powerpc: Move some extern declarations from C code into headers
[linux-2.6] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51
52 #ifdef DEBUG
53 #define DBG(fmt...) printk(KERN_ERR fmt)
54 #else
55 #define DBG(fmt...)
56 #endif
57
58 struct pci_reg_property {
59         struct pci_address addr;
60         u32 size_hi;
61         u32 size_lo;
62 };
63
64 struct isa_reg_property {
65         u32 space;
66         u32 address;
67         u32 size;
68 };
69
70
71 typedef int interpret_func(struct device_node *, unsigned long *,
72                            int, int, int);
73
74 static int __initdata dt_root_addr_cells;
75 static int __initdata dt_root_size_cells;
76
77 #ifdef CONFIG_PPC64
78 static int __initdata iommu_is_off;
79 int __initdata iommu_force_on;
80 unsigned long tce_alloc_start, tce_alloc_end;
81 #endif
82
83 typedef u32 cell_t;
84
85 #if 0
86 static struct boot_param_header *initial_boot_params __initdata;
87 #else
88 struct boot_param_header *initial_boot_params;
89 #endif
90
91 static struct device_node *allnodes = NULL;
92
93 /* use when traversing tree through the allnext, child, sibling,
94  * or parent members of struct device_node.
95  */
96 static DEFINE_RWLOCK(devtree_lock);
97
98 /* export that to outside world */
99 struct device_node *of_chosen;
100
101 struct device_node *dflt_interrupt_controller;
102 int num_interrupt_controllers;
103
104 /*
105  * Wrapper for allocating memory for various data that needs to be
106  * attached to device nodes as they are processed at boot or when
107  * added to the device tree later (e.g. DLPAR).  At boot there is
108  * already a region reserved so we just increment *mem_start by size;
109  * otherwise we call kmalloc.
110  */
111 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
112 {
113         unsigned long tmp;
114
115         if (!mem_start)
116                 return kmalloc(size, GFP_KERNEL);
117
118         tmp = *mem_start;
119         *mem_start += size;
120         return (void *)tmp;
121 }
122
123 /*
124  * Find the device_node with a given phandle.
125  */
126 static struct device_node * find_phandle(phandle ph)
127 {
128         struct device_node *np;
129
130         for (np = allnodes; np != 0; np = np->allnext)
131                 if (np->linux_phandle == ph)
132                         return np;
133         return NULL;
134 }
135
136 /*
137  * Find the interrupt parent of a node.
138  */
139 static struct device_node * __devinit intr_parent(struct device_node *p)
140 {
141         phandle *parp;
142
143         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
144         if (parp == NULL)
145                 return p->parent;
146         p = find_phandle(*parp);
147         if (p != NULL)
148                 return p;
149         /*
150          * On a powermac booted with BootX, we don't get to know the
151          * phandles for any nodes, so find_phandle will return NULL.
152          * Fortunately these machines only have one interrupt controller
153          * so there isn't in fact any ambiguity.  -- paulus
154          */
155         if (num_interrupt_controllers == 1)
156                 p = dflt_interrupt_controller;
157         return p;
158 }
159
160 /*
161  * Find out the size of each entry of the interrupts property
162  * for a node.
163  */
164 int __devinit prom_n_intr_cells(struct device_node *np)
165 {
166         struct device_node *p;
167         unsigned int *icp;
168
169         for (p = np; (p = intr_parent(p)) != NULL; ) {
170                 icp = (unsigned int *)
171                         get_property(p, "#interrupt-cells", NULL);
172                 if (icp != NULL)
173                         return *icp;
174                 if (get_property(p, "interrupt-controller", NULL) != NULL
175                     || get_property(p, "interrupt-map", NULL) != NULL) {
176                         printk("oops, node %s doesn't have #interrupt-cells\n",
177                                p->full_name);
178                         return 1;
179                 }
180         }
181 #ifdef DEBUG_IRQ
182         printk("prom_n_intr_cells failed for %s\n", np->full_name);
183 #endif
184         return 1;
185 }
186
187 /*
188  * Map an interrupt from a device up to the platform interrupt
189  * descriptor.
