2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
54 #include "multicalls.h"
56 EXPORT_SYMBOL_GPL(hypercall_page);
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
65 * Identity map, in addition to plain kernel map. This needs to be
66 * large enough to allocate page table pages to allocate the rest.
67 * Each page can map 2MB.
69 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
72 /* l3 pud for userspace vsyscall mapping */
73 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
74 #endif /* CONFIG_X86_64 */
77 * Note about cr3 (pagetable base) values:
79 * xen_cr3 contains the current logical cr3 value; it contains the
80 * last set cr3. This may not be the current effective cr3, because
81 * its update may be being lazily deferred. However, a vcpu looking
82 * at its own cr3 can use this value knowing that it everything will
85 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
86 * hypercall to set the vcpu cr3 is complete (so it may be a little
87 * out of date, but it will never be set early). If one vcpu is
88 * looking at another vcpu's cr3 value, it should use this variable.
90 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
91 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
93 struct start_info *xen_start_info;
94 EXPORT_SYMBOL_GPL(xen_start_info);
96 struct shared_info xen_dummy_shared_info;
99 * Point at some empty memory to start with. We map the real shared_info
100 * page as soon as fixmap is up and running.
102 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
105 * Flag to determine whether vcpu info placement is available on all
106 * VCPUs. We assume it is to start with, and then set it to zero on
107 * the first failure. This is because it can succeed on some VCPUs
108 * and not others, since it can involve hypervisor memory allocation,
109 * or because the guest failed to guarantee all the appropriate
110 * constraints on all VCPUs (ie buffer can't cross a page boundary).
112 * Note that any particular CPU may be using a placed vcpu structure,
113 * but we can only optimise if the all are.
115 * 0: not available, 1: available
117 static int have_vcpu_info_placement =
126 static void xen_vcpu_setup(int cpu)
128 struct vcpu_register_vcpu_info info;
130 struct vcpu_info *vcpup;
132 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
133 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
135 if (!have_vcpu_info_placement)
136 return; /* already tested, not available */
138 vcpup = &per_cpu(xen_vcpu_info, cpu);
140 info.mfn = virt_to_mfn(vcpup);
141 info.offset = offset_in_page(vcpup);
143 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
144 cpu, vcpup, info.mfn, info.offset);
146 /* Check to see if the hypervisor will put the vcpu_info
147 structure where we want it, which allows direct access via
148 a percpu-variable. */
149 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
152 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
153 have_vcpu_info_placement = 0;
155 /* This cpu is using the registered vcpu info, even if
156 later ones fail to. */
157 per_cpu(xen_vcpu, cpu) = vcpup;
159 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
165 * On restore, set the vcpu placement up again.
166 * If it fails, then we're in a bad state, since
167 * we can't back out from using it...
169 void xen_vcpu_restore(void)
171 if (have_vcpu_info_placement) {
174 for_each_online_cpu(cpu) {
175 bool other_cpu = (cpu != smp_processor_id());
178 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
184 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
188 BUG_ON(!have_vcpu_info_placement);
192 static void __init xen_banner(void)
194 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
195 struct xen_extraversion extra;
196 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
198 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
200 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
201 version >> 16, version & 0xffff, extra.extraversion,
202 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
205 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
206 unsigned int *cx, unsigned int *dx)
208 unsigned maskedx = ~0;
211 * Mask out inconvenient features, to try and disable as many
212 * unsupported kernel subsystems as possible.
