2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/time.h>
6 #include <linux/reiserfs_fs.h>
7 #include <linux/reiserfs_acl.h>
8 #include <linux/reiserfs_xattr.h>
9 #include <asm/uaccess.h>
10 #include <linux/pagemap.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/buffer_head.h>
15 #include <linux/quotaops.h>
18 ** We pack the tails of files on file close, not at the time they are written.
19 ** This implies an unnecessary copy of the tail and an unnecessary indirect item
20 ** insertion/balancing, for files that are written in one write.
21 ** It avoids unnecessary tail packings (balances) for files that are written in
22 ** multiple writes and are small enough to have tails.
24 ** file_release is called by the VFS layer when the file is closed. If
25 ** this is the last open file descriptor, and the file
26 ** small enough to have a tail, and the tail is currently in an
27 ** unformatted node, the tail is converted back into a direct item.
29 ** We use reiserfs_truncate_file to pack the tail, since it already has
30 ** all the conditions coded.
32 static int reiserfs_file_release(struct inode *inode, struct file *filp)
35 struct reiserfs_transaction_handle th;
37 int jbegin_failure = 0;
39 BUG_ON(!S_ISREG(inode->i_mode));
41 /* fast out for when nothing needs to be done */
42 if ((atomic_read(&inode->i_count) > 1 ||
43 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
44 !tail_has_to_be_packed(inode)) &&
45 REISERFS_I(inode)->i_prealloc_count <= 0) {
49 mutex_lock(&inode->i_mutex);
51 mutex_lock(&(REISERFS_I(inode)->i_mmap));
52 if (REISERFS_I(inode)->i_flags & i_ever_mapped)
53 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
55 reiserfs_write_lock(inode->i_sb);
56 /* freeing preallocation only involves relogging blocks that
57 * are already in the current transaction. preallocation gets
58 * freed at the end of each transaction, so it is impossible for
59 * us to log any additional blocks (including quota blocks)
61 err = journal_begin(&th, inode->i_sb, 1);
63 /* uh oh, we can't allow the inode to go away while there
64 * is still preallocation blocks pending. Try to join the
68 err = journal_join_abort(&th, inode->i_sb, 1);
71 /* hmpf, our choices here aren't good. We can pin the inode
72 * which will disallow unmount from every happening, we can
73 * do nothing, which will corrupt random memory on unmount,
74 * or we can forcibly remove the file from the preallocation
75 * list, which will leak blocks on disk. Lets pin the inode
76 * and let the admin know what is going on.
79 reiserfs_warning(inode->i_sb,
80 "pinning inode %lu because the "
81 "preallocation can't be freed",
86 reiserfs_update_inode_transaction(inode);
88 #ifdef REISERFS_PREALLOCATE
89 reiserfs_discard_prealloc(&th, inode);
91 err = journal_end(&th, inode->i_sb, 1);
93 /* copy back the error code from journal_begin */
97 if (!err && atomic_read(&inode->i_count) <= 1 &&
98 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
99 tail_has_to_be_packed(inode)) {
100 /* if regular file is released by last holder and it has been
101 appended (we append by unformatted node only) or its direct
102 item(s) had to be converted, then it may have to be
103 indirect2direct converted */
104 err = reiserfs_truncate_file(inode, 0);
107 mutex_unlock(&(REISERFS_I(inode)->i_mmap));
108 mutex_unlock(&inode->i_mutex);
109 reiserfs_write_unlock(inode->i_sb);
113 static int reiserfs_file_mmap(struct file *file, struct vm_area_struct *vma)
117 inode = file->f_path.dentry->d_inode;
118 mutex_lock(&(REISERFS_I(inode)->i_mmap));
119 REISERFS_I(inode)->i_flags |= i_ever_mapped;
120 mutex_unlock(&(REISERFS_I(inode)->i_mmap));
122 return generic_file_mmap(file, vma);
125 static void reiserfs_vfs_truncate_file(struct inode *inode)
127 reiserfs_truncate_file(inode, 1);
130 /* Sync a reiserfs file. */
133 * FIXME: sync_mapping_buffers() never has anything to sync. Can
137 static int reiserfs_sync_file(struct file *p_s_filp,
138 struct dentry *p_s_dentry, int datasync)
140 struct inode *p_s_inode = p_s_dentry->d_inode;
144 BUG_ON(!S_ISREG(p_s_inode->i_mode));
145 n_err = sync_mapping_buffers(p_s_inode->i_mapping);
146 reiserfs_write_lock(p_s_inode->i_sb);
147 barrier_done = reiserfs_commit_for_inode(p_s_inode);
148 reiserfs_write_unlock(p_s_inode->i_sb);
149 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb))
150 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
151 if (barrier_done < 0)
153 return (n_err < 0) ? -EIO : 0;
156 /* I really do not want to play with memory shortage right now, so
157 to simplify the code, we are not going to write more than this much pages at
158 a time. This still should considerably improve performance compared to 4k
159 at a time case. This is 32 pages of 4k size. */
160 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
162 /* Allocates blocks for a file to fulfil write request.
