2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2003, 2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/version.h>
41 #include <linux/bitops.h>
43 #include <asm/errno.h>
44 #include <asm/intrinsics.h>
46 #include <asm/perfmon.h>
47 #include <asm/processor.h>
48 #include <asm/signal.h>
49 #include <asm/system.h>
50 #include <asm/uaccess.h>
51 #include <asm/delay.h>
55 * perfmon context state
57 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
62 #define PFM_INVALID_ACTIVATION (~0UL)
65 * depth of message queue
67 #define PFM_MAX_MSGS 32
68 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
71 * type of a PMU register (bitmask).
73 * bit0 : register implemented
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
81 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82 #define PFM_REG_IMPL 0x1 /* register implemented */
83 #define PFM_REG_END 0x2 /* end marker */
84 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
90 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
93 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
95 /* i assumed unsigned */
96 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
99 /* XXX: these assume that register i is implemented */
100 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
105 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
110 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
113 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115 #define PFM_CTX_TASK(h) (h)->ctx_task
117 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
119 /* XXX: does not support more than 64 PMDs */
120 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
123 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
125 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128 #define PFM_CODE_RR 0 /* requesting code range restriction */
129 #define PFM_DATA_RR 1 /* requestion data range restriction */
131 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
135 #define RDEP(x) (1UL<<(x))
138 * context protection macros
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
155 #define PROTECT_CTX(c, f) \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
162 #define UNPROTECT_CTX(c, f) \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
168 #define PROTECT_CTX_NOPRINT(c, f) \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
174 #define UNPROTECT_CTX_NOPRINT(c, f) \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
180 #define PROTECT_CTX_NOIRQ(c) \
182 spin_lock(&(c)->ctx_lock); \
185 #define UNPROTECT_CTX_NOIRQ(c) \
187 spin_unlock(&(c)->ctx_lock); \
193 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
197 #else /* !CONFIG_SMP */
198 #define SET_ACTIVATION(t) do {} while(0)
199 #define GET_ACTIVATION(t) do {} while(0)
200 #define INC_ACTIVATION(t) do {} while(0)
201 #endif /* CONFIG_SMP */
203 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
207 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
210 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
213 * cmp0 must be the value of pmc0
215 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
217 #define PFMFS_MAGIC 0xa0b4d889
222 #define PFM_DEBUGGING 1
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
229 #define DPRINT_ovfl(a) \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
236 * 64-bit software counter structure
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
241 unsigned long val; /* virtual 64bit counter value */
242 unsigned long lval; /* last reset value */
243 unsigned long long_reset; /* reset value on sampling overflow */
244 unsigned long short_reset; /* reset value on overflow */
245 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed; /* seed for random-number generator */
248 unsigned long mask; /* mask for random-number generator */
249 unsigned int flags; /* notify/do not notify */
250 unsigned long eventid; /* overflow event identifier */
257 unsigned int block:1; /* when 1, task will blocked on user notifications */
258 unsigned int system:1; /* do system wide monitoring */
259 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling:1; /* true if using a custom format */
261 unsigned int excl_idle:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg:1; /* no message sent on overflow */
265 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved:22;
267 } pfm_context_flags_t;
269 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
270 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
275 * perfmon context: encapsulates all the state of a monitoring session
278 typedef struct pfm_context {
279 spinlock_t ctx_lock; /* context protection */
281 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
284 struct task_struct *ctx_task; /* task to which context is attached */
286 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
288 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
290 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
294 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
298 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
300 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
305 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
307 u64 ctx_saved_psr_up; /* only contains psr.up value */
309 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
313 int ctx_fd; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
316 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
317 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size; /* size of sampling buffer */
319 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
321 wait_queue_head_t ctx_msgq_wait;
322 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
325 struct fasync_struct *ctx_async_queue;
327 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
331 * magic number used to verify that structure is really
334 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
336 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
339 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
342 #define SET_LAST_CPU(ctx, v) do {} while(0)
343 #define GET_LAST_CPU(ctx) do {} while(0)
347 #define ctx_fl_block ctx_flags.block
348 #define ctx_fl_system ctx_flags.system
349 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
350 #define ctx_fl_is_sampling ctx_flags.is_sampling
351 #define ctx_fl_excl_idle ctx_flags.excl_idle
352 #define ctx_fl_going_zombie ctx_flags.going_zombie
353 #define ctx_fl_trap_reason ctx_flags.trap_reason
354 #define ctx_fl_no_msg ctx_flags.no_msg
355 #define ctx_fl_can_restart ctx_flags.can_restart
357 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
365 spinlock_t pfs_lock; /* lock the structure */
367 unsigned int pfs_task_sessions; /* number of per task sessions */
368 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
371 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
379 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
383 unsigned long default_value; /* power-on default value */
384 unsigned long reserved_mask; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check;
386 pfm_reg_check_t write_check;
387 unsigned long dep_pmd[4];
388 unsigned long dep_pmc[4];
391 /* assume cnum is a valid monitor */
392 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
407 unsigned long ovfl_val; /* overflow value for counters */
409 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
412 unsigned int num_pmcs; /* number of PMCS: computed at init time */
413 unsigned int num_pmds; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
417 char *pmu_name; /* PMU family name */
418 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
419 unsigned int flags; /* pmu specific flags */
420 unsigned int num_ibrs; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs; /* number of DBRS: computed at init time */
422 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
429 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
432 * debug register related type definitions
435 unsigned long ibr_mask:56;
436 unsigned long ibr_plm:4;
437 unsigned long ibr_ig:3;
438 unsigned long ibr_x:1;
442 unsigned long dbr_mask:56;
443 unsigned long dbr_plm:4;
444 unsigned long dbr_ig:2;
445 unsigned long dbr_w:1;
446 unsigned long dbr_r:1;
457 * perfmon command descriptions
460 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
463 unsigned int cmd_narg;
465 int (*cmd_getsize)(void *arg, size_t *sz);
468 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
474 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
480 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
483 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls;
490 unsigned long pfm_smpl_handler_cycles;
491 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
495 * perfmon internal variables
497 static pfm_stats_t pfm_stats[NR_CPUS];
498 static pfm_session_t pfm_sessions; /* global sessions information */
500 static struct proc_dir_entry *perfmon_dir;
501 static pfm_uuid_t pfm_null_uuid = {0,};
503 static spinlock_t pfm_buffer_fmt_lock;
504 static LIST_HEAD(pfm_buffer_fmt_list);
506 static pmu_config_t *pmu_conf;
508 /* sysctl() controls */
509 pfm_sysctl_t pfm_sysctl;
510 EXPORT_SYMBOL(pfm_sysctl);
512 static ctl_table pfm_ctl_table[]={
513 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
514 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
515 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
516 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 static ctl_table pfm_sysctl_dir[] = {
520 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
523 static ctl_table pfm_sysctl_root[] = {
524 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
527 static struct ctl_table_header *pfm_sysctl_header;
529 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
530 static int pfm_flush(struct file *filp);
532 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
533 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
536 pfm_put_task(struct task_struct *task)
538 if (task != current) put_task_struct(task);
542 pfm_set_task_notify(struct task_struct *task)
544 struct thread_info *info;
546 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
547 set_bit(TIF_NOTIFY_RESUME, &info->flags);
551 pfm_clear_task_notify(void)
553 clear_thread_flag(TIF_NOTIFY_RESUME);
557 pfm_reserve_page(unsigned long a)
559 SetPageReserved(vmalloc_to_page((void *)a));
562 pfm_unreserve_page(unsigned long a)
564 ClearPageReserved(vmalloc_to_page((void*)a));
567 static inline unsigned long
568 pfm_protect_ctx_ctxsw(pfm_context_t *x)
570 spin_lock(&(x)->ctx_lock);
574 static inline unsigned long
575 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
577 spin_unlock(&(x)->ctx_lock);
580 static inline unsigned int
581 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
583 return do_munmap(mm, addr, len);
586 static inline unsigned long
587 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
589 return get_unmapped_area(file, addr, len, pgoff, flags);
593 static struct super_block *
594 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
596 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
599 static struct file_system_type pfm_fs_type = {
601 .get_sb = pfmfs_get_sb,
602 .kill_sb = kill_anon_super,
605 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
606 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
607 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
608 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
611 /* forward declaration */
612 static struct file_operations pfm_file_ops;
615 * forward declarations
618 static void pfm_lazy_save_regs (struct task_struct *ta);
621 void dump_pmu_state(const char *);
622 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
624 #include "perfmon_itanium.h"
625 #include "perfmon_mckinley.h"
626 #include "perfmon_generic.h"
628 static pmu_config_t *pmu_confs[]={
631 &pmu_conf_gen, /* must be last */
636 static int pfm_end_notify_user(pfm_context_t *ctx);
639 pfm_clear_psr_pp(void)
641 ia64_rsm(IA64_PSR_PP);
648 ia64_ssm(IA64_PSR_PP);
653 pfm_clear_psr_up(void)
655 ia64_rsm(IA64_PSR_UP);
662 ia64_ssm(IA64_PSR_UP);
666 static inline unsigned long
670 tmp = ia64_getreg(_IA64_REG_PSR);
676 pfm_set_psr_l(unsigned long val)
678 ia64_setreg(_IA64_REG_PSR_L, val);
690 pfm_unfreeze_pmu(void)
697 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
701 for (i=0; i < nibrs; i++) {
702 ia64_set_ibr(i, ibrs[i]);
703 ia64_dv_serialize_instruction();
709 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
713 for (i=0; i < ndbrs; i++) {
714 ia64_set_dbr(i, dbrs[i]);
715 ia64_dv_serialize_data();
721 * PMD[i] must be a counter. no check is made
723 static inline unsigned long
724 pfm_read_soft_counter(pfm_context_t *ctx, int i)
726 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
730 * PMD[i] must be a counter. no check is made
733 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
735 unsigned long ovfl_val = pmu_conf->ovfl_val;
737 ctx->ctx_pmds[i].val = val & ~ovfl_val;
739 * writing to unimplemented part is ignore, so we do not need to
742 ia64_set_pmd(i, val & ovfl_val);
746 pfm_get_new_msg(pfm_context_t *ctx)
750 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
752 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
753 if (next == ctx->ctx_msgq_head) return NULL;
755 idx = ctx->ctx_msgq_tail;
756 ctx->ctx_msgq_tail = next;
758 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
760 return ctx->ctx_msgq+idx;
764 pfm_get_next_msg(pfm_context_t *ctx)
768 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
770 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
775 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
780 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
782 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
788 pfm_reset_msgq(pfm_context_t *ctx)
790 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
791 DPRINT(("ctx=%p msgq reset\n", ctx));
795 pfm_rvmalloc(unsigned long size)
800 size = PAGE_ALIGN(size);
803 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
804 memset(mem, 0, size);
805 addr = (unsigned long)mem;
807 pfm_reserve_page(addr);
816 pfm_rvfree(void *mem, unsigned long size)
821 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
822 addr = (unsigned long) mem;
823 while ((long) size > 0) {
824 pfm_unreserve_page(addr);
833 static pfm_context_t *
834 pfm_context_alloc(void)
839 * allocate context descriptor
840 * must be able to free with interrupts disabled
842 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
844 memset(ctx, 0, sizeof(pfm_context_t));
845 DPRINT(("alloc ctx @%p\n", ctx));
851 pfm_context_free(pfm_context_t *ctx)
854 DPRINT(("free ctx @%p\n", ctx));
860 pfm_mask_monitoring(struct task_struct *task)
862 pfm_context_t *ctx = PFM_GET_CTX(task);
863 struct thread_struct *th = &task->thread;
864 unsigned long mask, val, ovfl_mask;
867 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
869 ovfl_mask = pmu_conf->ovfl_val;
871 * monitoring can only be masked as a result of a valid
872 * counter overflow. In UP, it means that the PMU still
873 * has an owner. Note that the owner can be different
874 * from the current task. However the PMU state belongs
876 * In SMP, a valid overflow only happens when task is
877 * current. Therefore if we come here, we know that
878 * the PMU state belongs to the current task, therefore
879 * we can access the live registers.
881 * So in both cases, the live register contains the owner's
882 * state. We can ONLY touch the PMU registers and NOT the PSR.
884 * As a consequence to this call, the thread->pmds[] array
885 * contains stale information which must be ignored
886 * when context is reloaded AND monitoring is active (see
889 mask = ctx->ctx_used_pmds[0];
890 for (i = 0; mask; i++, mask>>=1) {
891 /* skip non used pmds */
892 if ((mask & 0x1) == 0) continue;
893 val = ia64_get_pmd(i);
895 if (PMD_IS_COUNTING(i)) {
897 * we rebuild the full 64 bit value of the counter
899 ctx->ctx_pmds[i].val += (val & ovfl_mask);
901 ctx->ctx_pmds[i].val = val;
903 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
905 ctx->ctx_pmds[i].val,
909 * mask monitoring by setting the privilege level to 0
910 * we cannot use psr.pp/psr.up for this, it is controlled by
913 * if task is current, modify actual registers, otherwise modify
914 * thread save state, i.e., what will be restored in pfm_load_regs()
916 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
917 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
918 if ((mask & 0x1) == 0UL) continue;
919 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
920 th->pmcs[i] &= ~0xfUL;
921 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
924 * make all of this visible
930 * must always be done with task == current
932 * context must be in MASKED state when calling
935 pfm_restore_monitoring(struct task_struct *task)
937 pfm_context_t *ctx = PFM_GET_CTX(task);
938 struct thread_struct *th = &task->thread;
939 unsigned long mask, ovfl_mask;
940 unsigned long psr, val;
943 is_system = ctx->ctx_fl_system;
944 ovfl_mask = pmu_conf->ovfl_val;
946 if (task != current) {
947 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
950 if (ctx->ctx_state != PFM_CTX_MASKED) {
951 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
952 task->pid, current->pid, ctx->ctx_state);
957 * monitoring is masked via the PMC.
958 * As we restore their value, we do not want each counter to
959 * restart right away. We stop monitoring using the PSR,
960 * restore the PMC (and PMD) and then re-establish the psr
961 * as it was. Note that there can be no pending overflow at
962 * this point, because monitoring was MASKED.