215 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
216 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
217 (1 << X86_FEATURE_MCE) | /* disable MCE */
218 (1 << X86_FEATURE_MCA) | /* disable MCA */
219 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
221 asm(XEN_EMULATE_PREFIX "cpuid"
226 : "0" (*ax), "2" (*cx));
230 static void xen_set_debugreg(int reg, unsigned long val)
232 HYPERVISOR_set_debugreg(reg, val);
235 static unsigned long xen_get_debugreg(int reg)
237 return HYPERVISOR_get_debugreg(reg);
240 static void xen_leave_lazy(void)
242 paravirt_leave_lazy(paravirt_get_lazy_mode());
246 static unsigned long xen_store_tr(void)
252 * Set the page permissions for a particular virtual address. If the
253 * address is a vmalloc mapping (or other non-linear mapping), then
254 * find the linear mapping of the page and also set its protections to
257 static void set_aliased_prot(void *v, pgprot_t prot)
265 ptep = lookup_address((unsigned long)v, &level);
266 BUG_ON(ptep == NULL);
268 pfn = pte_pfn(*ptep);
269 page = pfn_to_page(pfn);
271 pte = pfn_pte(pfn, prot);
273 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
276 if (!PageHighMem(page)) {
277 void *av = __va(PFN_PHYS(pfn));
280 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
286 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
288 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
291 for(i = 0; i < entries; i += entries_per_page)
292 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
295 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
297 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
300 for(i = 0; i < entries; i += entries_per_page)
301 set_aliased_prot(ldt + i, PAGE_KERNEL);
304 static void xen_set_ldt(const void *addr, unsigned entries)
306 struct mmuext_op *op;
307 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
310 op->cmd = MMUEXT_SET_LDT;
311 op->arg1.linear_addr = (unsigned long)addr;
312 op->arg2.nr_ents = entries;
314 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
316 xen_mc_issue(PARAVIRT_LAZY_CPU);
319 static void xen_load_gdt(const struct desc_ptr *dtr)
321 unsigned long *frames;
322 unsigned long va = dtr->address;
323 unsigned int size = dtr->size + 1;
324 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
326 struct multicall_space mcs;
328 /* A GDT can be up to 64k in size, which corresponds to 8192
329 8-byte entries, or 16 4k pages.. */
331 BUG_ON(size > 65536);
332 BUG_ON(va & ~PAGE_MASK);
334 mcs = xen_mc_entry(sizeof(*frames) * pages);
337 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
338 frames[f] = virt_to_mfn(va);
339 make_lowmem_page_readonly((void *)va);
342 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
344 xen_mc_issue(PARAVIRT_LAZY_CPU);
347 static void load_TLS_descriptor(struct thread_struct *t,
348 unsigned int cpu, unsigned int i)
350 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
351 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
352 struct multicall_space mc = __xen_mc_entry(0);
354 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
357 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
360 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
361 * it means we're in a context switch, and %gs has just been
362 * saved. This means we can zero it out to prevent faults on
363 * exit from the hypervisor if the next process has no %gs.
364 * Either way, it has been saved, and the new value will get
365 * loaded properly. This will go away as soon as Xen has been
366 * modified to not save/restore %gs for normal hypercalls.
368 * On x86_64, this hack is not used for %gs, because gs points
369 * to KERNEL_GS_BASE (and uses it for PDA references), so we
370 * must not zero %gs on x86_64
372 * For x86_64, we need to zero %fs, otherwise we may get an
373 * exception between the new %fs descriptor being loaded and
374 * %fs being effectively cleared at __switch_to().
376 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
386 load_TLS_descriptor(t, cpu, 0);
387 load_TLS_descriptor(t, cpu, 1);
388 load_TLS_descriptor(t, cpu, 2);
390 xen_mc_issue(PARAVIRT_LAZY_CPU);
394 static void xen_load_gs_index(unsigned int idx)
396 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
401 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
404 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
405 u64 entry = *(u64 *)ptr;
410 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
