Merge branch 'for-rmk' of git://git.marvell.com/orion into devel
[linux-2.6] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72
73 #define PFX "ipmi_si: "
74
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC    10000
80 #define SI_USEC_PER_JIFFY       (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83                                       short timeout */
84
85 enum si_intf_state {
86         SI_NORMAL,
87         SI_GETTING_FLAGS,
88         SI_GETTING_EVENTS,
89         SI_CLEARING_FLAGS,
90         SI_CLEARING_FLAGS_THEN_SET_IRQ,
91         SI_GETTING_MESSAGES,
92         SI_ENABLE_INTERRUPTS1,
93         SI_ENABLE_INTERRUPTS2,
94         SI_DISABLE_INTERRUPTS1,
95         SI_DISABLE_INTERRUPTS2
96         /* FIXME - add watchdog stuff. */
97 };
98
99 /* Some BT-specific defines we need here. */
100 #define IPMI_BT_INTMASK_REG             2
101 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
102 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
103
104 enum si_type {
105     SI_KCS, SI_SMIC, SI_BT
106 };
107 static char *si_to_str[] = { "kcs", "smic", "bt" };
108
109 #define DEVICE_NAME "ipmi_si"
110
111 static struct platform_driver ipmi_driver = {
112         .driver = {
113                 .name = DEVICE_NAME,
114                 .bus = &platform_bus_type
115         }
116 };
117
118
119 /*
120  * Indexes into stats[] in smi_info below.
121  */
122 enum si_stat_indexes {
123         /*
124          * Number of times the driver requested a timer while an operation
125          * was in progress.
126          */
127         SI_STAT_short_timeouts = 0,
128
129         /*
130          * Number of times the driver requested a timer while nothing was in
131          * progress.
132          */
133         SI_STAT_long_timeouts,
134
135         /* Number of times the interface was idle while being polled. */
136         SI_STAT_idles,
137
138         /* Number of interrupts the driver handled. */
139         SI_STAT_interrupts,
140
141         /* Number of time the driver got an ATTN from the hardware. */
142         SI_STAT_attentions,
143
144         /* Number of times the driver requested flags from the hardware. */
145         SI_STAT_flag_fetches,
146
147         /* Number of times the hardware didn't follow the state machine. */
148         SI_STAT_hosed_count,
149
150         /* Number of completed messages. */
151         SI_STAT_complete_transactions,
152
153         /* Number of IPMI events received from the hardware. */
154         SI_STAT_events,
155
156         /* Number of watchdog pretimeouts. */
157         SI_STAT_watchdog_pretimeouts,
158
159         /* Number of asyncronous messages received. */
160         SI_STAT_incoming_messages,
161
162
163         /* This *must* remain last, add new values above this. */
164         SI_NUM_STATS
165 };
166
167 struct smi_info {
168         int                    intf_num;
169         ipmi_smi_t             intf;
170         struct si_sm_data      *si_sm;
171         struct si_sm_handlers  *handlers;
172         enum si_type           si_type;
173         spinlock_t             si_lock;
174         spinlock_t             msg_lock;
175         struct list_head       xmit_msgs;
176         struct list_head       hp_xmit_msgs;
177         struct ipmi_smi_msg    *curr_msg;
178         enum si_intf_state     si_state;
179
180         /*
181          * Used to handle the various types of I/O that can occur with
182          * IPMI
183          */
184         struct si_sm_io io;
185         int (*io_setup)(struct smi_info *info);
186         void (*io_cleanup)(struct smi_info *info);
187         int (*irq_setup)(struct smi_info *info);
188         void (*irq_cleanup)(struct smi_info *info);
189         unsigned int io_size;
190         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
191         void (*addr_source_cleanup)(struct smi_info *info);
192         void *addr_source_data;
193
194         /*
195          * Per-OEM handler, called from handle_flags().  Returns 1
196          * when handle_flags() needs to be re-run or 0 indicating it
197          * set si_state itself.
198          */
199         int (*oem_data_avail_handler)(struct smi_info *smi_info);
200
201         /*
202          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203          * is set to hold the flags until we are done handling everything
204          * from the flags.
205          */
206 #define RECEIVE_MSG_AVAIL       0x01
207 #define EVENT_MSG_BUFFER_FULL   0x02
208 #define WDT_PRE_TIMEOUT_INT     0x08
209 #define OEM0_DATA_AVAIL     0x20
210 #define OEM1_DATA_AVAIL     0x40
211 #define OEM2_DATA_AVAIL     0x80
212 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
213                              OEM1_DATA_AVAIL | \
214                              OEM2_DATA_AVAIL)
215         unsigned char       msg_flags;
216
217         /* Does the BMC have an event buffer? */
218         char                has_event_buffer;
219
220         /*
221          * If set to true, this will request events the next time the
222          * state machine is idle.
223          */
224         atomic_t            req_events;
225
226         /*
227          * If true, run the state machine to completion on every send
228          * call.  Generally used after a panic to make sure stuff goes
229          * out.
230          */
231         int                 run_to_completion;
232
233         /* The I/O port of an SI interface. */
234         int                 port;
235
236         /*
237          * The space between start addresses of the two ports.  For
238          * instance, if the first port is 0xca2 and the spacing is 4, then
239          * the second port is 0xca6.
240          */
241         unsigned int        spacing;
242
243         /* zero if no irq; */
244         int                 irq;
245
246         /* The timer for this si. */
247         struct timer_list   si_timer;
248
249         /* The time (in jiffies) the last timeout occurred at. */
250         unsigned long       last_timeout_jiffies;
251
252         /* Used to gracefully stop the timer without race conditions. */
253         atomic_t            stop_operation;
254
255         /*
256          * The driver will disable interrupts when it gets into a
257          * situation where it cannot handle messages due to lack of
258          * memory.  Once that situation clears up, it will re-enable
259          * interrupts.
260          */
261         int interrupt_disabled;
262
263         /* From the get device id response... */
264         struct ipmi_device_id device_id;
265
266         /* Driver model stuff. */
267         struct device *dev;
268         struct platform_device *pdev;
269
270         /*
271          * True if we allocated the device, false if it came from
272          * someplace else (like PCI).
273          */
274         int dev_registered;
275
276         /* Slave address, could be reported from DMI. */
277         unsigned char slave_addr;
278
279         /* Counters and things for the proc filesystem. */
280         atomic_t stats[SI_NUM_STATS];
281
282         struct task_struct *thread;
283
284         struct list_head link;
285 };
286
287 #define smi_inc_stat(smi, stat) \
288         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291
292 #define SI_MAX_PARMS 4
293
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
296
297 static int unload_when_empty = 1;
298
299 static int try_smi_init(struct smi_info *smi);
300 static void cleanup_one_si(struct smi_info *to_clean);
301
302 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
303 static int register_xaction_notifier(struct notifier_block *nb)
304 {
305         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
306 }
307
308 static void deliver_recv_msg(struct smi_info *smi_info,
309                              struct ipmi_smi_msg *msg)
310 {
311         /* Deliver the message to the upper layer with the lock
312            released. */
313         spin_unlock(&(smi_info->si_lock));
314         ipmi_smi_msg_received(smi_info->intf, msg);
315         spin_lock(&(smi_info->si_lock));
316 }
317
318 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
319 {
320         struct ipmi_smi_msg *msg = smi_info->curr_msg;
321
322         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
323                 cCode = IPMI_ERR_UNSPECIFIED;
324         /* else use it as is */
325
326         /* Make it a reponse */
327         msg->rsp[0] = msg->data[0] | 4;
328         msg->rsp[1] = msg->data[1];
329         msg->rsp[2] = cCode;
330         msg->rsp_size = 3;
331
332         smi_info->curr_msg = NULL;
333         deliver_recv_msg(smi_info, msg);
334 }
335
336 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
337 {
338         int              rv;
339         struct list_head *entry = NULL;
340 #ifdef DEBUG_TIMING
341         struct timeval t;
342 #endif
343
344         /*
345          * No need to save flags, we aleady have interrupts off and we
346          * already hold the SMI lock.
347          */
348         if (!smi_info->run_to_completion)
349                 spin_lock(&(smi_info->msg_lock));
350
351         /* Pick the high priority queue first. */
352         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353                 entry = smi_info->hp_xmit_msgs.next;
354         } else if (!list_empty(&(smi_info->xmit_msgs))) {
355                 entry = smi_info->xmit_msgs.next;
356         }
357
358         if (!entry) {
359                 smi_info->curr_msg = NULL;
360                 rv = SI_SM_IDLE;
361         } else {
362                 int err;
363
364                 list_del(entry);
365                 smi_info->curr_msg = list_entry(entry,
366                                                 struct ipmi_smi_msg,
367                                                 link);
368 #ifdef DEBUG_TIMING
369                 do_gettimeofday(&t);
370                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372                 err = atomic_notifier_call_chain(&xaction_notifier_list,
373                                 0, smi_info);
374                 if (err & NOTIFY_STOP_MASK) {
375                         rv = SI_SM_CALL_WITHOUT_DELAY;
376                         goto out;
377                 }
378                 err = smi_info->handlers->start_transaction(
379                         smi_info->si_sm,
380                         smi_info->curr_msg->data,
381                         smi_info->curr_msg->data_size);
382                 if (err)
383                         return_hosed_msg(smi_info, err);
384
385                 rv = SI_SM_CALL_WITHOUT_DELAY;
386         }
387  out:
388         if (!smi_info->run_to_completion)
389                 spin_unlock(&(smi_info->msg_lock));
390
391         return rv;
392 }
393
394 static void start_enable_irq(struct smi_info *smi_info)
395 {
396         unsigned char msg[2];
397
398         /*
399          * If we are enabling interrupts, we have to tell the
400          * BMC to use them.
401          */
402         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
404
405         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
407 }
408
409 static void start_disable_irq(struct smi_info *smi_info)
410 {
411         unsigned char msg[2];
412
413         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
415
416         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
418 }
419
420 static void start_clear_flags(struct smi_info *smi_info)
421 {
422         unsigned char msg[3];
423
424         /* Make sure the watchdog pre-timeout flag is not set at startup. */
425         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427         msg[2] = WDT_PRE_TIMEOUT_INT;
428
429         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430         smi_info->si_state = SI_CLEARING_FLAGS;
431 }
432
433 /*
434  * When we have a situtaion where we run out of memory and cannot
435  * allocate messages, we just leave them in the BMC and run the system
436  * polled until we can allocate some memory.  Once we have some
437  * memory, we will re-enable the interrupt.