964 * system-wide session are pinned and self-monitoring
966 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
968 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
974 * first, we restore the PMD
976 mask = ctx->ctx_used_pmds[0];
977 for (i = 0; mask; i++, mask>>=1) {
978 /* skip non used pmds */
979 if ((mask & 0x1) == 0) continue;
981 if (PMD_IS_COUNTING(i)) {
983 * we split the 64bit value according to
986 val = ctx->ctx_pmds[i].val & ovfl_mask;
987 ctx->ctx_pmds[i].val &= ~ovfl_mask;
989 val = ctx->ctx_pmds[i].val;
991 ia64_set_pmd(i, val);
993 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
995 ctx->ctx_pmds[i].val,
1001 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1002 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1003 if ((mask & 0x1) == 0UL) continue;
1004 th->pmcs[i] = ctx->ctx_pmcs[i];
1005 ia64_set_pmc(i, th->pmcs[i]);
1006 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1011 * must restore DBR/IBR because could be modified while masked
1012 * XXX: need to optimize
1014 if (ctx->ctx_fl_using_dbreg) {
1015 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1016 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1022 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1031 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1037 for (i=0; mask; i++, mask>>=1) {
1038 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1043 * reload from thread state (used for ctxw only)
1046 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1049 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1051 for (i=0; mask; i++, mask>>=1) {
1052 if ((mask & 0x1) == 0) continue;
1053 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1054 ia64_set_pmd(i, val);
1060 * propagate PMD from context to thread-state
1063 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1065 struct thread_struct *thread = &task->thread;
1066 unsigned long ovfl_val = pmu_conf->ovfl_val;
1067 unsigned long mask = ctx->ctx_all_pmds[0];
1071 DPRINT(("mask=0x%lx\n", mask));
1073 for (i=0; mask; i++, mask>>=1) {
1075 val = ctx->ctx_pmds[i].val;
1078 * We break up the 64 bit value into 2 pieces
1079 * the lower bits go to the machine state in the
1080 * thread (will be reloaded on ctxsw in).
1081 * The upper part stays in the soft-counter.
1083 if (PMD_IS_COUNTING(i)) {
1084 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1087 thread->pmds[i] = val;
1089 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1092 ctx->ctx_pmds[i].val));
1097 * propagate PMC from context to thread-state
1100 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1102 struct thread_struct *thread = &task->thread;
1103 unsigned long mask = ctx->ctx_all_pmcs[0];
1106 DPRINT(("mask=0x%lx\n", mask));
1108 for (i=0; mask; i++, mask>>=1) {
1109 /* masking 0 with ovfl_val yields 0 */
1110 thread->pmcs[i] = ctx->ctx_pmcs[i];
1111 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1118 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1122 for (i=0; mask; i++, mask>>=1) {
1123 if ((mask & 0x1) == 0) continue;
1124 ia64_set_pmc(i, pmcs[i]);
1130 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1132 return memcmp(a, b, sizeof(pfm_uuid_t));
1136 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1139 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1144 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1147 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1153 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1157 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1162 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1166 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1171 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1174 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1179 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1182 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1186 static pfm_buffer_fmt_t *
1187 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1189 struct list_head * pos;
1190 pfm_buffer_fmt_t * entry;
1192 list_for_each(pos, &pfm_buffer_fmt_list) {
1193 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1194 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1201 * find a buffer format based on its uuid
1203 static pfm_buffer_fmt_t *
1204 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1206 pfm_buffer_fmt_t * fmt;
1207 spin_lock(&pfm_buffer_fmt_lock);
1208 fmt = __pfm_find_buffer_fmt(uuid);
1209 spin_unlock(&pfm_buffer_fmt_lock);
1214 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1218 /* some sanity checks */
1219 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1221 /* we need at least a handler */
1222 if (fmt->fmt_handler == NULL) return -EINVAL;
1225 * XXX: need check validity of fmt_arg_size
1228 spin_lock(&pfm_buffer_fmt_lock);
1230 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1231 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1235 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1236 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1239 spin_unlock(&pfm_buffer_fmt_lock);
1242 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1245 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1247 pfm_buffer_fmt_t *fmt;
1250 spin_lock(&pfm_buffer_fmt_lock);
1252 fmt = __pfm_find_buffer_fmt(uuid);
1254 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1258 list_del_init(&fmt->fmt_list);
1259 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1262 spin_unlock(&pfm_buffer_fmt_lock);
1266 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1269 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1271 unsigned long flags;
1273 * validy checks on cpu_mask have been done upstream
1277 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1278 pfm_sessions.pfs_sys_sessions,
1279 pfm_sessions.pfs_task_sessions,
1280 pfm_sessions.pfs_sys_use_dbregs,
1286 * cannot mix system wide and per-task sessions
1288 if (pfm_sessions.pfs_task_sessions > 0UL) {
1289 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1290 pfm_sessions.pfs_task_sessions));
1294 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1296 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1298 pfm_sessions.pfs_sys_session[cpu] = task;
1300 pfm_sessions.pfs_sys_sessions++ ;
1303 if (pfm_sessions.pfs_sys_sessions) goto abort;
1304 pfm_sessions.pfs_task_sessions++;
1307 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1308 pfm_sessions.pfs_sys_sessions,
1309 pfm_sessions.pfs_task_sessions,
1310 pfm_sessions.pfs_sys_use_dbregs,
1319 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1320 pfm_sessions.pfs_sys_session[cpu]->pid,
1321 smp_processor_id()));
1330 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1332 unsigned long flags;
1334 * validy checks on cpu_mask have been done upstream
1338 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1339 pfm_sessions.pfs_sys_sessions,
1340 pfm_sessions.pfs_task_sessions,
1341 pfm_sessions.pfs_sys_use_dbregs,
1347 pfm_sessions.pfs_sys_session[cpu] = NULL;
1349 * would not work with perfmon+more than one bit in cpu_mask
1351 if (ctx && ctx->ctx_fl_using_dbreg) {
1352 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1353 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1355 pfm_sessions.pfs_sys_use_dbregs--;
1358 pfm_sessions.pfs_sys_sessions--;
1360 pfm_sessions.pfs_task_sessions--;
1362 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1363 pfm_sessions.pfs_sys_sessions,
1364 pfm_sessions.pfs_task_sessions,
1365 pfm_sessions.pfs_sys_use_dbregs,
1375 * removes virtual mapping of the sampling buffer.
1376 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1377 * a PROTECT_CTX() section.
1380 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1385 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1386 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1390 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1393 * does the actual unmapping
1395 down_write(&task->mm->mmap_sem);
1397 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1399 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1401 up_write(&task->mm->mmap_sem);
1403 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1406 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1412 * free actual physical storage used by sampling buffer
1416 pfm_free_smpl_buffer(pfm_context_t *ctx)
1418 pfm_buffer_fmt_t *fmt;
1420 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1423 * we won't use the buffer format anymore
1425 fmt = ctx->ctx_buf_fmt;
1427 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1430 ctx->ctx_smpl_vaddr));
1432 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1437 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1439 ctx->ctx_smpl_hdr = NULL;
1440 ctx->ctx_smpl_size = 0UL;
1445 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1451 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1453 if (fmt == NULL) return;
1455 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1460 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1461 * no real gain from having the whole whorehouse mounted. So we don't need
1462 * any operations on the root directory. However, we need a non-trivial
1463 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1465 static struct vfsmount *pfmfs_mnt;
1470 int err = register_filesystem(&pfm_fs_type);
1472 pfmfs_mnt = kern_mount(&pfm_fs_type);
1473 err = PTR_ERR(pfmfs_mnt);
1474 if (IS_ERR(pfmfs_mnt))
1475 unregister_filesystem(&pfm_fs_type);
1485 unregister_filesystem(&pfm_fs_type);
1490 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1495 unsigned long flags;
1496 DECLARE_WAITQUEUE(wait, current);
1497 if (PFM_IS_FILE(filp) == 0) {
1498 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1502 ctx = (pfm_context_t *)filp->private_data;
1504 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1509 * check even when there is no message
1511 if (size < sizeof(pfm_msg_t)) {
1512 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1516 PROTECT_CTX(ctx, flags);
1519 * put ourselves on the wait queue
1521 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1529 set_current_state(TASK_INTERRUPTIBLE);
1531 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1534 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1536 UNPROTECT_CTX(ctx, flags);
1539 * check non-blocking read
1542 if(filp->f_flags & O_NONBLOCK) break;
1545 * check pending signals
1547 if(signal_pending(current)) {
1552 * no message, so wait
1556 PROTECT_CTX(ctx, flags);
1558 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1559 set_current_state(TASK_RUNNING);
1560 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1562 if (ret < 0) goto abort;
1565 msg = pfm_get_next_msg(ctx);
1567 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1571 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1574 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1577 UNPROTECT_CTX(ctx, flags);
1583 pfm_write(struct file *file, const char __user *ubuf,
1584 size_t size, loff_t *ppos)
1586 DPRINT(("pfm_write called\n"));
1591 pfm_poll(struct file *filp, poll_table * wait)
1594 unsigned long flags;
1595 unsigned int mask = 0;
1597 if (PFM_IS_FILE(filp) == 0) {
1598 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1602 ctx = (pfm_context_t *)filp->private_data;
1604 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1609 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1611 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1613 PROTECT_CTX(ctx, flags);
1615 if (PFM_CTXQ_EMPTY(ctx) == 0)
1616 mask = POLLIN | POLLRDNORM;
1618 UNPROTECT_CTX(ctx, flags);
1620 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1626 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1628 DPRINT(("pfm_ioctl called\n"));
1633 * interrupt cannot be masked when coming here
1636 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1640 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1642 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1646 ctx->ctx_async_queue, ret));
1652 pfm_fasync(int fd, struct file *filp, int on)
1657 if (PFM_IS_FILE(filp) == 0) {
1658 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1662 ctx = (pfm_context_t *)filp->private_data;
1664 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1668 * we cannot mask interrupts during this call because this may
1669 * may go to sleep if memory is not readily avalaible.
1671 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1672 * done in caller. Serialization of this function is ensured by caller.
1674 ret = pfm_do_fasync(fd, filp, ctx, on);
1677 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1680 ctx->ctx_async_queue, ret));
1687 * this function is exclusively called from pfm_close().
1688 * The context is not protected at that time, nor are interrupts
1689 * on the remote CPU. That's necessary to avoid deadlocks.
1692 pfm_syswide_force_stop(void *info)
1694 pfm_context_t *ctx = (pfm_context_t *)info;
1695 struct pt_regs *regs = ia64_task_regs(current);
1696 struct task_struct *owner;
1697 unsigned long flags;
1700 if (ctx->ctx_cpu != smp_processor_id()) {
1701 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1703 smp_processor_id());
1706 owner = GET_PMU_OWNER();
1707 if (owner != ctx->ctx_task) {
1708 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1710 owner->pid, ctx->ctx_task->pid);
1713 if (GET_PMU_CTX() != ctx) {
1714 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1716 GET_PMU_CTX(), ctx);
1720 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1722 * the context is already protected in pfm_close(), we simply
1723 * need to mask interrupts to avoid a PMU interrupt race on
1726 local_irq_save(flags);
1728 ret = pfm_context_unload(ctx, NULL, 0, regs);
1730 DPRINT(("context_unload returned %d\n", ret));
1734 * unmask interrupts, PMU interrupts are now spurious here
1736 local_irq_restore(flags);
1740 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1744 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1745 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1746 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1748 #endif /* CONFIG_SMP */
1751 * called for each close(). Partially free resources.
1752 * When caller is self-monitoring, the context is unloaded.
1755 pfm_flush(struct file *filp)
1758 struct task_struct *task;
1759 struct pt_regs *regs;
1760 unsigned long flags;
1761 unsigned long smpl_buf_size = 0UL;
1762 void *smpl_buf_vaddr = NULL;
1763 int state, is_system;
1765 if (PFM_IS_FILE(filp) == 0) {
1766 DPRINT(("bad magic for\n"));
1770 ctx = (pfm_context_t *)filp->private_data;
1772 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1777 * remove our file from the async queue, if we use this mode.
1778 * This can be done without the context being protected. We come
1779 * here when the context has become unreacheable by other tasks.
1781 * We may still have active monitoring at this point and we may
1782 * end up in pfm_overflow_handler(). However, fasync_helper()
1783 * operates with interrupts disabled and it cleans up the
1784 * queue. If the PMU handler is called prior to entering
1785 * fasync_helper() then it will send a signal. If it is
1786 * invoked after, it will find an empty queue and no
1787 * signal will be sent. In both case, we are safe
1789 if (filp->f_flags & FASYNC) {
1790 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1791 pfm_do_fasync (-1, filp, ctx, 0);
1794 PROTECT_CTX(ctx, flags);
1796 state = ctx->ctx_state;
1797 is_system = ctx->ctx_fl_system;
1799 task = PFM_CTX_TASK(ctx);
1800 regs = ia64_task_regs(task);
1802 DPRINT(("ctx_state=%d is_current=%d\n",
1804 task == current ? 1 : 0));
1807 * if state == UNLOADED, then task is NULL
1811 * we must stop and unload because we are losing access to the context.
1813 if (task == current) {
1816 * the task IS the owner but it migrated to another CPU: that's bad
1817 * but we must handle this cleanly. Unfortunately, the kernel does
1818 * not provide a mechanism to block migration (while the context is loaded).
1820 * We need to release the resource on the ORIGINAL cpu.
1822 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1824 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1826 * keep context protected but unmask interrupt for IPI
1828 local_irq_restore(flags);
1830 pfm_syswide_cleanup_other_cpu(ctx);
1833 * restore interrupt masking
1835 local_irq_save(flags);
1838 * context is unloaded at this point
1841 #endif /* CONFIG_SMP */
1844 DPRINT(("forcing unload\n"));
1846 * stop and unload, returning with state UNLOADED
1847 * and session unreserved.
1849 pfm_context_unload(ctx, NULL, 0, regs);
1851 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1856 * remove virtual mapping, if any, for the calling task.
1857 * cannot reset ctx field until last user is calling close().
1859 * ctx_smpl_vaddr must never be cleared because it is needed
1860 * by every task with access to the context
1862 * When called from do_exit(), the mm context is gone already, therefore
1863 * mm is NULL, i.e., the VMA is already gone and we do not have to
1866 if (ctx->ctx_smpl_vaddr && current->mm) {
1867 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1868 smpl_buf_size = ctx->ctx_smpl_size;
1871 UNPROTECT_CTX(ctx, flags);
1874 * if there was a mapping, then we systematically remove it
1875 * at this point. Cannot be done inside critical section
1876 * because some VM function reenables interrupts.
1879 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1884 * called either on explicit close() or from exit_files().
1885 * Only the LAST user of the file gets to this point, i.e., it is
1888 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1889 * (fput()),i.e, last task to access the file. Nobody else can access the
1890 * file at this point.
1892 * When called from exit_files(), the VMA has been freed because exit_mm()
1893 * is executed before exit_files().
1895 * When called from exit_files(), the current task is not yet ZOMBIE but we
1896 * flush the PMU state to the context.