416 static int cvt_gate_to_trap(int vector, const gate_desc *val,
417 struct trap_info *info)
419 if (val->type != 0xf && val->type != 0xe)
422 info->vector = vector;
423 info->address = gate_offset(*val);
424 info->cs = gate_segment(*val);
425 info->flags = val->dpl;
426 /* interrupt gates clear IF */
427 if (val->type == 0xe)
433 /* Locations of each CPU's IDT */
434 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
436 /* Set an IDT entry. If the entry is part of the current IDT, then
438 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
440 unsigned long p = (unsigned long)&dt[entrynum];
441 unsigned long start, end;
445 start = __get_cpu_var(idt_desc).address;
446 end = start + __get_cpu_var(idt_desc).size + 1;
450 native_write_idt_entry(dt, entrynum, g);
452 if (p >= start && (p + 8) <= end) {
453 struct trap_info info[2];
457 if (cvt_gate_to_trap(entrynum, g, &info[0]))
458 if (HYPERVISOR_set_trap_table(info))
465 static void xen_convert_trap_info(const struct desc_ptr *desc,
466 struct trap_info *traps)
468 unsigned in, out, count;
470 count = (desc->size+1) / sizeof(gate_desc);
473 for (in = out = 0; in < count; in++) {
474 gate_desc *entry = (gate_desc*)(desc->address) + in;
476 if (cvt_gate_to_trap(in, entry, &traps[out]))
479 traps[out].address = 0;
482 void xen_copy_trap_info(struct trap_info *traps)
484 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
486 xen_convert_trap_info(desc, traps);
489 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
490 hold a spinlock to protect the static traps[] array (static because
491 it avoids allocation, and saves stack space). */
492 static void xen_load_idt(const struct desc_ptr *desc)
494 static DEFINE_SPINLOCK(lock);
495 static struct trap_info traps[257];
499 __get_cpu_var(idt_desc) = *desc;
501 xen_convert_trap_info(desc, traps);
504 if (HYPERVISOR_set_trap_table(traps))
510 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
511 they're handled differently. */
512 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
513 const void *desc, int type)
524 xmaddr_t maddr = virt_to_machine(&dt[entry]);
527 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
536 static void xen_load_sp0(struct tss_struct *tss,
537 struct thread_struct *thread)
539 struct multicall_space mcs = xen_mc_entry(0);
540 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
541 xen_mc_issue(PARAVIRT_LAZY_CPU);
544 static void xen_set_iopl_mask(unsigned mask)
546 struct physdev_set_iopl set_iopl;
548 /* Force the change at ring 0. */
549 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
550 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
553 static void xen_io_delay(void)
557 #ifdef CONFIG_X86_LOCAL_APIC
558 static u32 xen_apic_read(u32 reg)
563 static void xen_apic_write(u32 reg, u32 val)
565 /* Warn to see if there's any stray references */
569 static u64 xen_apic_icr_read(void)
574 static void xen_apic_icr_write(u32 low, u32 id)
576 /* Warn to see if there's any stray references */
580 static void xen_apic_wait_icr_idle(void)
585 static u32 xen_safe_apic_wait_icr_idle(void)
590 static struct apic_ops xen_basic_apic_ops = {
591 .read = xen_apic_read,
592 .write = xen_apic_write,
593 .icr_read = xen_apic_icr_read,
594 .icr_write = xen_apic_icr_write,
595 .wait_icr_idle = xen_apic_wait_icr_idle,
596 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
601 static void xen_flush_tlb(void)
603 struct mmuext_op *op;
604 struct multicall_space mcs;
608 mcs = xen_mc_entry(sizeof(*op));
611 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
612 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
614 xen_mc_issue(PARAVIRT_LAZY_MMU);
619 static void xen_flush_tlb_single(unsigned long addr)
621 struct mmuext_op *op;
622 struct multicall_space mcs;
626 mcs = xen_mc_entry(sizeof(*op));
628 op->cmd = MMUEXT_INVLPG_LOCAL;
629 op->arg1.linear_addr = addr & PAGE_MASK;
630 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
632 xen_mc_issue(PARAVIRT_LAZY_MMU);
637 static void xen_flush_tlb_others(const struct cpumask *cpus,
638 struct mm_struct *mm, unsigned long va)
642 DECLARE_BITMAP(mask, NR_CPUS);
644 struct multicall_space mcs;
646 BUG_ON(cpumask_empty(cpus));
649 mcs = xen_mc_entry(sizeof(*args));
651 args->op.arg2.vcpumask = to_cpumask(args->mask);
653 /* Remove us, and any offline CPUS. */
654 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
655 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
656 if (unlikely(cpumask_empty(to_cpumask(args->mask))))