438  */
439 static inline void disable_si_irq(struct smi_info *smi_info)
440 {
441         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
442                 start_disable_irq(smi_info);
443                 smi_info->interrupt_disabled = 1;
444         }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450                 start_enable_irq(smi_info);
451                 smi_info->interrupt_disabled = 0;
452         }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459                 /* Watchdog pre-timeout */
460                 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462                 start_clear_flags(smi_info);
463                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464                 spin_unlock(&(smi_info->si_lock));
465                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
466                 spin_lock(&(smi_info->si_lock));
467         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
468                 /* Messages available. */
469                 smi_info->curr_msg = ipmi_alloc_smi_msg();
470                 if (!smi_info->curr_msg) {
471                         disable_si_irq(smi_info);
472                         smi_info->si_state = SI_NORMAL;
473                         return;
474                 }
475                 enable_si_irq(smi_info);
476
477                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
478                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
479                 smi_info->curr_msg->data_size = 2;
480
481                 smi_info->handlers->start_transaction(
482                         smi_info->si_sm,
483                         smi_info->curr_msg->data,
484                         smi_info->curr_msg->data_size);
485                 smi_info->si_state = SI_GETTING_MESSAGES;
486         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
487                 /* Events available. */
488                 smi_info->curr_msg = ipmi_alloc_smi_msg();
489                 if (!smi_info->curr_msg) {
490                         disable_si_irq(smi_info);
491                         smi_info->si_state = SI_NORMAL;
492                         return;
493                 }
494                 enable_si_irq(smi_info);
495
496                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
498                 smi_info->curr_msg->data_size = 2;
499
500                 smi_info->handlers->start_transaction(
501                         smi_info->si_sm,
502                         smi_info->curr_msg->data,
503                         smi_info->curr_msg->data_size);
504                 smi_info->si_state = SI_GETTING_EVENTS;
505         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
506                    smi_info->oem_data_avail_handler) {
507                 if (smi_info->oem_data_avail_handler(smi_info))
508                         goto retry;
509         } else
510                 smi_info->si_state = SI_NORMAL;
511 }
512
513 static void handle_transaction_done(struct smi_info *smi_info)
514 {
515         struct ipmi_smi_msg *msg;
516 #ifdef DEBUG_TIMING
517         struct timeval t;
518
519         do_gettimeofday(&t);
520         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
521 #endif
522         switch (smi_info->si_state) {
523         case SI_NORMAL:
524                 if (!smi_info->curr_msg)
525                         break;
526
527                 smi_info->curr_msg->rsp_size
528                         = smi_info->handlers->get_result(
529                                 smi_info->si_sm,
530                                 smi_info->curr_msg->rsp,
531                                 IPMI_MAX_MSG_LENGTH);
532
533                 /*
534                  * Do this here becase deliver_recv_msg() releases the
535                  * lock, and a new message can be put in during the
536                  * time the lock is released.
537                  */
538                 msg = smi_info->curr_msg;
539                 smi_info->curr_msg = NULL;
540                 deliver_recv_msg(smi_info, msg);
541                 break;
542
543         case SI_GETTING_FLAGS:
544         {
545                 unsigned char msg[4];
546                 unsigned int  len;
547
548                 /* We got the flags from the SMI, now handle them. */
549                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
550                 if (msg[2] != 0) {
551                         /* Error fetching flags, just give up for now. */
552                         smi_info->si_state = SI_NORMAL;
553                 } else if (len < 4) {
554                         /*
555                          * Hmm, no flags.  That's technically illegal, but
556                          * don't use uninitialized data.
557                          */
558                         smi_info->si_state = SI_NORMAL;
559                 } else {
560                         smi_info->msg_flags = msg[3];
561                         handle_flags(smi_info);
562                 }
563                 break;
564         }
565
566         case SI_CLEARING_FLAGS:
567         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
568         {
569                 unsigned char msg[3];
570
571                 /* We cleared the flags. */
572                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
573                 if (msg[2] != 0) {
574                         /* Error clearing flags */
575                         printk(KERN_WARNING
576                                "ipmi_si: Error clearing flags: %2.2x\n",
577                                msg[2]);
578                 }
579                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
580                         start_enable_irq(smi_info);
581                 else
582                         smi_info->si_state = SI_NORMAL;
583                 break;
584         }
585
586         case SI_GETTING_EVENTS:
587         {
588                 smi_info->curr_msg->rsp_size
589                         = smi_info->handlers->get_result(
590                                 smi_info->si_sm,
591                                 smi_info->curr_msg->rsp,
592                                 IPMI_MAX_MSG_LENGTH);
593
594                 /*
595                  * Do this here becase deliver_recv_msg() releases the
596                  * lock, and a new message can be put in during the
597                  * time the lock is released.
598                  */
599                 msg = smi_info->curr_msg;
600                 smi_info->curr_msg = NULL;
601                 if (msg->rsp[2] != 0) {
602                         /* Error getting event, probably done. */
603                         msg->done(msg);
604
605                         /* Take off the event flag. */
606                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
607                         handle_flags(smi_info);
608                 } else {
609                         smi_inc_stat(smi_info, events);
610
611                         /*
612                          * Do this before we deliver the message
613                          * because delivering the message releases the
614                          * lock and something else can mess with the
615                          * state.
616                          */
617                         handle_flags(smi_info);
618
619                         deliver_recv_msg(smi_info, msg);
620                 }
621                 break;
622         }
623
624         case SI_GETTING_MESSAGES:
625         {
626                 smi_info->curr_msg->rsp_size
627                         = smi_info->handlers->get_result(
628                                 smi_info->si_sm,
629                                 smi_info->curr_msg->rsp,
630                                 IPMI_MAX_MSG_LENGTH);
631
632                 /*
633                  * Do this here becase deliver_recv_msg() releases the
634                  * lock, and a new message can be put in during the
635                  * time the lock is released.
636                  */
637                 msg = smi_info->curr_msg;
638                 smi_info->curr_msg = NULL;
639                 if (msg->rsp[2] != 0) {
640                         /* Error getting event, probably done. */
641                         msg->done(msg);
642
643                         /* Take off the msg flag. */
644                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
645                         handle_flags(smi_info);
646                 } else {
647                         smi_inc_stat(smi_info, incoming_messages);
648
649                         /*
650                          * Do this before we deliver the message
651                          * because delivering the message releases the
652                          * lock and something else can mess with the
653                          * state.
654                          */
655                         handle_flags(smi_info);
656
657                         deliver_recv_msg(smi_info, msg);
658                 }
659                 break;
660         }
661
662         case SI_ENABLE_INTERRUPTS1:
663         {
664                 unsigned char msg[4];
665
666                 /* We got the flags from the SMI, now handle them. */
667                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
668                 if (msg[2] != 0) {
669                         printk(KERN_WARNING
670                                "ipmi_si: Could not enable interrupts"
671                                ", failed get, using polled mode.\n");
672                         smi_info->si_state = SI_NORMAL;
673                 } else {
674                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
676                         msg[2] = (msg[3] |
677                                   IPMI_BMC_RCV_MSG_INTR |
678                                   IPMI_BMC_EVT_MSG_INTR);
679                         smi_info->handlers->start_transaction(
680                                 smi_info->si_sm, msg, 3);
681                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
682                 }
683                 break;
684         }
685
686         case SI_ENABLE_INTERRUPTS2:
687         {
688                 unsigned char msg[4];
689
690                 /* We got the flags from the SMI, now handle them. */
691                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
692                 if (msg[2] != 0) {
693                         printk(KERN_WARNING
694                                "ipmi_si: Could not enable interrupts"
695                                ", failed set, using polled mode.\n");
696                 }
697                 smi_info->si_state = SI_NORMAL;
698                 break;
699         }
700
701         case SI_DISABLE_INTERRUPTS1:
702         {
703                 unsigned char msg[4];
704
705                 /* We got the flags from the SMI, now handle them. */
706                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707                 if (msg[2] != 0) {
708                         printk(KERN_WARNING
709                                "ipmi_si: Could not disable interrupts"
710                                ", failed get.\n");
711                         smi_info->si_state = SI_NORMAL;
712                 } else {
713                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
714                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
715                         msg[2] = (msg[3] &
716                                   ~(IPMI_BMC_RCV_MSG_INTR |
717                                     IPMI_BMC_EVT_MSG_INTR));
718                         smi_info->handlers->start_transaction(
719                                 smi_info->si_sm, msg, 3);
720                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
721                 }
722                 break;
723         }
724
725         case SI_DISABLE_INTERRUPTS2:
726         {
727                 unsigned char msg[4];
728
729                 /* We got the flags from the SMI, now handle them. */
730                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
731                 if (msg[2] != 0) {
732                         printk(KERN_WARNING
733                                "ipmi_si: Could not disable interrupts"
734                                ", failed set.\n");
735                 }
736                 smi_info->si_state = SI_NORMAL;
737                 break;
738         }
739         }
740 }
741
742 /*
743  * Called on timeouts and events.  Timeouts should pass the elapsed
744  * time, interrupts should pass in zero.  Must be called with
745  * si_lock held and interrupts disabled.
746  */
747 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748                                            int time)
749 {
750         enum si_sm_result si_sm_result;
751
752  restart:
753         /*
754          * There used to be a loop here that waited a little while
755          * (around 25us) before giving up.  That turned out to be
756          * pointless, the minimum delays I was seeing were in the 300us
757          * range, which is far too long to wait in an interrupt.  So
758          * we just run until the state machine tells us something
759          * happened or it needs a delay.
760          */
761         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
762         time = 0;
763         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
764                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765
766         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
767                 smi_inc_stat(smi_info, complete_transactions);
768
769                 handle_transaction_done(smi_info);
770                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771         } else if (si_sm_result == SI_SM_HOSED) {
772                 smi_inc_stat(smi_info, hosed_count);
773
774                 /*
775                  * Do the before return_hosed_msg, because that
776                  * releases the lock.
777                  */
778                 smi_info->si_state = SI_NORMAL;
779                 if (smi_info->curr_msg != NULL) {
780                         /*
781                          * If we were handling a user message, format
782                          * a response to send to the upper layer to
783                          * tell it about the error.
784                          */
785                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
786                 }
787                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788         }
789
790         /*
791          * We prefer handling attn over new messages.  But don't do
792          * this if there is not yet an upper layer to handle anything.
793          */
794         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
795                 unsigned char msg[2];
796
797                 smi_inc_stat(smi_info, attentions);
798
799                 /*
800                  * Got a attn, send down a get message flags to see
801                  * what's causing it.  It would be better to handle
802                  * this in the upper layer, but due to the way
803                  * interrupts work with the SMI, that's not really
804                  * possible.
805                  */
806                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
807                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
808
809                 smi_info->handlers->start_transaction(
810                         smi_info->si_sm, msg, 2);
811                 smi_info->si_state = SI_GETTING_FLAGS;
812                 goto restart;
813         }
814
815         /* If we are currently idle, try to start the next message. */
816         if (si_sm_result == SI_SM_IDLE) {
817                 smi_inc_stat(smi_info, idles);
818
819                 si_sm_result = start_next_msg(smi_info);
820                 if (si_sm_result != SI_SM_IDLE)
821                         goto restart;
822         }
823
824         if ((si_sm_result == SI_SM_IDLE)
825             && (atomic_read(&smi_info->req_events))) {
826                 /*
827                  * We are idle and the upper layer requested that I fetch
828                  * events, so do so.
829                  */
830                 atomic_set(&smi_info->req_events, 0);
831
832                 smi_info->curr_msg = ipmi_alloc_smi_msg();
833                 if (!smi_info->curr_msg)
834                         goto out;
835
836                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
837                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
838                 smi_info->curr_msg->data_size = 2;
839
840                 smi_info->handlers->start_transaction(
841                         smi_info->si_sm,
842                         smi_info->curr_msg->data,
843                         smi_info->curr_msg->data_size);
844                 smi_info->si_state = SI_GETTING_EVENTS;
845                 goto restart;
846         }
847  out:
848         return si_sm_result;
849 }
850
851 static void sender(void                *send_info,
852                    struct ipmi_smi_msg *msg,
853                    int                 priority)
854 {
855         struct smi_info   *smi_info = send_info;
856         enum si_sm_result result;
857         unsigned long     flags;
858 #ifdef DEBUG_TIMING
859         struct timeval    t;
860 #endif
861
862         if (atomic_read(&smi_info->stop_operation)) {
863                 msg->rsp[0] = msg->data[0] | 4;
864                 msg->rsp[1] = msg->data[1];
865                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
866                 msg->rsp_size = 3;
867                 deliver_recv_msg(smi_info, msg);
868                 return;
869         }
870
871 #ifdef DEBUG_TIMING
872         do_gettimeofday(&t);
873         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
874 #endif
875
876         if (smi_info->run_to_completion) {
877                 /*
878                  * If we are running to completion, then throw it in
879                  * the list and run transactions until everything is
880                  * clear.  Priority doesn't matter here.