1899 pfm_close(struct inode *inode, struct file *filp)
1902 struct task_struct *task;
1903 struct pt_regs *regs;
1904 DECLARE_WAITQUEUE(wait, current);
1905 unsigned long flags;
1906 unsigned long smpl_buf_size = 0UL;
1907 void *smpl_buf_addr = NULL;
1908 int free_possible = 1;
1909 int state, is_system;
1911 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1913 if (PFM_IS_FILE(filp) == 0) {
1914 DPRINT(("bad magic\n"));
1918 ctx = (pfm_context_t *)filp->private_data;
1920 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1924 PROTECT_CTX(ctx, flags);
1926 state = ctx->ctx_state;
1927 is_system = ctx->ctx_fl_system;
1929 task = PFM_CTX_TASK(ctx);
1930 regs = ia64_task_regs(task);
1932 DPRINT(("ctx_state=%d is_current=%d\n",
1934 task == current ? 1 : 0));
1937 * if task == current, then pfm_flush() unloaded the context
1939 if (state == PFM_CTX_UNLOADED) goto doit;
1942 * context is loaded/masked and task != current, we need to
1943 * either force an unload or go zombie
1947 * The task is currently blocked or will block after an overflow.
1948 * we must force it to wakeup to get out of the
1949 * MASKED state and transition to the unloaded state by itself.
1951 * This situation is only possible for per-task mode
1953 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1956 * set a "partial" zombie state to be checked
1957 * upon return from down() in pfm_handle_work().
1959 * We cannot use the ZOMBIE state, because it is checked
1960 * by pfm_load_regs() which is called upon wakeup from down().
1961 * In such case, it would free the context and then we would
1962 * return to pfm_handle_work() which would access the
1963 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1964 * but visible to pfm_handle_work().
1966 * For some window of time, we have a zombie context with
1967 * ctx_state = MASKED and not ZOMBIE
1969 ctx->ctx_fl_going_zombie = 1;
1972 * force task to wake up from MASKED state
1974 up(&ctx->ctx_restart_sem);
1976 DPRINT(("waking up ctx_state=%d\n", state));
1979 * put ourself to sleep waiting for the other
1980 * task to report completion
1982 * the context is protected by mutex, therefore there
1983 * is no risk of being notified of completion before
1984 * begin actually on the waitq.
1986 set_current_state(TASK_INTERRUPTIBLE);
1987 add_wait_queue(&ctx->ctx_zombieq, &wait);
1989 UNPROTECT_CTX(ctx, flags);
1992 * XXX: check for signals :
1993 * - ok for explicit close
1994 * - not ok when coming from exit_files()
1999 PROTECT_CTX(ctx, flags);
2002 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2003 set_current_state(TASK_RUNNING);
2006 * context is unloaded at this point
2008 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2010 else if (task != current) {
2013 * switch context to zombie state
2015 ctx->ctx_state = PFM_CTX_ZOMBIE;
2017 DPRINT(("zombie ctx for [%d]\n", task->pid));
2019 * cannot free the context on the spot. deferred until
2020 * the task notices the ZOMBIE state
2024 pfm_context_unload(ctx, NULL, 0, regs);
2029 /* reload state, may have changed during opening of critical section */
2030 state = ctx->ctx_state;
2033 * the context is still attached to a task (possibly current)
2034 * we cannot destroy it right now
2038 * we must free the sampling buffer right here because
2039 * we cannot rely on it being cleaned up later by the
2040 * monitored task. It is not possible to free vmalloc'ed
2041 * memory in pfm_load_regs(). Instead, we remove the buffer
2042 * now. should there be subsequent PMU overflow originally
2043 * meant for sampling, the will be converted to spurious
2044 * and that's fine because the monitoring tools is gone anyway.
2046 if (ctx->ctx_smpl_hdr) {
2047 smpl_buf_addr = ctx->ctx_smpl_hdr;
2048 smpl_buf_size = ctx->ctx_smpl_size;
2049 /* no more sampling */
2050 ctx->ctx_smpl_hdr = NULL;
2051 ctx->ctx_fl_is_sampling = 0;
2054 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2060 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2063 * UNLOADED that the session has already been unreserved.
2065 if (state == PFM_CTX_ZOMBIE) {
2066 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2070 * disconnect file descriptor from context must be done
2073 filp->private_data = NULL;
2076 * if we free on the spot, the context is now completely unreacheable
2077 * from the callers side. The monitored task side is also cut, so we
2080 * If we have a deferred free, only the caller side is disconnected.
2082 UNPROTECT_CTX(ctx, flags);
2085 * All memory free operations (especially for vmalloc'ed memory)
2086 * MUST be done with interrupts ENABLED.
2088 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2091 * return the memory used by the context
2093 if (free_possible) pfm_context_free(ctx);
2099 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2101 DPRINT(("pfm_no_open called\n"));
2107 static struct file_operations pfm_file_ops = {
2108 .llseek = no_llseek,
2113 .open = pfm_no_open, /* special open code to disallow open via /proc */
2114 .fasync = pfm_fasync,
2115 .release = pfm_close,
2120 pfmfs_delete_dentry(struct dentry *dentry)
2125 static struct dentry_operations pfmfs_dentry_operations = {
2126 .d_delete = pfmfs_delete_dentry,
2131 pfm_alloc_fd(struct file **cfile)
2134 struct file *file = NULL;
2135 struct inode * inode;
2139 fd = get_unused_fd();
2140 if (fd < 0) return -ENFILE;
2144 file = get_empty_filp();
2145 if (!file) goto out;
2148 * allocate a new inode
2150 inode = new_inode(pfmfs_mnt->mnt_sb);
2151 if (!inode) goto out;
2153 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2155 inode->i_mode = S_IFCHR|S_IRUGO;
2156 inode->i_uid = current->fsuid;
2157 inode->i_gid = current->fsgid;
2159 sprintf(name, "[%lu]", inode->i_ino);
2161 this.len = strlen(name);
2162 this.hash = inode->i_ino;
2167 * allocate a new dcache entry
2169 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2170 if (!file->f_dentry) goto out;
2172 file->f_dentry->d_op = &pfmfs_dentry_operations;
2174 d_add(file->f_dentry, inode);
2175 file->f_vfsmnt = mntget(pfmfs_mnt);
2176 file->f_mapping = inode->i_mapping;
2178 file->f_op = &pfm_file_ops;
2179 file->f_mode = FMODE_READ;
2180 file->f_flags = O_RDONLY;
2184 * may have to delay until context is attached?
2186 fd_install(fd, file);
2189 * the file structure we will use
2195 if (file) put_filp(file);
2201 pfm_free_fd(int fd, struct file *file)
2203 struct files_struct *files = current->files;
2206 * there ie no fd_uninstall(), so we do it here
2208 spin_lock(&files->file_lock);
2209 files->fd[fd] = NULL;
2210 spin_unlock(&files->file_lock);
2212 if (file) put_filp(file);
2217 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2219 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2239 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2241 struct mm_struct *mm = task->mm;
2242 struct vm_area_struct *vma = NULL;
2248 * the fixed header + requested size and align to page boundary
2250 size = PAGE_ALIGN(rsize);
2252 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255 * check requested size to avoid Denial-of-service attacks
2256 * XXX: may have to refine this test
2257 * Check against address space limit.
2259 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2266 * We do the easy to undo allocations first.
2268 * pfm_rvmalloc(), clears the buffer, so there is no leak
2270 smpl_buf = pfm_rvmalloc(size);
2271 if (smpl_buf == NULL) {
2272 DPRINT(("Can't allocate sampling buffer\n"));
2276 DPRINT(("smpl_buf @%p\n", smpl_buf));
2279 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2281 DPRINT(("Cannot allocate vma\n"));
2284 memset(vma, 0, sizeof(*vma));
2287 * partially initialize the vma for the sampling buffer
2290 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2291 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2294 * Now we have everything we need and we can initialize
2295 * and connect all the data structures
2298 ctx->ctx_smpl_hdr = smpl_buf;
2299 ctx->ctx_smpl_size = size; /* aligned size */
2302 * Let's do the difficult operations next.
2304 * now we atomically find some area in the address space and
2305 * remap the buffer in it.
2307 down_write(&task->mm->mmap_sem);
2309 /* find some free area in address space, must have mmap sem held */
2310 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2311 if (vma->vm_start == 0UL) {
2312 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2313 up_write(&task->mm->mmap_sem);
2316 vma->vm_end = vma->vm_start + size;
2317 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321 /* can only be applied to current task, need to have the mm semaphore held when called */
2322 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2323 DPRINT(("Can't remap buffer\n"));
2324 up_write(&task->mm->mmap_sem);
2329 * now insert the vma in the vm list for the process, must be
2330 * done with mmap lock held
2332 insert_vm_struct(mm, vma);
2334 mm->total_vm += size >> PAGE_SHIFT;
2335 vm_stat_account(vma);
2336 up_write(&task->mm->mmap_sem);
2339 * keep track of user level virtual address
2341 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2342 *(unsigned long *)user_vaddr = vma->vm_start;
2347 kmem_cache_free(vm_area_cachep, vma);
2349 pfm_rvfree(smpl_buf, size);
2355 * XXX: do something better here
2358 pfm_bad_permissions(struct task_struct *task)
2360 /* inspired by ptrace_attach() */
2361 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2370 return ((current->uid != task->euid)
2371 || (current->uid != task->suid)
2372 || (current->uid != task->uid)
2373 || (current->gid != task->egid)
2374 || (current->gid != task->sgid)
2375 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2379 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2385 ctx_flags = pfx->ctx_flags;
2387 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2390 * cannot block in this mode
2392 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2393 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2398 /* probably more to add here */
2404 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2405 unsigned int cpu, pfarg_context_t *arg)
2407 pfm_buffer_fmt_t *fmt = NULL;
2408 unsigned long size = 0UL;
2410 void *fmt_arg = NULL;
2412 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2414 /* invoke and lock buffer format, if found */
2415 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2417 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2422 * buffer argument MUST be contiguous to pfarg_context_t
2424 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2426 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2428 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2430 if (ret) goto error;
2432 /* link buffer format and context */
2433 ctx->ctx_buf_fmt = fmt;
2436 * check if buffer format wants to use perfmon buffer allocation/mapping service
2438 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2439 if (ret) goto error;
2443 * buffer is always remapped into the caller's address space
2445 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2446 if (ret) goto error;
2448 /* keep track of user address of buffer */
2449 arg->ctx_smpl_vaddr = uaddr;
2451 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2458 pfm_reset_pmu_state(pfm_context_t *ctx)
2463 * install reset values for PMC.
2465 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2466 if (PMC_IS_IMPL(i) == 0) continue;
2467 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2468 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2471 * PMD registers are set to 0UL when the context in memset()
2475 * On context switched restore, we must restore ALL pmc and ALL pmd even
2476 * when they are not actively used by the task. In UP, the incoming process
2477 * may otherwise pick up left over PMC, PMD state from the previous process.
2478 * As opposed to PMD, stale PMC can cause harm to the incoming
2479 * process because they may change what is being measured.
2480 * Therefore, we must systematically reinstall the entire
2481 * PMC state. In SMP, the same thing is possible on the
2482 * same CPU but also on between 2 CPUs.
2484 * The problem with PMD is information leaking especially
2485 * to user level when psr.sp=0
2487 * There is unfortunately no easy way to avoid this problem
2488 * on either UP or SMP. This definitively slows down the
2489 * pfm_load_regs() function.
2493 * bitmask of all PMCs accessible to this context
2495 * PMC0 is treated differently.
2497 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2500 * bitmask of all PMDs that are accesible to this context
2502 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2504 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2507 * useful in case of re-enable after disable
2509 ctx->ctx_used_ibrs[0] = 0UL;
2510 ctx->ctx_used_dbrs[0] = 0UL;
2514 pfm_ctx_getsize(void *arg, size_t *sz)
2516 pfarg_context_t *req = (pfarg_context_t *)arg;
2517 pfm_buffer_fmt_t *fmt;
2521 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2523 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2525 DPRINT(("cannot find buffer format\n"));
2528 /* get just enough to copy in user parameters */
2529 *sz = fmt->fmt_arg_size;
2530 DPRINT(("arg_size=%lu\n", *sz));
2538 * cannot attach if :
2540 * - task not owned by caller
2541 * - task incompatible with context mode
2544 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2547 * no kernel task or task not owner by caller
2549 if (task->mm == NULL) {
2550 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2553 if (pfm_bad_permissions(task)) {
2554 DPRINT(("no permission to attach to [%d]\n", task->pid));
2558 * cannot block in self-monitoring mode
2560 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2561 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2565 if (task->exit_state == EXIT_ZOMBIE) {
2566 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2571 * always ok for self
2573 if (task == current) return 0;
2575 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2576 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2580 * make sure the task is off any CPU
2582 wait_task_inactive(task);
2584 /* more to come... */
2590 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2592 struct task_struct *p = current;
2595 /* XXX: need to add more checks here */
2596 if (pid < 2) return -EPERM;
2598 if (pid != current->pid) {
2600 read_lock(&tasklist_lock);
2602 p = find_task_by_pid(pid);
2604 /* make sure task cannot go away while we operate on it */
2605 if (p) get_task_struct(p);
2607 read_unlock(&tasklist_lock);
2609 if (p == NULL) return -ESRCH;
2612 ret = pfm_task_incompatible(ctx, p);
2615 } else if (p != current) {
2624 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2626 pfarg_context_t *req = (pfarg_context_t *)arg;
2631 /* let's check the arguments first */
2632 ret = pfarg_is_sane(current, req);
2633 if (ret < 0) return ret;
2635 ctx_flags = req->ctx_flags;
2639 ctx = pfm_context_alloc();
2640 if (!ctx) goto error;
2642 ret = pfm_alloc_fd(&filp);
2643 if (ret < 0) goto error_file;
2645 req->ctx_fd = ctx->ctx_fd = ret;
2648 * attach context to file
2650 filp->private_data = ctx;
2653 * does the user want to sample?