190  */
191 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
192                                    struct device_node *np, unsigned int *ints,
193                                    int nintrc)
194 {
195         struct device_node *p, *ipar;
196         unsigned int *imap, *imask, *ip;
197         int i, imaplen, match;
198         int newintrc = 0, newaddrc = 0;
199         unsigned int *reg;
200         int naddrc;
201
202         reg = (unsigned int *) get_property(np, "reg", NULL);
203         naddrc = prom_n_addr_cells(np);
204         p = intr_parent(np);
205         while (p != NULL) {
206                 if (get_property(p, "interrupt-controller", NULL) != NULL)
207                         /* this node is an interrupt controller, stop here */
208                         break;
209                 imap = (unsigned int *)
210                         get_property(p, "interrupt-map", &imaplen);
211                 if (imap == NULL) {
212                         p = intr_parent(p);
213                         continue;
214                 }
215                 imask = (unsigned int *)
216                         get_property(p, "interrupt-map-mask", NULL);
217                 if (imask == NULL) {
218                         printk("oops, %s has interrupt-map but no mask\n",
219                                p->full_name);
220                         return 0;
221                 }
222                 imaplen /= sizeof(unsigned int);
223                 match = 0;
224                 ipar = NULL;
225                 while (imaplen > 0 && !match) {
226                         /* check the child-interrupt field */
227                         match = 1;
228                         for (i = 0; i < naddrc && match; ++i)
229                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
230                         for (; i < naddrc + nintrc && match; ++i)
231                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
232                         imap += naddrc + nintrc;
233                         imaplen -= naddrc + nintrc;
234                         /* grab the interrupt parent */
235                         ipar = find_phandle((phandle) *imap++);
236                         --imaplen;
237                         if (ipar == NULL && num_interrupt_controllers == 1)
238                                 /* cope with BootX not giving us phandles */
239                                 ipar = dflt_interrupt_controller;
240                         if (ipar == NULL) {
241                                 printk("oops, no int parent %x in map of %s\n",
242                                        imap[-1], p->full_name);
243                                 return 0;
244                         }
245                         /* find the parent's # addr and intr cells */
246                         ip = (unsigned int *)
247                                 get_property(ipar, "#interrupt-cells", NULL);
248                         if (ip == NULL) {
249                                 printk("oops, no #interrupt-cells on %s\n",
250                                        ipar->full_name);
251                                 return 0;
252                         }
253                         newintrc = *ip;
254                         ip = (unsigned int *)
255                                 get_property(ipar, "#address-cells", NULL);
256                         newaddrc = (ip == NULL)? 0: *ip;
257                         imap += newaddrc + newintrc;
258                         imaplen -= newaddrc + newintrc;
259                 }
260                 if (imaplen < 0) {
261                         printk("oops, error decoding int-map on %s, len=%d\n",
262                                p->full_name, imaplen);
263                         return 0;
264                 }
265                 if (!match) {
266 #ifdef DEBUG_IRQ
267                         printk("oops, no match in %s int-map for %s\n",
268                                p->full_name, np->full_name);
269 #endif
270                         return 0;
271                 }
272                 p = ipar;
273                 naddrc = newaddrc;
274                 nintrc = newintrc;
275                 ints = imap - nintrc;
276                 reg = ints - naddrc;
277         }
278         if (p == NULL) {
279 #ifdef DEBUG_IRQ
280                 printk("hmmm, int tree for %s doesn't have ctrler\n",
281                        np->full_name);
282 #endif
283                 return 0;
284         }
285         *irq = ints;
286         *ictrler = p;
287         return nintrc;
288 }
289
290 static unsigned char map_isa_senses[4] = {
291         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
292         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
293         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
294         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
295 };
296
297 static unsigned char map_mpic_senses[4] = {
298         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
299         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
300         /* 2 seems to be used for the 8259 cascade... */
301         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
302         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
303 };
304
305 static int __devinit finish_node_interrupts(struct device_node *np,
306                                             unsigned long *mem_start,
307                                             int measure_only)
308 {
309         unsigned int *ints;
310         int intlen, intrcells, intrcount;
311         int i, j, n, sense;
312         unsigned int *irq, virq;
313         struct device_node *ic;
314
315         if (num_interrupt_controllers == 0) {
316                 /*
317                  * Old machines just have a list of interrupt numbers
318                  * and no interrupt-controller nodes.
