extents if
1462          * this can result in the top bit of ee_len being set.
1463          */
1464         if (ext1_ee_len + ext2_ee_len > max_len)
1465                 return 0;
1466 #ifdef AGGRESSIVE_TEST
1467         if (ext1_ee_len >= 4)
1468                 return 0;
1469 #endif
1470
1471         if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1472                 return 1;
1473         return 0;
1474 }
1475
1476 /*
1477  * This function tries to merge the "ex" extent to the next extent in the tree.
1478  * It always tries to merge towards right. If you want to merge towards
1479  * left, pass "ex - 1" as argument instead of "ex".
1480  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1481  * 1 if they got merged.
1482  */
1483 int ext4_ext_try_to_merge(struct inode *inode,
1484                           struct ext4_ext_path *path,
1485                           struct ext4_extent *ex)
1486 {
1487         struct ext4_extent_header *eh;
1488         unsigned int depth, len;
1489         int merge_done = 0;
1490         int uninitialized = 0;
1491
1492         depth = ext_depth(inode);
1493         BUG_ON(path[depth].p_hdr == NULL);
1494         eh = path[depth].p_hdr;
1495
1496         while (ex < EXT_LAST_EXTENT(eh)) {
1497                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1498                         break;
1499                 /* merge with next extent! */
1500                 if (ext4_ext_is_uninitialized(ex))
1501                         uninitialized = 1;
1502                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1503                                 + ext4_ext_get_actual_len(ex + 1));
1504                 if (uninitialized)
1505                         ext4_ext_mark_uninitialized(ex);
1506
1507                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1508                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1509                                 * sizeof(struct ext4_extent);
1510                         memmove(ex + 1, ex + 2, len);
1511                 }
1512                 le16_add_cpu(&eh->eh_entries, -1);
1513                 merge_done = 1;
1514                 WARN_ON(eh->eh_entries == 0);
1515                 if (!eh->eh_entries)
1516                         ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1517                            "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1518         }
1519
1520         return merge_done;
1521 }
1522
1523 /*
1524  * check if a portion of the "newext" extent overlaps with an
1525  * existing extent.
1526  *
1527  * If there is an overlap discovered, it updates the length of the newext
1528  * such that there will be no overlap, and then returns 1.
1529  * If there is no overlap found, it returns 0.
1530  */
1531 unsigned int ext4_ext_check_overlap(struct inode *inode,
1532                                     struct ext4_extent *newext,
1533                                     struct ext4_ext_path *path)
1534 {
1535         ext4_lblk_t b1, b2;
1536         unsigned int depth, len1;
1537         unsigned int ret = 0;
1538
1539         b1 = le32_to_cpu(newext->ee_block);
1540         len1 = ext4_ext_get_actual_len(newext);
1541         depth = ext_depth(inode);
1542         if (!path[depth].p_ext)
1543                 goto out;
1544         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1545
1546         /*
1547          * get the next allocated block if the extent in the path
1548          * is before the requested block(s)
1549          */
1550         if (b2 < b1) {
1551                 b2 = ext4_ext_next_allocated_block(path);
1552                 if (b2 == EXT_MAX_BLOCK)
1553                         goto out;
1554         }
1555
1556         /* check for wrap through zero on extent logical start block*/
1557         if (b1 + len1 < b1) {
1558                 len1 = EXT_MAX_BLOCK - b1;
1559                 newext->ee_len = cpu_to_le16(len1);
1560                 ret = 1;
1561         }
1562
1563         /* check for overlap */
1564         if (b1 + len1 > b2) {
1565                 newext->ee_len = cpu_to_le16(b2 - b1);
1566                 ret = 1;
1567         }
1568 out:
1569         return ret;
1570 }
1571
1572 /*
1573  * ext4_ext_insert_extent:
1574  * tries to merge requsted extent into the existing extent or
1575  * inserts requested extent as new one into the tree,
1576  * creating new leaf in the no-space case.
1577  */
1578 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1579                                 struct ext4_ext_path *path,
1580                                 struct ext4_extent *newext)
1581 {
1582         struct ext4_extent_header *eh;
1583         struct ext4_extent *ex, *fex;
1584         struct ext4_extent *nearex; /* nearest extent */
1585         struct ext4_ext_path *npath = NULL;
1586         int depth, len, err;
1587         ext4_lblk_t next;
1588         unsigned uninitialized = 0;
1589
1590         BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1591         depth = ext_depth(inode);
1592         ex = path[depth].p_ext;
1593         BUG_ON(path[depth].p_hdr == NULL);
1594
1595         /* try to insert block into found extent and return */
1596         if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1597                 ext_debug("append %d block to %d:%d (from %llu)\n",
1598                                 ext4_ext_get_actual_len(newext),
1599                                 le32_to_cpu(ex->ee_block),
1600                                 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1601                 err = ext4_ext_get_access(handle, inode, path + depth);
1602                 if (err)
1603                         return err;
1604
1605                 /*
1606                  * ext4_can_extents_be_merged should have checked that either
1607                  * both extents are uninitialized, or both aren't. Thus we
1608                  * need to check only one of them here.
1609                  */
1610                 if (ext4_ext_is_uninitialized(ex))
1611                         uninitialized = 1;
1612                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1613                                         + ext4_ext_get_actual_len(newext));
1614                 if (uninitialized)
1615                         ext4_ext_mark_uninitialized(ex);
1616                 eh = path[depth].p_hdr;
1617                 nearex = ex;
1618                 goto merge;
1619         }
1620
1621 repeat:
1622         depth = ext_depth(inode);
1623         eh = path[depth].p_hdr;
1624         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1625                 goto has_space;
1626
1627         /* probably next leaf has space for us? */
1628         fex = EXT_LAST_EXTENT(eh);
1629         next = ext4_ext_next_leaf_block(inode, path);
1630         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1631             && next != EXT_MAX_BLOCK) {
1632                 ext_debug("next leaf block - %d\n", next);
1633                 BUG_ON(npath != NULL);
1634                 npath = ext4_ext_find_extent(inode, next, NULL);
1635                 if (IS_ERR(npath))
1636                         return PTR_ERR(npath);
1637                 BUG_ON(npath->p_depth != path->p_depth);
1638                 eh = npath[depth].p_hdr;
1639                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1640                         ext_debug("next leaf isnt full(%d)\n",
1641                                   le16_to_cpu(eh->eh_entries));
1642                         path = npath;
1643                         goto repeat;
1644                 }
1645                 ext_debug("next leaf has no free space(%d,%d)\n",
1646                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1647         }
1648
1649         /*
1650          * There is no free space in the found leaf.
1651          * We're gonna add a new leaf in the tree.