2655 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2656 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2657 if (ret) goto buffer_error;
2661 * init context protection lock
2663 spin_lock_init(&ctx->ctx_lock);
2666 * context is unloaded
2668 ctx->ctx_state = PFM_CTX_UNLOADED;
2671 * initialization of context's flags
2673 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2674 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2675 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2676 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2678 * will move to set properties
2679 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2683 * init restart semaphore to locked
2685 sema_init(&ctx->ctx_restart_sem, 0);
2688 * activation is used in SMP only
2690 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2691 SET_LAST_CPU(ctx, -1);
2694 * initialize notification message queue
2696 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2697 init_waitqueue_head(&ctx->ctx_msgq_wait);
2698 init_waitqueue_head(&ctx->ctx_zombieq);
2700 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2705 ctx->ctx_fl_excl_idle,
2710 * initialize soft PMU state
2712 pfm_reset_pmu_state(ctx);
2717 pfm_free_fd(ctx->ctx_fd, filp);
2719 if (ctx->ctx_buf_fmt) {
2720 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2723 pfm_context_free(ctx);
2729 static inline unsigned long
2730 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2732 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2733 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2734 extern unsigned long carta_random32 (unsigned long seed);
2736 if (reg->flags & PFM_REGFL_RANDOM) {
2737 new_seed = carta_random32(old_seed);
2738 val -= (old_seed & mask); /* counter values are negative numbers! */
2739 if ((mask >> 32) != 0)
2740 /* construct a full 64-bit random value: */
2741 new_seed |= carta_random32(old_seed >> 32) << 32;
2742 reg->seed = new_seed;
2749 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2751 unsigned long mask = ovfl_regs[0];
2752 unsigned long reset_others = 0UL;
2757 * now restore reset value on sampling overflowed counters
2759 mask >>= PMU_FIRST_COUNTER;
2760 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2762 if ((mask & 0x1UL) == 0UL) continue;
2764 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2765 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2767 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2771 * Now take care of resetting the other registers
2773 for(i = 0; reset_others; i++, reset_others >>= 1) {
2775 if ((reset_others & 0x1) == 0) continue;
2777 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2779 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2780 is_long_reset ? "long" : "short", i, val));
2785 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2787 unsigned long mask = ovfl_regs[0];
2788 unsigned long reset_others = 0UL;
2792 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2794 if (ctx->ctx_state == PFM_CTX_MASKED) {
2795 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2800 * now restore reset value on sampling overflowed counters
2802 mask >>= PMU_FIRST_COUNTER;
2803 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2805 if ((mask & 0x1UL) == 0UL) continue;
2807 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2808 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2810 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2812 pfm_write_soft_counter(ctx, i, val);
2816 * Now take care of resetting the other registers
2818 for(i = 0; reset_others; i++, reset_others >>= 1) {
2820 if ((reset_others & 0x1) == 0) continue;
2822 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2824 if (PMD_IS_COUNTING(i)) {
2825 pfm_write_soft_counter(ctx, i, val);
2827 ia64_set_pmd(i, val);
2829 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2830 is_long_reset ? "long" : "short", i, val));
2836 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2838 struct thread_struct *thread = NULL;
2839 struct task_struct *task;
2840 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2841 unsigned long value, pmc_pm;
2842 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2843 unsigned int cnum, reg_flags, flags, pmc_type;
2844 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2845 int is_monitor, is_counting, state;
2847 pfm_reg_check_t wr_func;
2848 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2850 state = ctx->ctx_state;
2851 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2852 is_system = ctx->ctx_fl_system;
2853 task = ctx->ctx_task;
2854 impl_pmds = pmu_conf->impl_pmds[0];
2856 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2859 thread = &task->thread;
2861 * In system wide and when the context is loaded, access can only happen
2862 * when the caller is running on the CPU being monitored by the session.
2863 * It does not have to be the owner (ctx_task) of the context per se.
2865 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2866 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2869 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2871 expert_mode = pfm_sysctl.expert_mode;
2873 for (i = 0; i < count; i++, req++) {
2875 cnum = req->reg_num;
2876 reg_flags = req->reg_flags;
2877 value = req->reg_value;
2878 smpl_pmds = req->reg_smpl_pmds[0];
2879 reset_pmds = req->reg_reset_pmds[0];
2883 if (cnum >= PMU_MAX_PMCS) {
2884 DPRINT(("pmc%u is invalid\n", cnum));
2888 pmc_type = pmu_conf->pmc_desc[cnum].type;
2889 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2890 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2891 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2894 * we reject all non implemented PMC as well
2895 * as attempts to modify PMC[0-3] which are used
2896 * as status registers by the PMU
2898 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2899 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2902 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2904 * If the PMC is a monitor, then if the value is not the default:
2905 * - system-wide session: PMCx.pm=1 (privileged monitor)
2906 * - per-task : PMCx.pm=0 (user monitor)
2908 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2909 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2918 * enforce generation of overflow interrupt. Necessary on all
2921 value |= 1 << PMU_PMC_OI;
2923 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2924 flags |= PFM_REGFL_OVFL_NOTIFY;
2927 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2929 /* verify validity of smpl_pmds */
2930 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2931 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2935 /* verify validity of reset_pmds */
2936 if ((reset_pmds & impl_pmds) != reset_pmds) {
2937 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2941 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2942 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2945 /* eventid on non-counting monitors are ignored */
2949 * execute write checker, if any
2951 if (likely(expert_mode == 0 && wr_func)) {
2952 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2953 if (ret) goto error;
2958 * no error on this register
2960 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2963 * Now we commit the changes to the software state
2967 * update overflow information
2971 * full flag update each time a register is programmed
2973 ctx->ctx_pmds[cnum].flags = flags;
2975 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2976 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2977 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2980 * Mark all PMDS to be accessed as used.
2982 * We do not keep track of PMC because we have to
2983 * systematically restore ALL of them.
2985 * We do not update the used_monitors mask, because
2986 * if we have not programmed them, then will be in
2987 * a quiescent state, therefore we will not need to
2988 * mask/restore then when context is MASKED.
2990 CTX_USED_PMD(ctx, reset_pmds);
2991 CTX_USED_PMD(ctx, smpl_pmds);
2993 * make sure we do not try to reset on
2994 * restart because we have established new values
2996 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2999 * Needed in case the user does not initialize the equivalent
3000 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3001 * possible leak here.
3003 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3006 * keep track of the monitor PMC that we are using.
3007 * we save the value of the pmc in ctx_pmcs[] and if
3008 * the monitoring is not stopped for the context we also
3009 * place it in the saved state area so that it will be
3010 * picked up later by the context switch code.
3012 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3014 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3015 * monitoring needs to be stopped.
3017 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3020 * update context state
3022 ctx->ctx_pmcs[cnum] = value;
3026 * write thread state
3028 if (is_system == 0) thread->pmcs[cnum] = value;
3031 * write hardware register if we can
3033 if (can_access_pmu) {
3034 ia64_set_pmc(cnum, value);
3039 * per-task SMP only here
3041 * we are guaranteed that the task is not running on the other CPU,
3042 * we indicate that this PMD will need to be reloaded if the task
3043 * is rescheduled on the CPU it ran last on.
3045 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3050 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3056 ctx->ctx_all_pmcs[0],
3057 ctx->ctx_used_pmds[0],
3058 ctx->ctx_pmds[cnum].eventid,
3061 ctx->ctx_reload_pmcs[0],
3062 ctx->ctx_used_monitors[0],
3063 ctx->ctx_ovfl_regs[0]));
3067 * make sure the changes are visible
3069 if (can_access_pmu) ia64_srlz_d();
3073 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3078 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3080 struct thread_struct *thread = NULL;
3081 struct task_struct *task;
3082 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3083 unsigned long value, hw_value, ovfl_mask;
3085 int i, can_access_pmu = 0, state;
3086 int is_counting, is_loaded, is_system, expert_mode;
3088 pfm_reg_check_t wr_func;
3091 state = ctx->ctx_state;
3092 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3093 is_system = ctx->ctx_fl_system;
3094 ovfl_mask = pmu_conf->ovfl_val;
3095 task = ctx->ctx_task;
3097 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3100 * on both UP and SMP, we can only write to the PMC when the task is
3101 * the owner of the local PMU.
3103 if (likely(is_loaded)) {
3104 thread = &task->thread;
3106 * In system wide and when the context is loaded, access can only happen
3107 * when the caller is running on the CPU being monitored by the session.
3108 * It does not have to be the owner (ctx_task) of the context per se.
3110 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3111 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3114 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3116 expert_mode = pfm_sysctl.expert_mode;
3118 for (i = 0; i < count; i++, req++) {
3120 cnum = req->reg_num;
3121 value = req->reg_value;
3123 if (!PMD_IS_IMPL(cnum)) {
3124 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3127 is_counting = PMD_IS_COUNTING(cnum);
3128 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3131 * execute write checker, if any
3133 if (unlikely(expert_mode == 0 && wr_func)) {
3134 unsigned long v = value;
3136 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3137 if (ret) goto abort_mission;
3144 * no error on this register
3146 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3149 * now commit changes to software state
3154 * update virtualized (64bits) counter
3158 * write context state
3160 ctx->ctx_pmds[cnum].lval = value;
3163 * when context is load we use the split value
3166 hw_value = value & ovfl_mask;
3167 value = value & ~ovfl_mask;
3171 * update reset values (not just for counters)
3173 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3174 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3177 * update randomization parameters (not just for counters)
3179 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3180 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3183 * update context value
3185 ctx->ctx_pmds[cnum].val = value;
3188 * Keep track of what we use
3190 * We do not keep track of PMC because we have to
3191 * systematically restore ALL of them.
3193 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3196 * mark this PMD register used as well
3198 CTX_USED_PMD(ctx, RDEP(cnum));
3201 * make sure we do not try to reset on
3202 * restart because we have established new values
3204 if (is_counting && state == PFM_CTX_MASKED) {
3205 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3210 * write thread state
3212 if (is_system == 0) thread->pmds[cnum] = hw_value;
3215 * write hardware register if we can
3217 if (can_access_pmu) {
3218 ia64_set_pmd(cnum, hw_value);
3222 * we are guaranteed that the task is not running on the other CPU,
3223 * we indicate that this PMD will need to be reloaded if the task
3224 * is rescheduled on the CPU it ran last on.
3226 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3231 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3232 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3238 ctx->ctx_pmds[cnum].val,
3239 ctx->ctx_pmds[cnum].short_reset,
3240 ctx->ctx_pmds[cnum].long_reset,
3241 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3242 ctx->ctx_pmds[cnum].seed,
3243 ctx->ctx_pmds[cnum].mask,
3244 ctx->ctx_used_pmds[0],
3245 ctx->ctx_pmds[cnum].reset_pmds[0],
3246 ctx->ctx_reload_pmds[0],
3247 ctx->ctx_all_pmds[0],
3248 ctx->ctx_ovfl_regs[0]));
3252 * make changes visible
3254 if (can_access_pmu) ia64_srlz_d();
3260 * for now, we have only one possibility for error
3262 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3267 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3268 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3269 * interrupt is delivered during the call, it will be kept pending until we leave, making
3270 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3271 * guaranteed to return consistent data to the user, it may simply be old. It is not
3272 * trivial to treat the overflow while inside the call because you may end up in
3273 * some module sampling buffer code causing deadlocks.
3276 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3278 struct thread_struct *thread = NULL;
3279 struct task_struct *task;
3280 unsigned long val = 0UL, lval, ovfl_mask, sval;
3281 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3282 unsigned int cnum, reg_flags = 0;
3283 int i, can_access_pmu = 0, state;
3284 int is_loaded, is_system, is_counting, expert_mode;
3286 pfm_reg_check_t rd_func;
3289 * access is possible when loaded only for
3290 * self-monitoring tasks or in UP mode
3293 state = ctx->ctx_state;
3294 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3295 is_system = ctx->ctx_fl_system;
3296 ovfl_mask = pmu_conf->ovfl_val;
3297 task = ctx->ctx_task;
3299 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3301 if (likely(is_loaded)) {
3302 thread = &task->thread;
3304 * In system wide and when the context is loaded, access can only happen
3305 * when the caller is running on the CPU being monitored by the session.
3306 * It does not have to be the owner (ctx_task) of the context per se.
3308 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3309 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3313 * this can be true when not self-monitoring only in UP
3315 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3317 if (can_access_pmu) ia64_srlz_d();
3319 expert_mode = pfm_sysctl.expert_mode;
3321 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3327 * on both UP and SMP, we can only read the PMD from the hardware register when
3328 * the task is the owner of the local PMU.
3331 for (i = 0; i < count; i++, req++) {
3333 cnum = req->reg_num;
3334 reg_flags = req->reg_flags;
3336 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3338 * we can only read the register that we use. That includes
3339 * the one we explicitely initialize AND the one we want included
3340 * in the sampling buffer (smpl_regs).
3342 * Having this restriction allows optimization in the ctxsw routine
3343 * without compromising security (leaks)
3345 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3347 sval = ctx->ctx_pmds[cnum].val;
3348 lval = ctx->ctx_pmds[cnum].lval;
3349 is_counting = PMD_IS_COUNTING(cnum);
3352 * If the task is not the current one, then we check if the
3353 * PMU state is still in the local live register due to lazy ctxsw.
3354 * If true, then we read directly from the registers.
3356 if (can_access_pmu){
3357 val = ia64_get_pmd(cnum);
3360 * context has been saved
3361 * if context is zombie, then task does not exist anymore.
3362 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3364 val = is_loaded ? thread->pmds[cnum] : 0UL;
3366 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3370 * XXX: need to check for overflow when loaded
3377 * execute read checker, if any
3379 if (unlikely(expert_mode == 0 && rd_func)) {
3380 unsigned long v = val;
3381 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3382 if (ret) goto error;
3387 PFM_REG_RETFLAG_SET(reg_flags, 0);
3389 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3392 * update register return value, abort all if problem during copy.
3393 * we only modify the reg_flags field. no check mode is fine because
3394 * access has been verified upfront in sys_perfmonctl().
3396 req->reg_value = val;
3397 req->reg_flags = reg_flags;
3398 req->reg_last_reset_val = lval;
3404 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3409 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3413 if (req == NULL) return -EINVAL;
3415 ctx = GET_PMU_CTX();
3417 if (ctx == NULL) return -EINVAL;
3420 * for now limit to current task, which is enough when calling
3421 * from overflow handler
3423 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425 return pfm_write_pmcs(ctx, req, nreq, regs);
3427 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3430 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3434 if (req == NULL) return -EINVAL;
3436 ctx = GET_PMU_CTX();
3438 if (ctx == NULL) return -EINVAL;
3441 * for now limit to current task, which is enough when calling
3442 * from overflow handler
3444 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3446 return pfm_read_pmds(ctx, req, nreq, regs);
3448 EXPORT_SYMBOL(pfm_mod_read_pmds);
3451 * Only call this function when a process it trying to
3452 * write the debug registers (reading is always allowed)
3455 pfm_use_debug_registers(struct task_struct *task)
3457 pfm_context_t *ctx = task->thread.pfm_context;
3458 unsigned long flags;
3461 if (pmu_conf->use_rr_dbregs == 0) return 0;
3463 DPRINT(("called for [%d]\n", task->pid));
3468 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3471 * Even on SMP, we do not need to use an atomic here because
3472 * the only way in is via ptrace() and this is possible only when the
3473 * process is stopped. Even in the case where the ctxsw out is not totally
3474 * completed by the time we come here, there is no way the 'stopped' process
3475 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3476 * So this is always safe.
3478 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3483 * We cannot allow setting breakpoints when system wide monitoring
3484 * sessions are using the debug registers.