659 if (va == TLB_FLUSH_ALL) {
660 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
662 args->op.cmd = MMUEXT_INVLPG_MULTI;
663 args->op.arg1.linear_addr = va;
666 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
669 xen_mc_issue(PARAVIRT_LAZY_MMU);
672 static void xen_clts(void)
674 struct multicall_space mcs;
676 mcs = xen_mc_entry(0);
678 MULTI_fpu_taskswitch(mcs.mc, 0);
680 xen_mc_issue(PARAVIRT_LAZY_CPU);
683 static void xen_write_cr0(unsigned long cr0)
685 struct multicall_space mcs;
687 /* Only pay attention to cr0.TS; everything else is
689 mcs = xen_mc_entry(0);
691 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
693 xen_mc_issue(PARAVIRT_LAZY_CPU);
696 static void xen_write_cr2(unsigned long cr2)
698 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
701 static unsigned long xen_read_cr2(void)
703 return x86_read_percpu(xen_vcpu)->arch.cr2;
706 static unsigned long xen_read_cr2_direct(void)
708 return x86_read_percpu(xen_vcpu_info.arch.cr2);
711 static void xen_write_cr4(unsigned long cr4)
716 native_write_cr4(cr4);
719 static unsigned long xen_read_cr3(void)
721 return x86_read_percpu(xen_cr3);
724 static void set_current_cr3(void *v)
726 x86_write_percpu(xen_current_cr3, (unsigned long)v);
729 static void __xen_write_cr3(bool kernel, unsigned long cr3)
731 struct mmuext_op *op;
732 struct multicall_space mcs;
736 mfn = pfn_to_mfn(PFN_DOWN(cr3));
740 WARN_ON(mfn == 0 && kernel);
742 mcs = __xen_mc_entry(sizeof(*op));
745 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
748 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
751 x86_write_percpu(xen_cr3, cr3);
753 /* Update xen_current_cr3 once the batch has actually
755 xen_mc_callback(set_current_cr3, (void *)cr3);
759 static void xen_write_cr3(unsigned long cr3)
761 BUG_ON(preemptible());
763 xen_mc_batch(); /* disables interrupts */
765 /* Update while interrupts are disabled, so its atomic with
767 x86_write_percpu(xen_cr3, cr3);
769 __xen_write_cr3(true, cr3);
773 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
775 __xen_write_cr3(false, __pa(user_pgd));
777 __xen_write_cr3(false, 0);
781 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
784 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
795 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
796 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
797 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
800 base = ((u64)high << 32) | low;
801 if (HYPERVISOR_set_segment_base(which, base) != 0)
809 case MSR_SYSCALL_MASK:
810 case MSR_IA32_SYSENTER_CS:
811 case MSR_IA32_SYSENTER_ESP:
812 case MSR_IA32_SYSENTER_EIP:
813 /* Fast syscall setup is all done in hypercalls, so
814 these are all ignored. Stub them out here to stop
815 Xen console noise. */
819 ret = native_write_msr_safe(msr, low, high);
825 /* Early in boot, while setting up the initial pagetable, assume
826 everything is pinned. */
827 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
829 #ifdef CONFIG_FLATMEM
830 BUG_ON(mem_map); /* should only be used early */
832 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
835 /* Early release_pte assumes that all pts are pinned, since there's
836 only init_mm and anything attached to that is pinned. */
837 static void xen_release_pte_init(unsigned long pfn)
839 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
842 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
846 op.arg1.mfn = pfn_to_mfn(pfn);
847 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
851 /* This needs to make sure the new pte page is pinned iff its being
852 attached to a pinned pagetable. */
853 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
855 struct page *page = pfn_to_page(pfn);
857 if (PagePinned(virt_to_page(mm->pgd))) {
861 if (!PageHighMem(page)) {
862 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
863 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
864 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
866 /* make sure there are no stray mappings of
873 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
875 xen_alloc_ptpage(mm, pfn, PT_PTE);
878 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
880 xen_alloc_ptpage(mm, pfn, PT_PMD);
883 static int xen_pgd_alloc(struct mm_struct *mm)
885 pgd_t *pgd = mm->pgd;
888 BUG_ON(PagePinned(virt_to_page(pgd)));
892 struct page *page = virt_to_page(pgd);
895 BUG_ON(page->private != 0);
899 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