1652          */
1653         err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1654         if (err)
1655                 goto cleanup;
1656         depth = ext_depth(inode);
1657         eh = path[depth].p_hdr;
1658
1659 has_space:
1660         nearex = path[depth].p_ext;
1661
1662         err = ext4_ext_get_access(handle, inode, path + depth);
1663         if (err)
1664                 goto cleanup;
1665
1666         if (!nearex) {
1667                 /* there is no extent in this leaf, create first one */
1668                 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1669                                 le32_to_cpu(newext->ee_block),
1670                                 ext_pblock(newext),
1671                                 ext4_ext_get_actual_len(newext));
1672                 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1673         } else if (le32_to_cpu(newext->ee_block)
1674                            > le32_to_cpu(nearex->ee_block)) {
1675 /*              BUG_ON(newext->ee_block == nearex->ee_block); */
1676                 if (nearex != EXT_LAST_EXTENT(eh)) {
1677                         len = EXT_MAX_EXTENT(eh) - nearex;
1678                         len = (len - 1) * sizeof(struct ext4_extent);
1679                         len = len < 0 ? 0 : len;
1680                         ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1681                                         "move %d from 0x%p to 0x%p\n",
1682                                         le32_to_cpu(newext->ee_block),
1683                                         ext_pblock(newext),
1684                                         ext4_ext_get_actual_len(newext),
1685                                         nearex, len, nearex + 1, nearex + 2);
1686                         memmove(nearex + 2, nearex + 1, len);
1687                 }
1688                 path[depth].p_ext = nearex + 1;
1689         } else {
1690                 BUG_ON(newext->ee_block == nearex->ee_block);
1691                 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1692                 len = len < 0 ? 0 : len;
1693                 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1694                                 "move %d from 0x%p to 0x%p\n",
1695                                 le32_to_cpu(newext->ee_block),
1696                                 ext_pblock(newext),
1697                                 ext4_ext_get_actual_len(newext),
1698                                 nearex, len, nearex + 1, nearex + 2);
1699                 memmove(nearex + 1, nearex, len);
1700                 path[depth].p_ext = nearex;
1701         }
1702
1703         le16_add_cpu(&eh->eh_entries, 1);
1704         nearex = path[depth].p_ext;
1705         nearex->ee_block = newext->ee_block;
1706         ext4_ext_store_pblock(nearex, ext_pblock(newext));
1707         nearex->ee_len = newext->ee_len;
1708
1709 merge:
1710         /* try to merge extents to the right */
1711         ext4_ext_try_to_merge(inode, path, nearex);
1712
1713         /* try to merge extents to the left */
1714
1715         /* time to correct all indexes above */
1716         err = ext4_ext_correct_indexes(handle, inode, path);
1717         if (err)
1718                 goto cleanup;
1719
1720         err = ext4_ext_dirty(handle, inode, path + depth);
1721
1722 cleanup:
1723         if (npath) {
1724                 ext4_ext_drop_refs(npath);
1725                 kfree(npath);
1726         }
1727         ext4_ext_invalidate_cache(inode);
1728         return err;
1729 }
1730
1731 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1732                         ext4_lblk_t num, ext_prepare_callback func,
1733                         void *cbdata)
1734 {
1735         struct ext4_ext_path *path = NULL;
1736         struct ext4_ext_cache cbex;
1737         struct ext4_extent *ex;
1738         ext4_lblk_t next, start = 0, end = 0;
1739         ext4_lblk_t last = block + num;
1740         int depth, exists, err = 0;
1741
1742         BUG_ON(func == NULL);
1743         BUG_ON(inode == NULL);
1744
1745         while (block < last && block != EXT_MAX_BLOCK) {
1746                 num = last - block;
1747                 /* find extent for this block */
1748                 path = ext4_ext_find_extent(inode, block, path);
1749                 if (IS_ERR(path)) {
1750                         err = PTR_ERR(path);
1751                         path = NULL;
1752                         break;
1753                 }
1754
1755                 depth = ext_depth(inode);
1756                 BUG_ON(path[depth].p_hdr == NULL);
1757                 ex = path[depth].p_ext;
1758                 next = ext4_ext_next_allocated_block(path);
1759
1760                 exists = 0;
1761                 if (!ex) {
1762                         /* there is no extent yet, so try to allocate
1763                          * all requested space */
1764                         start = block;
1765                         end = block + num;
1766                 } else if (le32_to_cpu(ex->ee_block) > block) {
1767                         /* need to allocate space before found extent */
1768                         start = block;
1769                         end = le32_to_cpu(ex->ee_block);
1770                         if (block + num < end)
1771                                 end = block + num;
1772                 } else if (block >= le32_to_cpu(ex->ee_block)
1773                                         + ext4_ext_get_actual_len(ex)) {
1774                         /* need to allocate space after found extent */
1775                         start = block;
1776                         end = block + num;
1777                         if (end >= next)
1778                                 end = next;
1779                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1780                         /*
1781                          * some part of requested space is covered
1782                          * by found extent
1783                          */
1784                         start = block;
1785                         end = le32_to_cpu(ex->ee_block)
1786                                 + ext4_ext_get_actual_len(ex);
1787                         if (block + num < end)
1788                                 end = block + num;
1789                         exists = 1;
1790                 } else {
1791                         BUG();
1792                 }
1793                 BUG_ON(end <= start);
1794
1795                 if (!exists) {
1796                         cbex.ec_block = start;
1797                         cbex.ec_len = end - start;
1798                         cbex.ec_start = 0;
1799                         cbex.ec_type = EXT4_EXT_CACHE_GAP;
1800                 } else {
1801                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1802                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1803                         cbex.ec_start = ext_pblock(ex);
1804                         cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1805                 }
1806
1807                 BUG_ON(cbex.ec_len == 0);
1808                 err = func(inode, path, &cbex, ex, cbdata);
1809                 ext4_ext_drop_refs(path);
1810
1811                 if (err < 0)
1812                         break;
1813
1814                 if (err == EXT_REPEAT)
1815                         continue;
1816                 else if (err == EXT_BREAK) {
1817                         err = 0;
1818                         break;
1819                 }
1820
1821                 if (ext_depth(inode) != depth) {
1822                         /* depth was changed. we have to realloc path */
1823                         kfree(path);
1824                         path = NULL;
1825                 }
1826
1827                 block = cbex.ec_block + cbex.ec_len;
1828         }
1829
1830         if (path) {
1831                 ext4_ext_drop_refs(path);
1832                 kfree(path);
1833         }
1834
1835         return err;
1836 }
1837
1838 static void
1839 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1840                         __u32 len, ext4_fsblk_t start, int type)
1841 {
1842         struct ext4_ext_cache *cex;
1843         BUG_ON(len == 0);
1844         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1845         cex = &EXT4_I(inode)->i_cached_extent;
1846         cex->ec_type = type;
1847         cex->ec_block = block;
1848         cex->ec_len = len;
1849         cex->ec_start = start;
1850         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1851 }
1852
1853 /*
1854  * ext4_ext_put_gap_in_cache:
1855  * calculate boundaries of the gap that the requested block fits into
1856  * and cache this gap
1857  */
1858 static void
1859 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1860                                 ext4_lblk_t block)
1861 {
1862         int depth = ext_depth(inode);
1863         unsigned long len;
1864         ext4_lblk_t lblock;
1865         struct ext4_extent *ex;
1866
1867         ex = path[depth].p_ext;
1868         if (ex == NULL) {
1869                 /* there is no extent yet, so gap is [0;-] */
1870                 lblock = 0;
1871                 len = EXT_MAX_BLOCK;
1872                 ext_debug("cache gap(whole file):");
1873         } else if (block < le32_to_cpu(ex->ee_block)) {
1874                 lblock = block;
1875                 len = le32_to_cpu(ex->ee_block) - block;
1876                 ext_debug("cache gap(before): %u [%u:%u]",
1877                                 block,
1878                                 le32_to_cpu(ex->ee_block),
1879                                  ext4_ext_get_actual_len(ex));
1880         } else if (block >= le32_to_cpu(ex->ee_block)
1881                         + ext4_ext_get_actual_len(ex)) {
1882                 ext4_lblk_t next;
1883                 lblock = le32_to_cpu(ex->ee_block)
1884                         + ext4_ext_get_actual_len(ex);
1885
1886                 next = ext4_ext_next_allocated_block(path);
1887                 ext_debug("cache gap(after): [%u:%u] %u",
1888                                 le32_to_cpu(ex->ee_block),
1889                                 ext4_ext_get_actual_len(ex),
1890                                 block);
1891                 BUG_ON(next == lblock);
1892                 len = next - lblock;
1893         } else {
1894                 lblock = len = 0;
1895                 BUG();
1896         }
1897
1898         ext_debug(" -> %u:%lu\n", lblock, len);
1899         ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1900 }
1901
1902 static int
1903 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1904                         struct ext4_extent *ex)
1905 {
1906         struct ext4_ext_cache *cex;
1907         int ret = EXT4_EXT_CACHE_NO;
1908
1909         /* 
1910          * We borrow i_block_reservation_lock to protect i_cached_extent
1911          */
1912         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1913         cex = &EXT4_I(inode)->i_cached_extent;
1914
1915         /* has cache valid data? */
1916         if (cex->ec_type == EXT4_EXT_CACHE_NO)
1917                 goto errout;
1918
1919         BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1920                         cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1921         if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1922                 ex->ee_block = cpu_to_le32(cex->ec_block);
1923                 ext4_ext_store_pblock(ex, cex->ec_start);
1924                 ex->ee_len = cpu_to_le16(cex->ec_len);
1925                 ext_debug("%u cached by %u:%u:%llu\n",
1926                                 block,
1927                                 cex->ec_block, cex->ec_len, cex->ec_start);
1928                 ret = cex->ec_type;
1929         }
1930 errout:
1931         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1932         return ret;
1933 }
1934
1935 /*
1936  * ext4_ext_rm_idx:
1937  * removes index from the index block.