3486 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3489 pfm_sessions.pfs_ptrace_use_dbregs++;
3491 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3492 pfm_sessions.pfs_ptrace_use_dbregs,
3493 pfm_sessions.pfs_sys_use_dbregs,
3502 * This function is called for every task that exits with the
3503 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3504 * able to use the debug registers for debugging purposes via
3505 * ptrace(). Therefore we know it was not using them for
3506 * perfmormance monitoring, so we only decrement the number
3507 * of "ptraced" debug register users to keep the count up to date
3510 pfm_release_debug_registers(struct task_struct *task)
3512 unsigned long flags;
3515 if (pmu_conf->use_rr_dbregs == 0) return 0;
3518 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3519 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3522 pfm_sessions.pfs_ptrace_use_dbregs--;
3531 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3533 struct task_struct *task;
3534 pfm_buffer_fmt_t *fmt;
3535 pfm_ovfl_ctrl_t rst_ctrl;
3536 int state, is_system;
3539 state = ctx->ctx_state;
3540 fmt = ctx->ctx_buf_fmt;
3541 is_system = ctx->ctx_fl_system;
3542 task = PFM_CTX_TASK(ctx);
3545 case PFM_CTX_MASKED:
3547 case PFM_CTX_LOADED:
3548 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3550 case PFM_CTX_UNLOADED:
3551 case PFM_CTX_ZOMBIE:
3552 DPRINT(("invalid state=%d\n", state));
3555 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3560 * In system wide and when the context is loaded, access can only happen
3561 * when the caller is running on the CPU being monitored by the session.
3562 * It does not have to be the owner (ctx_task) of the context per se.
3564 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3565 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3570 if (unlikely(task == NULL)) {
3571 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3575 if (task == current || is_system) {
3577 fmt = ctx->ctx_buf_fmt;
3579 DPRINT(("restarting self %d ovfl=0x%lx\n",
3581 ctx->ctx_ovfl_regs[0]));
3583 if (CTX_HAS_SMPL(ctx)) {
3585 prefetch(ctx->ctx_smpl_hdr);
3587 rst_ctrl.bits.mask_monitoring = 0;
3588 rst_ctrl.bits.reset_ovfl_pmds = 0;
3590 if (state == PFM_CTX_LOADED)
3591 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3593 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3595 rst_ctrl.bits.mask_monitoring = 0;
3596 rst_ctrl.bits.reset_ovfl_pmds = 1;
3600 if (rst_ctrl.bits.reset_ovfl_pmds)
3601 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3603 if (rst_ctrl.bits.mask_monitoring == 0) {
3604 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3606 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3608 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3610 // cannot use pfm_stop_monitoring(task, regs);
3614 * clear overflowed PMD mask to remove any stale information
3616 ctx->ctx_ovfl_regs[0] = 0UL;
3619 * back to LOADED state
3621 ctx->ctx_state = PFM_CTX_LOADED;
3624 * XXX: not really useful for self monitoring
3626 ctx->ctx_fl_can_restart = 0;
3632 * restart another task
3636 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3637 * one is seen by the task.
3639 if (state == PFM_CTX_MASKED) {
3640 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3642 * will prevent subsequent restart before this one is
3643 * seen by other task
3645 ctx->ctx_fl_can_restart = 0;
3649 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3650 * the task is blocked or on its way to block. That's the normal
3651 * restart path. If the monitoring is not masked, then the task
3652 * can be actively monitoring and we cannot directly intervene.
3653 * Therefore we use the trap mechanism to catch the task and
3654 * force it to reset the buffer/reset PMDs.
3656 * if non-blocking, then we ensure that the task will go into
3657 * pfm_handle_work() before returning to user mode.
3659 * We cannot explicitely reset another task, it MUST always
3660 * be done by the task itself. This works for system wide because
3661 * the tool that is controlling the session is logically doing
3662 * "self-monitoring".
3664 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3665 DPRINT(("unblocking [%d] \n", task->pid));
3666 up(&ctx->ctx_restart_sem);
3668 DPRINT(("[%d] armed exit trap\n", task->pid));
3670 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3672 PFM_SET_WORK_PENDING(task, 1);
3674 pfm_set_task_notify(task);
3677 * XXX: send reschedule if task runs on another CPU
3684 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3686 unsigned int m = *(unsigned int *)arg;
3688 pfm_sysctl.debug = m == 0 ? 0 : 1;
3690 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3693 memset(pfm_stats, 0, sizeof(pfm_stats));
3694 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3700 * arg can be NULL and count can be zero for this function
3703 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705 struct thread_struct *thread = NULL;
3706 struct task_struct *task;
3707 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3708 unsigned long flags;
3713 int i, can_access_pmu = 0;
3714 int is_system, is_loaded;
3716 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3718 state = ctx->ctx_state;
3719 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3720 is_system = ctx->ctx_fl_system;
3721 task = ctx->ctx_task;
3723 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3726 * on both UP and SMP, we can only write to the PMC when the task is
3727 * the owner of the local PMU.
3730 thread = &task->thread;
3732 * In system wide and when the context is loaded, access can only happen
3733 * when the caller is running on the CPU being monitored by the session.
3734 * It does not have to be the owner (ctx_task) of the context per se.
3736 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3737 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3740 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3744 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3745 * ensuring that no real breakpoint can be installed via this call.
3747 * IMPORTANT: regs can be NULL in this function
3750 first_time = ctx->ctx_fl_using_dbreg == 0;
3753 * don't bother if we are loaded and task is being debugged
3755 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3756 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3761 * check for debug registers in system wide mode
3763 * If though a check is done in pfm_context_load(),
3764 * we must repeat it here, in case the registers are
3765 * written after the context is loaded
3770 if (first_time && is_system) {
3771 if (pfm_sessions.pfs_ptrace_use_dbregs)
3774 pfm_sessions.pfs_sys_use_dbregs++;
3779 if (ret != 0) return ret;
3782 * mark ourself as user of the debug registers for
3785 ctx->ctx_fl_using_dbreg = 1;
3788 * clear hardware registers to make sure we don't
3789 * pick up stale state.
3791 * for a system wide session, we do not use
3792 * thread.dbr, thread.ibr because this process
3793 * never leaves the current CPU and the state
3794 * is shared by all processes running on it
3796 if (first_time && can_access_pmu) {
3797 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3798 for (i=0; i < pmu_conf->num_ibrs; i++) {
3799 ia64_set_ibr(i, 0UL);
3800 ia64_dv_serialize_instruction();
3803 for (i=0; i < pmu_conf->num_dbrs; i++) {
3804 ia64_set_dbr(i, 0UL);
3805 ia64_dv_serialize_data();
3811 * Now install the values into the registers
3813 for (i = 0; i < count; i++, req++) {
3815 rnum = req->dbreg_num;
3816 dbreg.val = req->dbreg_value;
3820 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3821 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3822 rnum, dbreg.val, mode, i, count));
3828 * make sure we do not install enabled breakpoint
3831 if (mode == PFM_CODE_RR)
3832 dbreg.ibr.ibr_x = 0;
3834 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3837 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3840 * Debug registers, just like PMC, can only be modified
3841 * by a kernel call. Moreover, perfmon() access to those
3842 * registers are centralized in this routine. The hardware
3843 * does not modify the value of these registers, therefore,
3844 * if we save them as they are written, we can avoid having
3845 * to save them on context switch out. This is made possible
3846 * by the fact that when perfmon uses debug registers, ptrace()
3847 * won't be able to modify them concurrently.
3849 if (mode == PFM_CODE_RR) {
3850 CTX_USED_IBR(ctx, rnum);
3852 if (can_access_pmu) {
3853 ia64_set_ibr(rnum, dbreg.val);
3854 ia64_dv_serialize_instruction();
3857 ctx->ctx_ibrs[rnum] = dbreg.val;
3859 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3860 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3862 CTX_USED_DBR(ctx, rnum);
3864 if (can_access_pmu) {
3865 ia64_set_dbr(rnum, dbreg.val);
3866 ia64_dv_serialize_data();
3868 ctx->ctx_dbrs[rnum] = dbreg.val;
3870 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3871 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3879 * in case it was our first attempt, we undo the global modifications
3883 if (ctx->ctx_fl_system) {
3884 pfm_sessions.pfs_sys_use_dbregs--;
3887 ctx->ctx_fl_using_dbreg = 0;
3890 * install error return flag
3892 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3898 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3904 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3906 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3910 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3914 if (req == NULL) return -EINVAL;
3916 ctx = GET_PMU_CTX();
3918 if (ctx == NULL) return -EINVAL;
3921 * for now limit to current task, which is enough when calling
3922 * from overflow handler
3924 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926 return pfm_write_ibrs(ctx, req, nreq, regs);
3928 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3931 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3935 if (req == NULL) return -EINVAL;
3937 ctx = GET_PMU_CTX();
3939 if (ctx == NULL) return -EINVAL;
3942 * for now limit to current task, which is enough when calling
3943 * from overflow handler
3945 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3947 return pfm_write_dbrs(ctx, req, nreq, regs);
3949 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3953 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3955 pfarg_features_t *req = (pfarg_features_t *)arg;
3957 req->ft_version = PFM_VERSION;
3962 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3964 struct pt_regs *tregs;
3965 struct task_struct *task = PFM_CTX_TASK(ctx);
3966 int state, is_system;
3968 state = ctx->ctx_state;
3969 is_system = ctx->ctx_fl_system;
3972 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3974 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3977 * In system wide and when the context is loaded, access can only happen
3978 * when the caller is running on the CPU being monitored by the session.
3979 * It does not have to be the owner (ctx_task) of the context per se.
3981 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3982 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3985 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3986 PFM_CTX_TASK(ctx)->pid,
3990 * in system mode, we need to update the PMU directly
3991 * and the user level state of the caller, which may not
3992 * necessarily be the creator of the context.
3996 * Update local PMU first
4000 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4004 * update local cpuinfo
4006 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4009 * stop monitoring, does srlz.i
4014 * stop monitoring in the caller
4016 ia64_psr(regs)->pp = 0;
4024 if (task == current) {
4025 /* stop monitoring at kernel level */
4029 * stop monitoring at the user level
4031 ia64_psr(regs)->up = 0;
4033 tregs = ia64_task_regs(task);
4036 * stop monitoring at the user level
4038 ia64_psr(tregs)->up = 0;
4041 * monitoring disabled in kernel at next reschedule
4043 ctx->ctx_saved_psr_up = 0;
4044 DPRINT(("task=[%d]\n", task->pid));
4051 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4053 struct pt_regs *tregs;
4054 int state, is_system;
4056 state = ctx->ctx_state;
4057 is_system = ctx->ctx_fl_system;
4059 if (state != PFM_CTX_LOADED) return -EINVAL;
4062 * In system wide and when the context is loaded, access can only happen
4063 * when the caller is running on the CPU being monitored by the session.
4064 * It does not have to be the owner (ctx_task) of the context per se.
4066 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4067 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4072 * in system mode, we need to update the PMU directly
4073 * and the user level state of the caller, which may not
4074 * necessarily be the creator of the context.
4079 * set user level psr.pp for the caller
4081 ia64_psr(regs)->pp = 1;
4084 * now update the local PMU and cpuinfo
4086 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4089 * start monitoring at kernel level
4094 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4104 if (ctx->ctx_task == current) {
4106 /* start monitoring at kernel level */
4110 * activate monitoring at user level
4112 ia64_psr(regs)->up = 1;
4115 tregs = ia64_task_regs(ctx->ctx_task);
4118 * start monitoring at the kernel level the next
4119 * time the task is scheduled
4121 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4124 * activate monitoring at user level
4126 ia64_psr(tregs)->up = 1;
4132 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4134 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4139 for (i = 0; i < count; i++, req++) {
4141 cnum = req->reg_num;
4143 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4145 req->reg_value = PMC_DFL_VAL(cnum);
4147 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4149 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4154 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4159 pfm_check_task_exist(pfm_context_t *ctx)
4161 struct task_struct *g, *t;
4164 read_lock(&tasklist_lock);
4166 do_each_thread (g, t) {
4167 if (t->thread.pfm_context == ctx) {
4171 } while_each_thread (g, t);
4173 read_unlock(&tasklist_lock);
4175 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4181 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4183 struct task_struct *task;
4184 struct thread_struct *thread;
4185 struct pfm_context_t *old;
4186 unsigned long flags;
4188 struct task_struct *owner_task = NULL;
4190 pfarg_load_t *req = (pfarg_load_t *)arg;
4191 unsigned long *pmcs_source, *pmds_source;
4194 int state, is_system, set_dbregs = 0;
4196 state = ctx->ctx_state;
4197 is_system = ctx->ctx_fl_system;
4199 * can only load from unloaded or terminated state
4201 if (state != PFM_CTX_UNLOADED) {
4202 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4208 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4210 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4211 DPRINT(("cannot use blocking mode on self\n"));
4215 ret = pfm_get_task(ctx, req->load_pid, &task);
4217 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4224 * system wide is self monitoring only
4226 if (is_system && task != current) {
4227 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4232 thread = &task->thread;
4236 * cannot load a context which is using range restrictions,
4237 * into a task that is being debugged.
4239 if (ctx->ctx_fl_using_dbreg) {
4240 if (thread->flags & IA64_THREAD_DBG_VALID) {
4242 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4248 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4249 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4252 pfm_sessions.pfs_sys_use_dbregs++;
4253 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4260 if (ret) goto error;
4264 * SMP system-wide monitoring implies self-monitoring.
4266 * The programming model expects the task to
4267 * be pinned on a CPU throughout the session.
4268 * Here we take note of the current CPU at the
4269 * time the context is loaded. No call from
4270 * another CPU will be allowed.
4272 * The pinning via shed_setaffinity()
4273 * must be done by the calling task prior
4276 * systemwide: keep track of CPU this session is supposed to run on
4278 the_cpu = ctx->ctx_cpu = smp_processor_id();
4282 * now reserve the session
4284 ret = pfm_reserve_session(current, is_system, the_cpu);
4285 if (ret) goto error;
4288 * task is necessarily stopped at this point.
4290 * If the previous context was zombie, then it got removed in
4291 * pfm_save_regs(). Therefore we should not see it here.