900 page->private = (unsigned long)user_pgd;
902 if (user_pgd != NULL) {
903 user_pgd[pgd_index(VSYSCALL_START)] =
904 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
908 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
915 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
918 pgd_t *user_pgd = xen_get_user_pgd(pgd);
921 free_page((unsigned long)user_pgd);
925 /* This should never happen until we're OK to use struct page */
926 static void xen_release_ptpage(unsigned long pfn, unsigned level)
928 struct page *page = pfn_to_page(pfn);
930 if (PagePinned(page)) {
931 if (!PageHighMem(page)) {
932 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
933 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
934 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
936 ClearPagePinned(page);
940 static void xen_release_pte(unsigned long pfn)
942 xen_release_ptpage(pfn, PT_PTE);
945 static void xen_release_pmd(unsigned long pfn)
947 xen_release_ptpage(pfn, PT_PMD);
950 #if PAGETABLE_LEVELS == 4
951 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
953 xen_alloc_ptpage(mm, pfn, PT_PUD);
956 static void xen_release_pud(unsigned long pfn)
958 xen_release_ptpage(pfn, PT_PUD);
962 #ifdef CONFIG_HIGHPTE
963 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
965 pgprot_t prot = PAGE_KERNEL;
967 if (PagePinned(page))
968 prot = PAGE_KERNEL_RO;
970 if (0 && PageHighMem(page))
971 printk("mapping highpte %lx type %d prot %s\n",
972 page_to_pfn(page), type,
973 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
975 return kmap_atomic_prot(page, type, prot);
980 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
982 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
983 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
984 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
990 /* Init-time set_pte while constructing initial pagetables, which
991 doesn't allow RO pagetable pages to be remapped RW */
992 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
994 pte = mask_rw_pte(ptep, pte);
996 xen_set_pte(ptep, pte);
1000 static __init void xen_pagetable_setup_start(pgd_t *base)
1004 void xen_setup_shared_info(void)
1006 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1007 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1008 xen_start_info->shared_info);
1010 HYPERVISOR_shared_info =
1011 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1013 HYPERVISOR_shared_info =
1014 (struct shared_info *)__va(xen_start_info->shared_info);
1017 /* In UP this is as good a place as any to set up shared info */
1018 xen_setup_vcpu_info_placement();
1021 xen_setup_mfn_list_list();
1024 static __init void xen_pagetable_setup_done(pgd_t *base)
1026 xen_setup_shared_info();
1029 static __init void xen_post_allocator_init(void)
1031 pv_mmu_ops.set_pte = xen_set_pte;
1032 pv_mmu_ops.set_pmd = xen_set_pmd;
1033 pv_mmu_ops.set_pud = xen_set_pud;
1034 #if PAGETABLE_LEVELS == 4
1035 pv_mmu_ops.set_pgd = xen_set_pgd;
1038 /* This will work as long as patching hasn't happened yet
1039 (which it hasn't) */
1040 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1041 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1042 pv_mmu_ops.release_pte = xen_release_pte;
1043 pv_mmu_ops.release_pmd = xen_release_pmd;
1044 #if PAGETABLE_LEVELS == 4
1045 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1046 pv_mmu_ops.release_pud = xen_release_pud;
1049 #ifdef CONFIG_X86_64
1050 SetPagePinned(virt_to_page(level3_user_vsyscall));
1052 xen_mark_init_mm_pinned();
1055 /* This is called once we have the cpu_possible_map */
1056 void xen_setup_vcpu_info_placement(void)
1060 for_each_possible_cpu(cpu)
1061 xen_vcpu_setup(cpu);
1063 /* xen_vcpu_setup managed to place the vcpu_info within the
1064 percpu area for all cpus, so make use of it */
1065 if (have_vcpu_info_placement) {
1066 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1068 pv_irq_ops.save_fl = xen_save_fl_direct;
1069 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1070 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1071 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1072 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1076 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1077 unsigned long addr, unsigned len)
1079 char *start, *end, *reloc;
1082 start = end = reloc = NULL;
1084 #define SITE(op, x) \
1085 case PARAVIRT_PATCH(op.x): \
1086 if (have_vcpu_info_placement) { \