163 Maps all unmapped but prepared pages from the list.
164 Updates metadata with newly allocated blocknumbers as needed */
165 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */
166 loff_t pos, /* Writing position */
167 int num_pages, /* number of pages write going
169 int write_bytes, /* amount of bytes to write */
170 struct page **prepared_pages, /* array of
173 int blocks_to_allocate /* Amount of blocks we
175 fit the data into file
179 struct cpu_key key; // cpu key of item that we are going to deal with
180 struct item_head *ih; // pointer to item head that we are going to deal with
181 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
182 __le32 *item; // pointer to item we are going to deal with
183 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
184 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
185 reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
186 size_t res; // return value of various functions that we call.
187 int curr_block; // current block used to keep track of unmapped blocks.
188 int i; // loop counter
189 int itempos; // position in item
190 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
192 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
193 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created.
194 int modifying_this_item = 0; // Flag for items traversal code to keep track
195 // of the fact that we already prepared
196 // current block for journal
197 int will_prealloc = 0;
198 RFALSE(!blocks_to_allocate,
199 "green-9004: tried to allocate zero blocks?");
201 /* only preallocate if this is a small write */
202 if (REISERFS_I(inode)->i_prealloc_count ||
203 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
205 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
207 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
209 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
210 sizeof(b_blocknr_t), GFP_NOFS);
211 if (!allocated_blocks)
214 /* First we compose a key to point at the writing position, we want to do
215 that outside of any locking region. */
216 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
218 /* If we came here, it means we absolutely need to open a transaction,
219 since we need to allocate some blocks */
220 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
221 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
224 reiserfs_update_inode_transaction(inode);
226 /* Look for the in-tree position of our write, need path for block allocator */
227 res = search_for_position_by_key(inode->i_sb, &key, &path);
228 if (res == IO_ERROR) {
233 /* Allocate blocks */
234 /* First fill in "hint" structure for block allocator */
235 hint.th = th; // transaction handle.
236 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
237 hint.inode = inode; // Inode is needed by block allocator too.
238 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
239 hint.key = key.on_disk_key; // on disk key of file.
240 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already.
241 hint.formatted_node = 0; // We are allocating blocks for unformatted node.
242 hint.preallocate = will_prealloc;
244 /* Call block allocator to allocate blocks */
246 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
247 blocks_to_allocate, blocks_to_allocate);
248 if (res != CARRY_ON) {
249 if (res == NO_DISK_SPACE) {
250 /* We flush the transaction in case of no space. This way some
251 blocks might become free */
252 SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
253 res = restart_transaction(th, inode, &path);
257 /* We might have scheduled, so search again */
259 search_for_position_by_key(inode->i_sb, &key,
261 if (res == IO_ERROR) {
266 /* update changed info for hint structure. */
268 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
271 if (res != CARRY_ON) {
272 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
277 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
283 // Too bad, I have not found any way to convert a given region from
284 // cpu format to little endian format
287 for (i = 0; i < blocks_to_allocate; i++)
288 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
292 /* Blocks allocating well might have scheduled and tree might have changed,
293 let's search the tree again */
294 /* find where in the tree our write should go */
295 res = search_for_position_by_key(inode->i_sb, &key, &path);
296 if (res == IO_ERROR) {
298 goto error_exit_free_blocks;
301 bh = get_last_bh(&path); // Get a bufferhead for last element in path.
302 ih = get_ih(&path); // Get a pointer to last item head in path.
303 item = get_item(&path); // Get a pointer to last item in path
305 /* Let's see what we have found */
306 if (res != POSITION_FOUND) { /* position not found, this means that we
307 might need to append file with holes
309 // Since we are writing past the file's end, we need to find out if
310 // there is a hole that needs to be inserted before our writing
311 // position, and how many blocks it is going to cover (we need to
312 // populate pointers to file blocks representing the hole with zeros)
317 * if ih is stat data, its offset is 0 and we don't want to
318 * add 1 to pos in the hole_size calculation
320 if (is_statdata_le_ih(ih))
322 hole_size = (pos + item_offset -
324 (get_inode_item_key_version(inode),
325 &(ih->ih_key)) + op_bytes_number(ih,
329 >> inode->i_sb->s_blocksize_bits;
333 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time.
334 /* area filled with zeroes, to supply as list of zero blocknumbers
335 We allocate it outside of loop just in case loop would spin for
336 several iterations. */
337 char *zeros = kzalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
340 goto error_exit_free_blocks;
344 min_t(__u64, hole_size,
345 MAX_ITEM_LEN(inode->i_sb->
348 if (is_indirect_le_ih(ih)) {
349 /* Ok, there is existing indirect item already. Need to append it */
350 /* Calculate position past inserted item */
351 make_cpu_key(&key, inode,
353 (get_inode_item_key_version
362 reiserfs_paste_into_item(th, &path,
372 goto error_exit_free_blocks;
374 } else if (is_statdata_le_ih(ih)) {
375 /* No existing item, create it */
376 /* item head for new item */
377 struct item_head ins_ih;
379 /* create a key for our new item */
380 make_cpu_key(&key, inode, 1,
383 /* Create new item head for our new item */
384 make_le_item_head(&ins_ih, &key,
389 0 /* free space */ );
391 /* Find where such item should live in the tree */
393 search_item(inode->i_sb, &key,
395 if (res != ITEM_NOT_FOUND) {
396 /* item should not exist, otherwise we have error */
397 if (res != -ENOSPC) {
398 reiserfs_warning(inode->
400 "green-9008: search_by_key (%K) returned %d",
406 goto error_exit_free_blocks;
409 reiserfs_insert_item(th, &path,
414 reiserfs_panic(inode->i_sb,
415 "green-9011: Unexpected key type %K\n",
420 goto error_exit_free_blocks;
422 /* Now we want to check if transaction is too full, and if it is
423 we restart it. This will also free the path. */
424 if (journal_transaction_should_end
425 (th, th->t_blocks_allocated)) {
426 inode->i_size = cpu_key_k_offset(&key) +
427 (to_paste << inode->i_blkbits);
429 restart_transaction(th, inode,
438 /* Well, need to recalculate path and stuff */
439 set_cpu_key_k_offset(&key,
440 cpu_key_k_offset(&key) +
444 search_for_position_by_key(inode->i_sb,
446 if (res == IO_ERROR) {
449 goto error_exit_free_blocks;
451 bh = get_last_bh(&path);
453 item = get_item(&path);
454 hole_size -= to_paste;
459 // Go through existing indirect items first
460 // replace all zeroes with blocknumbers from list
461 // Note that if no corresponding item was found, by previous search,
462 // it means there are no existing in-tree representation for file area
463 // we are going to overwrite, so there is nothing to scan through for holes.