1938  * It's used in truncate case only, thus all requests are for
1939  * last index in the block only.
1940  */
1941 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1942                         struct ext4_ext_path *path)
1943 {
1944         struct buffer_head *bh;
1945         int err;
1946         ext4_fsblk_t leaf;
1947
1948         /* free index block */
1949         path--;
1950         leaf = idx_pblock(path->p_idx);
1951         BUG_ON(path->p_hdr->eh_entries == 0);
1952         err = ext4_ext_get_access(handle, inode, path);
1953         if (err)
1954                 return err;
1955         le16_add_cpu(&path->p_hdr->eh_entries, -1);
1956         err = ext4_ext_dirty(handle, inode, path);
1957         if (err)
1958                 return err;
1959         ext_debug("index is empty, remove it, free block %llu\n", leaf);
1960         bh = sb_find_get_block(inode->i_sb, leaf);
1961         ext4_forget(handle, 1, inode, bh, leaf);
1962         ext4_free_blocks(handle, inode, leaf, 1, 1);
1963         return err;
1964 }
1965
1966 /*
1967  * ext4_ext_calc_credits_for_single_extent:
1968  * This routine returns max. credits that needed to insert an extent
1969  * to the extent tree.
1970  * When pass the actual path, the caller should calculate credits
1971  * under i_data_sem.
1972  */
1973 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1974                                                 struct ext4_ext_path *path)
1975 {
1976         if (path) {
1977                 int depth = ext_depth(inode);
1978                 int ret = 0;
1979
1980                 /* probably there is space in leaf? */
1981                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1982                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
1983
1984                         /*
1985                          *  There are some space in the leaf tree, no
1986                          *  need to account for leaf block credit
1987                          *
1988                          *  bitmaps and block group descriptor blocks
1989                          *  and other metadat blocks still need to be
1990                          *  accounted.
1991                          */
1992                         /* 1 bitmap, 1 block group descriptor */
1993                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1994                 }
1995         }
1996
1997         return ext4_chunk_trans_blocks(inode, nrblocks);
1998 }
1999
2000 /*
2001  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2002  *
2003  * if nrblocks are fit in a single extent (chunk flag is 1), then
2004  * in the worse case, each tree level index/leaf need to be changed
2005  * if the tree split due to insert a new extent, then the old tree
2006  * index/leaf need to be updated too
2007  *
2008  * If the nrblocks are discontiguous, they could cause
2009  * the whole tree split more than once, but this is really rare.
2010  */
2011 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2012 {
2013         int index;
2014         int depth = ext_depth(inode);
2015
2016         if (chunk)
2017                 index = depth * 2;
2018         else
2019                 index = depth * 3;
2020
2021         return index;
2022 }
2023
2024 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2025                                 struct ext4_extent *ex,
2026                                 ext4_lblk_t from, ext4_lblk_t to)
2027 {
2028         struct buffer_head *bh;
2029         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2030         int i, metadata = 0;
2031
2032         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2033                 metadata = 1;
2034 #ifdef EXTENTS_STATS
2035         {
2036                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2037                 spin_lock(&sbi->s_ext_stats_lock);
2038                 sbi->s_ext_blocks += ee_len;
2039                 sbi->s_ext_extents++;
2040                 if (ee_len < sbi->s_ext_min)
2041                         sbi->s_ext_min = ee_len;
2042                 if (ee_len > sbi->s_ext_max)
2043                         sbi->s_ext_max = ee_len;
2044                 if (ext_depth(inode) > sbi->s_depth_max)
2045                         sbi->s_depth_max = ext_depth(inode);
2046                 spin_unlock(&sbi->s_ext_stats_lock);
2047         }
2048 #endif
2049         if (from >= le32_to_cpu(ex->ee_block)
2050             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2051                 /* tail removal */
2052                 ext4_lblk_t num;
2053                 ext4_fsblk_t start;
2054
2055                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2056                 start = ext_pblock(ex) + ee_len - num;
2057                 ext_debug("free last %u blocks starting %llu\n", num, start);
2058                 for (i = 0; i < num; i++) {
2059                         bh = sb_find_get_block(inode->i_sb, start + i);
2060                         ext4_forget(handle, 0, inode, bh, start + i);
2061                 }
2062                 ext4_free_blocks(handle, inode, start, num, metadata);
2063         } else if (from == le32_to_cpu(ex->ee_block)
2064                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2065                 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2066                         from, to, le32_to_cpu(ex->ee_block), ee_len);
2067         } else {
2068                 printk(KERN_INFO "strange request: removal(2) "
2069                                 "%u-%u from %u:%u\n",
2070                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2071         }
2072         return 0;
2073 }
2074
2075 static int
2076 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2077                 struct ext4_ext_path *path, ext4_lblk_t start)
2078 {
2079         int err = 0, correct_index = 0;
2080         int depth = ext_depth(inode), credits;
2081         struct ext4_extent_header *eh;
2082         ext4_lblk_t a, b, block;
2083         unsigned num;
2084         ext4_lblk_t ex_ee_block;
2085         unsigned short ex_ee_len;
2086         unsigned uninitialized = 0;
2087         struct ext4_extent *ex;
2088
2089         /* the header must be checked already in ext4_ext_remove_space() */
2090         ext_debug("truncate since %u in leaf\n", start);
2091         if (!path[depth].p_hdr)
2092                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2093         eh = path[depth].p_hdr;
2094         BUG_ON(eh == NULL);
2095
2096         /* find where to start removing */
2097         ex = EXT_LAST_EXTENT(eh);
2098
2099         ex_ee_block = le32_to_cpu(ex->ee_block);
2100         if (ext4_ext_is_uninitialized(ex))
2101                 uninitialized = 1;
2102         ex_ee_len = ext4_ext_get_actual_len(ex);
2103
2104         while (ex >= EXT_FIRST_EXTENT(eh) &&
2105                         ex_ee_block + ex_ee_len > start) {
2106                 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
2107                 path[depth].p_ext = ex;
2108
2109                 a = ex_ee_block > start ? ex_ee_block : start;
2110                 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2111                         ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2112
2113                 ext_debug("  border %u:%u\n", a, b);
2114
2115                 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2116                         block = 0;
2117                         num = 0;
2118                         BUG();
2119                 } else if (a != ex_ee_block) {
2120                         /* remove tail of the extent */
2121                         block = ex_ee_block;
2122                         num = a - block;
2123                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2124                         /* remove head of the extent */
2125                         block = a;
2126                         num = b - a;
2127                         /* there is no "make a hole" API yet */
2128                         BUG();
2129                 } else {
2130                         /* remove whole extent: excellent! */
2131                         block = ex_ee_block;
2132                         num = 0;
2133                         BUG_ON(a != ex_ee_block);
2134                         BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2135                 }
2136
2137                 /*
2138                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2139                  * descriptor) for each block group; assume two block
2140                  * groups plus ex_ee_len/blocks_per_block_group for
2141                  * the worst case
2142                  */
2143                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2144                 if (ex == EXT_FIRST_EXTENT(eh)) {
2145                         correct_index = 1;
2146                         credits += (ext_depth(inode)) + 1;
2147                 }
2148                 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2149
2150                 err = ext4_ext_journal_restart(handle, credits);
2151                 if (err)
2152                         goto out;
2153
2154                 err = ext4_ext_get_access(handle, inode, path + depth);
2155                 if (err)
2156                         goto out;
2157
2158                 err = ext4_remove_blocks(handle, inode, ex, a, b);
2159                 if (err)
2160                         goto out;
2161
2162                 if (num == 0) {
2163                         /* this extent is removed; mark slot entirely unused */
2164                         ext4_ext_store_pblock(ex, 0);
2165                         le16_add_cpu(&eh->eh_entries, -1);
2166                 }
2167
2168                 ex->ee_block = cpu_to_le32(block);
2169                 ex->ee_len = cpu_to_le16(num);
2170                 /*
2171                  * Do not mark uninitialized if all the blocks in the
2172                  * extent have been removed.