881                  */
882
883                 /*
884                  * Run to completion means we are single-threaded, no
885                  * need for locks.
886                  */
887                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
888
889                 result = smi_event_handler(smi_info, 0);
890                 while (result != SI_SM_IDLE) {
891                         udelay(SI_SHORT_TIMEOUT_USEC);
892                         result = smi_event_handler(smi_info,
893                                                    SI_SHORT_TIMEOUT_USEC);
894                 }
895                 return;
896         }
897
898         spin_lock_irqsave(&smi_info->msg_lock, flags);
899         if (priority > 0)
900                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
901         else
902                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
903         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
904
905         spin_lock_irqsave(&smi_info->si_lock, flags);
906         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
907                 start_next_msg(smi_info);
908         spin_unlock_irqrestore(&smi_info->si_lock, flags);
909 }
910
911 static void set_run_to_completion(void *send_info, int i_run_to_completion)
912 {
913         struct smi_info   *smi_info = send_info;
914         enum si_sm_result result;
915
916         smi_info->run_to_completion = i_run_to_completion;
917         if (i_run_to_completion) {
918                 result = smi_event_handler(smi_info, 0);
919                 while (result != SI_SM_IDLE) {
920                         udelay(SI_SHORT_TIMEOUT_USEC);
921                         result = smi_event_handler(smi_info,
922                                                    SI_SHORT_TIMEOUT_USEC);
923                 }
924         }
925 }
926
927 static int ipmi_thread(void *data)
928 {
929         struct smi_info *smi_info = data;
930         unsigned long flags;
931         enum si_sm_result smi_result;
932
933         set_user_nice(current, 19);
934         while (!kthread_should_stop()) {
935                 spin_lock_irqsave(&(smi_info->si_lock), flags);
936                 smi_result = smi_event_handler(smi_info, 0);
937                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
939                         ; /* do nothing */
940                 else if (smi_result == SI_SM_CALL_WITH_DELAY)
941                         schedule();
942                 else
943                         schedule_timeout_interruptible(1);
944         }
945         return 0;
946 }
947
948
949 static void poll(void *send_info)
950 {
951         struct smi_info *smi_info = send_info;
952         unsigned long flags;
953
954         /*
955          * Make sure there is some delay in the poll loop so we can
956          * drive time forward and timeout things.
957          */
958         udelay(10);
959         spin_lock_irqsave(&smi_info->si_lock, flags);
960         smi_event_handler(smi_info, 10);
961         spin_unlock_irqrestore(&smi_info->si_lock, flags);
962 }
963
964 static void request_events(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967
968         if (atomic_read(&smi_info->stop_operation) ||
969                                 !smi_info->has_event_buffer)
970                 return;
971
972         atomic_set(&smi_info->req_events, 1);
973 }
974
975 static int initialized;
976
977 static void smi_timeout(unsigned long data)
978 {
979         struct smi_info   *smi_info = (struct smi_info *) data;
980         enum si_sm_result smi_result;
981         unsigned long     flags;
982         unsigned long     jiffies_now;
983         long              time_diff;
984 #ifdef DEBUG_TIMING
985         struct timeval    t;
986 #endif
987
988         spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990         do_gettimeofday(&t);
991         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993         jiffies_now = jiffies;
994         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995                      * SI_USEC_PER_JIFFY);
996         smi_result = smi_event_handler(smi_info, time_diff);
997
998         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999
1000         smi_info->last_timeout_jiffies = jiffies_now;
1001
1002         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003                 /* Running with interrupts, only do long timeouts. */
1004                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005                 smi_inc_stat(smi_info, long_timeouts);
1006                 goto do_add_timer;
1007         }
1008
1009         /*
1010          * If the state machine asks for a short delay, then shorten
1011          * the timer timeout.
1012          */
1013         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014                 smi_inc_stat(smi_info, short_timeouts);
1015                 smi_info->si_timer.expires = jiffies + 1;
1016         } else {
1017                 smi_inc_stat(smi_info, long_timeouts);
1018                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019         }
1020
1021  do_add_timer:
1022         add_timer(&(smi_info->si_timer));
1023 }
1024
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1026 {
1027         struct smi_info *smi_info = data;
1028         unsigned long   flags;
1029 #ifdef DEBUG_TIMING
1030         struct timeval  t;
1031 #endif
1032
1033         spin_lock_irqsave(&(smi_info->si_lock), flags);
1034
1035         smi_inc_stat(smi_info, interrupts);
1036
1037 #ifdef DEBUG_TIMING
1038         do_gettimeofday(&t);
1039         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041         smi_event_handler(smi_info, 0);
1042         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043         return IRQ_HANDLED;
1044 }
1045
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047 {
1048         struct smi_info *smi_info = data;
1049         /* We need to clear the IRQ flag for the BT interface. */
1050         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053         return si_irq_handler(irq, data);
1054 }
1055
1056 static int smi_start_processing(void       *send_info,
1057                                 ipmi_smi_t intf)
1058 {
1059         struct smi_info *new_smi = send_info;
1060         int             enable = 0;
1061
1062         new_smi->intf = intf;
1063
1064         /* Try to claim any interrupts. */
1065         if (new_smi->irq_setup)
1066                 new_smi->irq_setup(new_smi);
1067
1068         /* Set up the timer that drives the interface. */
1069         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070         new_smi->last_timeout_jiffies = jiffies;
1071         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072
1073         /*
1074          * Check if the user forcefully enabled the daemon.
1075          */
1076         if (new_smi->intf_num < num_force_kipmid)
1077                 enable = force_kipmid[new_smi->intf_num];
1078         /*
1079          * The BT interface is efficient enough to not need a thread,
1080          * and there is no need for a thread if we have interrupts.
1081          */
1082         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083                 enable = 1;
1084
1085         if (enable) {
1086                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087                                               "kipmi%d", new_smi->intf_num);
1088                 if (IS_ERR(new_smi->thread)) {
1089                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090                                " kernel thread due to error %ld, only using"
1091                                " timers to drive the interface\n",
1092                                PTR_ERR(new_smi->thread));
1093                         new_smi->thread = NULL;
1094                 }
1095         }
1096
1097         return 0;
1098 }
1099
1100 static void set_maintenance_mode(void *send_info, int enable)
1101 {
1102         struct smi_info   *smi_info = send_info;
1103
1104         if (!enable)
1105                 atomic_set(&smi_info->req_events, 0);
1106 }
1107
1108 static struct ipmi_smi_handlers handlers = {
1109         .owner                  = THIS_MODULE,
1110         .start_processing       = smi_start_processing,
1111         .sender                 = sender,
1112         .request_events         = request_events,
1113         .set_maintenance_mode   = set_maintenance_mode,
1114         .set_run_to_completion  = set_run_to_completion,
1115         .poll                   = poll,
1116 };
1117
1118 /*
1119  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1121  */
1122
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1126
1127 #define DEFAULT_REGSPACING      1
1128 #define DEFAULT_REGSIZE         1
1129
1130 static int           si_trydefaults = 1;
1131 static char          *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char          si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int  ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int           irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int           regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int           regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int           regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1148
1149 #define IPMI_IO_ADDR_SPACE  0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1152
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1154
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1157                  " Documentation/IPMI.txt in the kernel sources for the"
1158                  " gory details.");
1159
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162                  " default scan of the KCS and SMIC interface at the standard"
1163                  " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166                  " interface separated by commas.  The types are 'kcs',"
1167                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1168                  " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171                  " addresses separated by commas.  Only use if an interface"
1172                  " is in memory.  Otherwise, set it to zero or leave"
1173                  " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176                  " addresses separated by commas.  Only use if an interface"
1177                  " is a port.  Otherwise, set it to zero or leave"
1178                  " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181                  " addresses separated by commas.  Only use if an interface"
1182                  " has an interrupt.  Otherwise, set it to zero or leave"
1183                  " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186                  " and each successive register used by the interface.  For"
1187                  " instance, if the start address is 0xca2 and the spacing"
1188                  " is 2, then the second address is at 0xca4.  Defaults"
1189                  " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1194                  " the 8-bit IPMI register has to be read from a larger"
1195                  " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198                  " IPMI register, in bits.  For instance, if the data"
1199                  " is read from a 32-bit word and the IPMI data is in"
1200                  " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203                  " the controller.  Normally this is 0x20, but can be"
1204                  " overridden by this parm.  This is an array indexed"
1205                  " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208                  " disabled(0).  Normally the IPMI driver auto-detects"
1209                  " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212                  " specified or found, default is 1.  Setting to 0"
1213                  " is useful for hot add of devices using hotmod.");
1214
1215
1216 static void std_irq_cleanup(struct smi_info *info)
1217 {
1218         if (info->si_type == SI_BT)
1219                 /* Disable the interrupt in the BT interface. */
1220                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221         free_irq(info->irq, info);
1222 }
1223
1224 static int std_irq_setup(struct smi_info *info)
1225 {
1226         int rv;
1227
1228         if (!info->irq)
1229                 return 0;
1230
1231         if (info->si_type == SI_BT) {
1232                 rv = request_irq(info->irq,
1233                                  si_bt_irq_handler,
1234                                  IRQF_SHARED | IRQF_DISABLED,
1235                                  DEVICE_NAME,
1236                                  info);
1237                 if (!rv)
1238                         /* Enable the interrupt in the BT interface. */
1239                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241         } else
1242                 rv = request_irq(info->irq,
1243                                  si_irq_handler,
1244                                  IRQF_SHARED | IRQF_DISABLED,
1245                                  DEVICE_NAME,
1246                                  info);
1247         if (rv) {
1248                 printk(KERN_WARNING
1249                        "ipmi_si: %s unable to claim interrupt %d,"
1250                        " running polled\n",
1251                        DEVICE_NAME, info->irq);
1252                 info->irq = 0;
1253         } else {
1254                 info->irq_cleanup = std_irq_cleanup;
1255                 printk("  Using irq %d\n", info->irq);
1256         }
1257
1258         return rv;
1259 }
1260
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262 {
1263         unsigned int addr = io->addr_data;
1264
1265         return inb(addr + (offset * io->regspacing));
1266 }
1267
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269                       unsigned char b)
1270 {
1271         unsigned int addr = io->addr_data;
1272
1273         outb(b, addr + (offset * io->regspacing));
1274 }
1275
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277 {
1278         unsigned int addr = io->addr_data;
1279
1280         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281 }
1282
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284                       unsigned char b)
1285 {
1286         unsigned int addr = io->addr_data;
1287
1288         outw(b << io->regshift, addr + (offset * io->regspacing));
1289 }
1290
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292 {
1293         unsigned int addr = io->addr_data;
1294
1295         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296 }
1297
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299                       unsigned char b)
1300 {
1301         unsigned int addr = io->addr_data;
1302
1303         outl(b << io->regshift, addr+(offset * io->regspacing));
1304 }
1305
1306 static void port_cleanup(struct smi_info *info)
1307 {
1308         unsigned int addr = info->io.addr_data;
1309         int          idx;
1310
1311         if (addr) {
1312                 for (idx = 0; idx < info->io_size; idx++)
1313                         release_region(addr + idx * info->io.regspacing,
1314                                        info->io.regsize);
1315         }
1316 }
1317
1318 static int port_setup(struct smi_info *info)
1319 {
1320         unsigned int addr = info->io.addr_data;
1321         int          idx;
1322
1323         if (!addr)
1324                 return -ENODEV;
1325
1326         info->io_cleanup = port_cleanup;
1327
1328         /*
1329          * Figure out the actual inb/inw/inl/etc routine to use based
1330          * upon the register size.