319                  */
320                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
321                                                      &intlen);
322                 /* XXX old interpret_pci_props looked in parent too */
323                 /* XXX old interpret_macio_props looked for interrupts
324                    before AAPL,interrupts */
325                 if (ints == NULL)
326                         ints = (unsigned int *) get_property(np, "interrupts",
327                                                              &intlen);
328                 if (ints == NULL)
329                         return 0;
330
331                 np->n_intrs = intlen / sizeof(unsigned int);
332                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
333                                        mem_start);
334                 if (!np->intrs)
335                         return -ENOMEM;
336                 if (measure_only)
337                         return 0;
338
339                 for (i = 0; i < np->n_intrs; ++i) {
340                         np->intrs[i].line = *ints++;
341                         np->intrs[i].sense = IRQ_SENSE_LEVEL
342                                 | IRQ_POLARITY_NEGATIVE;
343                 }
344                 return 0;
345         }
346
347         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
348         if (ints == NULL)
349                 return 0;
350         intrcells = prom_n_intr_cells(np);
351         intlen /= intrcells * sizeof(unsigned int);
352
353         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
354         if (!np->intrs)
355                 return -ENOMEM;
356
357         if (measure_only)
358                 return 0;
359
360         intrcount = 0;
361         for (i = 0; i < intlen; ++i, ints += intrcells) {
362                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
363                 if (n <= 0)
364                         continue;
365
366                 /* don't map IRQ numbers under a cascaded 8259 controller */
367                 if (ic && device_is_compatible(ic, "chrp,iic")) {
368                         np->intrs[intrcount].line = irq[0];
369                         sense = (n > 1)? (irq[1] & 3): 3;
370                         np->intrs[intrcount].sense = map_isa_senses[sense];
371                 } else {
372                         virq = virt_irq_create_mapping(irq[0]);
373 #ifdef CONFIG_PPC64
374                         if (virq == NO_IRQ) {
375                                 printk(KERN_CRIT "Could not allocate interrupt"
376                                        " number for %s\n", np->full_name);
377                                 continue;
378                         }
379 #endif
380                         np->intrs[intrcount].line = irq_offset_up(virq);
381                         sense = (n > 1)? (irq[1] & 3): 1;
382                         np->intrs[intrcount].sense = map_mpic_senses[sense];
383                 }
384
385 #ifdef CONFIG_PPC64
386                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
387                 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
388                         char *name = get_property(ic->parent, "name", NULL);
389                         if (name && !strcmp(name, "u3"))
390                                 np->intrs[intrcount].line += 128;
391                         else if (!(name && !strcmp(name, "mac-io")))
392                                 /* ignore other cascaded controllers, such as
393                                    the k2-sata-root */
394                                 break;
395                 }
396 #endif
397                 if (n > 2) {
398                         printk("hmmm, got %d intr cells for %s:", n,
399                                np->full_name);
400                         for (j = 0; j < n; ++j)
401                                 printk(" %d", irq[j]);
402                         printk("\n");
403                 }
404                 ++intrcount;
405         }
406         np->n_intrs = intrcount;
407
408         return 0;
409 }
410
411 static int __devinit interpret_pci_props(struct device_node *np,
412                                          unsigned long *mem_start,
413                                          int naddrc, int nsizec,
414                                          int measure_only)
415 {
416         struct address_range *adr;
417         struct pci_reg_property *pci_addrs;
418         int i, l, n_addrs;
419
420         pci_addrs = (struct pci_reg_property *)
421                 get_property(np, "assigned-addresses", &l);
422         if (!pci_addrs)
423                 return 0;
424
425         n_addrs = l / sizeof(*pci_addrs);
426
427         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
428         if (!adr)
429                 return -ENOMEM;
430
431         if (measure_only)
432                 return 0;
433
434         np->addrs = adr;
435         np->n_addrs = n_addrs;
436
437         for (i = 0; i < n_addrs; i++) {
438                 adr[i].space = pci_addrs[i].addr.a_hi;
439                 adr[i].address = pci_addrs[i].addr.a_lo |
440                         ((u64)pci_addrs[i].addr.a_mid << 32);
441                 adr[i].size = pci_addrs[i].size_lo;
442         }
443
444         return 0;
445 }
446
447 static int __init interpret_dbdma_props(struct device_node *np,
448                                         unsigned long *mem_start,
449                                         int naddrc, int nsizec,
450                                         int measure_only)
451 {
452         struct reg_property32 *rp;
453         struct address_range *adr;
454         unsigned long base_address;
455         int i, l;
456         struct device_node *db;
457
458         base_address = 0;
459         if (!measure_only) {
460                 for (db = np->parent; db != NULL; db = db->parent) {
461                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
462                                 base_address = db->addrs[0].address;
463                                 break;
464                         }
465                 }
466         }
467
468         rp = (struct reg_property32 *) get_property(np, "reg", &l);
469         if (rp != 0 && l >= sizeof(struct reg_property32)) {
470                 i = 0;
471                 adr = (struct address_range *) (*mem_start);
472                 while ((l -= sizeof(struct reg_property32)) >= 0) {
473                         if (!measure_only) {
474                                 adr[i].space = 2;
475                                 adr[i].address = rp[i].address + base_address;
476                                 adr[i].size = rp[i].size;
477                         }
478                         ++i;
479                 }
480                 np->addrs = adr;
481                 np->n_addrs = i;
482                 (*mem_start) += i * sizeof(struct address_range);
483         }
484
485         return 0;
486 }
487
488 static int __init interpret_macio_props(struct device_node *np,
489                                         unsigned long *mem_start,
490                                         int naddrc, int nsizec,
491                                         int measure_only)
492 {
493         struct reg_property32 *rp;