2173                  */
2174                 if (uninitialized && num)
2175                         ext4_ext_mark_uninitialized(ex);
2176
2177                 err = ext4_ext_dirty(handle, inode, path + depth);
2178                 if (err)
2179                         goto out;
2180
2181                 ext_debug("new extent: %u:%u:%llu\n", block, num,
2182                                 ext_pblock(ex));
2183                 ex--;
2184                 ex_ee_block = le32_to_cpu(ex->ee_block);
2185                 ex_ee_len = ext4_ext_get_actual_len(ex);
2186         }
2187
2188         if (correct_index && eh->eh_entries)
2189                 err = ext4_ext_correct_indexes(handle, inode, path);
2190
2191         /* if this leaf is free, then we should
2192          * remove it from index block above */
2193         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2194                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2195
2196 out:
2197         return err;
2198 }
2199
2200 /*
2201  * ext4_ext_more_to_rm:
2202  * returns 1 if current index has to be freed (even partial)
2203  */
2204 static int
2205 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2206 {
2207         BUG_ON(path->p_idx == NULL);
2208
2209         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2210                 return 0;
2211
2212         /*
2213          * if truncate on deeper level happened, it wasn't partial,
2214          * so we have to consider current index for truncation
2215          */
2216         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2217                 return 0;
2218         return 1;
2219 }
2220
2221 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2222 {
2223         struct super_block *sb = inode->i_sb;
2224         int depth = ext_depth(inode);
2225         struct ext4_ext_path *path;
2226         handle_t *handle;
2227         int i = 0, err = 0;
2228
2229         ext_debug("truncate since %u\n", start);
2230
2231         /* probably first extent we're gonna free will be last in block */
2232         handle = ext4_journal_start(inode, depth + 1);
2233         if (IS_ERR(handle))
2234                 return PTR_ERR(handle);
2235
2236         ext4_ext_invalidate_cache(inode);
2237
2238         /*
2239          * We start scanning from right side, freeing all the blocks
2240          * after i_size and walking into the tree depth-wise.
2241          */
2242         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2243         if (path == NULL) {
2244                 ext4_journal_stop(handle);
2245                 return -ENOMEM;
2246         }
2247         path[0].p_hdr = ext_inode_hdr(inode);
2248         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2249                 err = -EIO;
2250                 goto out;
2251         }
2252         path[0].p_depth = depth;
2253
2254         while (i >= 0 && err == 0) {
2255                 if (i == depth) {
2256                         /* this is leaf block */
2257                         err = ext4_ext_rm_leaf(handle, inode, path, start);
2258                         /* root level has p_bh == NULL, brelse() eats this */
2259                         brelse(path[i].p_bh);
2260                         path[i].p_bh = NULL;
2261                         i--;
2262                         continue;
2263                 }
2264
2265                 /* this is index block */
2266                 if (!path[i].p_hdr) {
2267                         ext_debug("initialize header\n");
2268                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2269                 }
2270
2271                 if (!path[i].p_idx) {
2272                         /* this level hasn't been touched yet */
2273                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2274                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2275                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2276                                   path[i].p_hdr,
2277                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2278                 } else {
2279                         /* we were already here, see at next index */
2280                         path[i].p_idx--;
2281                 }
2282
2283                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2284                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2285                                 path[i].p_idx);
2286                 if (ext4_ext_more_to_rm(path + i)) {
2287                         struct buffer_head *bh;
2288                         /* go to the next level */
2289                         ext_debug("move to level %d (block %llu)\n",
2290                                   i + 1, idx_pblock(path[i].p_idx));
2291                         memset(path + i + 1, 0, sizeof(*path));
2292                         bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2293                         if (!bh) {
2294                                 /* should we reset i_size? */
2295                                 err = -EIO;
2296                                 break;
2297                         }
2298                         if (WARN_ON(i + 1 > depth)) {
2299                                 err = -EIO;
2300                                 break;
2301                         }
2302                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2303                                                         depth - i - 1)) {
2304                                 err = -EIO;
2305                                 break;
2306                         }
2307                         path[i + 1].p_bh = bh;
2308
2309                         /* save actual number of indexes since this
2310                          * number is changed at the next iteration */
2311                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2312                         i++;
2313                 } else {
2314                         /* we finished processing this index, go up */
2315                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2316                                 /* index is empty, remove it;
2317                                  * handle must be already prepared by the
2318                                  * truncatei_leaf() */
2319                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2320                         }
2321                         /* root level has p_bh == NULL, brelse() eats this */
2322                         brelse(path[i].p_bh);
2323                         path[i].p_bh = NULL;
2324                         i--;
2325                         ext_debug("return to level %d\n", i);
2326                 }
2327         }
2328
2329         /* TODO: flexible tree reduction should be here */
2330         if (path->p_hdr->eh_entries == 0) {
2331                 /*
2332                  * truncate to zero freed all the tree,
2333                  * so we need to correct eh_depth
2334                  */
2335                 err = ext4_ext_get_access(handle, inode, path);
2336                 if (err == 0) {
2337                         ext_inode_hdr(inode)->eh_depth = 0;
2338                         ext_inode_hdr(inode)->eh_max =
2339                                 cpu_to_le16(ext4_ext_space_root(inode));
2340                         err = ext4_ext_dirty(handle, inode, path);
2341                 }
2342         }
2343 out:
2344         ext4_ext_drop_refs(path);
2345         kfree(path);
2346         ext4_journal_stop(handle);
2347
2348         return err;
2349 }
2350
2351 /*
2352  * called at mount time
2353  */
2354 void ext4_ext_init(struct super_block *sb)
2355 {
2356         /*
2357          * possible initialization would be here
2358          */
2359
2360         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2361                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2362 #ifdef AGGRESSIVE_TEST
2363                 printk(", aggressive tests");
2364 #endif
2365 #ifdef CHECK_BINSEARCH
2366                 printk(", check binsearch");
2367 #endif
2368 #ifdef EXTENTS_STATS
2369                 printk(", stats");
2370 #endif
2371                 printk("\n");
2372 #ifdef EXTENTS_STATS
2373                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2374                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2375                 EXT4_SB(sb)->s_ext_max = 0;
2376 #endif
2377         }
2378 }
2379
2380 /*
2381  * called at umount time
2382  */
2383 void ext4_ext_release(struct super_block *sb)
2384 {
2385         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2386                 return;
2387
2388 #ifdef EXTENTS_STATS
2389         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2390                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2391                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2392                         sbi->s_ext_blocks, sbi->s_ext_extents,
2393                         sbi->s_ext_blocks / sbi->s_ext_extents);
2394                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2395                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2396         }
2397 #endif
2398 }
2399
2400 static void bi_complete(struct bio *bio, int error)
2401 {
2402         complete((struct completion *)bio->bi_private);
2403 }
2404
2405 /* FIXME!! we need to try to merge to left or right after zero-out  */
2406 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2407 {
2408         int ret = -EIO;
2409         struct bio *bio;
2410         int blkbits, blocksize;
2411         sector_t ee_pblock;
2412         struct completion event;
2413         unsigned int ee_len, len, done, offset;
2414
2415
2416         blkbits   = inode->i_blkbits;
2417         blocksize = inode->i_sb->s_blocksize;
2418         ee_len    = ext4_ext_get_actual_len(ex);
2419         ee_pblock = ext_pblock(ex);
2420
2421         /* convert ee_pblock to 512 byte sectors */
2422         ee_pblock = ee_pblock << (blkbits - 9);
2423
2424         while (ee_len > 0) {
2425
2426                 if (ee_len > BIO_MAX_PAGES)
2427                         len = BIO_MAX_PAGES;
2428                 else
2429                         len = ee_len;
2430
2431                 bio = bio_alloc(GFP_NOIO, len);
2432                 bio->bi_sector = ee_pblock;
2433                 bio->bi_bdev   = inode->i_sb->s_bdev;
2434
2435                 done = 0;
2436                 offset = 0;
2437                 while (done < len) {
2438                         ret = bio_add_page(bio, ZERO_PAGE(0),
2439                                                         blocksize, offset);
2440                         if (ret != blocksize) {
2441                                 /*
2442                                  * We can't add any more pages because of
2443                                  * hardware limitations.  Start a new bio.