1331          */
1332         switch (info->io.regsize) {
1333         case 1:
1334                 info->io.inputb = port_inb;
1335                 info->io.outputb = port_outb;
1336                 break;
1337         case 2:
1338                 info->io.inputb = port_inw;
1339                 info->io.outputb = port_outw;
1340                 break;
1341         case 4:
1342                 info->io.inputb = port_inl;
1343                 info->io.outputb = port_outl;
1344                 break;
1345         default:
1346                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347                        info->io.regsize);
1348                 return -EINVAL;
1349         }
1350
1351         /*
1352          * Some BIOSes reserve disjoint I/O regions in their ACPI
1353          * tables.  This causes problems when trying to register the
1354          * entire I/O region.  Therefore we must register each I/O
1355          * port separately.
1356          */
1357         for (idx = 0; idx < info->io_size; idx++) {
1358                 if (request_region(addr + idx * info->io.regspacing,
1359                                    info->io.regsize, DEVICE_NAME) == NULL) {
1360                         /* Undo allocations */
1361                         while (idx--) {
1362                                 release_region(addr + idx * info->io.regspacing,
1363                                                info->io.regsize);
1364                         }
1365                         return -EIO;
1366                 }
1367         }
1368         return 0;
1369 }
1370
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372 {
1373         return readb((io->addr)+(offset * io->regspacing));
1374 }
1375
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377                      unsigned char b)
1378 {
1379         writeb(b, (io->addr)+(offset * io->regspacing));
1380 }
1381
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385                 & 0xff;
1386 }
1387
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389                      unsigned char b)
1390 {
1391         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392 }
1393
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397                 & 0xff;
1398 }
1399
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401                      unsigned char b)
1402 {
1403         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404 }
1405
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408 {
1409         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410                 & 0xff;
1411 }
1412
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414                      unsigned char b)
1415 {
1416         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417 }
1418 #endif
1419
1420 static void mem_cleanup(struct smi_info *info)
1421 {
1422         unsigned long addr = info->io.addr_data;
1423         int           mapsize;
1424
1425         if (info->io.addr) {
1426                 iounmap(info->io.addr);
1427
1428                 mapsize = ((info->io_size * info->io.regspacing)
1429                            - (info->io.regspacing - info->io.regsize));
1430
1431                 release_mem_region(addr, mapsize);
1432         }
1433 }
1434
1435 static int mem_setup(struct smi_info *info)
1436 {
1437         unsigned long addr = info->io.addr_data;
1438         int           mapsize;
1439
1440         if (!addr)
1441                 return -ENODEV;
1442
1443         info->io_cleanup = mem_cleanup;
1444
1445         /*
1446          * Figure out the actual readb/readw/readl/etc routine to use based
1447          * upon the register size.
1448          */
1449         switch (info->io.regsize) {
1450         case 1:
1451                 info->io.inputb = intf_mem_inb;
1452                 info->io.outputb = intf_mem_outb;
1453                 break;
1454         case 2:
1455                 info->io.inputb = intf_mem_inw;
1456                 info->io.outputb = intf_mem_outw;
1457                 break;
1458         case 4:
1459                 info->io.inputb = intf_mem_inl;
1460                 info->io.outputb = intf_mem_outl;
1461                 break;
1462 #ifdef readq
1463         case 8:
1464                 info->io.inputb = mem_inq;
1465                 info->io.outputb = mem_outq;
1466                 break;
1467 #endif
1468         default:
1469                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470                        info->io.regsize);
1471                 return -EINVAL;
1472         }
1473
1474         /*
1475          * Calculate the total amount of memory to claim.  This is an
1476          * unusual looking calculation, but it avoids claiming any
1477          * more memory than it has to.  It will claim everything
1478          * between the first address to the end of the last full
1479          * register.
1480          */
1481         mapsize = ((info->io_size * info->io.regspacing)
1482                    - (info->io.regspacing - info->io.regsize));
1483
1484         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485                 return -EIO;
1486
1487         info->io.addr = ioremap(addr, mapsize);
1488         if (info->io.addr == NULL) {
1489                 release_mem_region(addr, mapsize);
1490                 return -EIO;
1491         }
1492         return 0;
1493 }
1494
1495 /*
1496  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1497  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498  * Options are:
1499  *   rsp=<regspacing>
1500  *   rsi=<regsize>
1501  *   rsh=<regshift>
1502  *   irq=<irq>
1503  *   ipmb=<ipmb addr>
1504  */
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507         char *name;
1508         int  val;
1509 };
1510 static struct hotmod_vals hotmod_ops[] = {
1511         { "add",        HM_ADD },
1512         { "remove",     HM_REMOVE },
1513         { NULL }
1514 };
1515 static struct hotmod_vals hotmod_si[] = {
1516         { "kcs",        SI_KCS },
1517         { "smic",       SI_SMIC },
1518         { "bt",         SI_BT },
1519         { NULL }
1520 };
1521 static struct hotmod_vals hotmod_as[] = {
1522         { "mem",        IPMI_MEM_ADDR_SPACE },
1523         { "i/o",        IPMI_IO_ADDR_SPACE },
1524         { NULL }
1525 };
1526
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528 {
1529         char *s;
1530         int  i;
1531
1532         s = strchr(*curr, ',');
1533         if (!s) {
1534                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535                 return -EINVAL;
1536         }
1537         *s = '\0';
1538         s++;
1539         for (i = 0; hotmod_ops[i].name; i++) {
1540                 if (strcmp(*curr, v[i].name) == 0) {
1541                         *val = v[i].val;
1542                         *curr = s;
1543                         return 0;
1544                 }
1545         }
1546
1547         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548         return -EINVAL;
1549 }
1550
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552                                const char *name, int *val)
1553 {
1554         char *n;
1555
1556         if (strcmp(curr, name) == 0) {
1557                 if (!option) {
1558                         printk(KERN_WARNING PFX
1559                                "No option given for '%s'\n",
1560                                curr);
1561                         return -EINVAL;
1562                 }
1563                 *val = simple_strtoul(option, &n, 0);
1564                 if ((*n != '\0') || (*option == '\0')) {
1565                         printk(KERN_WARNING PFX
1566                                "Bad option given for '%s'\n",
1567                                curr);
1568                         return -EINVAL;
1569                 }
1570                 return 1;
1571         }
1572         return 0;
1573 }
1574
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1576 {
1577         char *str = kstrdup(val, GFP_KERNEL);
1578         int  rv;
1579         char *next, *curr, *s, *n, *o;
1580         enum hotmod_op op;
1581         enum si_type si_type;
1582         int  addr_space;
1583         unsigned long addr;
1584         int regspacing;
1585         int regsize;
1586         int regshift;
1587         int irq;
1588         int ipmb;
1589         int ival;
1590         int len;
1591         struct smi_info *info;
1592
1593         if (!str)
1594                 return -ENOMEM;
1595
1596         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1597         len = strlen(str);
1598         ival = len - 1;
1599         while ((ival >= 0) && isspace(str[ival])) {
1600                 str[ival] = '\0';
1601                 ival--;
1602         }
1603
1604         for (curr = str; curr; curr = next) {
1605                 regspacing = 1;
1606                 regsize = 1;
1607                 regshift = 0;
1608                 irq = 0;
1609                 ipmb = 0x20;
1610
1611                 next = strchr(curr, ':');
1612                 if (next) {
1613                         *next = '\0';
1614                         next++;
1615                 }
1616
1617                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618                 if (rv)
1619                         break;
1620                 op = ival;
1621
1622                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623                 if (rv)
1624                         break;
1625                 si_type = ival;
1626
1627                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628                 if (rv)
1629                         break;
1630
1631                 s = strchr(curr, ',');
1632                 if (s) {
1633                         *s = '\0';
1634                         s++;
1635                 }
1636                 addr = simple_strtoul(curr, &n, 0);
1637                 if ((*n != '\0') || (*curr == '\0')) {
1638                         printk(KERN_WARNING PFX "Invalid hotmod address"
1639                                " '%s'\n", curr);
1640                         break;
1641                 }
1642
1643                 while (s) {
1644                         curr = s;
1645                         s = strchr(curr, ',');
1646                         if (s) {
1647                                 *s = '\0';
1648                                 s++;
1649                         }
1650                         o = strchr(curr, '=');
1651                         if (o) {
1652                                 *o = '\0';
1653                                 o++;
1654                         }
1655                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656                         if (rv < 0)
1657                                 goto out;
1658                         else if (rv)
1659                                 continue;
1660                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661                         if (rv < 0)
1662                                 goto out;
1663                         else if (rv)
1664                                 continue;
1665                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666                         if (rv < 0)
1667                                 goto out;
1668                         else if (rv)
1669                                 continue;
1670                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671                         if (rv < 0)
1672                                 goto out;
1673                         else if (rv)
1674                                 continue;
1675                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676                         if (rv < 0)
1677                                 goto out;
1678                         else if (rv)
1679                                 continue;
1680
1681                         rv = -EINVAL;
1682                         printk(KERN_WARNING PFX
1683                                "Invalid hotmod option '%s'\n",
1684                                curr);
1685                         goto out;
1686                 }
1687
1688                 if (op == HM_ADD) {
1689                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1690                         if (!info) {
1691                                 rv = -ENOMEM;
1692                                 goto out;
1693                         }
1694
1695                         info->addr_source = "hotmod";
1696                         info->si_type = si_type;
1697                         info->io.addr_data = addr;
1698                         info->io.addr_type = addr_space;
1699                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1700                                 info->io_setup = mem_setup;
1701                         else
1702                                 info->io_setup = port_setup;
1703
1704                         info->io.addr = NULL;
1705                         info->io.regspacing = regspacing;
1706                         if (!info->io.regspacing)
1707                                 info->io.regspacing = DEFAULT_REGSPACING;
1708                         info->io.regsize = regsize;
1709                         if (!info->io.regsize)
1710                                 info->io.regsize = DEFAULT_REGSPACING;
1711                         info->io.regshift = regshift;
1712                         info->irq = irq;
1713                         if (info->irq)
1714                                 info->irq_setup = std_irq_setup;
1715                         info->slave_addr = ipmb;
1716
1717                         try_smi_init(info);
1718                 } else {
1719                         /* remove */
1720                         struct smi_info *e, *tmp_e;
1721
1722                         mutex_lock(&smi_infos_lock);
1723                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724                                 if (e->io.addr_type != addr_space)
1725                                         continue;
1726                                 if (e->si_type != si_type)
1727                                         continue;
1728                                 if (e->io.addr_data == addr)
1729                                         cleanup_one_si(e);
1730                         }
1731                         mutex_unlock(&smi_infos_lock);
1732                 }
1733         }
1734         rv = len;
1735  out:
1736         kfree(str);
1737         return rv;
1738 }
1739
1740 static __devinit void hardcode_find_bmc(void)
1741 {
1742         int             i;
1743         struct smi_info *info;
1744
1745         for (i = 0; i < SI_MAX_PARMS; i++) {
1746                 if (!ports[i] && !addrs[i])
1747                         continue;
1748
1749                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1750                 if (!info)
1751                         return;
1752
1753                 info->addr_source = "hardcoded";
1754
1755                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756                         info->si_type = SI_KCS;
1757                 } else if (strcmp(si_type[i], "smic") == 0) {
1758                         info->si_type = SI_SMIC;
1759                 } else if (strcmp(si_type[i], "bt") == 0) {
1760                         info->si_type = SI_BT;
1761                 } else {
1762                         printk(KERN_WARNING
1763                                "ipmi_si: Interface type specified "
1764                                "for interface %d, was invalid: %s\n",
1765                                i, si_type[i]);
1766                         kfree(info);
1767                         continue;
1768                 }
1769
1770                 if (ports[i]) {
1771                         /* An I/O port */
1772                         info->io_setup = port_setup;
1773                         info->io.addr_data = ports[i];
1774                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775                 } else if (addrs[i]) {
1776                         /* A memory port */
1777                         info->io_setup = mem_setup;
1778                         info->io.addr_data = addrs[i];
1779                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780                 } else {
1781                         printk(KERN_WARNING
1782                                "ipmi_si: Interface type specified "
1783                                "for interface %d, "
1784                                "but port and address were not set or "
1785                                "set to zero.\n", i);
1786                         kfree(info);
1787                         continue;
1788                 }
1789
1790                 info->io.addr = NULL;
1791                 info->io.regspacing = regspacings[i];
1792                 if (!info->io.regspacing)
1793                         info->io.regspacing = DEFAULT_REGSPACING;
1794                 info->io.regsize = regsizes[i];
1795                 if (!info->io.regsize)
1796                         info->io.regsize = DEFAULT_REGSPACING;
1797                 info->io.regshift = regshifts[i];
1798                 info->irq = irqs[i];
1799                 if (info->irq)
1800                         info->irq_setup = std_irq_setup;
1801
1802                 try_smi_init(info);
1803         }
1804 }
1805
1806 #ifdef CONFIG_ACPI
1807
1808 #include <linux/acpi.h>
1809
1810 /*
1811  * Once we get an ACPI failure, we don't try any more, because we go
1812  * through the tables sequentially.  Once we don't find a table, there
1813  * are no more.