494         struct address_range *adr;
495         unsigned long base_address;
496         int i, l;
497         struct device_node *db;
498
499         base_address = 0;
500         if (!measure_only) {
501                 for (db = np->parent; db != NULL; db = db->parent) {
502                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
503                                 base_address = db->addrs[0].address;
504                                 break;
505                         }
506                 }
507         }
508
509         rp = (struct reg_property32 *) get_property(np, "reg", &l);
510         if (rp != 0 && l >= sizeof(struct reg_property32)) {
511                 i = 0;
512                 adr = (struct address_range *) (*mem_start);
513                 while ((l -= sizeof(struct reg_property32)) >= 0) {
514                         if (!measure_only) {
515                                 adr[i].space = 2;
516                                 adr[i].address = rp[i].address + base_address;
517                                 adr[i].size = rp[i].size;
518                         }
519                         ++i;
520                 }
521                 np->addrs = adr;
522                 np->n_addrs = i;
523                 (*mem_start) += i * sizeof(struct address_range);
524         }
525
526         return 0;
527 }
528
529 static int __init interpret_isa_props(struct device_node *np,
530                                       unsigned long *mem_start,
531                                       int naddrc, int nsizec,
532                                       int measure_only)
533 {
534         struct isa_reg_property *rp;
535         struct address_range *adr;
536         int i, l;
537
538         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
539         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
540                 i = 0;
541                 adr = (struct address_range *) (*mem_start);
542                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
543                         if (!measure_only) {
544                                 adr[i].space = rp[i].space;
545                                 adr[i].address = rp[i].address;
546                                 adr[i].size = rp[i].size;
547                         }
548                         ++i;
549                 }
550                 np->addrs = adr;
551                 np->n_addrs = i;
552                 (*mem_start) += i * sizeof(struct address_range);
553         }
554
555         return 0;
556 }
557
558 static int __init interpret_root_props(struct device_node *np,
559                                        unsigned long *mem_start,
560                                        int naddrc, int nsizec,
561                                        int measure_only)
562 {
563         struct address_range *adr;
564         int i, l;
565         unsigned int *rp;
566         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
567
568         rp = (unsigned int *) get_property(np, "reg", &l);
569         if (rp != 0 && l >= rpsize) {
570                 i = 0;
571                 adr = (struct address_range *) (*mem_start);
572                 while ((l -= rpsize) >= 0) {
573                         if (!measure_only) {
574                                 adr[i].space = 0;
575                                 adr[i].address = rp[naddrc - 1];
576                                 adr[i].size = rp[naddrc + nsizec - 1];
577                         }
578                         ++i;
579                         rp += naddrc + nsizec;
580                 }
581                 np->addrs = adr;
582                 np->n_addrs = i;
583                 (*mem_start) += i * sizeof(struct address_range);
584         }
585
586         return 0;
587 }
588
589 static int __devinit finish_node(struct device_node *np,
590                                  unsigned long *mem_start,
591                                  interpret_func *ifunc,
592                                  int naddrc, int nsizec,
593                                  int measure_only)
594 {
595         struct device_node *child;
596         int *ip, rc = 0;
597
598         /* get the device addresses and interrupts */
599         if (ifunc != NULL)
600                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
601         if (rc)
602                 goto out;
603
604         rc = finish_node_interrupts(np, mem_start, measure_only);
605         if (rc)
606                 goto out;
607
608         /* Look for #address-cells and #size-cells properties. */
609         ip = (int *) get_property(np, "#address-cells", NULL);
610         if (ip != NULL)
611                 naddrc = *ip;
612         ip = (int *) get_property(np, "#size-cells", NULL);
613         if (ip != NULL)
614                 nsizec = *ip;
615
616         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
617                 ifunc = interpret_root_props;
618         else if (np->type == 0)
619                 ifunc = NULL;
620         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
621                 ifunc = interpret_pci_props;
622         else if (!strcmp(np->type, "dbdma"))
623                 ifunc = interpret_dbdma_props;
624         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
625                 ifunc = interpret_macio_props;
626         else if (!strcmp(np->type, "isa"))
627                 ifunc = interpret_isa_props;
628         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
629                 ifunc = interpret_root_props;
630         else if (!((ifunc == interpret_dbdma_props
631                     || ifunc == interpret_macio_props)
632                    && (!strcmp(np->type, "escc")
633                        || !strcmp(np->type, "media-bay"))))
634                 ifunc = NULL;
635
636         for (child = np->child; child != NULL; child = child->sibling) {
637                 rc = finish_node(child, mem_start, ifunc,
638                                  naddrc, nsizec, measure_only);
639                 if (rc)
640                         goto out;
641         }
642 out:
643         return rc;
644 }
645
646 static void __init scan_interrupt_controllers(void)
647 {
648         struct device_node *np;
649         int n = 0;
650         char *name, *ic;
651         int iclen;
652
653         for (np = allnodes; np != NULL; np = np->allnext) {
654                 ic = get_property(np, "interrupt-controller", &iclen);
655                 name = get_property(np, "name", NULL);
656                 /* checking iclen makes sure we don't get a false
657                    match on /chosen.interrupt_controller */
658                 if ((name != NULL
659                      && strcmp(name, "interrupt-controller") == 0)
660                     || (ic != NULL && iclen == 0
661                         && strcmp(name, "AppleKiwi"))) {
662                         if (n == 0)
663                                 dflt_interrupt_controller = np;
664                         ++n;
665                 }
666         }
667         num_interrupt_controllers = n;
668 }
669
670 /**
671  * finish_device_tree is called once things are running normally
672  * (i.e. with text and data mapped to the address they were linked at).