2444                                  */
2445                                 break;
2446                         }
2447                         done++;
2448                         offset += blocksize;
2449                         if (offset >= PAGE_CACHE_SIZE)
2450                                 offset = 0;
2451                 }
2452
2453                 init_completion(&event);
2454                 bio->bi_private = &event;
2455                 bio->bi_end_io = bi_complete;
2456                 submit_bio(WRITE, bio);
2457                 wait_for_completion(&event);
2458
2459                 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2460                         ret = 0;
2461                 else {
2462                         ret = -EIO;
2463                         break;
2464                 }
2465                 bio_put(bio);
2466                 ee_len    -= done;
2467                 ee_pblock += done  << (blkbits - 9);
2468         }
2469         return ret;
2470 }
2471
2472 #define EXT4_EXT_ZERO_LEN 7
2473
2474 /*
2475  * This function is called by ext4_ext_get_blocks() if someone tries to write
2476  * to an uninitialized extent. It may result in splitting the uninitialized
2477  * extent into multiple extents (upto three - one initialized and two
2478  * uninitialized).
2479  * There are three possibilities:
2480  *   a> There is no split required: Entire extent should be initialized
2481  *   b> Splits in two extents: Write is happening at either end of the extent
2482  *   c> Splits in three extents: Somone is writing in middle of the extent
2483  */
2484 static int ext4_ext_convert_to_initialized(handle_t *handle,
2485                                                 struct inode *inode,
2486                                                 struct ext4_ext_path *path,
2487                                                 ext4_lblk_t iblock,
2488                                                 unsigned int max_blocks)
2489 {
2490         struct ext4_extent *ex, newex, orig_ex;
2491         struct ext4_extent *ex1 = NULL;
2492         struct ext4_extent *ex2 = NULL;
2493         struct ext4_extent *ex3 = NULL;
2494         struct ext4_extent_header *eh;
2495         ext4_lblk_t ee_block;
2496         unsigned int allocated, ee_len, depth;
2497         ext4_fsblk_t newblock;
2498         int err = 0;
2499         int ret = 0;
2500
2501         depth = ext_depth(inode);
2502         eh = path[depth].p_hdr;
2503         ex = path[depth].p_ext;
2504         ee_block = le32_to_cpu(ex->ee_block);
2505         ee_len = ext4_ext_get_actual_len(ex);
2506         allocated = ee_len - (iblock - ee_block);
2507         newblock = iblock - ee_block + ext_pblock(ex);
2508         ex2 = ex;
2509         orig_ex.ee_block = ex->ee_block;
2510         orig_ex.ee_len   = cpu_to_le16(ee_len);
2511         ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2512
2513         err = ext4_ext_get_access(handle, inode, path + depth);
2514         if (err)
2515                 goto out;
2516         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2517         if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2518                 err =  ext4_ext_zeroout(inode, &orig_ex);
2519                 if (err)
2520                         goto fix_extent_len;
2521                 /* update the extent length and mark as initialized */
2522                 ex->ee_block = orig_ex.ee_block;
2523                 ex->ee_len   = orig_ex.ee_len;
2524                 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2525                 ext4_ext_dirty(handle, inode, path + depth);
2526                 /* zeroed the full extent */
2527                 return allocated;
2528         }
2529
2530         /* ex1: ee_block to iblock - 1 : uninitialized */
2531         if (iblock > ee_block) {
2532                 ex1 = ex;
2533                 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2534                 ext4_ext_mark_uninitialized(ex1);
2535                 ex2 = &newex;
2536         }
2537         /*
2538          * for sanity, update the length of the ex2 extent before
2539          * we insert ex3, if ex1 is NULL. This is to avoid temporary
2540          * overlap of blocks.
2541          */
2542         if (!ex1 && allocated > max_blocks)
2543                 ex2->ee_len = cpu_to_le16(max_blocks);
2544         /* ex3: to ee_block + ee_len : uninitialised */
2545         if (allocated > max_blocks) {
2546                 unsigned int newdepth;
2547                 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2548                 if (allocated <= EXT4_EXT_ZERO_LEN) {
2549                         /*
2550                          * iblock == ee_block is handled by the zerouout
2551                          * at the beginning.
2552                          * Mark first half uninitialized.
2553                          * Mark second half initialized and zero out the
2554                          * initialized extent
2555                          */
2556                         ex->ee_block = orig_ex.ee_block;
2557                         ex->ee_len   = cpu_to_le16(ee_len - allocated);
2558                         ext4_ext_mark_uninitialized(ex);
2559                         ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2560                         ext4_ext_dirty(handle, inode, path + depth);
2561
2562                         ex3 = &newex;
2563                         ex3->ee_block = cpu_to_le32(iblock);
2564                         ext4_ext_store_pblock(ex3, newblock);
2565                         ex3->ee_len = cpu_to_le16(allocated);
2566                         err = ext4_ext_insert_extent(handle, inode, path, ex3);
2567                         if (err == -ENOSPC) {
2568                                 err =  ext4_ext_zeroout(inode, &orig_ex);
2569                                 if (err)
2570                                         goto fix_extent_len;
2571                                 ex->ee_block = orig_ex.ee_block;
2572                                 ex->ee_len   = orig_ex.ee_len;
2573                                 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2574                                 ext4_ext_dirty(handle, inode, path + depth);
2575                                 /* blocks available from iblock */
2576                                 return allocated;
2577
2578                         } else if (err)
2579                                 goto fix_extent_len;
2580
2581                         /*
2582                          * We need to zero out the second half because
2583                          * an fallocate request can update file size and
2584                          * converting the second half to initialized extent
2585                          * implies that we can leak some junk data to user
2586                          * space.
2587                          */
2588                         err =  ext4_ext_zeroout(inode, ex3);
2589                         if (err) {
2590                                 /*
2591                                  * We should actually mark the
2592                                  * second half as uninit and return error
2593                                  * Insert would have changed the extent
2594                                  */
2595                                 depth = ext_depth(inode);
2596                                 ext4_ext_drop_refs(path);
2597                                 path = ext4_ext_find_extent(inode,
2598                                                                 iblock, path);
2599                                 if (IS_ERR(path)) {
2600                                         err = PTR_ERR(path);
2601                                         return err;
2602                                 }
2603                                 /* get the second half extent details */
2604                                 ex = path[depth].p_ext;
2605                                 err = ext4_ext_get_access(handle, inode,
2606                                                                 path + depth);
2607                                 if (err)
2608                                         return err;
2609                                 ext4_ext_mark_uninitialized(ex);
2610                                 ext4_ext_dirty(handle, inode, path + depth);
2611                                 return err;
2612                         }
2613
2614                         /* zeroed the second half */
2615                         return allocated;
2616                 }
2617                 ex3 = &newex;
2618                 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2619                 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2620                 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2621                 ext4_ext_mark_uninitialized(ex3);
2622                 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2623                 if (err == -ENOSPC) {
2624                         err =  ext4_ext_zeroout(inode, &orig_ex);
2625                         if (err)
2626                                 goto fix_extent_len;
2627                         /* update the extent length and mark as initialized */
2628                         ex->ee_block = orig_ex.ee_block;
2629                         ex->ee_len   = orig_ex.ee_len;
2630                         ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2631                         ext4_ext_dirty(handle, inode, path + depth);
2632                         /* zeroed the full extent */
2633                         /* blocks available from iblock */
2634                         return allocated;
2635
2636                 } else if (err)
2637                         goto fix_extent_len;
2638                 /*
2639                  * The depth, and hence eh & ex might change
2640                  * as part of the insert above.