1814  */
1815 static int acpi_failure;
1816
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1819 {
1820         struct smi_info *smi_info = context;
1821         unsigned long   flags;
1822 #ifdef DEBUG_TIMING
1823         struct timeval t;
1824 #endif
1825
1826         spin_lock_irqsave(&(smi_info->si_lock), flags);
1827
1828         smi_inc_stat(smi_info, interrupts);
1829
1830 #ifdef DEBUG_TIMING
1831         do_gettimeofday(&t);
1832         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834         smi_event_handler(smi_info, 0);
1835         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836
1837         return ACPI_INTERRUPT_HANDLED;
1838 }
1839
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841 {
1842         if (!info->irq)
1843                 return;
1844
1845         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846 }
1847
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1849 {
1850         acpi_status status;
1851
1852         if (!info->irq)
1853                 return 0;
1854
1855         /* FIXME - is level triggered right? */
1856         status = acpi_install_gpe_handler(NULL,
1857                                           info->irq,
1858                                           ACPI_GPE_LEVEL_TRIGGERED,
1859                                           &ipmi_acpi_gpe,
1860                                           info);
1861         if (status != AE_OK) {
1862                 printk(KERN_WARNING
1863                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1864                        " running polled\n",
1865                        DEVICE_NAME, info->irq);
1866                 info->irq = 0;
1867                 return -EINVAL;
1868         } else {
1869                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1870                 printk("  Using ACPI GPE %d\n", info->irq);
1871                 return 0;
1872         }
1873 }
1874
1875 /*
1876  * Defined at
1877  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878  * Docs/TechPapers/IA64/hpspmi.pdf
1879  */
1880 struct SPMITable {
1881         s8      Signature[4];
1882         u32     Length;
1883         u8      Revision;
1884         u8      Checksum;
1885         s8      OEMID[6];
1886         s8      OEMTableID[8];
1887         s8      OEMRevision[4];
1888         s8      CreatorID[4];
1889         s8      CreatorRevision[4];
1890         u8      InterfaceType;
1891         u8      IPMIlegacy;
1892         s16     SpecificationRevision;
1893
1894         /*
1895          * Bit 0 - SCI interrupt supported
1896          * Bit 1 - I/O APIC/SAPIC
1897          */
1898         u8      InterruptType;
1899
1900         /*
1901          * If bit 0 of InterruptType is set, then this is the SCI
1902          * interrupt in the GPEx_STS register.
1903          */
1904         u8      GPE;
1905
1906         s16     Reserved;
1907
1908         /*
1909          * If bit 1 of InterruptType is set, then this is the I/O
1910          * APIC/SAPIC interrupt.
1911          */
1912         u32     GlobalSystemInterrupt;
1913
1914         /* The actual register address. */
1915         struct acpi_generic_address addr;
1916
1917         u8      UID[4];
1918
1919         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1920 };
1921
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1923 {
1924         struct smi_info  *info;
1925         u8               addr_space;
1926
1927         if (spmi->IPMIlegacy != 1) {
1928             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929             return -ENODEV;
1930         }
1931
1932         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933                 addr_space = IPMI_MEM_ADDR_SPACE;
1934         else
1935                 addr_space = IPMI_IO_ADDR_SPACE;
1936
1937         info = kzalloc(sizeof(*info), GFP_KERNEL);
1938         if (!info) {
1939                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940                 return -ENOMEM;
1941         }
1942
1943         info->addr_source = "ACPI";
1944
1945         /* Figure out the interface type. */
1946         switch (spmi->InterfaceType) {
1947         case 1: /* KCS */
1948                 info->si_type = SI_KCS;
1949                 break;
1950         case 2: /* SMIC */
1951                 info->si_type = SI_SMIC;
1952                 break;
1953         case 3: /* BT */
1954                 info->si_type = SI_BT;
1955                 break;
1956         default:
1957                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958                         spmi->InterfaceType);
1959                 kfree(info);
1960                 return -EIO;
1961         }
1962
1963         if (spmi->InterruptType & 1) {
1964                 /* We've got a GPE interrupt. */
1965                 info->irq = spmi->GPE;
1966                 info->irq_setup = acpi_gpe_irq_setup;
1967         } else if (spmi->InterruptType & 2) {
1968                 /* We've got an APIC/SAPIC interrupt. */
1969                 info->irq = spmi->GlobalSystemInterrupt;
1970                 info->irq_setup = std_irq_setup;
1971         } else {
1972                 /* Use the default interrupt setting. */
1973                 info->irq = 0;
1974                 info->irq_setup = NULL;
1975         }
1976
1977         if (spmi->addr.bit_width) {
1978                 /* A (hopefully) properly formed register bit width. */
1979                 info->io.regspacing = spmi->addr.bit_width / 8;
1980         } else {
1981                 info->io.regspacing = DEFAULT_REGSPACING;
1982         }
1983         info->io.regsize = info->io.regspacing;
1984         info->io.regshift = spmi->addr.bit_offset;
1985
1986         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987                 info->io_setup = mem_setup;
1988                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990                 info->io_setup = port_setup;
1991                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992         } else {
1993                 kfree(info);
1994                 printk(KERN_WARNING
1995                        "ipmi_si: Unknown ACPI I/O Address type\n");
1996                 return -EIO;
1997         }
1998         info->io.addr_data = spmi->addr.address;
1999
2000         try_smi_init(info);
2001
2002         return 0;
2003 }
2004
2005 static __devinit void acpi_find_bmc(void)
2006 {
2007         acpi_status      status;
2008         struct SPMITable *spmi;
2009         int              i;
2010
2011         if (acpi_disabled)
2012                 return;
2013
2014         if (acpi_failure)
2015                 return;
2016
2017         for (i = 0; ; i++) {
2018                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019                                         (struct acpi_table_header **)&spmi);
2020                 if (status != AE_OK)
2021                         return;
2022
2023                 try_init_acpi(spmi);
2024         }
2025 }
2026 #endif
2027
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030         u8              type;
2031         u8              addr_space;
2032         unsigned long   base_addr;
2033         u8              irq;
2034         u8              offset;
2035         u8              slave_addr;
2036 };
2037
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039                                 struct dmi_ipmi_data *dmi)
2040 {
2041         const u8        *data = (const u8 *)dm;
2042         unsigned long   base_addr;
2043         u8              reg_spacing;
2044         u8              len = dm->length;
2045
2046         dmi->type = data[4];
2047
2048         memcpy(&base_addr, data+8, sizeof(unsigned long));
2049         if (len >= 0x11) {
2050                 if (base_addr & 1) {
2051                         /* I/O */
2052                         base_addr &= 0xFFFE;
2053                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054                 } else
2055                         /* Memory */
2056                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057
2058                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2059                    is odd. */
2060                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061
2062                 dmi->irq = data[0x11];
2063
2064                 /* The top two bits of byte 0x10 hold the register spacing. */
2065                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2066                 switch (reg_spacing) {
2067                 case 0x00: /* Byte boundaries */
2068                     dmi->offset = 1;
2069                     break;
2070                 case 0x01: /* 32-bit boundaries */
2071                     dmi->offset = 4;
2072                     break;
2073                 case 0x02: /* 16-byte boundaries */
2074                     dmi->offset = 16;
2075                     break;
2076                 default:
2077                     /* Some other interface, just ignore it. */
2078                     return -EIO;
2079                 }
2080         } else {
2081                 /* Old DMI spec. */
2082                 /*
2083                  * Note that technically, the lower bit of the base
2084                  * address should be 1 if the address is I/O and 0 if
2085                  * the address is in memory.  So many systems get that
2086                  * wrong (and all that I have seen are I/O) so we just
2087                  * ignore that bit and assume I/O.  Systems that use
2088                  * memory should use the newer spec, anyway.