464 for (curr_block = 0, itempos = path.pos_in_item;
465 curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
468 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
469 /* We run out of data in this indirect item, let's look for another
471 /* First if we are already modifying current item, log it */
472 if (modifying_this_item) {
473 journal_mark_dirty(th, inode->i_sb, bh);
474 modifying_this_item = 0;
476 /* Then set the key to look for a new indirect item (offset of old
477 item is added to old item length */
478 set_cpu_key_k_offset(&key,
480 (get_inode_item_key_version(inode),
485 /* Search ofor position of new key in the tree. */
487 search_for_position_by_key(inode->i_sb, &key,
489 if (res == IO_ERROR) {
491 goto error_exit_free_blocks;
493 bh = get_last_bh(&path);
495 item = get_item(&path);
496 itempos = path.pos_in_item;
497 continue; // loop to check all kinds of conditions and so on.
499 /* Ok, we have correct position in item now, so let's see if it is
500 representing file hole (blocknumber is zero) and fill it if needed */
501 if (!item[itempos]) {
502 /* Ok, a hole. Now we need to check if we already prepared this
503 block to be journaled */
504 while (!modifying_this_item) { // loop until succeed
505 /* Well, this item is not journaled yet, so we must prepare
506 it for journal first, before we can change it */
507 struct item_head tmp_ih; // We copy item head of found item,
508 // here to detect if fs changed under
509 // us while we were preparing for
511 int fs_gen; // We store fs generation here to find if someone
512 // changes fs under our feet
514 copy_item_head(&tmp_ih, ih); // Remember itemhead
515 fs_gen = get_generation(inode->i_sb); // remember fs generation
516 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
517 if (fs_changed(fs_gen, inode->i_sb)
518 && item_moved(&tmp_ih, &path)) {
519 // Sigh, fs was changed under us, we need to look for new
520 // location of item we are working with
522 /* unmark prepaerd area as journaled and search for it's
524 reiserfs_restore_prepared_buffer(inode->
528 search_for_position_by_key(inode->
532 if (res == IO_ERROR) {
534 goto error_exit_free_blocks;
536 bh = get_last_bh(&path);
538 item = get_item(&path);
539 itempos = path.pos_in_item;
542 modifying_this_item = 1;
544 item[itempos] = allocated_blocks[curr_block]; // Assign new block
550 if (modifying_this_item) { // We need to log last-accessed block, if it
551 // was modified, but not logged yet.
552 journal_mark_dirty(th, inode->i_sb, bh);
555 if (curr_block < blocks_to_allocate) {
556 // Oh, well need to append to indirect item, or to create indirect item
557 // if there weren't any
558 if (is_indirect_le_ih(ih)) {
559 // Existing indirect item - append. First calculate key for append
560 // position. We do not need to recalculate path as it should
561 // already point to correct place.
562 make_cpu_key(&key, inode,
563 le_key_k_offset(get_inode_item_key_version
567 inode->i_sb->s_blocksize),
570 reiserfs_paste_into_item(th, &path, &key, inode,
571 (char *)(allocated_blocks +
574 (blocks_to_allocate -
577 goto error_exit_free_blocks;
579 } else if (is_statdata_le_ih(ih)) {
580 // Last found item was statdata. That means we need to create indirect item.
581 struct item_head ins_ih; /* itemhead for new item */
583 /* create a key for our new item */
584 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
589 /* Create new item head for our new item */
590 make_le_item_head(&ins_ih, &key, key.version, 1,
592 (blocks_to_allocate -
593 curr_block) * UNFM_P_SIZE,
594 0 /* free space */ );
595 /* Find where such item should live in the tree */
596 res = search_item(inode->i_sb, &key, &path);
597 if (res != ITEM_NOT_FOUND) {
598 /* Well, if we have found such item already, or some error
599 occured, we need to warn user and return error */
600 if (res != -ENOSPC) {
601 reiserfs_warning(inode->i_sb,
602 "green-9009: search_by_key (%K) "
607 goto error_exit_free_blocks;
609 /* Insert item into the tree with the data as its body */
611 reiserfs_insert_item(th, &path, &key, &ins_ih,
613 (char *)(allocated_blocks +
616 reiserfs_panic(inode->i_sb,
617 "green-9010: unexpected item type for key %K\n",
621 // the caller is responsible for closing the transaction
622 // unless we return an error, they are also responsible for logging
627 * cleanup prellocation from previous writes
628 * if this is a partial block write
630 if (write_bytes & (inode->i_sb->s_blocksize - 1))
631 reiserfs_discard_prealloc(th, inode);
632 reiserfs_write_unlock(inode->i_sb);
634 // go through all the pages/buffers and map the buffers to newly allocated
635 // blocks (so that system knows where to write these pages later).