2641                  */
2642                 newdepth = ext_depth(inode);
2643                 /*
2644                  * update the extent length after successful insert of the
2645                  * split extent
2646                  */
2647                 orig_ex.ee_len = cpu_to_le16(ee_len -
2648                                                 ext4_ext_get_actual_len(ex3));
2649                 depth = newdepth;
2650                 ext4_ext_drop_refs(path);
2651                 path = ext4_ext_find_extent(inode, iblock, path);
2652                 if (IS_ERR(path)) {
2653                         err = PTR_ERR(path);
2654                         goto out;
2655                 }
2656                 eh = path[depth].p_hdr;
2657                 ex = path[depth].p_ext;
2658                 if (ex2 != &newex)
2659                         ex2 = ex;
2660
2661                 err = ext4_ext_get_access(handle, inode, path + depth);
2662                 if (err)
2663                         goto out;
2664
2665                 allocated = max_blocks;
2666
2667                 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2668                  * to insert a extent in the middle zerout directly
2669                  * otherwise give the extent a chance to merge to left
2670                  */
2671                 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2672                                                         iblock != ee_block) {
2673                         err =  ext4_ext_zeroout(inode, &orig_ex);
2674                         if (err)
2675                                 goto fix_extent_len;
2676                         /* update the extent length and mark as initialized */
2677                         ex->ee_block = orig_ex.ee_block;
2678                         ex->ee_len   = orig_ex.ee_len;
2679                         ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2680                         ext4_ext_dirty(handle, inode, path + depth);
2681                         /* zero out the first half */
2682                         /* blocks available from iblock */
2683                         return allocated;
2684                 }
2685         }
2686         /*
2687          * If there was a change of depth as part of the
2688          * insertion of ex3 above, we need to update the length
2689          * of the ex1 extent again here
2690          */
2691         if (ex1 && ex1 != ex) {
2692                 ex1 = ex;
2693                 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2694                 ext4_ext_mark_uninitialized(ex1);
2695                 ex2 = &newex;
2696         }
2697         /* ex2: iblock to iblock + maxblocks-1 : initialised */
2698         ex2->ee_block = cpu_to_le32(iblock);
2699         ext4_ext_store_pblock(ex2, newblock);
2700         ex2->ee_len = cpu_to_le16(allocated);
2701         if (ex2 != ex)
2702                 goto insert;
2703         /*
2704          * New (initialized) extent starts from the first block
2705          * in the current extent. i.e., ex2 == ex
2706          * We have to see if it can be merged with the extent
2707          * on the left.
2708          */
2709         if (ex2 > EXT_FIRST_EXTENT(eh)) {
2710                 /*
2711                  * To merge left, pass "ex2 - 1" to try_to_merge(),
2712                  * since it merges towards right _only_.
2713                  */
2714                 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2715                 if (ret) {
2716                         err = ext4_ext_correct_indexes(handle, inode, path);
2717                         if (err)
2718                                 goto out;
2719                         depth = ext_depth(inode);
2720                         ex2--;
2721                 }
2722         }
2723         /*
2724          * Try to Merge towards right. This might be required
2725          * only when the whole extent is being written to.
2726          * i.e. ex2 == ex and ex3 == NULL.
2727          */
2728         if (!ex3) {
2729                 ret = ext4_ext_try_to_merge(inode, path, ex2);
2730                 if (ret) {
2731                         err = ext4_ext_correct_indexes(handle, inode, path);
2732                         if (err)
2733                                 goto out;
2734                 }
2735         }
2736         /* Mark modified extent as dirty */
2737         err = ext4_ext_dirty(handle, inode, path + depth);
2738         goto out;
2739 insert:
2740         err = ext4_ext_insert_extent(handle, inode, path, &newex);
2741         if (err == -ENOSPC) {
2742                 err =  ext4_ext_zeroout(inode, &orig_ex);
2743                 if (err)
2744                         goto fix_extent_len;
2745                 /* update the extent length and mark as initialized */
2746                 ex->ee_block = orig_ex.ee_block;
2747                 ex->ee_len   = orig_ex.ee_len;
2748                 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2749                 ext4_ext_dirty(handle, inode, path + depth);
2750                 /* zero out the first half */
2751                 return allocated;
2752         } else if (err)
2753                 goto fix_extent_len;
2754 out:
2755         return err ? err : allocated;
2756
2757 fix_extent_len:
2758         ex->ee_block = orig_ex.ee_block;
2759         ex->ee_len   = orig_ex.ee_len;
2760         ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2761         ext4_ext_mark_uninitialized(ex);
2762         ext4_ext_dirty(handle, inode, path + depth);
2763         return err;
2764 }
2765
2766 /*
2767  * Block allocation/map/preallocation routine for extents based files
2768  *
2769  *
2770  * Need to be called with
2771  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2772  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2773  *
2774  * return > 0, number of of blocks already mapped/allocated
2775  *          if create == 0 and these are pre-allocated blocks
2776  *              buffer head is unmapped
2777  *          otherwise blocks are mapped
2778  *
2779  * return = 0, if plain look up failed (blocks have not been allocated)
2780  *          buffer head is unmapped
2781  *
2782  * return < 0, error case.
2783  */
2784 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2785                         ext4_lblk_t iblock,
2786                         unsigned int max_blocks, struct buffer_head *bh_result,
2787                         int create, int extend_disksize)
2788 {
2789         struct ext4_ext_path *path = NULL;
2790         struct ext4_extent_header *eh;
2791         struct ext4_extent newex, *ex;
2792         ext4_fsblk_t newblock;
2793         int err = 0, depth, ret, cache_type;
2794         unsigned int allocated = 0;
2795         struct ext4_allocation_request ar;
2796         loff_t disksize;
2797
2798         __clear_bit(BH_New, &bh_result->b_state);
2799         ext_debug("blocks %u/%u requested for inode %u\n",
2800                         iblock, max_blocks, inode->i_ino);
2801
2802         /* check in cache */
2803         cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2804         if (cache_type) {
2805                 if (cache_type == EXT4_EXT_CACHE_GAP) {
2806                         if (!create) {
2807                                 /*
2808                                  * block isn't allocated yet and
2809                                  * user doesn't want to allocate it
2810                                  */
2811                                 goto out2;
2812                         }
2813                         /* we should allocate requested block */
2814                 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2815                         /* block is already allocated */
2816                         newblock = iblock
2817                                    - le32_to_cpu(newex.ee_block)
2818                                    + ext_pblock(&newex);
2819                         /* number of remaining blocks in the extent */
2820                         allocated = ext4_ext_get_actual_len(&newex) -
2821                                         (iblock - le32_to_cpu(newex.ee_block));
2822                         goto out;
2823                 } else {
2824                         BUG();
2825                 }
2826         }
2827
2828         /* find extent for this block */
2829         path = ext4_ext_find_extent(inode, iblock, NULL);
2830         if (IS_ERR(path)) {
2831                 err = PTR_ERR(path);
2832                 path = NULL;
2833                 goto out2;
2834         }
2835
2836         depth = ext_depth(inode);
2837
2838         /*
2839          * consistent leaf must not be empty;
2840          * this situation is possible, though, _during_ tree modification;
2841          * this is why assert can't be put in ext4_ext_find_extent()
2842          */
2843         BUG_ON(path[depth].p_ext == NULL && depth != 0);
2844         eh = path[depth].p_hdr;
2845
2846         ex = path[depth].p_ext;
2847         if (ex) {
2848                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2849                 ext4_fsblk_t ee_start = ext_pblock(ex);
2850                 unsigned short ee_len;
2851
2852                 /*
2853                  * Uninitialized extents are treated as holes, except that
2854                  * we split out initialized portions during a write.