2089                  */
2090                 dmi->base_addr = base_addr & 0xfffe;
2091                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092                 dmi->offset = 1;
2093         }
2094
2095         dmi->slave_addr = data[6];
2096
2097         return 0;
2098 }
2099
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101 {
2102         struct smi_info *info;
2103
2104         info = kzalloc(sizeof(*info), GFP_KERNEL);
2105         if (!info) {
2106                 printk(KERN_ERR
2107                        "ipmi_si: Could not allocate SI data\n");
2108                 return;
2109         }
2110
2111         info->addr_source = "SMBIOS";
2112
2113         switch (ipmi_data->type) {
2114         case 0x01: /* KCS */
2115                 info->si_type = SI_KCS;
2116                 break;
2117         case 0x02: /* SMIC */
2118                 info->si_type = SI_SMIC;
2119                 break;
2120         case 0x03: /* BT */
2121                 info->si_type = SI_BT;
2122                 break;
2123         default:
2124                 kfree(info);
2125                 return;
2126         }
2127
2128         switch (ipmi_data->addr_space) {
2129         case IPMI_MEM_ADDR_SPACE:
2130                 info->io_setup = mem_setup;
2131                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132                 break;
2133
2134         case IPMI_IO_ADDR_SPACE:
2135                 info->io_setup = port_setup;
2136                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137                 break;
2138
2139         default:
2140                 kfree(info);
2141                 printk(KERN_WARNING
2142                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143                        ipmi_data->addr_space);
2144                 return;
2145         }
2146         info->io.addr_data = ipmi_data->base_addr;
2147
2148         info->io.regspacing = ipmi_data->offset;
2149         if (!info->io.regspacing)
2150                 info->io.regspacing = DEFAULT_REGSPACING;
2151         info->io.regsize = DEFAULT_REGSPACING;
2152         info->io.regshift = 0;
2153
2154         info->slave_addr = ipmi_data->slave_addr;
2155
2156         info->irq = ipmi_data->irq;
2157         if (info->irq)
2158                 info->irq_setup = std_irq_setup;
2159
2160         try_smi_init(info);
2161 }
2162
2163 static void __devinit dmi_find_bmc(void)
2164 {
2165         const struct dmi_device *dev = NULL;
2166         struct dmi_ipmi_data data;
2167         int                  rv;
2168
2169         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170                 memset(&data, 0, sizeof(data));
2171                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172                                 &data);
2173                 if (!rv)
2174                         try_init_dmi(&data);
2175         }
2176 }
2177 #endif /* CONFIG_DMI */
2178
2179 #ifdef CONFIG_PCI
2180
2181 #define PCI_ERMC_CLASSCODE              0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2187
2188 #define PCI_HP_VENDOR_ID    0x103C
2189 #define PCI_MMC_DEVICE_ID   0x121A
2190 #define PCI_MMC_ADDR_CW     0x10
2191
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2193 {
2194         struct pci_dev *pdev = info->addr_source_data;
2195
2196         pci_disable_device(pdev);
2197 }
2198
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200                                     const struct pci_device_id *ent)
2201 {
2202         int rv;
2203         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204         struct smi_info *info;
2205         int first_reg_offset = 0;
2206
2207         info = kzalloc(sizeof(*info), GFP_KERNEL);
2208         if (!info)
2209                 return -ENOMEM;
2210
2211         info->addr_source = "PCI";
2212
2213         switch (class_type) {
2214         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215                 info->si_type = SI_SMIC;
2216                 break;
2217
2218         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219                 info->si_type = SI_KCS;
2220                 break;
2221
2222         case PCI_ERMC_CLASSCODE_TYPE_BT:
2223                 info->si_type = SI_BT;
2224                 break;
2225
2226         default:
2227                 kfree(info);
2228                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229                        pci_name(pdev), class_type);
2230                 return -ENOMEM;
2231         }
2232
2233         rv = pci_enable_device(pdev);
2234         if (rv) {
2235                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236                        pci_name(pdev));
2237                 kfree(info);
2238                 return rv;
2239         }
2240
2241         info->addr_source_cleanup = ipmi_pci_cleanup;
2242         info->addr_source_data = pdev;
2243
2244         if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245                 first_reg_offset = 1;
2246
2247         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248                 info->io_setup = port_setup;
2249                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250         } else {
2251                 info->io_setup = mem_setup;
2252                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253         }
2254         info->io.addr_data = pci_resource_start(pdev, 0);
2255
2256         info->io.regspacing = DEFAULT_REGSPACING;
2257         info->io.regsize = DEFAULT_REGSPACING;
2258         info->io.regshift = 0;
2259
2260         info->irq = pdev->irq;
2261         if (info->irq)
2262                 info->irq_setup = std_irq_setup;
2263
2264         info->dev = &pdev->dev;
2265         pci_set_drvdata(pdev, info);
2266
2267         return try_smi_init(info);
2268 }
2269
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271 {
2272         struct smi_info *info = pci_get_drvdata(pdev);
2273         cleanup_one_si(info);
2274 }
2275
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278 {
2279         return 0;
2280 }
2281
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2283 {
2284         return 0;
2285 }
2286 #endif
2287
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291         { 0, }
2292 };
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294
2295 static struct pci_driver ipmi_pci_driver = {
2296         .name =         DEVICE_NAME,
2297         .id_table =     ipmi_pci_devices,
2298         .probe =        ipmi_pci_probe,
2299         .remove =       __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301         .suspend =      ipmi_pci_suspend,
2302         .resume =       ipmi_pci_resume,
2303 #endif
2304 };
2305 #endif /* CONFIG_PCI */
2306
2307
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310                          const struct of_device_id *match)
2311 {
2312         struct smi_info *info;
2313         struct resource resource;
2314         const int *regsize, *regspacing, *regshift;
2315         struct device_node *np = dev->node;
2316         int ret;
2317         int proplen;
2318
2319         dev_info(&dev->dev, PFX "probing via device tree\n");
2320
2321         ret = of_address_to_resource(np, 0, &resource);
2322         if (ret) {
2323                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324                 return ret;
2325         }
2326
2327         regsize = of_get_property(np, "reg-size", &proplen);
2328         if (regsize && proplen != 4) {
2329                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330                 return -EINVAL;
2331         }
2332
2333         regspacing = of_get_property(np, "reg-spacing", &proplen);
2334         if (regspacing && proplen != 4) {
2335                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336                 return -EINVAL;
2337         }
2338
2339         regshift = of_get_property(np, "reg-shift", &proplen);
2340         if (regshift && proplen != 4) {
2341                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342                 return -EINVAL;
2343         }
2344
2345         info = kzalloc(sizeof(*info), GFP_KERNEL);
2346
2347         if (!info) {
2348                 dev_err(&dev->dev,
2349                         PFX "could not allocate memory for OF probe\n");
2350                 return -ENOMEM;
2351         }
2352
2353         info->si_type           = (enum si_type) match->data;
2354         info->addr_source       = "device-tree";
2355         info->irq_setup         = std_irq_setup;
2356
2357         if (resource.flags & IORESOURCE_IO) {
2358                 info->io_setup          = port_setup;
2359                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2360         } else {
2361                 info->io_setup          = mem_setup;
2362                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2363         }
2364
2365         info->io.addr_data      = resource.start;
2366
2367         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2368         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369         info->io.regshift       = regshift ? *regshift : 0;
2370
2371         info->irq               = irq_of_parse_and_map(dev->node, 0);
2372         info->dev               = &dev->dev;
2373
2374         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2376                 info->irq);
2377
2378         dev_set_drvdata(&dev->dev, info);
2379
2380         return try_smi_init(info);
2381 }
2382
2383 static int __devexit ipmi_of_remove(struct of_device *dev)
2384 {
2385         cleanup_one_si(dev_get_drvdata(&dev->dev));
2386         return 0;
2387 }
2388
2389 static struct of_device_id ipmi_match[] =
2390 {
2391         { .type = "ipmi", .compatible = "ipmi-kcs",
2392           .data = (void *)(unsigned long) SI_KCS },
2393         { .type = "ipmi", .compatible = "ipmi-smic",
2394           .data = (void *)(unsigned long) SI_SMIC },
2395         { .type = "ipmi", .compatible = "ipmi-bt",
2396           .data = (void *)(unsigned long) SI_BT },
2397         {},
2398 };
2399
2400 static struct of_platform_driver ipmi_of_platform_driver = {
2401         .name           = "ipmi",
2402         .match_table    = ipmi_match,
2403         .probe          = ipmi_of_probe,
2404         .remove         = __devexit_p(ipmi_of_remove),
2405 };
2406 #endif /* CONFIG_PPC_OF */
2407
2408 static int wait_for_msg_done(struct smi_info *smi_info)
2409 {
2410         enum si_sm_result     smi_result;
2411
2412         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2413         for (;;) {
2414                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2415                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2416                         schedule_timeout_uninterruptible(1);
2417                         smi_result = smi_info->handlers->event(
2418                                 smi_info->si_sm, 100);
2419                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2420                         smi_result = smi_info->handlers->event(
2421                                 smi_info->si_sm, 0);
2422                 } else
2423                         break;
2424         }
2425         if (smi_result == SI_SM_HOSED)
2426                 /*
2427                  * We couldn't get the state machine to run, so whatever's at
2428                  * the port is probably not an IPMI SMI interface.
2429                  */
2430                 return -ENODEV;
2431
2432         return 0;
2433 }
2434
2435 static int try_get_dev_id(struct smi_info *smi_info)
2436 {
2437         unsigned char         msg[2];
2438         unsigned char         *resp;
2439         unsigned long         resp_len;
2440         int                   rv = 0;
2441
2442         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2443         if (!resp)
2444                 return -ENOMEM;
2445
2446         /*
2447          * Do a Get Device ID command, since it comes back with some
2448          * useful info.
2449          */
2450         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2451         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2452         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2453
2454         rv = wait_for_msg_done(smi_info);
2455         if (rv)
2456                 goto out;
2457
2458         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2459                                                   resp, IPMI_MAX_MSG_LENGTH);
2460
2461         /* Check and record info from the get device id, in case we need it. */
2462         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2463
2464  out:
2465         kfree(resp);
2466         return rv;
2467 }
2468
2469 static int try_enable_event_buffer(struct smi_info *smi_info)
2470 {
2471         unsigned char         msg[3];
2472         unsigned char         *resp;
2473         unsigned long         resp_len;
2474         int                   rv = 0;
2475
2476         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2477         if (!resp)
2478                 return -ENOMEM;
2479
2480         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2481         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2482         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2483
2484         rv = wait_for_msg_done(smi_info);
2485         if (rv) {
2486                 printk(KERN_WARNING
2487                        "ipmi_si: Error getting response from get global,"
2488                        " enables command, the event buffer is not"
2489                        " enabled.\n");
2490                 goto out;
2491         }
2492
2493         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2494                                                   resp, IPMI_MAX_MSG_LENGTH);
2495
2496         if (resp_len < 4 ||
2497                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2498                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2499                         resp[2] != 0) {
2500                 printk(KERN_WARNING
2501                        "ipmi_si: Invalid return from get global"
2502                        " enables command, cannot enable the event"
2503                        " buffer.\n");
2504                 rv = -EINVAL;
2505                 goto out;
2506         }
2507
2508         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2509                 /* buffer is already enabled, nothing to do. */
2510                 goto out;
2511
2512         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2513         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2514         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2515         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2516
2517         rv = wait_for_msg_done(smi_info);
2518         if (rv) {
2519                 printk(KERN_WARNING
2520                        "ipmi_si: Error getting response from set global,"
2521                        " enables command, the event buffer is not"
2522                        " enabled.\n");
2523                 goto out;
2524         }
2525
2526         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2527                                                   resp, IPMI_MAX_MSG_LENGTH);
2528
2529         if (resp_len < 3 ||
2530                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2531                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2532                 printk(KERN_WARNING
2533                        "ipmi_si: Invalid return from get global,"
2534                        "enables command, not enable the event"
2535                        " buffer.\n");
2536                 rv = -EINVAL;
2537                 goto out;
2538         }
2539
2540         if (resp[2] != 0)
2541                 /*
2542                  * An error when setting the event buffer bit means
2543                  * that the event buffer is not supported.