4292 * If we see a context, then this is an active context
4294 * XXX: needs to be atomic
4296 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4297 thread->pfm_context, ctx));
4299 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4301 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4305 pfm_reset_msgq(ctx);
4307 ctx->ctx_state = PFM_CTX_LOADED;
4310 * link context to task
4312 ctx->ctx_task = task;
4316 * we load as stopped
4318 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4319 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4321 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4323 thread->flags |= IA64_THREAD_PM_VALID;
4327 * propagate into thread-state
4329 pfm_copy_pmds(task, ctx);
4330 pfm_copy_pmcs(task, ctx);
4332 pmcs_source = thread->pmcs;
4333 pmds_source = thread->pmds;
4336 * always the case for system-wide
4338 if (task == current) {
4340 if (is_system == 0) {
4342 /* allow user level control */
4343 ia64_psr(regs)->sp = 0;
4344 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4346 SET_LAST_CPU(ctx, smp_processor_id());
4348 SET_ACTIVATION(ctx);
4351 * push the other task out, if any
4353 owner_task = GET_PMU_OWNER();
4354 if (owner_task) pfm_lazy_save_regs(owner_task);
4358 * load all PMD from ctx to PMU (as opposed to thread state)
4359 * restore all PMC from ctx to PMU
4361 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4362 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4364 ctx->ctx_reload_pmcs[0] = 0UL;
4365 ctx->ctx_reload_pmds[0] = 0UL;
4368 * guaranteed safe by earlier check against DBG_VALID
4370 if (ctx->ctx_fl_using_dbreg) {
4371 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4372 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4377 SET_PMU_OWNER(task, ctx);
4379 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4382 * when not current, task MUST be stopped, so this is safe
4384 regs = ia64_task_regs(task);
4386 /* force a full reload */
4387 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4388 SET_LAST_CPU(ctx, -1);
4390 /* initial saved psr (stopped) */
4391 ctx->ctx_saved_psr_up = 0UL;
4392 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4398 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4401 * we must undo the dbregs setting (for system-wide)
4403 if (ret && set_dbregs) {
4405 pfm_sessions.pfs_sys_use_dbregs--;
4409 * release task, there is now a link with the context
4411 if (is_system == 0 && task != current) {
4415 ret = pfm_check_task_exist(ctx);
4417 ctx->ctx_state = PFM_CTX_UNLOADED;
4418 ctx->ctx_task = NULL;
4426 * in this function, we do not need to increase the use count
4427 * for the task via get_task_struct(), because we hold the
4428 * context lock. If the task were to disappear while having
4429 * a context attached, it would go through pfm_exit_thread()
4430 * which also grabs the context lock and would therefore be blocked
4431 * until we are here.
4433 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4436 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4438 struct task_struct *task = PFM_CTX_TASK(ctx);
4439 struct pt_regs *tregs;
4440 int prev_state, is_system;
4443 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4445 prev_state = ctx->ctx_state;
4446 is_system = ctx->ctx_fl_system;
4449 * unload only when necessary
4451 if (prev_state == PFM_CTX_UNLOADED) {
4452 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4457 * clear psr and dcr bits
4459 ret = pfm_stop(ctx, NULL, 0, regs);
4460 if (ret) return ret;
4462 ctx->ctx_state = PFM_CTX_UNLOADED;
4465 * in system mode, we need to update the PMU directly
4466 * and the user level state of the caller, which may not
4467 * necessarily be the creator of the context.
4474 * local PMU is taken care of in pfm_stop()
4476 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4477 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4480 * save PMDs in context
4483 pfm_flush_pmds(current, ctx);
4486 * at this point we are done with the PMU
4487 * so we can unreserve the resource.
4489 if (prev_state != PFM_CTX_ZOMBIE)
4490 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4493 * disconnect context from task
4495 task->thread.pfm_context = NULL;
4497 * disconnect task from context
4499 ctx->ctx_task = NULL;
4502 * There is nothing more to cleanup here.
4510 tregs = task == current ? regs : ia64_task_regs(task);
4512 if (task == current) {
4514 * cancel user level control
4516 ia64_psr(regs)->sp = 1;
4518 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4521 * save PMDs to context
4524 pfm_flush_pmds(task, ctx);
4527 * at this point we are done with the PMU
4528 * so we can unreserve the resource.
4530 * when state was ZOMBIE, we have already unreserved.
4532 if (prev_state != PFM_CTX_ZOMBIE)
4533 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4536 * reset activation counter and psr
4538 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4539 SET_LAST_CPU(ctx, -1);
4542 * PMU state will not be restored
4544 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4547 * break links between context and task
4549 task->thread.pfm_context = NULL;
4550 ctx->ctx_task = NULL;
4552 PFM_SET_WORK_PENDING(task, 0);
4554 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4555 ctx->ctx_fl_can_restart = 0;
4556 ctx->ctx_fl_going_zombie = 0;
4558 DPRINT(("disconnected [%d] from context\n", task->pid));
4565 * called only from exit_thread(): task == current
4566 * we come here only if current has a context attached (loaded or masked)
4569 pfm_exit_thread(struct task_struct *task)
4572 unsigned long flags;
4573 struct pt_regs *regs = ia64_task_regs(task);
4577 ctx = PFM_GET_CTX(task);
4579 PROTECT_CTX(ctx, flags);
4581 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4583 state = ctx->ctx_state;
4585 case PFM_CTX_UNLOADED:
4587 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4588 * be in unloaded state
4590 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4592 case PFM_CTX_LOADED:
4593 case PFM_CTX_MASKED:
4594 ret = pfm_context_unload(ctx, NULL, 0, regs);
4596 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4598 DPRINT(("ctx unloaded for current state was %d\n", state));
4600 pfm_end_notify_user(ctx);
4602 case PFM_CTX_ZOMBIE:
4603 ret = pfm_context_unload(ctx, NULL, 0, regs);
4605 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4610 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4613 UNPROTECT_CTX(ctx, flags);
4615 { u64 psr = pfm_get_psr();
4616 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4617 BUG_ON(GET_PMU_OWNER());
4618 BUG_ON(ia64_psr(regs)->up);
4619 BUG_ON(ia64_psr(regs)->pp);
4623 * All memory free operations (especially for vmalloc'ed memory)
4624 * MUST be done with interrupts ENABLED.
4626 if (free_ok) pfm_context_free(ctx);
4630 * functions MUST be listed in the increasing order of their index (see permfon.h)
4632 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4633 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4634 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4635 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4636 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4638 static pfm_cmd_desc_t pfm_cmd_tab[]={
4639 /* 0 */PFM_CMD_NONE,
4640 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4641 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4642 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4643 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4644 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4645 /* 6 */PFM_CMD_NONE,
4646 /* 7 */PFM_CMD_NONE,
4647 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4648 /* 9 */PFM_CMD_NONE,
4649 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4650 /* 11 */PFM_CMD_NONE,
4651 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4652 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4653 /* 14 */PFM_CMD_NONE,
4654 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4655 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4656 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4657 /* 18 */PFM_CMD_NONE,
4658 /* 19 */PFM_CMD_NONE,
4659 /* 20 */PFM_CMD_NONE,
4660 /* 21 */PFM_CMD_NONE,
4661 /* 22 */PFM_CMD_NONE,
4662 /* 23 */PFM_CMD_NONE,
4663 /* 24 */PFM_CMD_NONE,
4664 /* 25 */PFM_CMD_NONE,
4665 /* 26 */PFM_CMD_NONE,
4666 /* 27 */PFM_CMD_NONE,
4667 /* 28 */PFM_CMD_NONE,
4668 /* 29 */PFM_CMD_NONE,
4669 /* 30 */PFM_CMD_NONE,
4670 /* 31 */PFM_CMD_NONE,
4671 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4672 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4674 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4677 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4679 struct task_struct *task;
4680 int state, old_state;
4683 state = ctx->ctx_state;
4684 task = ctx->ctx_task;
4687 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4691 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4695 task->state, PFM_CMD_STOPPED(cmd)));
4698 * self-monitoring always ok.
4700 * for system-wide the caller can either be the creator of the
4701 * context (to one to which the context is attached to) OR
4702 * a task running on the same CPU as the session.
4704 if (task == current || ctx->ctx_fl_system) return 0;
4707 * if context is UNLOADED we are safe to go
4709 if (state == PFM_CTX_UNLOADED) return 0;
4712 * no command can operate on a zombie context
4714 if (state == PFM_CTX_ZOMBIE) {
4715 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4720 * context is LOADED or MASKED. Some commands may need to have
4723 * We could lift this restriction for UP but it would mean that
4724 * the user has no guarantee the task would not run between
4725 * two successive calls to perfmonctl(). That's probably OK.
4726 * If this user wants to ensure the task does not run, then
4727 * the task must be stopped.
4729 if (PFM_CMD_STOPPED(cmd)) {
4730 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4731 DPRINT(("[%d] task not in stopped state\n", task->pid));
4735 * task is now stopped, wait for ctxsw out
4737 * This is an interesting point in the code.
4738 * We need to unprotect the context because
4739 * the pfm_save_regs() routines needs to grab
4740 * the same lock. There are danger in doing
4741 * this because it leaves a window open for
4742 * another task to get access to the context
4743 * and possibly change its state. The one thing
4744 * that is not possible is for the context to disappear
4745 * because we are protected by the VFS layer, i.e.,
4746 * get_fd()/put_fd().
4750 UNPROTECT_CTX(ctx, flags);
4752 wait_task_inactive(task);
4754 PROTECT_CTX(ctx, flags);
4757 * we must recheck to verify if state has changed
4759 if (ctx->ctx_state != old_state) {
4760 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4768 * system-call entry point (must return long)
4771 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4773 struct file *file = NULL;
4774 pfm_context_t *ctx = NULL;
4775 unsigned long flags = 0UL;
4776 void *args_k = NULL;
4777 long ret; /* will expand int return types */
4778 size_t base_sz, sz, xtra_sz = 0;
4779 int narg, completed_args = 0, call_made = 0, cmd_flags;
4780 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4781 int (*getsize)(void *arg, size_t *sz);
4782 #define PFM_MAX_ARGSIZE 4096
4785 * reject any call if perfmon was disabled at initialization
4787 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4789 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4790 DPRINT(("invalid cmd=%d\n", cmd));
4794 func = pfm_cmd_tab[cmd].cmd_func;
4795 narg = pfm_cmd_tab[cmd].cmd_narg;
4796 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4797 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4798 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4800 if (unlikely(func == NULL)) {
4801 DPRINT(("invalid cmd=%d\n", cmd));
4805 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4813 * check if number of arguments matches what the command expects
4815 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4819 sz = xtra_sz + base_sz*count;
4821 * limit abuse to min page size
4823 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4824 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4829 * allocate default-sized argument buffer
4831 if (likely(count && args_k == NULL)) {
4832 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4833 if (args_k == NULL) return -ENOMEM;
4841 * assume sz = 0 for command without parameters
4843 if (sz && copy_from_user(args_k, arg, sz)) {
4844 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4849 * check if command supports extra parameters
4851 if (completed_args == 0 && getsize) {
4853 * get extra parameters size (based on main argument)
4855 ret = (*getsize)(args_k, &xtra_sz);
4856 if (ret) goto error_args;
4860 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4862 /* retry if necessary */
4863 if (likely(xtra_sz)) goto restart_args;
4866 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4871 if (unlikely(file == NULL)) {
4872 DPRINT(("invalid fd %d\n", fd));
4875 if (unlikely(PFM_IS_FILE(file) == 0)) {
4876 DPRINT(("fd %d not related to perfmon\n", fd));
4880 ctx = (pfm_context_t *)file->private_data;
4881 if (unlikely(ctx == NULL)) {
4882 DPRINT(("no context for fd %d\n", fd));
4885 prefetch(&ctx->ctx_state);
4887 PROTECT_CTX(ctx, flags);
4890 * check task is stopped
4892 ret = pfm_check_task_state(ctx, cmd, flags);
4893 if (unlikely(ret)) goto abort_locked;
4896 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4902 DPRINT(("context unlocked\n"));
4903 UNPROTECT_CTX(ctx, flags);
4907 /* copy argument back to user, if needed */
4908 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4911 if (args_k) kfree(args_k);
4913 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4919 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4921 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4922 pfm_ovfl_ctrl_t rst_ctrl;
4926 state = ctx->ctx_state;
4928 * Unlock sampling buffer and reset index atomically
4929 * XXX: not really needed when blocking
4931 if (CTX_HAS_SMPL(ctx)) {
4933 rst_ctrl.bits.mask_monitoring = 0;
4934 rst_ctrl.bits.reset_ovfl_pmds = 0;
4936 if (state == PFM_CTX_LOADED)
4937 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4939 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941 rst_ctrl.bits.mask_monitoring = 0;
4942 rst_ctrl.bits.reset_ovfl_pmds = 1;
4946 if (rst_ctrl.bits.reset_ovfl_pmds) {
4947 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4949 if (rst_ctrl.bits.mask_monitoring == 0) {
4950 DPRINT(("resuming monitoring\n"));
4951 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4953 DPRINT(("stopping monitoring\n"));
4954 //pfm_stop_monitoring(current, regs);
4956 ctx->ctx_state = PFM_CTX_LOADED;
4961 * context MUST BE LOCKED when calling
4962 * can only be called for current
4965 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4969 DPRINT(("entering for [%d]\n", current->pid));
4971 ret = pfm_context_unload(ctx, NULL, 0, regs);
4973 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
4977 * and wakeup controlling task, indicating we are now disconnected
4979 wake_up_interruptible(&ctx->ctx_zombieq);
4982 * given that context is still locked, the controlling
4983 * task will only get access when we return from
4984 * pfm_handle_work().
4988 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4990 * pfm_handle_work() can be called with interrupts enabled
4991 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4992 * call may sleep, therefore we must re-enable interrupts
4993 * to avoid deadlocks. It is safe to do so because this function
4994 * is called ONLY when returning to user level (PUStk=1), in which case
4995 * there is no risk of kernel stack overflow due to deep
4996 * interrupt nesting.
4999 pfm_handle_work(void)
5002 struct pt_regs *regs;
5003 unsigned long flags, dummy_flags;
5004 unsigned long ovfl_regs;
5005 unsigned int reason;
5008 ctx = PFM_GET_CTX(current);
5010 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5014 PROTECT_CTX(ctx, flags);
5016 PFM_SET_WORK_PENDING(current, 0);
5018 pfm_clear_task_notify();
5020 regs = ia64_task_regs(current);
5023 * extract reason for being here and clear
5025 reason = ctx->ctx_fl_trap_reason;
5026 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5027 ovfl_regs = ctx->ctx_ovfl_regs[0];
5029 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5032 * must be done before we check for simple-reset mode
5034 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5037 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5038 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5041 * restore interrupt mask to what it was on entry.
5042 * Could be enabled/diasbled.
5044 UNPROTECT_CTX(ctx, flags);
5047 * force interrupt enable because of down_interruptible()
5051 DPRINT(("before block sleeping\n"));
5054 * may go through without blocking on SMP systems
5055 * if restart has been received already by the time we call down()
5057 ret = down_interruptible(&ctx->ctx_restart_sem);
5059 DPRINT(("after block sleeping ret=%d\n", ret));
5062 * lock context and mask interrupts again
5063 * We save flags into a dummy because we may have
5064 * altered interrupts mask compared to entry in this
5067 PROTECT_CTX(ctx, dummy_flags);
5070 * we need to read the ovfl_regs only after wake-up
5071 * because we may have had pfm_write_pmds() in between
5072 * and that can changed PMD values and therefore
5073 * ovfl_regs is reset for these new PMD values.