637 for (i = 0; i < num_pages; i++) {
638 struct page *page = prepared_pages[i]; //current page
639 struct buffer_head *head = page_buffers(page); // first buffer for a page
640 int block_start, block_end; // in-page offsets for buffers.
642 if (!page_buffers(page))
643 reiserfs_panic(inode->i_sb,
644 "green-9005: No buffers for prepared page???");
646 /* For each buffer in page */
647 for (bh = head, block_start = 0; bh != head || !block_start;
648 block_start = block_end, bh = bh->b_this_page) {
650 reiserfs_panic(inode->i_sb,
651 "green-9006: Allocated but absent buffer for a page?");
652 block_end = block_start + inode->i_sb->s_blocksize;
653 if (i == 0 && block_end <= from)
654 /* if this buffer is before requested data to map, skip it */
656 if (i == num_pages - 1 && block_start >= to)
657 /* If this buffer is after requested data to map, abort
658 processing of current page */
661 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it
662 map_bh(bh, inode->i_sb,
663 le32_to_cpu(allocated_blocks
671 RFALSE(curr_block > blocks_to_allocate,
672 "green-9007: Used too many blocks? weird");
674 kfree(allocated_blocks);
677 // Need to deal with transaction here.
678 error_exit_free_blocks:
681 for (i = 0; i < blocks_to_allocate; i++)
682 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
686 if (th->t_trans_id) {
688 // update any changes we made to blk count
689 mark_inode_dirty(inode);
691 journal_end(th, inode->i_sb,
692 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
693 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
697 reiserfs_write_unlock(inode->i_sb);
698 kfree(allocated_blocks);
703 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
704 static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
705 size_t num_pages /* amount of pages */ )
707 int i; // loop counter
709 for (i = 0; i < num_pages; i++) {
710 struct page *page = prepared_pages[i];
712 try_to_free_buffers(page);
714 page_cache_release(page);
718 /* This function will copy data from userspace to specified pages within
719 supplied byte range */
720 static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */
721 int num_pages, /* Number of pages affected */
722 int write_bytes, /* Amount of bytes to write */
723 struct page **prepared_pages, /* pointer to
727 const char __user * buf /* Pointer to user-supplied
731 long page_fault = 0; // status of copy_from_user.
732 int i; // loop counter.
733 int offset; // offset in page
735 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
737 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
738 struct page *page = prepared_pages[i]; // Current page we process.
740 fault_in_pages_readable(buf, count);
742 /* Copy data from userspace to the current page */
744 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
745 /* Flush processor's dcache for this page */
746 flush_dcache_page(page);
749 write_bytes -= count;
752 break; // Was there a fault? abort.
755 return page_fault ? -EFAULT : 0;
758 /* taken fs/buffer.c:__block_commit_write */
759 int reiserfs_commit_page(struct inode *inode, struct page *page,
760 unsigned from, unsigned to)
762 unsigned block_start, block_end;
765 struct buffer_head *bh, *head;
766 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
768 int logit = reiserfs_file_data_log(inode);
769 struct super_block *s = inode->i_sb;
770 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
771 struct reiserfs_transaction_handle th;
775 blocksize = 1 << inode->i_blkbits;
778 reiserfs_write_lock(s);
779 ret = journal_begin(&th, s, bh_per_page + 1);
781 goto drop_write_lock;
782 reiserfs_update_inode_transaction(inode);
784 for (bh = head = page_buffers(page), block_start = 0;
785 bh != head || !block_start;
786 block_start = block_end, bh = bh->b_this_page) {
788 new = buffer_new(bh);
789 clear_buffer_new(bh);
790 block_end = block_start + blocksize;
791 if (block_end <= from || block_start >= to) {
792 if (!buffer_uptodate(bh))
795 set_buffer_uptodate(bh);
797 reiserfs_prepare_for_journal(s, bh, 1);
798 journal_mark_dirty(&th, s, bh);
799 } else if (!buffer_dirty(bh)) {
800 mark_buffer_dirty(bh);
801 /* do data=ordered on any page past the end
802 * of file and any buffer marked BH_New.
804 if (reiserfs_data_ordered(inode->i_sb) &&
805 (new || page->index >= i_size_index)) {
806 reiserfs_add_ordered_list(inode, bh);
812 ret = journal_end(&th, s, bh_per_page + 1);
814 reiserfs_write_unlock(s);
817 * If this is a partial write which happened to make all buffers
818 * uptodate then we can optimize away a bogus readpage() for
819 * the next read(). Here we 'discover' whether the page went
820 * uptodate as a result of this (potentially partial) write.