2544                  */
2545                 rv = -ENOENT;
2546  out:
2547         kfree(resp);
2548         return rv;
2549 }
2550
2551 static int type_file_read_proc(char *page, char **start, off_t off,
2552                                int count, int *eof, void *data)
2553 {
2554         struct smi_info *smi = data;
2555
2556         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2557 }
2558
2559 static int stat_file_read_proc(char *page, char **start, off_t off,
2560                                int count, int *eof, void *data)
2561 {
2562         char            *out = (char *) page;
2563         struct smi_info *smi = data;
2564
2565         out += sprintf(out, "interrupts_enabled:    %d\n",
2566                        smi->irq && !smi->interrupt_disabled);
2567         out += sprintf(out, "short_timeouts:        %u\n",
2568                        smi_get_stat(smi, short_timeouts));
2569         out += sprintf(out, "long_timeouts:         %u\n",
2570                        smi_get_stat(smi, long_timeouts));
2571         out += sprintf(out, "idles:                 %u\n",
2572                        smi_get_stat(smi, idles));
2573         out += sprintf(out, "interrupts:            %u\n",
2574                        smi_get_stat(smi, interrupts));
2575         out += sprintf(out, "attentions:            %u\n",
2576                        smi_get_stat(smi, attentions));
2577         out += sprintf(out, "flag_fetches:          %u\n",
2578                        smi_get_stat(smi, flag_fetches));
2579         out += sprintf(out, "hosed_count:           %u\n",
2580                        smi_get_stat(smi, hosed_count));
2581         out += sprintf(out, "complete_transactions: %u\n",
2582                        smi_get_stat(smi, complete_transactions));
2583         out += sprintf(out, "events:                %u\n",
2584                        smi_get_stat(smi, events));
2585         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2586                        smi_get_stat(smi, watchdog_pretimeouts));
2587         out += sprintf(out, "incoming_messages:     %u\n",
2588                        smi_get_stat(smi, incoming_messages));
2589
2590         return out - page;
2591 }
2592
2593 static int param_read_proc(char *page, char **start, off_t off,
2594                            int count, int *eof, void *data)
2595 {
2596         struct smi_info *smi = data;
2597
2598         return sprintf(page,
2599                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2600                        si_to_str[smi->si_type],
2601                        addr_space_to_str[smi->io.addr_type],
2602                        smi->io.addr_data,
2603                        smi->io.regspacing,
2604                        smi->io.regsize,
2605                        smi->io.regshift,
2606                        smi->irq,
2607                        smi->slave_addr);
2608 }
2609
2610 /*
2611  * oem_data_avail_to_receive_msg_avail
2612  * @info - smi_info structure with msg_flags set
2613  *
2614  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2615  * Returns 1 indicating need to re-run handle_flags().
2616  */
2617 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2618 {
2619         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2620                                RECEIVE_MSG_AVAIL);
2621         return 1;
2622 }
2623
2624 /*
2625  * setup_dell_poweredge_oem_data_handler
2626  * @info - smi_info.device_id must be populated
2627  *
2628  * Systems that match, but have firmware version < 1.40 may assert
2629  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2630  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2631  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2632  * as RECEIVE_MSG_AVAIL instead.
2633  *
2634  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2635  * assert the OEM[012] bits, and if it did, the driver would have to
2636  * change to handle that properly, we don't actually check for the
2637  * firmware version.
2638  * Device ID = 0x20                BMC on PowerEdge 8G servers
2639  * Device Revision = 0x80
2640  * Firmware Revision1 = 0x01       BMC version 1.40
2641  * Firmware Revision2 = 0x40       BCD encoded
2642  * IPMI Version = 0x51             IPMI 1.5
2643  * Manufacturer ID = A2 02 00      Dell IANA
2644  *
2645  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2646  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2647  *
2648  */
2649 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2650 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2651 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2652 #define DELL_IANA_MFR_ID 0x0002a2
2653 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2654 {
2655         struct ipmi_device_id *id = &smi_info->device_id;
2656         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2657                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2658                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2659                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2660                         smi_info->oem_data_avail_handler =
2661                                 oem_data_avail_to_receive_msg_avail;
2662                 } else if (ipmi_version_major(id) < 1 ||
2663                            (ipmi_version_major(id) == 1 &&
2664                             ipmi_version_minor(id) < 5)) {
2665                         smi_info->oem_data_avail_handler =
2666                                 oem_data_avail_to_receive_msg_avail;
2667                 }
2668         }
2669 }
2670
2671 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2672 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2673 {
2674         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2675
2676         /* Make it a reponse */
2677         msg->rsp[0] = msg->data[0] | 4;
2678         msg->rsp[1] = msg->data[1];
2679         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2680         msg->rsp_size = 3;
2681         smi_info->curr_msg = NULL;
2682         deliver_recv_msg(smi_info, msg);
2683 }
2684
2685 /*
2686  * dell_poweredge_bt_xaction_handler
2687  * @info - smi_info.device_id must be populated
2688  *
2689  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2690  * not respond to a Get SDR command if the length of the data
2691  * requested is exactly 0x3A, which leads to command timeouts and no
2692  * data returned.  This intercepts such commands, and causes userspace
2693  * callers to try again with a different-sized buffer, which succeeds.
2694  */
2695
2696 #define STORAGE_NETFN 0x0A
2697 #define STORAGE_CMD_GET_SDR 0x23
2698 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2699                                              unsigned long unused,
2700                                              void *in)
2701 {
2702         struct smi_info *smi_info = in;
2703         unsigned char *data = smi_info->curr_msg->data;
2704         unsigned int size   = smi_info->curr_msg->data_size;
2705         if (size >= 8 &&
2706             (data[0]>>2) == STORAGE_NETFN &&
2707             data[1] == STORAGE_CMD_GET_SDR &&
2708             data[7] == 0x3A) {
2709                 return_hosed_msg_badsize(smi_info);
2710                 return NOTIFY_STOP;
2711         }
2712         return NOTIFY_DONE;
2713 }
2714
2715 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2716         .notifier_call  = dell_poweredge_bt_xaction_handler,
2717 };
2718
2719 /*
2720  * setup_dell_poweredge_bt_xaction_handler
2721  * @info - smi_info.device_id must be filled in already
2722  *
2723  * Fills in smi_info.device_id.start_transaction_pre_hook
2724  * when we know what function to use there.
2725  */
2726 static void
2727 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2728 {
2729         struct ipmi_device_id *id = &smi_info->device_id;
2730         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2731             smi_info->si_type == SI_BT)
2732                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2733 }
2734
2735 /*
2736  * setup_oem_data_handler
2737  * @info - smi_info.device_id must be filled in already
2738  *
2739  * Fills in smi_info.device_id.oem_data_available_handler
2740  * when we know what function to use there.
2741  */
2742
2743 static void setup_oem_data_handler(struct smi_info *smi_info)
2744 {
2745         setup_dell_poweredge_oem_data_handler(smi_info);
2746 }
2747
2748 static void setup_xaction_handlers(struct smi_info *smi_info)
2749 {
2750         setup_dell_poweredge_bt_xaction_handler(smi_info);
2751 }
2752
2753 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2754 {
2755         if (smi_info->intf) {
2756                 /*
2757                  * The timer and thread are only running if the
2758                  * interface has been started up and registered.
2759                  */
2760                 if (smi_info->thread != NULL)
2761                         kthread_stop(smi_info->thread);
2762                 del_timer_sync(&smi_info->si_timer);
2763         }
2764 }
2765
2766 static __devinitdata struct ipmi_default_vals
2767 {
2768         int type;
2769         int port;
2770 } ipmi_defaults[] =
2771 {
2772         { .type = SI_KCS, .port = 0xca2 },
2773         { .type = SI_SMIC, .port = 0xca9 },
2774         { .type = SI_BT, .port = 0xe4 },
2775         { .port = 0 }
2776 };
2777
2778 static __devinit void default_find_bmc(void)
2779 {
2780         struct smi_info *info;
2781         int             i;
2782
2783         for (i = 0; ; i++) {
2784                 if (!ipmi_defaults[i].port)
2785                         break;
2786 #ifdef CONFIG_PPC
2787                 if (check_legacy_ioport(ipmi_defaults[i].port))
2788                         continue;
2789 #endif
2790                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2791                 if (!info)
2792                         return;
2793
2794                 info->addr_source = NULL;
2795
2796                 info->si_type = ipmi_defaults[i].type;
2797                 info->io_setup = port_setup;
2798                 info->io.addr_data = ipmi_defaults[i].port;
2799                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2800
2801                 info->io.addr = NULL;
2802                 info->io.regspacing = DEFAULT_REGSPACING;
2803                 info->io.regsize = DEFAULT_REGSPACING;
2804                 info->io.regshift = 0;
2805
2806                 if (try_smi_init(info) == 0) {
2807                         /* Found one... */
2808                         printk(KERN_INFO "ipmi_si: Found default %s state"
2809                                " machine at %s address 0x%lx\n",
2810                                si_to_str[info->si_type],
2811                                addr_space_to_str[info->io.addr_type],
2812                                info->io.addr_data);
2813                         return;
2814                 }
2815         }
2816 }
2817
2818 static int is_new_interface(struct smi_info *info)
2819 {
2820         struct smi_info *e;
2821
2822         list_for_each_entry(e, &smi_infos, link) {
2823                 if (e->io.addr_type != info->io.addr_type)
2824                         continue;
2825                 if (e->io.addr_data == info->io.addr_data)
2826                         return 0;
2827         }
2828
2829         return 1;
2830 }
2831
2832 static int try_smi_init(struct smi_info *new_smi)
2833 {
2834         int rv;
2835         int i;
2836
2837         if (new_smi->addr_source) {
2838                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2839                        " machine at %s address 0x%lx, slave address 0x%x,"
2840                        " irq %d\n",
2841                        new_smi->addr_source,
2842                        si_to_str[new_smi->si_type],
2843                        addr_space_to_str[new_smi->io.addr_type],
2844                        new_smi->io.addr_data,
2845                        new_smi->slave_addr, new_smi->irq);
2846         }
2847
2848         mutex_lock(&smi_infos_lock);
2849         if (!is_new_interface(new_smi)) {
2850                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2851                 rv = -EBUSY;
2852                 goto out_err;
2853         }
2854
2855         /* So we know not to free it unless we have allocated one. */
2856         new_smi->intf = NULL;
2857         new_smi->si_sm = NULL;
2858         new_smi->handlers = NULL;
2859
2860         switch (new_smi->si_type) {
2861         case SI_KCS:
2862                 new_smi->handlers = &kcs_smi_handlers;
2863                 break;
2864
2865         case SI_SMIC:
2866                 new_smi->handlers = &smic_smi_handlers;
2867                 break;
2868
2869         case SI_BT:
2870                 new_smi->handlers = &bt_smi_handlers;
2871                 break;
2872
2873         default:
2874                 /* No support for anything else yet. */
2875                 rv = -EIO;
2876                 goto out_err;
2877         }
2878
2879         /* Allocate the state machine's data and initialize it. */
2880         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2881         if (!new_smi->si_sm) {
2882                 printk(KERN_ERR "Could not allocate state machine memory\n");
2883                 rv = -ENOMEM;
2884                 goto out_err;
2885         }
2886         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2887                                                         &new_smi->io);
2888
2889         /* Now that we know the I/O size, we can set up the I/O. */
2890         rv = new_smi->io_setup(new_smi);
2891         if (rv) {
2892                 printk(KERN_ERR "Could not set up I/O space\n");
2893                 goto out_err;
2894         }
2895
2896         spin_lock_init(&(new_smi->si_lock));
2897         spin_lock_init(&(new_smi->msg_lock));
2898
2899         /* Do low-level detection first. */
2900         if (new_smi->handlers->detect(new_smi->si_sm)) {
2901                 if (new_smi->addr_source)
2902                         printk(KERN_INFO "ipmi_si: Interface detection"
2903                                " failed\n");
2904                 rv = -ENODEV;
2905                 goto out_err;
2906         }
2907
2908         /*
2909          * Attempt a get device id command.  If it fails, we probably
2910          * don't have a BMC here.