2855                  */
2856                 ee_len = ext4_ext_get_actual_len(ex);
2857                 /* if found extent covers block, simply return it */
2858                 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2859                         newblock = iblock - ee_block + ee_start;
2860                         /* number of remaining blocks in the extent */
2861                         allocated = ee_len - (iblock - ee_block);
2862                         ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2863                                         ee_block, ee_len, newblock);
2864
2865                         /* Do not put uninitialized extent in the cache */
2866                         if (!ext4_ext_is_uninitialized(ex)) {
2867                                 ext4_ext_put_in_cache(inode, ee_block,
2868                                                         ee_len, ee_start,
2869                                                         EXT4_EXT_CACHE_EXTENT);
2870                                 goto out;
2871                         }
2872                         if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2873                                 goto out;
2874                         if (!create) {
2875                                 /*
2876                                  * We have blocks reserved already.  We
2877                                  * return allocated blocks so that delalloc
2878                                  * won't do block reservation for us.  But
2879                                  * the buffer head will be unmapped so that
2880                                  * a read from the block returns 0s.
2881                                  */
2882                                 if (allocated > max_blocks)
2883                                         allocated = max_blocks;
2884                                 set_buffer_unwritten(bh_result);
2885                                 bh_result->b_bdev = inode->i_sb->s_bdev;
2886                                 bh_result->b_blocknr = newblock;
2887                                 goto out2;
2888                         }
2889
2890                         ret = ext4_ext_convert_to_initialized(handle, inode,
2891                                                                 path, iblock,
2892                                                                 max_blocks);
2893                         if (ret <= 0) {
2894                                 err = ret;
2895                                 goto out2;
2896                         } else
2897                                 allocated = ret;
2898                         goto outnew;
2899                 }
2900         }
2901
2902         /*
2903          * requested block isn't allocated yet;
2904          * we couldn't try to create block if create flag is zero
2905          */
2906         if (!create) {
2907                 /*
2908                  * put just found gap into cache to speed up
2909                  * subsequent requests
2910                  */
2911                 ext4_ext_put_gap_in_cache(inode, path, iblock);
2912                 goto out2;
2913         }
2914         /*
2915          * Okay, we need to do block allocation.
2916          */
2917
2918         /* find neighbour allocated blocks */
2919         ar.lleft = iblock;
2920         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2921         if (err)
2922                 goto out2;
2923         ar.lright = iblock;
2924         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2925         if (err)
2926                 goto out2;
2927
2928         /*
2929          * See if request is beyond maximum number of blocks we can have in
2930          * a single extent. For an initialized extent this limit is
2931          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2932          * EXT_UNINIT_MAX_LEN.
2933          */
2934         if (max_blocks > EXT_INIT_MAX_LEN &&
2935             create != EXT4_CREATE_UNINITIALIZED_EXT)
2936                 max_blocks = EXT_INIT_MAX_LEN;
2937         else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2938                  create == EXT4_CREATE_UNINITIALIZED_EXT)
2939                 max_blocks = EXT_UNINIT_MAX_LEN;
2940
2941         /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2942         newex.ee_block = cpu_to_le32(iblock);
2943         newex.ee_len = cpu_to_le16(max_blocks);
2944         err = ext4_ext_check_overlap(inode, &newex, path);
2945         if (err)
2946                 allocated = ext4_ext_get_actual_len(&newex);
2947         else
2948                 allocated = max_blocks;
2949
2950         /* allocate new block */
2951         ar.inode = inode;
2952         ar.goal = ext4_ext_find_goal(inode, path, iblock);
2953         ar.logical = iblock;
2954         ar.len = allocated;
2955         if (S_ISREG(inode->i_mode))
2956                 ar.flags = EXT4_MB_HINT_DATA;
2957         else
2958                 /* disable in-core preallocation for non-regular files */
2959                 ar.flags = 0;
2960         newblock = ext4_mb_new_blocks(handle, &ar, &err);
2961         if (!newblock)
2962                 goto out2;
2963         ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2964                   ar.goal, newblock, allocated);
2965
2966         /* try to insert new extent into found leaf and return */
2967         ext4_ext_store_pblock(&newex, newblock);
2968         newex.ee_len = cpu_to_le16(ar.len);
2969         if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2970                 ext4_ext_mark_uninitialized(&newex);
2971         err = ext4_ext_insert_extent(handle, inode, path, &newex);
2972         if (err) {
2973                 /* free data blocks we just allocated */
2974                 /* not a good idea to call discard here directly,
2975                  * but otherwise we'd need to call it every free() */
2976                 ext4_discard_preallocations(inode);
2977                 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2978                                         ext4_ext_get_actual_len(&newex), 0);
2979                 goto out2;
2980         }
2981
2982         /* previous routine could use block we allocated */
2983         newblock = ext_pblock(&newex);
2984         allocated = ext4_ext_get_actual_len(&newex);
2985 outnew:
2986         if (extend_disksize) {
2987                 disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2988                 if (disksize > i_size_read(inode))
2989                         disksize = i_size_read(inode);
2990                 if (disksize > EXT4_I(inode)->i_disksize)
2991                         EXT4_I(inode)->i_disksize = disksize;
2992         }
2993
2994         set_buffer_new(bh_result);
2995
2996         /* Cache only when it is _not_ an uninitialized extent */
2997         if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2998                 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2999                                                 EXT4_EXT_CACHE_EXTENT);
3000 out:
3001         if (allocated > max_blocks)
3002                 allocated = max_blocks;
3003         ext4_ext_show_leaf(inode, path);
3004         set_buffer_mapped(bh_result);
3005         bh_result->b_bdev = inode->i_sb->s_bdev;
3006         bh_result->b_blocknr = newblock;
3007 out2:
3008         if (path) {
3009                 ext4_ext_drop_refs(path);
3010                 kfree(path);
3011         }
3012         return err ? err : allocated;
3013 }
3014
3015 void ext4_ext_truncate(struct inode *inode)
3016 {
3017         struct address_space *mapping = inode->i_mapping;
3018         struct super_block *sb = inode->i_sb;
3019         ext4_lblk_t last_block;
3020         handle_t *handle;
3021         int err = 0;
3022
3023         /*
3024          * probably first extent we're gonna free will be last in block
3025          */
3026         err = ext4_writepage_trans_blocks(inode);
3027         handle = ext4_journal_start(inode, err);
3028         if (IS_ERR(handle))
3029                 return;
3030
3031         if (inode->i_size & (sb->s_blocksize - 1))
3032                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3033
3034         if (ext4_orphan_add(handle, inode))
3035                 goto out_stop;
3036
3037         down_write(&EXT4_I(inode)->i_data_sem);
3038         ext4_ext_invalidate_cache(inode);
3039
3040         ext4_discard_preallocations(inode);
3041
3042         /*
3043          * TODO: optimization is possible here.
3044          * Probably we need not scan at all,
3045          * because page truncation is enough.
3046          */
3047
3048         /* we have to know where to truncate from in crash case */
3049         EXT4_I(inode)->i_disksize = inode->i_size;
3050         ext4_mark_inode_dirty(handle, inode);
3051
3052         last_block = (inode->i_size + sb->s_blocksize - 1)
3053                         >> EXT4_BLOCK_SIZE_BITS(sb);
3054         err = ext4_ext_remove_space(inode, last_block);
3055
3056         /* In a multi-transaction truncate, we only make the final
3057          * transaction synchronous.
3058          */
3059         if (IS_SYNC(inode))
3060                 ext4_handle_sync(handle);
3061
3062 out_stop:
3063         up_write(&EXT4_I(inode)->i_data_sem);
3064         /*
3065          * If this was a simple ftruncate() and the file will remain alive,
3066          * then we need to clear up the orphan record which we created above.
3067          * However, if this was a real unlink then we were called by
3068          * ext4_delete_inode(), and we allow that function to clean up the
3069          * orphan info for us.
3070          */
3071         if (inode->i_nlink)
3072                 ext4_orphan_del(handle, inode);
3073
3074         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3075         ext4_mark_inode_dirty(handle, inode);
3076         ext4_journal_stop(handle);
3077 }
3078
3079 static void ext4_falloc_update_inode(struct inode *inode,
3080                                 int mode, loff_t new_size, int update_ctime)
3081 {
3082         struct timespec now;
3083
3084         if (update_ctime) {
3085                 now = current_fs_time(inode->i_sb);
3086                 if (!timespec_equal(&inode->i_ctime, &now))
3087                         inode->i_ctime = now;
3088         }
3089         /*
3090          * Update only when preallocation was requested beyond
3091          * the file size.