823 SetPageUptodate(page);
827 /* Submit pages for write. This was separated from actual file copying
828 because we might want to allocate block numbers in-between.
829 This function assumes that caller will adjust file size to correct value. */
830 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */
831 size_t num_pages, /* Number of pages to write */
832 size_t write_bytes, /* number of bytes to write */
833 struct page **prepared_pages /* list of pages */
836 int status; // return status of block_commit_write.
837 int retval = 0; // Return value we are going to return.
838 int i; // loop counter
839 int offset; // Writing offset in page.
840 int orig_write_bytes = write_bytes;
843 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
845 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
846 struct page *page = prepared_pages[i]; // Current page we process.
849 reiserfs_commit_page(inode, page, offset, offset + count);
851 retval = status; // To not overcomplicate matters We are going to
852 // submit all the pages even if there was error.
853 // we only remember error status to report it on
855 write_bytes -= count;
857 /* now that we've gotten all the ordered buffers marked dirty,
858 * we can safely update i_size and close any running transaction
860 if (pos + orig_write_bytes > inode->i_size) {
861 inode->i_size = pos + orig_write_bytes; // Set new size
862 /* If the file have grown so much that tail packing is no
863 * longer possible, reset "need to pack" flag */
864 if ((have_large_tails(inode->i_sb) &&
865 inode->i_size > i_block_size(inode) * 4) ||
866 (have_small_tails(inode->i_sb) &&
867 inode->i_size > i_block_size(inode)))
868 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
869 else if ((have_large_tails(inode->i_sb) &&
870 inode->i_size < i_block_size(inode) * 4) ||
871 (have_small_tails(inode->i_sb) &&
872 inode->i_size < i_block_size(inode)))
873 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
875 if (th->t_trans_id) {
876 reiserfs_write_lock(inode->i_sb);
877 // this sets the proper flags for O_SYNC to trigger a commit
878 mark_inode_dirty(inode);
879 reiserfs_write_unlock(inode->i_sb);
881 reiserfs_write_lock(inode->i_sb);
882 reiserfs_update_inode_transaction(inode);
883 mark_inode_dirty(inode);
884 reiserfs_write_unlock(inode->i_sb);
889 if (th->t_trans_id) {
890 reiserfs_write_lock(inode->i_sb);
892 mark_inode_dirty(inode);
893 status = journal_end(th, th->t_super, th->t_blocks_allocated);
896 reiserfs_write_unlock(inode->i_sb);
901 * we have to unlock the pages after updating i_size, otherwise
902 * we race with writepage
904 for (i = 0; i < num_pages; i++) {
905 struct page *page = prepared_pages[i];
907 mark_page_accessed(page);
908 page_cache_release(page);
913 /* Look if passed writing region is going to touch file's tail
914 (if it is present). And if it is, convert the tail to unformatted node */
915 static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */
916 loff_t pos, /* Writing position */
917 int write_bytes /* amount of bytes to write */
920 INITIALIZE_PATH(path); // needed for search_for_position
921 struct cpu_key key; // Key that would represent last touched writing byte.
922 struct item_head *ih; // item header of found block;
923 int res; // Return value of various functions we call.
924 int cont_expand_offset; // We will put offset for generic_cont_expand here
925 // This can be int just because tails are created
926 // only for small files.
928 /* this embodies a dependency on a particular tail policy */
929 if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
930 /* such a big files do not have tails, so we won't bother ourselves
931 to look for tails, simply return */
935 reiserfs_write_lock(inode->i_sb);
936 /* find the item containing the last byte to be written, or if
937 * writing past the end of the file then the last item of the
938 * file (and then we check its type). */
939 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
941 res = search_for_position_by_key(inode->i_sb, &key, &path);
942 if (res == IO_ERROR) {
943 reiserfs_write_unlock(inode->i_sb);
948 if (is_direct_le_ih(ih)) {
949 /* Ok, closest item is file tail (tails are stored in "direct"
950 * items), so we need to unpack it. */
951 /* To not overcomplicate matters, we just call generic_cont_expand
952 which will in turn call other stuff and finally will boil down to
953 reiserfs_get_block() that would do necessary conversion. */
955 le_key_k_offset(get_inode_item_key_version(inode),
958 res = generic_cont_expand(inode, cont_expand_offset);
962 reiserfs_write_unlock(inode->i_sb);
966 /* This function locks pages starting from @pos for @inode.
967 @num_pages pages are locked and stored in
968 @prepared_pages array. Also buffers are allocated for these pages.
969 First and last page of the region is read if it is overwritten only
970 partially. If last page did not exist before write (file hole or file
971 append), it is zeroed, then.
972 Returns number of unallocated blocks that should be allocated to cover
974 static int reiserfs_prepare_file_region_for_write(struct inode *inode
975 /* Inode of the file */ ,
976 loff_t pos, /* position in the file */
977 size_t num_pages, /* number of pages to
979 size_t write_bytes, /* Amount of bytes to be
982 struct page **prepared_pages /* pointer to array
987 int res = 0; // Return values of different functions we call.
988 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
989 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
990 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
991 /* offset of last modified byte in last
993 struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
994 int i; // Simple counter
995 int blocks = 0; /* Return value (blocks that should be allocated) */
996 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
998 unsigned block_start, block_end; // Starting and ending offsets of current
999 // buffer in the page.