2911          */
2912         rv = try_get_dev_id(new_smi);
2913         if (rv) {
2914                 if (new_smi->addr_source)
2915                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2916                                " at this location\n");
2917                 goto out_err;
2918         }
2919
2920         setup_oem_data_handler(new_smi);
2921         setup_xaction_handlers(new_smi);
2922
2923         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2924         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2925         new_smi->curr_msg = NULL;
2926         atomic_set(&new_smi->req_events, 0);
2927         new_smi->run_to_completion = 0;
2928         for (i = 0; i < SI_NUM_STATS; i++)
2929                 atomic_set(&new_smi->stats[i], 0);
2930
2931         new_smi->interrupt_disabled = 0;
2932         atomic_set(&new_smi->stop_operation, 0);
2933         new_smi->intf_num = smi_num;
2934         smi_num++;
2935
2936         rv = try_enable_event_buffer(new_smi);
2937         if (rv == 0)
2938                 new_smi->has_event_buffer = 1;
2939
2940         /*
2941          * Start clearing the flags before we enable interrupts or the
2942          * timer to avoid racing with the timer.
2943          */
2944         start_clear_flags(new_smi);
2945         /* IRQ is defined to be set when non-zero. */
2946         if (new_smi->irq)
2947                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2948
2949         if (!new_smi->dev) {
2950                 /*
2951                  * If we don't already have a device from something
2952                  * else (like PCI), then register a new one.
2953                  */
2954                 new_smi->pdev = platform_device_alloc("ipmi_si",
2955                                                       new_smi->intf_num);
2956                 if (!new_smi->pdev) {
2957                         printk(KERN_ERR
2958                                "ipmi_si_intf:"
2959                                " Unable to allocate platform device\n");
2960                         goto out_err;
2961                 }
2962                 new_smi->dev = &new_smi->pdev->dev;
2963                 new_smi->dev->driver = &ipmi_driver.driver;
2964
2965                 rv = platform_device_add(new_smi->pdev);
2966                 if (rv) {
2967                         printk(KERN_ERR
2968                                "ipmi_si_intf:"
2969                                " Unable to register system interface device:"
2970                                " %d\n",
2971                                rv);
2972                         goto out_err;
2973                 }
2974                 new_smi->dev_registered = 1;
2975         }
2976
2977         rv = ipmi_register_smi(&handlers,
2978                                new_smi,
2979                                &new_smi->device_id,
2980                                new_smi->dev,
2981                                "bmc",
2982                                new_smi->slave_addr);
2983         if (rv) {
2984                 printk(KERN_ERR
2985                        "ipmi_si: Unable to register device: error %d\n",
2986                        rv);
2987                 goto out_err_stop_timer;
2988         }
2989
2990         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2991                                      type_file_read_proc,
2992                                      new_smi);
2993         if (rv) {
2994                 printk(KERN_ERR
2995                        "ipmi_si: Unable to create proc entry: %d\n",
2996                        rv);
2997                 goto out_err_stop_timer;
2998         }
2999
3000         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3001                                      stat_file_read_proc,
3002                                      new_smi);
3003         if (rv) {
3004                 printk(KERN_ERR
3005                        "ipmi_si: Unable to create proc entry: %d\n",
3006                        rv);
3007                 goto out_err_stop_timer;
3008         }
3009
3010         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3011                                      param_read_proc,
3012                                      new_smi);
3013         if (rv) {
3014                 printk(KERN_ERR
3015                        "ipmi_si: Unable to create proc entry: %d\n",
3016                        rv);
3017                 goto out_err_stop_timer;
3018         }
3019
3020         list_add_tail(&new_smi->link, &smi_infos);
3021
3022         mutex_unlock(&smi_infos_lock);
3023
3024         printk(KERN_INFO "IPMI %s interface initialized\n",
3025                si_to_str[new_smi->si_type]);
3026
3027         return 0;
3028
3029  out_err_stop_timer:
3030         atomic_inc(&new_smi->stop_operation);
3031         wait_for_timer_and_thread(new_smi);
3032
3033  out_err:
3034         if (new_smi->intf)
3035                 ipmi_unregister_smi(new_smi->intf);
3036
3037         if (new_smi->irq_cleanup)
3038                 new_smi->irq_cleanup(new_smi);
3039
3040         /*
3041          * Wait until we know that we are out of any interrupt
3042          * handlers might have been running before we freed the
3043          * interrupt.
3044          */
3045         synchronize_sched();
3046
3047         if (new_smi->si_sm) {
3048                 if (new_smi->handlers)
3049                         new_smi->handlers->cleanup(new_smi->si_sm);
3050                 kfree(new_smi->si_sm);
3051         }
3052         if (new_smi->addr_source_cleanup)
3053                 new_smi->addr_source_cleanup(new_smi);
3054         if (new_smi->io_cleanup)
3055                 new_smi->io_cleanup(new_smi);
3056
3057         if (new_smi->dev_registered)
3058                 platform_device_unregister(new_smi->pdev);
3059
3060         kfree(new_smi);
3061
3062         mutex_unlock(&smi_infos_lock);
3063
3064         return rv;
3065 }
3066
3067 static __devinit int init_ipmi_si(void)
3068 {
3069         int  i;
3070         char *str;
3071         int  rv;
3072
3073         if (initialized)
3074                 return 0;
3075         initialized = 1;
3076
3077         /* Register the device drivers. */
3078         rv = driver_register(&ipmi_driver.driver);
3079         if (rv) {
3080                 printk(KERN_ERR
3081                        "init_ipmi_si: Unable to register driver: %d\n",
3082                        rv);
3083                 return rv;
3084         }
3085
3086
3087         /* Parse out the si_type string into its components. */
3088         str = si_type_str;
3089         if (*str != '\0') {
3090                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3091                         si_type[i] = str;
3092                         str = strchr(str, ',');
3093                         if (str) {
3094                                 *str = '\0';
3095                                 str++;
3096                         } else {
3097                                 break;
3098                         }
3099                 }
3100         }
3101
3102         printk(KERN_INFO "IPMI System Interface driver.\n");
3103
3104         hardcode_find_bmc();
3105
3106 #ifdef CONFIG_DMI
3107         dmi_find_bmc();
3108 #endif
3109
3110 #ifdef CONFIG_ACPI
3111         acpi_find_bmc();
3112 #endif
3113
3114 #ifdef CONFIG_PCI
3115         rv = pci_register_driver(&ipmi_pci_driver);
3116         if (rv)
3117                 printk(KERN_ERR
3118                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3119                        rv);
3120 #endif
3121
3122 #ifdef CONFIG_PPC_OF
3123         of_register_platform_driver(&ipmi_of_platform_driver);
3124 #endif
3125
3126         if (si_trydefaults) {
3127                 mutex_lock(&smi_infos_lock);
3128                 if (list_empty(&smi_infos)) {
3129                         /* No BMC was found, try defaults. */
3130                         mutex_unlock(&smi_infos_lock);
3131                         default_find_bmc();
3132                 } else {
3133                         mutex_unlock(&smi_infos_lock);
3134                 }
3135         }
3136
3137         mutex_lock(&smi_infos_lock);
3138         if (unload_when_empty && list_empty(&smi_infos)) {
3139                 mutex_unlock(&smi_infos_lock);
3140 #ifdef CONFIG_PCI
3141                 pci_unregister_driver(&ipmi_pci_driver);
3142 #endif
3143
3144 #ifdef CONFIG_PPC_OF
3145                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3146 #endif
3147                 driver_unregister(&ipmi_driver.driver);
3148                 printk(KERN_WARNING
3149                        "ipmi_si: Unable to find any System Interface(s)\n");
3150                 return -ENODEV;
3151         } else {
3152                 mutex_unlock(&smi_infos_lock);
3153                 return 0;
3154         }
3155 }
3156 module_init(init_ipmi_si);
3157
3158 static void cleanup_one_si(struct smi_info *to_clean)
3159 {
3160         int           rv;
3161         unsigned long flags;
3162
3163         if (!to_clean)
3164                 return;
3165
3166         list_del(&to_clean->link);
3167
3168         /* Tell the driver that we are shutting down. */
3169         atomic_inc(&to_clean->stop_operation);
3170
3171         /*
3172          * Make sure the timer and thread are stopped and will not run
3173          * again.
3174          */
3175         wait_for_timer_and_thread(to_clean);
3176
3177         /*
3178          * Timeouts are stopped, now make sure the interrupts are off
3179          * for the device.  A little tricky with locks to make sure
3180          * there are no races.
3181          */
3182         spin_lock_irqsave(&to_clean->si_lock, flags);
3183         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3184                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3185                 poll(to_clean);
3186                 schedule_timeout_uninterruptible(1);
3187                 spin_lock_irqsave(&to_clean->si_lock, flags);
3188         }
3189         disable_si_irq(to_clean);
3190         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3191         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3192                 poll(to_clean);
3193                 schedule_timeout_uninterruptible(1);
3194         }
3195
3196         /* Clean up interrupts and make sure that everything is done. */
3197         if (to_clean->irq_cleanup)
3198                 to_clean->irq_cleanup(to_clean);
3199         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3200                 poll(to_clean);
3201                 schedule_timeout_uninterruptible(1);
3202         }
3203
3204         rv = ipmi_unregister_smi(to_clean->intf);
3205         if (rv) {
3206                 printk(KERN_ERR
3207                        "ipmi_si: Unable to unregister device: errno=%d\n",
3208                        rv);
3209         }
3210
3211         to_clean->handlers->cleanup(to_clean->si_sm);
3212
3213         kfree(to_clean->si_sm);
3214
3215         if (to_clean->addr_source_cleanup)
3216                 to_clean->addr_source_cleanup(to_clean);
3217         if (to_clean->io_cleanup)
3218                 to_clean->io_cleanup(to_clean);
3219
3220         if (to_clean->dev_registered)
3221                 platform_device_unregister(to_clean->pdev);
3222
3223         kfree(to_clean);
3224 }
3225
3226 static __exit void cleanup_ipmi_si(void)
3227 {
3228         struct smi_info *e, *tmp_e;
3229
3230         if (!initialized)
3231                 return;
3232
3233 #ifdef CONFIG_PCI
3234         pci_unregister_driver(&ipmi_pci_driver);
3235 #endif
3236
3237 #ifdef CONFIG_PPC_OF
3238         of_unregister_platform_driver(&ipmi_of_platform_driver);
3239 #endif
3240
3241         mutex_lock(&smi_infos_lock);
3242         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3243                 cleanup_one_si(e);
3244         mutex_unlock(&smi_infos_lock);
3245
3246         driver_unregister(&ipmi_driver.driver);
3247 }
3248 module_exit(cleanup_ipmi_si);
3249
3250 MODULE_LICENSE("GPL");
3251 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3252 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3253                    " system interfaces.");