3092          */
3093         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3094                 if (new_size > i_size_read(inode))
3095                         i_size_write(inode, new_size);
3096                 if (new_size > EXT4_I(inode)->i_disksize)
3097                         ext4_update_i_disksize(inode, new_size);
3098         }
3099
3100 }
3101
3102 /*
3103  * preallocate space for a file. This implements ext4's fallocate inode
3104  * operation, which gets called from sys_fallocate system call.
3105  * For block-mapped files, posix_fallocate should fall back to the method
3106  * of writing zeroes to the required new blocks (the same behavior which is
3107  * expected for file systems which do not support fallocate() system call).
3108  */
3109 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3110 {
3111         handle_t *handle;
3112         ext4_lblk_t block;
3113         loff_t new_size;
3114         unsigned int max_blocks;
3115         int ret = 0;
3116         int ret2 = 0;
3117         int retries = 0;
3118         struct buffer_head map_bh;
3119         unsigned int credits, blkbits = inode->i_blkbits;
3120
3121         /*
3122          * currently supporting (pre)allocate mode for extent-based
3123          * files _only_
3124          */
3125         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3126                 return -EOPNOTSUPP;
3127
3128         /* preallocation to directories is currently not supported */
3129         if (S_ISDIR(inode->i_mode))
3130                 return -ENODEV;
3131
3132         block = offset >> blkbits;
3133         /*
3134          * We can't just convert len to max_blocks because
3135          * If blocksize = 4096 offset = 3072 and len = 2048
3136          */
3137         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3138                                                         - block;
3139         /*
3140          * credits to insert 1 extent into extent tree
3141          */
3142         credits = ext4_chunk_trans_blocks(inode, max_blocks);
3143         mutex_lock(&inode->i_mutex);
3144 retry:
3145         while (ret >= 0 && ret < max_blocks) {
3146                 block = block + ret;
3147                 max_blocks = max_blocks - ret;
3148                 handle = ext4_journal_start(inode, credits);
3149                 if (IS_ERR(handle)) {
3150                         ret = PTR_ERR(handle);
3151                         break;
3152                 }
3153                 ret = ext4_get_blocks_wrap(handle, inode, block,
3154                                           max_blocks, &map_bh,
3155                                           EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3156                 if (ret <= 0) {
3157 #ifdef EXT4FS_DEBUG
3158                         WARN_ON(ret <= 0);
3159                         printk(KERN_ERR "%s: ext4_ext_get_blocks "
3160                                     "returned error inode#%lu, block=%u, "
3161                                     "max_blocks=%u", __func__,
3162                                     inode->i_ino, block, max_blocks);
3163 #endif
3164                         ext4_mark_inode_dirty(handle, inode);
3165                         ret2 = ext4_journal_stop(handle);
3166                         break;
3167                 }
3168                 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3169                                                 blkbits) >> blkbits))
3170                         new_size = offset + len;
3171                 else
3172                         new_size = (block + ret) << blkbits;
3173
3174                 ext4_falloc_update_inode(inode, mode, new_size,
3175                                                 buffer_new(&map_bh));
3176                 ext4_mark_inode_dirty(handle, inode);
3177                 ret2 = ext4_journal_stop(handle);
3178                 if (ret2)
3179                         break;
3180         }
3181         if (ret == -ENOSPC &&
3182                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
3183                 ret = 0;
3184                 goto retry;
3185         }
3186         mutex_unlock(&inode->i_mutex);
3187         return ret > 0 ? ret2 : ret;
3188 }
3189
3190 /*
3191  * Callback function called for each extent to gather FIEMAP information.
3192  */
3193 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3194                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
3195                        void *data)
3196 {
3197         struct fiemap_extent_info *fieinfo = data;
3198         unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3199         __u64   logical;
3200         __u64   physical;
3201         __u64   length;
3202         __u32   flags = 0;
3203         int     error;
3204
3205         logical =  (__u64)newex->ec_block << blksize_bits;
3206
3207         if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3208                 pgoff_t offset;
3209                 struct page *page;
3210                 struct buffer_head *bh = NULL;
3211
3212                 offset = logical >> PAGE_SHIFT;
3213                 page = find_get_page(inode->i_mapping, offset);
3214                 if (!page || !page_has_buffers(page))
3215                         return EXT_CONTINUE;
3216
3217                 bh = page_buffers(page);
3218
3219                 if (!bh)
3220                         return EXT_CONTINUE;
3221
3222                 if (buffer_delay(bh)) {
3223                         flags |= FIEMAP_EXTENT_DELALLOC;
3224                         page_cache_release(page);
3225                 } else {
3226                         page_cache_release(page);
3227                         return EXT_CONTINUE;
3228                 }
3229         }
3230
3231         physical = (__u64)newex->ec_start << blksize_bits;
3232         length =   (__u64)newex->ec_len << blksize_bits;
3233
3234         if (ex && ext4_ext_is_uninitialized(ex))
3235                 flags |= FIEMAP_EXTENT_UNWRITTEN;
3236
3237         /*
3238          * If this extent reaches EXT_MAX_BLOCK, it must be last.
3239          *
3240          * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3241          * this also indicates no more allocated blocks.
3242          *
3243          * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3244          */
3245         if (logical + length - 1 == EXT_MAX_BLOCK ||
3246             ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3247                 flags |= FIEMAP_EXTENT_LAST;
3248
3249         error = fiemap_fill_next_extent(fieinfo, logical, physical,
3250                                         length, flags);
3251         if (error < 0)
3252                 return error;
3253         if (error == 1)
3254                 return EXT_BREAK;
3255
3256         return EXT_CONTINUE;
3257 }
3258
3259 /* fiemap flags we can handle specified here */
3260 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3261
3262 static int ext4_xattr_fiemap(struct inode *inode,
3263                                 struct fiemap_extent_info *fieinfo)
3264 {
3265         __u64 physical = 0;
3266         __u64 length;
3267         __u32 flags = FIEMAP_EXTENT_LAST;
3268         int blockbits = inode->i_sb->s_blocksize_bits;
3269         int error = 0;
3270
3271         /* in-inode? */
3272         if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3273                 struct ext4_iloc iloc;
3274                 int offset;     /* offset of xattr in inode */
3275
3276                 error = ext4_get_inode_loc(inode, &iloc);
3277                 if (error)
3278                         return error;
3279                 physical = iloc.bh->b_blocknr << blockbits;
3280                 offset = EXT4_GOOD_OLD_INODE_SIZE +
3281                                 EXT4_I(inode)->i_extra_isize;
3282                 physical += offset;
3283                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3284                 flags |= FIEMAP_EXTENT_DATA_INLINE;
3285         } else { /* external block */
3286                 physical = EXT4_I(inode)->i_file_acl << blockbits;
3287                 length = inode->i_sb->s_blocksize;
3288         }
3289
3290         if (physical)
3291                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3292                                                 length, flags);
3293         return (error < 0 ? error : 0);
3294 }
3295
3296 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3297                 __u64 start, __u64 len)
3298 {
3299         ext4_lblk_t start_blk;
3300         ext4_lblk_t len_blks;
3301         int error = 0;
3302
3303         /* fallback to generic here if not in extents fmt */
3304         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3305                 return generic_block_fiemap(inode, fieinfo, start, len,
3306                         ext4_get_block);
3307
3308         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3309                 return -EBADR;
3310
3311         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3312                 error = ext4_xattr_fiemap(inode, fieinfo);
3313         } else {
3314                 start_blk = start >> inode->i_sb->s_blocksize_bits;
3315                 len_blks = len >> inode->i_sb->s_blocksize_bits;
3316
3317                 /*
3318                  * Walk the extent tree gathering extent information.
3319                  * ext4_ext_fiemap_cb will push extents back to user.
3320                  */
3321                 down_write(&EXT4_I(inode)->i_data_sem);
3322                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3323                                           ext4_ext_fiemap_cb, fieinfo);
3324                 up_write(&EXT4_I(inode)->i_data_sem);
3325         }
3326
3327         return error;
3328 }
3329