1000 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if
1001 // Page appeared to be not up
1002 // to date. Note how we have
1003 // at most 2 buffers, this is
1004 // because we at most may
1005 // partially overwrite two
1006 // buffers for one page. One at // the beginning of write area
1007 // and one at the end.
1008 // Everything inthe middle gets // overwritten totally.
1010 struct cpu_key key; // cpu key of item that we are going to deal with
1011 struct item_head *ih = NULL; // pointer to item head that we are going to deal with
1012 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with
1013 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
1014 __le32 *item = NULL; // pointer to item we are going to deal with
1015 int item_pos = -1; /* Position in indirect item */
1017 if (num_pages < 1) {
1018 reiserfs_warning(inode->i_sb,
1019 "green-9001: reiserfs_prepare_file_region_for_write "
1020 "called with zero number of pages to process");
1024 /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1025 that nobody would touch these until we release the pages. Then
1026 we'd start to deal with mapping buffers to blocks. */
1027 for (i = 0; i < num_pages; i++) {
1028 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
1029 if (!prepared_pages[i]) {
1031 goto failed_page_grabbing;
1033 if (!page_has_buffers(prepared_pages[i]))
1034 create_empty_buffers(prepared_pages[i],
1035 inode->i_sb->s_blocksize, 0);
1038 /* Let's count amount of blocks for a case where all the blocks
1039 overwritten are new (we will substract already allocated blocks later) */
1041 /* These are full-overwritten pages so we count all the blocks in
1042 these pages are counted as needed to be allocated */
1044 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1046 /* count blocks needed for first page (possibly partially written) */
1047 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */
1049 /* Now we account for last page. If last page == first page (we
1050 overwrite only one page), we substract all the blocks past the
1051 last writing position in a page out of already calculated number
1053 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1054 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1055 /* Note how we do not roundup here since partial blocks still
1056 should be allocated */
1058 /* Now if all the write area lies past the file end, no point in
1059 maping blocks, since there is none, so we just zero out remaining
1060 parts of first and last pages in write area (if needed) */
1061 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1062 if (from != 0) /* First page needs to be partially zeroed */
1063 zero_user_page(prepared_pages[0], 0, from, KM_USER0);
1065 if (to != PAGE_CACHE_SIZE) /* Last page needs to be partially zeroed */
1066 zero_user_page(prepared_pages[num_pages-1], to,
1067 PAGE_CACHE_SIZE - to, KM_USER0);
1069 /* Since all blocks are new - use already calculated value */
1073 /* Well, since we write somewhere into the middle of a file, there is
1074 possibility we are writing over some already allocated blocks, so
1075 let's map these blocks and substract number of such blocks out of blocks
1076 we need to allocate (calculated above) */
1077 /* Mask write position to start on blocksize, we do it out of the
1078 loop for performance reasons */
1079 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1080 /* Set cpu key to the starting position in a file (on left block boundary) */
1081 make_cpu_key(&key, inode,
1082 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1083 TYPE_ANY, 3 /*key length */ );
1085 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
1086 for (i = 0; i < num_pages; i++) {
1088 head = page_buffers(prepared_pages[i]);
1089 /* For each buffer in the page */
1090 for (bh = head, block_start = 0; bh != head || !block_start;
1091 block_start = block_end, bh = bh->b_this_page) {
1093 reiserfs_panic(inode->i_sb,
1094 "green-9002: Allocated but absent buffer for a page?");
1095 /* Find where this buffer ends */
1096 block_end = block_start + inode->i_sb->s_blocksize;
1097 if (i == 0 && block_end <= from)
1098 /* if this buffer is before requested data to map, skip it */
1101 if (i == num_pages - 1 && block_start >= to) {
1102 /* If this buffer is after requested data to map, abort
1103 processing of current page */
1107 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1108 /* This is optimisation for a case where buffer is mapped
1109 and have blocknumber assigned. In case significant amount
1110 of such buffers are present, we may avoid some amount
1111 of search_by_key calls.
1112 Probably it would be possible to move parts of this code
1113 out of BKL, but I afraid that would overcomplicate code
1114 without any noticeable benefit.