1087 start = (char *)xen_##x##_direct; \
1088 end = xen_##x##_direct_end; \
1089 reloc = xen_##x##_direct_reloc; \
1094 SITE(pv_irq_ops, irq_enable);
1095 SITE(pv_irq_ops, irq_disable);
1096 SITE(pv_irq_ops, save_fl);
1097 SITE(pv_irq_ops, restore_fl);
1101 if (start == NULL || (end-start) > len)
1104 ret = paravirt_patch_insns(insnbuf, len, start, end);
1106 /* Note: because reloc is assigned from something that
1107 appears to be an array, gcc assumes it's non-null,
1108 but doesn't know its relationship with start and
1110 if (reloc > start && reloc < end) {
1111 int reloc_off = reloc - start;
1112 long *relocp = (long *)(insnbuf + reloc_off);
1113 long delta = start - (char *)addr;
1121 ret = paravirt_patch_default(type, clobbers, insnbuf,
1129 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1133 phys >>= PAGE_SHIFT;
1136 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1137 #ifdef CONFIG_X86_F00F_BUG
1140 #ifdef CONFIG_X86_32
1143 # ifdef CONFIG_HIGHMEM
1144 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1147 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1149 #ifdef CONFIG_X86_LOCAL_APIC
1150 case FIX_APIC_BASE: /* maps dummy local APIC */
1152 pte = pfn_pte(phys, prot);
1156 pte = mfn_pte(phys, prot);
1160 __native_set_fixmap(idx, pte);
1162 #ifdef CONFIG_X86_64
1163 /* Replicate changes to map the vsyscall page into the user
1164 pagetable vsyscall mapping. */
1165 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1166 unsigned long vaddr = __fix_to_virt(idx);
1167 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1172 static const struct pv_info xen_info __initdata = {
1173 .paravirt_enabled = 1,
1174 .shared_kernel_pmd = 0,
1179 static const struct pv_init_ops xen_init_ops __initdata = {
1182 .banner = xen_banner,
1183 .memory_setup = xen_memory_setup,
1184 .arch_setup = xen_arch_setup,
1185 .post_allocator_init = xen_post_allocator_init,
1188 static const struct pv_time_ops xen_time_ops __initdata = {
1189 .time_init = xen_time_init,
1191 .set_wallclock = xen_set_wallclock,
1192 .get_wallclock = xen_get_wallclock,
1193 .get_tsc_khz = xen_tsc_khz,
1194 .sched_clock = xen_sched_clock,
1197 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1200 .set_debugreg = xen_set_debugreg,
1201 .get_debugreg = xen_get_debugreg,
1205 .read_cr0 = native_read_cr0,
1206 .write_cr0 = xen_write_cr0,
1208 .read_cr4 = native_read_cr4,
1209 .read_cr4_safe = native_read_cr4_safe,
1210 .write_cr4 = xen_write_cr4,
1212 .wbinvd = native_wbinvd,
1214 .read_msr = native_read_msr_safe,
1215 .write_msr = xen_write_msr_safe,
1216 .read_tsc = native_read_tsc,
1217 .read_pmc = native_read_pmc,
1220 .irq_enable_sysexit = xen_sysexit,
1221 #ifdef CONFIG_X86_64
1222 .usergs_sysret32 = xen_sysret32,
1223 .usergs_sysret64 = xen_sysret64,
1226 .load_tr_desc = paravirt_nop,
1227 .set_ldt = xen_set_ldt,
1228 .load_gdt = xen_load_gdt,
1229 .load_idt = xen_load_idt,
1230 .load_tls = xen_load_tls,
1231 #ifdef CONFIG_X86_64
1232 .load_gs_index = xen_load_gs_index,
1235 .alloc_ldt = xen_alloc_ldt,
1236 .free_ldt = xen_free_ldt,
1238 .store_gdt = native_store_gdt,
1239 .store_idt = native_store_idt,
1240 .store_tr = xen_store_tr,
1242 .write_ldt_entry = xen_write_ldt_entry,
1243 .write_gdt_entry = xen_write_gdt_entry,
1244 .write_idt_entry = xen_write_idt_entry,
1245 .load_sp0 = xen_load_sp0,
1247 .set_iopl_mask = xen_set_iopl_mask,
1248 .io_delay = xen_io_delay,
1250 /* Xen takes care of %gs when switching to usermode for us */
1251 .swapgs = paravirt_nop,
1254 .enter = paravirt_enter_lazy_cpu,
1255 .leave = xen_leave_lazy,
1259 static const struct pv_apic_ops xen_apic_ops __initdata = {
1260 #ifdef CONFIG_X86_LOCAL_APIC
1261 .setup_boot_clock = paravirt_nop,
1262 .setup_secondary_clock = paravirt_nop,
1263 .startup_ipi_hook = paravirt_nop,
1267 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1268 .pagetable_setup_start = xen_pagetable_setup_start,
1269 .pagetable_setup_done = xen_pagetable_setup_done,
1271 .read_cr2 = xen_read_cr2,
1272 .write_cr2 = xen_write_cr2,
1274 .read_cr3 = xen_read_cr3,
1275 .write_cr3 = xen_write_cr3,
1277 .flush_tlb_user = xen_flush_tlb,
1278 .flush_tlb_kernel = xen_flush_tlb,
1279 .flush_tlb_single = xen_flush_tlb_single,
1280 .flush_tlb_others = xen_flush_tlb_others,
1282 .pte_update = paravirt_nop,
1283 .pte_update_defer = paravirt_nop,
1285 .pgd_alloc = xen_pgd_alloc,
1286 .pgd_free = xen_pgd_free,
1288 .alloc_pte = xen_alloc_pte_init,