5075 ovfl_regs = ctx->ctx_ovfl_regs[0];
5077 if (ctx->ctx_fl_going_zombie) {
5079 DPRINT(("context is zombie, bailing out\n"));
5080 pfm_context_force_terminate(ctx, regs);
5084 * in case of interruption of down() we don't restart anything
5086 if (ret < 0) goto nothing_to_do;
5089 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5090 ctx->ctx_ovfl_regs[0] = 0UL;
5094 * restore flags as they were upon entry
5096 UNPROTECT_CTX(ctx, flags);
5100 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5102 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5103 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5107 DPRINT(("waking up somebody\n"));
5109 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5112 * safe, we are not in intr handler, nor in ctxsw when
5115 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5121 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5123 pfm_msg_t *msg = NULL;
5125 if (ctx->ctx_fl_no_msg == 0) {
5126 msg = pfm_get_new_msg(ctx);
5128 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5132 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5133 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5134 msg->pfm_ovfl_msg.msg_active_set = 0;
5135 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5136 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5137 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5138 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5139 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5142 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148 return pfm_notify_user(ctx, msg);
5152 pfm_end_notify_user(pfm_context_t *ctx)
5156 msg = pfm_get_new_msg(ctx);
5158 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5162 memset(msg, 0, sizeof(*msg));
5164 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5165 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5166 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5168 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5173 return pfm_notify_user(ctx, msg);
5177 * main overflow processing routine.
5178 * it can be called from the interrupt path or explicitely during the context switch code
5181 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5183 pfm_ovfl_arg_t *ovfl_arg;
5185 unsigned long old_val, ovfl_val, new_val;
5186 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5187 unsigned long tstamp;
5188 pfm_ovfl_ctrl_t ovfl_ctrl;
5189 unsigned int i, has_smpl;
5190 int must_notify = 0;
5192 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5195 * sanity test. Should never happen
5197 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5199 tstamp = ia64_get_itc();
5200 mask = pmc0 >> PMU_FIRST_COUNTER;
5201 ovfl_val = pmu_conf->ovfl_val;
5202 has_smpl = CTX_HAS_SMPL(ctx);
5204 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5205 "used_pmds=0x%lx\n",
5207 task ? task->pid: -1,
5208 (regs ? regs->cr_iip : 0),
5209 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5210 ctx->ctx_used_pmds[0]));
5214 * first we update the virtual counters
5215 * assume there was a prior ia64_srlz_d() issued
5217 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5219 /* skip pmd which did not overflow */
5220 if ((mask & 0x1) == 0) continue;
5223 * Note that the pmd is not necessarily 0 at this point as qualified events
5224 * may have happened before the PMU was frozen. The residual count is not
5225 * taken into consideration here but will be with any read of the pmd via
5228 old_val = new_val = ctx->ctx_pmds[i].val;
5229 new_val += 1 + ovfl_val;
5230 ctx->ctx_pmds[i].val = new_val;
5233 * check for overflow condition
5235 if (likely(old_val > new_val)) {
5236 ovfl_pmds |= 1UL << i;
5237 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5240 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5244 ia64_get_pmd(i) & ovfl_val,
5250 * there was no 64-bit overflow, nothing else to do
5252 if (ovfl_pmds == 0UL) return;
5255 * reset all control bits
5261 * if a sampling format module exists, then we "cache" the overflow by
5262 * calling the module's handler() routine.
5265 unsigned long start_cycles, end_cycles;
5266 unsigned long pmd_mask;
5268 int this_cpu = smp_processor_id();
5270 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5271 ovfl_arg = &ctx->ctx_ovfl_arg;
5273 prefetch(ctx->ctx_smpl_hdr);
5275 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5279 if ((pmd_mask & 0x1) == 0) continue;
5281 ovfl_arg->ovfl_pmd = (unsigned char )i;
5282 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5283 ovfl_arg->active_set = 0;
5284 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5285 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5287 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5288 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5289 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5292 * copy values of pmds of interest. Sampling format may copy them
5293 * into sampling buffer.
5296 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5297 if ((smpl_pmds & 0x1) == 0) continue;
5298 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5299 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5303 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5305 start_cycles = ia64_get_itc();
5308 * call custom buffer format record (handler) routine
5310 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5312 end_cycles = ia64_get_itc();
5315 * For those controls, we take the union because they have
5316 * an all or nothing behavior.
5318 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5319 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5320 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5322 * build the bitmask of pmds to reset now
5324 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5326 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5329 * when the module cannot handle the rest of the overflows, we abort right here
5331 if (ret && pmd_mask) {
5332 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5333 pmd_mask<<PMU_FIRST_COUNTER));
5336 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5338 ovfl_pmds &= ~reset_pmds;
5341 * when no sampling module is used, then the default
5342 * is to notify on overflow if requested by user
5344 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5345 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5346 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5347 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5349 * if needed, we reset all overflowed pmds
5351 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5354 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5357 * reset the requested PMD registers using the short reset values
5360 unsigned long bm = reset_pmds;
5361 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5364 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5366 * keep track of what to reset when unblocking
5368 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5371 * check for blocking context
5373 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5375 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5378 * set the perfmon specific checking pending work for the task
5380 PFM_SET_WORK_PENDING(task, 1);
5383 * when coming from ctxsw, current still points to the
5384 * previous task, therefore we must work with task and not current.
5386 pfm_set_task_notify(task);
5389 * defer until state is changed (shorten spin window). the context is locked
5390 * anyway, so the signal receiver would come spin for nothing.
5395 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5396 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5397 PFM_GET_WORK_PENDING(task),
5398 ctx->ctx_fl_trap_reason,
5401 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5403 * in case monitoring must be stopped, we toggle the psr bits
5405 if (ovfl_ctrl.bits.mask_monitoring) {
5406 pfm_mask_monitoring(task);
5407 ctx->ctx_state = PFM_CTX_MASKED;
5408 ctx->ctx_fl_can_restart = 1;
5412 * send notification now
5414 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5419 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5421 task ? task->pid : -1,
5427 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5428 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5429 * come here as zombie only if the task is the current task. In which case, we
5430 * can access the PMU hardware directly.
5432 * Note that zombies do have PM_VALID set. So here we do the minimal.
5434 * In case the context was zombified it could not be reclaimed at the time
5435 * the monitoring program exited. At this point, the PMU reservation has been
5436 * returned, the sampiing buffer has been freed. We must convert this call
5437 * into a spurious interrupt. However, we must also avoid infinite overflows
5438 * by stopping monitoring for this task. We can only come here for a per-task
5439 * context. All we need to do is to stop monitoring using the psr bits which
5440 * are always task private. By re-enabling secure montioring, we ensure that
5441 * the monitored task will not be able to re-activate monitoring.
5442 * The task will eventually be context switched out, at which point the context
5443 * will be reclaimed (that includes releasing ownership of the PMU).
5445 * So there might be a window of time where the number of per-task session is zero
5446 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5447 * context. This is safe because if a per-task session comes in, it will push this one
5448 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5449 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5450 * also push our zombie context out.
5452 * Overall pretty hairy stuff....
5454 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5456 ia64_psr(regs)->up = 0;
5457 ia64_psr(regs)->sp = 1;
5462 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5464 struct task_struct *task;
5466 unsigned long flags;
5468 int this_cpu = smp_processor_id();
5471 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5474 * srlz.d done before arriving here
5476 pmc0 = ia64_get_pmc(0);
5478 task = GET_PMU_OWNER();
5479 ctx = GET_PMU_CTX();
5482 * if we have some pending bits set
5483 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5485 if (PMC0_HAS_OVFL(pmc0) && task) {
5487 * we assume that pmc0.fr is always set here
5491 if (!ctx) goto report_spurious1;
5493 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5494 goto report_spurious2;
5496 PROTECT_CTX_NOPRINT(ctx, flags);
5498 pfm_overflow_handler(task, ctx, pmc0, regs);
5500 UNPROTECT_CTX_NOPRINT(ctx, flags);
5503 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5507 * keep it unfrozen at all times
5514 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5515 this_cpu, task->pid);
5519 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5527 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5529 unsigned long start_cycles, total_cycles;
5530 unsigned long min, max;
5534 this_cpu = get_cpu();
5535 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5536 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5538 start_cycles = ia64_get_itc();
5540 ret = pfm_do_interrupt_handler(irq, arg, regs);
5542 total_cycles = ia64_get_itc();
5545 * don't measure spurious interrupts
5547 if (likely(ret == 0)) {
5548 total_cycles -= start_cycles;
5550 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5551 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5553 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5555 put_cpu_no_resched();
5560 * /proc/perfmon interface, for debug only
5563 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5566 pfm_proc_start(struct seq_file *m, loff_t *pos)
5569 return PFM_PROC_SHOW_HEADER;
5572 while (*pos <= NR_CPUS) {
5573 if (cpu_online(*pos - 1)) {
5574 return (void *)*pos;
5582 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5585 return pfm_proc_start(m, pos);
5589 pfm_proc_stop(struct seq_file *m, void *v)
5594 pfm_proc_show_header(struct seq_file *m)
5596 struct list_head * pos;
5597 pfm_buffer_fmt_t * entry;
5598 unsigned long flags;
5601 "perfmon version : %u.%u\n"
5604 "expert mode : %s\n"
5605 "ovfl_mask : 0x%lx\n"
5606 "PMU flags : 0x%x\n",
5607 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5609 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5610 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5617 "proc_sessions : %u\n"
5618 "sys_sessions : %u\n"
5619 "sys_use_dbregs : %u\n"
5620 "ptrace_use_dbregs : %u\n",
5621 pfm_sessions.pfs_task_sessions,
5622 pfm_sessions.pfs_sys_sessions,
5623 pfm_sessions.pfs_sys_use_dbregs,
5624 pfm_sessions.pfs_ptrace_use_dbregs);
5628 spin_lock(&pfm_buffer_fmt_lock);
5630 list_for_each(pos, &pfm_buffer_fmt_list) {
5631 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5632 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5643 entry->fmt_uuid[10],
5644 entry->fmt_uuid[11],
5645 entry->fmt_uuid[12],
5646 entry->fmt_uuid[13],
5647 entry->fmt_uuid[14],
5648 entry->fmt_uuid[15],
5651 spin_unlock(&pfm_buffer_fmt_lock);
5656 pfm_proc_show(struct seq_file *m, void *v)
5662 if (v == PFM_PROC_SHOW_HEADER) {
5663 pfm_proc_show_header(m);
5667 /* show info for CPU (v - 1) */
5671 "CPU%-2d overflow intrs : %lu\n"
5672 "CPU%-2d overflow cycles : %lu\n"
5673 "CPU%-2d overflow min : %lu\n"
5674 "CPU%-2d overflow max : %lu\n"
5675 "CPU%-2d smpl handler calls : %lu\n"
5676 "CPU%-2d smpl handler cycles : %lu\n"
5677 "CPU%-2d spurious intrs : %lu\n"
5678 "CPU%-2d replay intrs : %lu\n"
5679 "CPU%-2d syst_wide : %d\n"
5680 "CPU%-2d dcr_pp : %d\n"
5681 "CPU%-2d exclude idle : %d\n"
5682 "CPU%-2d owner : %d\n"
5683 "CPU%-2d context : %p\n"
5684 "CPU%-2d activations : %lu\n",
5685 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5686 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5687 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5688 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5689 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5690 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5691 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5692 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5693 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5694 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5695 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5696 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5697 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5698 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5700 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5702 psr = pfm_get_psr();
5707 "CPU%-2d psr : 0x%lx\n"
5708 "CPU%-2d pmc0 : 0x%lx\n",
5710 cpu, ia64_get_pmc(0));
5712 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5713 if (PMC_IS_COUNTING(i) == 0) continue;
5715 "CPU%-2d pmc%u : 0x%lx\n"
5716 "CPU%-2d pmd%u : 0x%lx\n",
5717 cpu, i, ia64_get_pmc(i),
5718 cpu, i, ia64_get_pmd(i));
5724 struct seq_operations pfm_seq_ops = {
5725 .start = pfm_proc_start,
5726 .next = pfm_proc_next,
5727 .stop = pfm_proc_stop,
5728 .show = pfm_proc_show
5732 pfm_proc_open(struct inode *inode, struct file *file)
5734 return seq_open(file, &pfm_seq_ops);
5739 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5740 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5741 * is active or inactive based on mode. We must rely on the value in
5742 * local_cpu_data->pfm_syst_info
5745 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5747 struct pt_regs *regs;
5749 unsigned long dcr_pp;
5751 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5754 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5755 * on every CPU, so we can rely on the pid to identify the idle task.
5757 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5758 regs = ia64_task_regs(task);
5759 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5763 * if monitoring has started
5766 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5768 * context switching in?
5771 /* mask monitoring for the idle task */
5772 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5778 * context switching out
5779 * restore monitoring for next task
5781 * Due to inlining this odd if-then-else construction generates
5784 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5793 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5795 struct task_struct *task = ctx->ctx_task;
5797 ia64_psr(regs)->up = 0;
5798 ia64_psr(regs)->sp = 1;
5800 if (GET_PMU_OWNER() == task) {
5801 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5802 SET_PMU_OWNER(NULL, NULL);
5806 * disconnect the task from the context and vice-versa
5808 PFM_SET_WORK_PENDING(task, 0);
5810 task->thread.pfm_context = NULL;
5811 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5813 DPRINT(("force cleanup for [%d]\n", task->pid));
5818 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5821 pfm_save_regs(struct task_struct *task)
5824 struct thread_struct *t;
5825 unsigned long flags;
5829 ctx = PFM_GET_CTX(task);
5830 if (ctx == NULL) return;
5834 * we always come here with interrupts ALREADY disabled by
5835 * the scheduler. So we simply need to protect against concurrent
5836 * access, not CPU concurrency.
5838 flags = pfm_protect_ctx_ctxsw(ctx);
5840 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5841 struct pt_regs *regs = ia64_task_regs(task);
5845 pfm_force_cleanup(ctx, regs);
5847 BUG_ON(ctx->ctx_smpl_hdr);
5849 pfm_unprotect_ctx_ctxsw(ctx, flags);
5851 pfm_context_free(ctx);
5856 * save current PSR: needed because we modify it
5859 psr = pfm_get_psr();
5861 BUG_ON(psr & (IA64_PSR_I));
5865 * This is the last instruction which may generate an overflow
5867 * We do not need to set psr.sp because, it is irrelevant in kernel.
5868 * It will be restored from ipsr when going back to user level
5873 * keep a copy of psr.up (for reload)
5875 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5878 * release ownership of this PMU.
5879 * PM interrupts are masked, so nothing
5882 SET_PMU_OWNER(NULL, NULL);
5885 * we systematically save the PMD as we have no
5886 * guarantee we will be schedule at that same
5889 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5892 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5893 * we will need it on the restore path to check
5894 * for pending overflow.