1117 /* Update the key */
1118 set_cpu_key_k_offset(&key,
1119 cpu_key_k_offset(&key) +
1120 inode->i_sb->s_blocksize);
1121 blocks--; // Decrease the amount of blocks that need to be
1123 continue; // Go to the next buffer
1126 if (!itembuf || /* if first iteration */
1127 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the
1128 current unformatted_item */
1129 /* Try to find next item */
1131 search_for_position_by_key(inode->i_sb,
1133 /* Abort if no more items */
1134 if (res != POSITION_FOUND) {
1135 /* make sure later loops don't use this item */
1141 /* Update information about current indirect item */
1142 itembuf = get_last_bh(&path);
1144 item = get_item(&path);
1145 item_pos = path.pos_in_item;
1147 RFALSE(!is_indirect_le_ih(ih),
1148 "green-9003: indirect item expected");
1151 /* See if there is some block associated with the file
1152 at that position, map the buffer to this block */
1153 if (get_block_num(item, item_pos)) {
1154 map_bh(bh, inode->i_sb,
1155 get_block_num(item, item_pos));
1156 blocks--; // Decrease the amount of blocks that need to be
1160 /* Update the key */
1161 set_cpu_key_k_offset(&key,
1162 cpu_key_k_offset(&key) +
1163 inode->i_sb->s_blocksize);
1166 pathrelse(&path); // Free the path
1167 reiserfs_write_unlock(inode->i_sb);
1169 /* Now zero out unmappend buffers for the first and last pages of
1170 write area or issue read requests if page is mapped. */
1171 /* First page, see if it is not uptodate */
1172 if (!PageUptodate(prepared_pages[0])) {
1173 head = page_buffers(prepared_pages[0]);
1175 /* For each buffer in page */
1176 for (bh = head, block_start = 0; bh != head || !block_start;
1177 block_start = block_end, bh = bh->b_this_page) {
1180 reiserfs_panic(inode->i_sb,
1181 "green-9002: Allocated but absent buffer for a page?");
1182 /* Find where this buffer ends */
1183 block_end = block_start + inode->i_sb->s_blocksize;
1184 if (block_end <= from)
1185 /* if this buffer is before requested data to map, skip it */
1187 if (block_start < from) { /* Aha, our partial buffer */
1188 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1189 issue READ request for it to
1191 ll_rw_block(READ, 1, &bh);
1193 } else { /* Not mapped, zero it */
1194 zero_user_page(prepared_pages[0],
1196 from - block_start, KM_USER0);
1197 set_buffer_uptodate(bh);
1203 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1204 if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1205 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1206 (inode->i_size >> PAGE_CACHE_SHIFT)) {
1207 head = page_buffers(prepared_pages[num_pages - 1]);
1209 /* for each buffer in page */
1210 for (bh = head, block_start = 0; bh != head || !block_start;
1211 block_start = block_end, bh = bh->b_this_page) {
1214 reiserfs_panic(inode->i_sb,
1215 "green-9002: Allocated but absent buffer for a page?");
1216 /* Find where this buffer ends */
1217 block_end = block_start + inode->i_sb->s_blocksize;
1218 if (block_start >= to)
1219 /* if this buffer is after requested data to map, skip it */
1221 if (block_end > to) { /* Aha, our partial buffer */
1222 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1223 issue READ request for it to
1225 ll_rw_block(READ, 1, &bh);
1227 } else { /* Not mapped, zero it */
1228 zero_user_page(prepared_pages[num_pages-1],
1229 to, block_end - to, KM_USER0);
1230 set_buffer_uptodate(bh);
1236 /* Wait for read requests we made to happen, if necessary */
1237 while (wait_bh > wait) {
1238 wait_on_buffer(*--wait_bh);
1239 if (!buffer_uptodate(*wait_bh)) {
1246 failed_page_grabbing:
1249 reiserfs_unprepare_pages(prepared_pages, num_pages);
1253 /* Write @count bytes at position @ppos in a file indicated by @file
1254 from the buffer @buf.
1256 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1257 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
1258 written for (ext2/3). This is for several reasons:
1260 * It has no understanding of any filesystem specific optimizations.
1262 * It enters the filesystem repeatedly for each page that is written.
1264 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1265 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1266 * to reiserfs which allows for fewer tree traversals.
1268 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1270 * Asking the block allocation code for blocks one at a time is slightly less efficient.
1272 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1273 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make
1274 things right finally.
1276 Future Features: providing search_by_key with hints.
1279 static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */
1280 const char __user * buf, /* pointer to user supplied data
1282 size_t count, /* amount of bytes to write */
1283 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to
1284 * new current position before returning. */
1287 size_t already_written = 0; // Number of bytes already written to the file.
1288 loff_t pos; // Current position in the file.
1289 ssize_t res; // return value of various functions that we call.
1291 struct inode *inode = file->f_path.dentry->d_inode; // Inode of the file that we are writing to.
1292 /* To simplify coding at this time, we store
1293 locked pages in array for now */
1294 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1295 struct reiserfs_transaction_handle th;
1298 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items
1299 * lying around (most of the disk, in fact). Despite the filesystem
1300 * now being a v3.6 format, the old items still can't support large
1301 * file sizes. Catch this case here, as the rest of the VFS layer is
1302 * oblivious to the different limitations between old and new items.
1303 * reiserfs_setattr catches this for truncates. This chunk is lifted
1304 * from generic_write_checks. */
1305 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 &&
1306 *ppos + count > MAX_NON_LFS) {
1307 if (*ppos >= MAX_NON_LFS) {
1310 if (count > MAX_NON_LFS - (unsigned long)*ppos)
1311 count = MAX_NON_LFS - (unsigned long)*ppos;
1314 if (file->f_flags & O_DIRECT)
1315 return do_sync_write(file, buf, count, ppos);
1317 if (unlikely((ssize_t) count < 0))
1320 if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1323 mutex_lock(&inode->i_mutex); // locks the entire file for just us
1327 /* Check if we can write to specified region of file, file
1328 is not overly big and this kind of stuff. Adjust pos and
1330 res = generic_write_checks(file, &pos, &count, 0);
1337 res = remove_suid(file->f_path.dentry);
1341 file_update_time(file);
1343 // Ok, we are done with all the checks.