1289 .release_pte = xen_release_pte_init,
1290 .alloc_pmd = xen_alloc_pte_init,
1291 .alloc_pmd_clone = paravirt_nop,
1292 .release_pmd = xen_release_pte_init,
1294 #ifdef CONFIG_HIGHPTE
1295 .kmap_atomic_pte = xen_kmap_atomic_pte,
1298 #ifdef CONFIG_X86_64
1299 .set_pte = xen_set_pte,
1301 .set_pte = xen_set_pte_init,
1303 .set_pte_at = xen_set_pte_at,
1304 .set_pmd = xen_set_pmd_hyper,
1306 .ptep_modify_prot_start = __ptep_modify_prot_start,
1307 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1309 .pte_val = xen_pte_val,
1310 .pte_flags = native_pte_flags,
1311 .pgd_val = xen_pgd_val,
1313 .make_pte = xen_make_pte,
1314 .make_pgd = xen_make_pgd,
1316 #ifdef CONFIG_X86_PAE
1317 .set_pte_atomic = xen_set_pte_atomic,
1318 .set_pte_present = xen_set_pte_at,
1319 .pte_clear = xen_pte_clear,
1320 .pmd_clear = xen_pmd_clear,
1321 #endif /* CONFIG_X86_PAE */
1322 .set_pud = xen_set_pud_hyper,
1324 .make_pmd = xen_make_pmd,
1325 .pmd_val = xen_pmd_val,
1327 #if PAGETABLE_LEVELS == 4
1328 .pud_val = xen_pud_val,
1329 .make_pud = xen_make_pud,
1330 .set_pgd = xen_set_pgd_hyper,
1332 .alloc_pud = xen_alloc_pte_init,
1333 .release_pud = xen_release_pte_init,
1334 #endif /* PAGETABLE_LEVELS == 4 */
1336 .activate_mm = xen_activate_mm,
1337 .dup_mmap = xen_dup_mmap,
1338 .exit_mmap = xen_exit_mmap,
1341 .enter = paravirt_enter_lazy_mmu,
1342 .leave = xen_leave_lazy,
1345 .set_fixmap = xen_set_fixmap,
1348 static void xen_reboot(int reason)
1350 struct sched_shutdown r = { .reason = reason };
1356 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1360 static void xen_restart(char *msg)
1362 xen_reboot(SHUTDOWN_reboot);
1365 static void xen_emergency_restart(void)
1367 xen_reboot(SHUTDOWN_reboot);
1370 static void xen_machine_halt(void)
1372 xen_reboot(SHUTDOWN_poweroff);
1375 static void xen_crash_shutdown(struct pt_regs *regs)
1377 xen_reboot(SHUTDOWN_crash);
1380 static const struct machine_ops __initdata xen_machine_ops = {
1381 .restart = xen_restart,
1382 .halt = xen_machine_halt,
1383 .power_off = xen_machine_halt,
1384 .shutdown = xen_machine_halt,
1385 .crash_shutdown = xen_crash_shutdown,
1386 .emergency_restart = xen_emergency_restart,
1390 static void __init xen_reserve_top(void)
1392 #ifdef CONFIG_X86_32
1393 unsigned long top = HYPERVISOR_VIRT_START;
1394 struct xen_platform_parameters pp;
1396 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1397 top = pp.virt_start;
1399 reserve_top_address(-top);
1400 #endif /* CONFIG_X86_32 */
1404 * Like __va(), but returns address in the kernel mapping (which is
1405 * all we have until the physical memory mapping has been set up.
1407 static void *__ka(phys_addr_t paddr)
1409 #ifdef CONFIG_X86_64
1410 return (void *)(paddr + __START_KERNEL_map);
1416 /* Convert a machine address to physical address */
1417 static unsigned long m2p(phys_addr_t maddr)
1421 maddr &= PTE_PFN_MASK;
1422 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1427 /* Convert a machine address to kernel virtual */
1428 static void *m2v(phys_addr_t maddr)
1430 return __ka(m2p(maddr));
1433 static void set_page_prot(void *addr, pgprot_t prot)
1435 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1436 pte_t pte = pfn_pte(pfn, prot);
1438 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1442 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1444 unsigned pmdidx, pteidx;
1450 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1453 /* Reuse or allocate a page of ptes */
1454 if (pmd_present(pmd[pmdidx]))
1455 pte_page = m2v(pmd[pmdidx].pmd);
1457 /* Check for free pte pages */
1458 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1461 pte_page = &level1_ident_pgt[ident_pte];
1462 ident_pte += PTRS_PER_PTE;
1464 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1467 /* Install mappings */
1468 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1471 if (pfn > max_pfn_mapped)
1472 max_pfn_mapped = pfn;
1474 if (!pte_none(pte_page[pteidx]))
1477 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1478 pte_page[pteidx] = pte;
1482 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1483 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1485 set_page_prot(pmd, PAGE_KERNEL_RO);
1488 #ifdef CONFIG_X86_64
1489 static void convert_pfn_mfn(void *v)
1494 /* All levels are converted the same way, so just treat them
1496 for (i = 0; i < PTRS_PER_PTE; i++)
1497 pte[i] = xen_make_pte(pte[i].pte);
1501 * Set up the inital kernel pagetable.