5896 t->pmcs[0] = ia64_get_pmc(0);
5899 * unfreeze PMU if had pending overflows
5901 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5904 * finally, allow context access.
5905 * interrupts will still be masked after this call.
5907 pfm_unprotect_ctx_ctxsw(ctx, flags);
5910 #else /* !CONFIG_SMP */
5912 pfm_save_regs(struct task_struct *task)
5917 ctx = PFM_GET_CTX(task);
5918 if (ctx == NULL) return;
5921 * save current PSR: needed because we modify it
5923 psr = pfm_get_psr();
5925 BUG_ON(psr & (IA64_PSR_I));
5929 * This is the last instruction which may generate an overflow
5931 * We do not need to set psr.sp because, it is irrelevant in kernel.
5932 * It will be restored from ipsr when going back to user level
5937 * keep a copy of psr.up (for reload)
5939 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5943 pfm_lazy_save_regs (struct task_struct *task)
5946 struct thread_struct *t;
5947 unsigned long flags;
5949 { u64 psr = pfm_get_psr();
5950 BUG_ON(psr & IA64_PSR_UP);
5953 ctx = PFM_GET_CTX(task);
5957 * we need to mask PMU overflow here to
5958 * make sure that we maintain pmc0 until
5959 * we save it. overflow interrupts are
5960 * treated as spurious if there is no
5963 * XXX: I don't think this is necessary
5965 PROTECT_CTX(ctx,flags);
5968 * release ownership of this PMU.
5969 * must be done before we save the registers.
5971 * after this call any PMU interrupt is treated
5974 SET_PMU_OWNER(NULL, NULL);
5977 * save all the pmds we use
5979 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5982 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5983 * it is needed to check for pended overflow
5984 * on the restore path
5986 t->pmcs[0] = ia64_get_pmc(0);
5989 * unfreeze PMU if had pending overflows
5991 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5994 * now get can unmask PMU interrupts, they will
5995 * be treated as purely spurious and we will not
5996 * lose any information
5998 UNPROTECT_CTX(ctx,flags);
6000 #endif /* CONFIG_SMP */
6004 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6007 pfm_load_regs (struct task_struct *task)
6010 struct thread_struct *t;
6011 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6012 unsigned long flags;
6014 int need_irq_resend;
6016 ctx = PFM_GET_CTX(task);
6017 if (unlikely(ctx == NULL)) return;
6019 BUG_ON(GET_PMU_OWNER());
6023 * possible on unload
6025 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6028 * we always come here with interrupts ALREADY disabled by
6029 * the scheduler. So we simply need to protect against concurrent
6030 * access, not CPU concurrency.
6032 flags = pfm_protect_ctx_ctxsw(ctx);
6033 psr = pfm_get_psr();
6035 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6037 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6038 BUG_ON(psr & IA64_PSR_I);
6040 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6041 struct pt_regs *regs = ia64_task_regs(task);
6043 BUG_ON(ctx->ctx_smpl_hdr);
6045 pfm_force_cleanup(ctx, regs);
6047 pfm_unprotect_ctx_ctxsw(ctx, flags);
6050 * this one (kmalloc'ed) is fine with interrupts disabled
6052 pfm_context_free(ctx);
6058 * we restore ALL the debug registers to avoid picking up
6061 if (ctx->ctx_fl_using_dbreg) {
6062 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6063 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6066 * retrieve saved psr.up
6068 psr_up = ctx->ctx_saved_psr_up;
6071 * if we were the last user of the PMU on that CPU,
6072 * then nothing to do except restore psr
6074 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6077 * retrieve partial reload masks (due to user modifications)
6079 pmc_mask = ctx->ctx_reload_pmcs[0];
6080 pmd_mask = ctx->ctx_reload_pmds[0];
6084 * To avoid leaking information to the user level when psr.sp=0,
6085 * we must reload ALL implemented pmds (even the ones we don't use).
6086 * In the kernel we only allow PFM_READ_PMDS on registers which
6087 * we initialized or requested (sampling) so there is no risk there.
6089 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6092 * ALL accessible PMCs are systematically reloaded, unused registers
6093 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6094 * up stale configuration.
6096 * PMC0 is never in the mask. It is always restored separately.
6098 pmc_mask = ctx->ctx_all_pmcs[0];
6101 * when context is MASKED, we will restore PMC with plm=0
6102 * and PMD with stale information, but that's ok, nothing
6105 * XXX: optimize here
6107 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6108 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6111 * check for pending overflow at the time the state
6114 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6116 * reload pmc0 with the overflow information
6117 * On McKinley PMU, this will trigger a PMU interrupt
6119 ia64_set_pmc(0, t->pmcs[0]);
6124 * will replay the PMU interrupt
6126 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6128 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6132 * we just did a reload, so we reset the partial reload fields
6134 ctx->ctx_reload_pmcs[0] = 0UL;
6135 ctx->ctx_reload_pmds[0] = 0UL;
6137 SET_LAST_CPU(ctx, smp_processor_id());
6140 * dump activation value for this PMU
6144 * record current activation for this context
6146 SET_ACTIVATION(ctx);
6149 * establish new ownership.
6151 SET_PMU_OWNER(task, ctx);
6154 * restore the psr.up bit. measurement
6156 * no PMU interrupt can happen at this point
6157 * because we still have interrupts disabled.
6159 if (likely(psr_up)) pfm_set_psr_up();
6162 * allow concurrent access to context
6164 pfm_unprotect_ctx_ctxsw(ctx, flags);
6166 #else /* !CONFIG_SMP */
6168 * reload PMU state for UP kernels
6169 * in 2.5 we come here with interrupts disabled
6172 pfm_load_regs (struct task_struct *task)
6174 struct thread_struct *t;
6176 struct task_struct *owner;
6177 unsigned long pmd_mask, pmc_mask;
6179 int need_irq_resend;
6181 owner = GET_PMU_OWNER();
6182 ctx = PFM_GET_CTX(task);
6184 psr = pfm_get_psr();
6186 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6187 BUG_ON(psr & IA64_PSR_I);
6190 * we restore ALL the debug registers to avoid picking up
6193 * This must be done even when the task is still the owner
6194 * as the registers may have been modified via ptrace()
6195 * (not perfmon) by the previous task.
6197 if (ctx->ctx_fl_using_dbreg) {
6198 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6199 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6203 * retrieved saved psr.up
6205 psr_up = ctx->ctx_saved_psr_up;
6206 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6209 * short path, our state is still there, just
6210 * need to restore psr and we go
6212 * we do not touch either PMC nor PMD. the psr is not touched
6213 * by the overflow_handler. So we are safe w.r.t. to interrupt
6214 * concurrency even without interrupt masking.
6216 if (likely(owner == task)) {
6217 if (likely(psr_up)) pfm_set_psr_up();
6222 * someone else is still using the PMU, first push it out and
6223 * then we'll be able to install our stuff !
6225 * Upon return, there will be no owner for the current PMU
6227 if (owner) pfm_lazy_save_regs(owner);
6230 * To avoid leaking information to the user level when psr.sp=0,
6231 * we must reload ALL implemented pmds (even the ones we don't use).
6232 * In the kernel we only allow PFM_READ_PMDS on registers which
6233 * we initialized or requested (sampling) so there is no risk there.
6235 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6238 * ALL accessible PMCs are systematically reloaded, unused registers
6239 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6240 * up stale configuration.
6242 * PMC0 is never in the mask. It is always restored separately
6244 pmc_mask = ctx->ctx_all_pmcs[0];
6246 pfm_restore_pmds(t->pmds, pmd_mask);
6247 pfm_restore_pmcs(t->pmcs, pmc_mask);
6250 * check for pending overflow at the time the state
6253 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6255 * reload pmc0 with the overflow information
6256 * On McKinley PMU, this will trigger a PMU interrupt
6258 ia64_set_pmc(0, t->pmcs[0]);
6264 * will replay the PMU interrupt
6266 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6268 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6272 * establish new ownership.
6274 SET_PMU_OWNER(task, ctx);
6277 * restore the psr.up bit. measurement
6279 * no PMU interrupt can happen at this point
6280 * because we still have interrupts disabled.
6282 if (likely(psr_up)) pfm_set_psr_up();
6284 #endif /* CONFIG_SMP */
6287 * this function assumes monitoring is stopped
6290 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6293 unsigned long mask2, val, pmd_val, ovfl_val;
6294 int i, can_access_pmu = 0;
6298 * is the caller the task being monitored (or which initiated the
6299 * session for system wide measurements)
6301 is_self = ctx->ctx_task == task ? 1 : 0;
6304 * can access PMU is task is the owner of the PMU state on the current CPU
6305 * or if we are running on the CPU bound to the context in system-wide mode
6306 * (that is not necessarily the task the context is attached to in this mode).
6307 * In system-wide we always have can_access_pmu true because a task running on an
6308 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6310 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6311 if (can_access_pmu) {
6313 * Mark the PMU as not owned
6314 * This will cause the interrupt handler to do nothing in case an overflow
6315 * interrupt was in-flight
6316 * This also guarantees that pmc0 will contain the final state
6317 * It virtually gives us full control on overflow processing from that point
6320 SET_PMU_OWNER(NULL, NULL);
6321 DPRINT(("releasing ownership\n"));
6324 * read current overflow status:
6326 * we are guaranteed to read the final stable state
6329 pmc0 = ia64_get_pmc(0); /* slow */
6332 * reset freeze bit, overflow status information destroyed
6336 pmc0 = task->thread.pmcs[0];
6338 * clear whatever overflow status bits there were
6340 task->thread.pmcs[0] = 0;
6342 ovfl_val = pmu_conf->ovfl_val;
6344 * we save all the used pmds
6345 * we take care of overflows for counting PMDs
6347 * XXX: sampling situation is not taken into account here
6349 mask2 = ctx->ctx_used_pmds[0];
6351 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6353 for (i = 0; mask2; i++, mask2>>=1) {
6355 /* skip non used pmds */
6356 if ((mask2 & 0x1) == 0) continue;
6359 * can access PMU always true in system wide mode
6361 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6363 if (PMD_IS_COUNTING(i)) {
6364 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6367 ctx->ctx_pmds[i].val,
6371 * we rebuild the full 64 bit value of the counter
6373 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6376 * now everything is in ctx_pmds[] and we need
6377 * to clear the saved context from save_regs() such that
6378 * pfm_read_pmds() gets the correct value
6383 * take care of overflow inline
6385 if (pmc0 & (1UL << i)) {
6386 val += 1 + ovfl_val;
6387 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6391 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6393 if (is_self) task->thread.pmds[i] = pmd_val;
6395 ctx->ctx_pmds[i].val = val;
6399 static struct irqaction perfmon_irqaction = {
6400 .handler = pfm_interrupt_handler,
6401 .flags = SA_INTERRUPT,
6406 * perfmon initialization routine, called from the initcall() table
6408 static int init_pfm_fs(void);
6416 family = local_cpu_data->family;
6421 if ((*p)->probe() == 0) goto found;
6422 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6433 static struct file_operations pfm_proc_fops = {
6434 .open = pfm_proc_open,
6436 .llseek = seq_lseek,
6437 .release = seq_release,
6443 unsigned int n, n_counters, i;
6445 printk("perfmon: version %u.%u IRQ %u\n",
6448 IA64_PERFMON_VECTOR);
6450 if (pfm_probe_pmu()) {
6451 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6452 local_cpu_data->family);
6457 * compute the number of implemented PMD/PMC from the
6458 * description tables
6461 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6462 if (PMC_IS_IMPL(i) == 0) continue;
6463 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6466 pmu_conf->num_pmcs = n;
6468 n = 0; n_counters = 0;
6469 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6470 if (PMD_IS_IMPL(i) == 0) continue;
6471 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6473 if (PMD_IS_COUNTING(i)) n_counters++;
6475 pmu_conf->num_pmds = n;
6476 pmu_conf->num_counters = n_counters;
6479 * sanity checks on the number of debug registers
6481 if (pmu_conf->use_rr_dbregs) {
6482 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6483 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6487 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6488 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6494 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6498 pmu_conf->num_counters,
6499 ffz(pmu_conf->ovfl_val));
6502 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6503 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6509 * create /proc/perfmon (mostly for debugging purposes)
6511 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6512 if (perfmon_dir == NULL) {
6513 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6518 * install customized file operations for /proc/perfmon entry
6520 perfmon_dir->proc_fops = &pfm_proc_fops;
6523 * create /proc/sys/kernel/perfmon (for debugging purposes)
6525 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6528 * initialize all our spinlocks
6530 spin_lock_init(&pfm_sessions.pfs_lock);
6531 spin_lock_init(&pfm_buffer_fmt_lock);
6535 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6540 __initcall(pfm_init);
6543 * this function is called before pfm_init()
6546 pfm_init_percpu (void)
6549 * make sure no measurement is active
6550 * (may inherit programmed PMCs from EFI).
6556 * we run with the PMU not frozen at all times
6560 if (smp_processor_id() == 0)
6561 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6563 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6568 * used for debug purposes only
6571 dump_pmu_state(const char *from)
6573 struct task_struct *task;
6574 struct thread_struct *t;
6575 struct pt_regs *regs;
6577 unsigned long psr, dcr, info, flags;
6580 local_irq_save(flags);
6582 this_cpu = smp_processor_id();
6583 regs = ia64_task_regs(current);
6584 info = PFM_CPUINFO_GET();
6585 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6587 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6588 local_irq_restore(flags);
6592 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6599 task = GET_PMU_OWNER();
6600 ctx = GET_PMU_CTX();
6602 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6604 psr = pfm_get_psr();
6606 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6609 psr & IA64_PSR_PP ? 1 : 0,
6610 psr & IA64_PSR_UP ? 1 : 0,
6611 dcr & IA64_DCR_PP ? 1 : 0,
6614 ia64_psr(regs)->pp);
6616 ia64_psr(regs)->up = 0;
6617 ia64_psr(regs)->pp = 0;
6619 t = ¤t->thread;
6621 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6622 if (PMC_IS_IMPL(i) == 0) continue;
6623 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6626 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6627 if (PMD_IS_IMPL(i) == 0) continue;
6628 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6632 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6635 ctx->ctx_smpl_vaddr,
6639 ctx->ctx_saved_psr_up);
6641 local_irq_restore(flags);
6645 * called from process.c:copy_thread(). task is new child.
6648 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6650 struct thread_struct *thread;
6652 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6654 thread = &task->thread;
6657 * cut links inherited from parent (current)
6659 thread->pfm_context = NULL;
6661 PFM_SET_WORK_PENDING(task, 0);
6664 * the psr bits are already set properly in copy_threads()
6667 #else /* !CONFIG_PERFMON */
6669 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6673 #endif /* CONFIG_PERFMON */