1345 // Now we should start real work
1347 /* If we are going to write past the file's packed tail or if we are going
1348 to overwrite part of the tail, we need that tail to be converted into
1350 res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1355 /* This is the main loop in which we running until some error occures
1356 or until we write all of the data. */
1357 size_t num_pages; /* amount of pages we are going to write this iteration */
1358 size_t write_bytes; /* amount of bytes to write during this iteration */
1359 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
1361 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1362 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1365 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1366 /* convert size to amount of
1368 reiserfs_write_lock(inode->i_sb);
1369 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1370 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1371 /* If we were asked to write more data than we want to or if there
1372 is not that much space, then we shorten amount of data to write
1373 for this iteration. */
1375 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1376 reiserfs_can_fit_pages(inode->i_sb));
1377 /* Also we should not forget to set size in bytes accordingly */
1378 write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1379 (pos & (PAGE_CACHE_SIZE - 1));
1380 /* If position is not on the
1381 start of the page, we need
1382 to substract the offset
1385 write_bytes = count;
1387 /* reserve the blocks to be allocated later, so that later on
1388 we still have the space to write the blocks to */
1389 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1393 reiserfs_write_unlock(inode->i_sb);
1395 if (!num_pages) { /* If we do not have enough space even for a single page... */
1397 inode->i_size + inode->i_sb->s_blocksize -
1398 (pos & (inode->i_sb->s_blocksize - 1))) {
1400 break; // In case we are writing past the end of the last file block, break.
1402 // Otherwise we are possibly overwriting the file, so
1403 // let's set write size to be equal or less than blocksize.
1404 // This way we get it correctly for file holes.
1405 // But overwriting files on absolutelly full volumes would not
1406 // be very efficient. Well, people are not supposed to fill
1407 // 100% of disk space anyway.
1409 min_t(size_t, count,
1410 inode->i_sb->s_blocksize -
1411 (pos & (inode->i_sb->s_blocksize - 1)));
1413 // No blocks were claimed before, so do it now.
1414 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1422 /* Prepare for writing into the region, read in all the
1423 partially overwritten pages, if needed. And lock the pages,
1424 so that nobody else can access these until we are done.
1425 We get number of actual blocks needed as a result. */
1426 res = reiserfs_prepare_file_region_for_write(inode, pos,
1431 reiserfs_release_claimed_blocks(inode->i_sb,
1438 blocks_to_allocate = res;
1440 /* First we correct our estimate of how many blocks we need */
1441 reiserfs_release_claimed_blocks(inode->i_sb,
1445 s_blocksize_bits)) -
1446 blocks_to_allocate);
1448 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */
1449 /* Fill in all the possible holes and append the file if needed */
1451 reiserfs_allocate_blocks_for_region(&th, inode, pos,
1455 blocks_to_allocate);
1458 /* well, we have allocated the blocks, so it is time to free
1459 the reservation we made earlier. */
1460 reiserfs_release_claimed_blocks(inode->i_sb,
1461 blocks_to_allocate);
1463 reiserfs_unprepare_pages(prepared_pages, num_pages);
1467 /* NOTE that allocating blocks and filling blocks can be done in reverse order
1468 and probably we would do that just to get rid of garbage in files after a
1471 /* Copy data from user-supplied buffer to file's pages */
1473 reiserfs_copy_from_user_to_file_region(pos, num_pages,
1475 prepared_pages, buf);
1477 reiserfs_unprepare_pages(prepared_pages, num_pages);
1481 /* Send the pages to disk and unlock them. */
1483 reiserfs_submit_file_region_for_write(&th, inode, pos,
1490 already_written += write_bytes;
1492 *ppos = pos += write_bytes;
1493 count -= write_bytes;
1494 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages);
1497 /* this is only true on error */
1498 if (th.t_trans_id) {
1499 reiserfs_write_lock(inode->i_sb);
1500 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1501 reiserfs_write_unlock(inode->i_sb);
1508 if (likely(res >= 0) &&
1509 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))))
1510 res = generic_osync_inode(inode, file->f_mapping,
1511 OSYNC_METADATA | OSYNC_DATA);
1513 mutex_unlock(&inode->i_mutex);
1514 reiserfs_async_progress_wait(inode->i_sb);
1515 return (already_written != 0) ? already_written : res;
1518 mutex_unlock(&inode->i_mutex); // unlock the file on exit.
1522 const struct file_operations reiserfs_file_operations = {
1523 .read = do_sync_read,
1524 .write = reiserfs_file_write,
1525 .ioctl = reiserfs_ioctl,
1526 #ifdef CONFIG_COMPAT
1527 .compat_ioctl = reiserfs_compat_ioctl,
1529 .mmap = reiserfs_file_mmap,
1530 .open = generic_file_open,
1531 .release = reiserfs_file_release,
1532 .fsync = reiserfs_sync_file,
1533 .aio_read = generic_file_aio_read,
1534 .aio_write = generic_file_aio_write,
1535 .splice_read = generic_file_splice_read,
1536 .splice_write = generic_file_splice_write,
1539 const struct inode_operations reiserfs_file_inode_operations = {
1540 .truncate = reiserfs_vfs_truncate_file,
1541 .setattr = reiserfs_setattr,
1542 .setxattr = reiserfs_setxattr,
1543 .getxattr = reiserfs_getxattr,
1544 .listxattr = reiserfs_listxattr,
1545 .removexattr = reiserfs_removexattr,
1546 .permission = reiserfs_permission,