1503 * We can construct this by grafting the Xen provided pagetable into
1504 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1505 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1506 * means that only the kernel has a physical mapping to start with -
1507 * but that's enough to get __va working. We need to fill in the rest
1508 * of the physical mapping once some sort of allocator has been set
1511 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1512 unsigned long max_pfn)
1517 /* Zap identity mapping */
1518 init_level4_pgt[0] = __pgd(0);
1520 /* Pre-constructed entries are in pfn, so convert to mfn */
1521 convert_pfn_mfn(init_level4_pgt);
1522 convert_pfn_mfn(level3_ident_pgt);
1523 convert_pfn_mfn(level3_kernel_pgt);
1525 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1526 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1528 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1529 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1531 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1532 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1533 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1535 /* Set up identity map */
1536 xen_map_identity_early(level2_ident_pgt, max_pfn);
1538 /* Make pagetable pieces RO */
1539 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1540 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1541 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1542 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1543 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1544 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1546 /* Pin down new L4 */
1547 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1548 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1550 /* Unpin Xen-provided one */
1551 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1554 pgd = init_level4_pgt;
1557 * At this stage there can be no user pgd, and no page
1558 * structure to attach it to, so make sure we just set kernel
1562 __xen_write_cr3(true, __pa(pgd));
1563 xen_mc_issue(PARAVIRT_LAZY_CPU);
1565 reserve_early(__pa(xen_start_info->pt_base),
1566 __pa(xen_start_info->pt_base +
1567 xen_start_info->nr_pt_frames * PAGE_SIZE),
1572 #else /* !CONFIG_X86_64 */
1573 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1575 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1576 unsigned long max_pfn)
1580 init_pg_tables_start = __pa(pgd);
1581 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1582 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1584 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1585 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1587 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1589 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1590 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1591 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1593 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1594 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1595 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1597 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1599 xen_write_cr3(__pa(swapper_pg_dir));
1601 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1603 return swapper_pg_dir;
1605 #endif /* CONFIG_X86_64 */
1607 /* First C function to be called on Xen boot */
1608 asmlinkage void __init xen_start_kernel(void)
1612 if (!xen_start_info)
1615 xen_domain_type = XEN_PV_DOMAIN;
1617 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1619 xen_setup_features();
1621 /* Install Xen paravirt ops */
1623 pv_init_ops = xen_init_ops;
1624 pv_time_ops = xen_time_ops;
1625 pv_cpu_ops = xen_cpu_ops;
1626 pv_apic_ops = xen_apic_ops;
1627 pv_mmu_ops = xen_mmu_ops;
1631 #ifdef CONFIG_X86_LOCAL_APIC
1633 * set up the basic apic ops.
1635 apic_ops = &xen_basic_apic_ops;
1638 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1639 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1640 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1643 machine_ops = xen_machine_ops;
1645 #ifdef CONFIG_X86_64
1646 /* Disable until direct per-cpu data access. */
1647 have_vcpu_info_placement = 0;
1654 if (!xen_feature(XENFEAT_auto_translated_physmap))
1655 xen_build_dynamic_phys_to_machine();
1657 pgd = (pgd_t *)xen_start_info->pt_base;
1659 /* Prevent unwanted bits from being set in PTEs. */
1660 __supported_pte_mask &= ~_PAGE_GLOBAL;
1661 if (!xen_initial_domain())
1662 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1664 /* Don't do the full vcpu_info placement stuff until we have a
1665 possible map and a non-dummy shared_info. */
1666 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1668 xen_raw_console_write("mapping kernel into physical memory\n");
1669 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1673 /* keep using Xen gdt for now; no urgent need to change it */
1675 pv_info.kernel_rpl = 1;
1676 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1677 pv_info.kernel_rpl = 0;
1679 /* set the limit of our address space */
1682 #ifdef CONFIG_X86_32
1683 /* set up basic CPUID stuff */
1684 cpu_detect(&new_cpu_data);
1685 new_cpu_data.hard_math = 1;
1686 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1689 /* Poke various useful things into boot_params */
1690 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1691 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1692 ? __pa(xen_start_info->mod_start) : 0;
1693 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1694 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1696 if (!xen_initial_domain()) {
1697 add_preferred_console("xenboot", 0, NULL);
1698 add_preferred_console("tty", 0, NULL);
1699 add_preferred_console("hvc", 0, NULL);
1702 xen_raw_console_write("about to get started...\n");
1704 /* Start the world */
1705 #ifdef CONFIG_X86_32
1706 i386_start_kernel();
1708 x86_64_start_reservations((char *)__pa_symbol(&boot_params));