673  * It traverses the device tree and fills in some of the additional,
674  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
675  * mapping is also initialized at this point.
676  */
677 void __init finish_device_tree(void)
678 {
679         unsigned long start, end, size = 0;
680
681         DBG(" -> finish_device_tree\n");
682
683 #ifdef CONFIG_PPC64
684         /* Initialize virtual IRQ map */
685         virt_irq_init();
686 #endif
687         scan_interrupt_controllers();
688
689         /*
690          * Finish device-tree (pre-parsing some properties etc...)
691          * We do this in 2 passes. One with "measure_only" set, which
692          * will only measure the amount of memory needed, then we can
693          * allocate that memory, and call finish_node again. However,
694          * we must be careful as most routines will fail nowadays when
695          * prom_alloc() returns 0, so we must make sure our first pass
696          * doesn't start at 0. We pre-initialize size to 16 for that
697          * reason and then remove those additional 16 bytes
698          */
699         size = 16;
700         finish_node(allnodes, &size, NULL, 0, 0, 1);
701         size -= 16;
702         end = start = (unsigned long) __va(lmb_alloc(size, 128));
703         finish_node(allnodes, &end, NULL, 0, 0, 0);
704         BUG_ON(end != start + size);
705
706         DBG(" <- finish_device_tree\n");
707 }
708
709 static inline char *find_flat_dt_string(u32 offset)
710 {
711         return ((char *)initial_boot_params) +
712                 initial_boot_params->off_dt_strings + offset;
713 }
714
715 /**
716  * This function is used to scan the flattened device-tree, it is
717  * used to extract the memory informations at boot before we can
718  * unflatten the tree
719  */
720 int __init of_scan_flat_dt(int (*it)(unsigned long node,
721                                      const char *uname, int depth,
722                                      void *data),
723                            void *data)
724 {
725         unsigned long p = ((unsigned long)initial_boot_params) +
726                 initial_boot_params->off_dt_struct;
727         int rc = 0;
728         int depth = -1;
729
730         do {
731                 u32 tag = *((u32 *)p);
732                 char *pathp;
733                 
734                 p += 4;
735                 if (tag == OF_DT_END_NODE) {
736                         depth --;
737                         continue;
738                 }
739                 if (tag == OF_DT_NOP)
740                         continue;
741                 if (tag == OF_DT_END)
742                         break;
743                 if (tag == OF_DT_PROP) {
744                         u32 sz = *((u32 *)p);
745                         p += 8;
746                         if (initial_boot_params->version < 0x10)
747                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
748                         p += sz;
749                         p = _ALIGN(p, 4);
750                         continue;
751                 }
752                 if (tag != OF_DT_BEGIN_NODE) {
753                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
754                                " device tree !\n", tag);
755                         return -EINVAL;
756                 }
757                 depth++;
758                 pathp = (char *)p;
759                 p = _ALIGN(p + strlen(pathp) + 1, 4);
760                 if ((*pathp) == '/') {
761                         char *lp, *np;
762                         for (lp = NULL, np = pathp; *np; np++)
763                                 if ((*np) == '/')
764                                         lp = np+1;
765                         if (lp != NULL)
766                                 pathp = lp;
767                 }
768                 rc = it(p, pathp, depth, data);
769                 if (rc != 0)
770                         break;          
771         } while(1);
772
773         return rc;
774 }
775
776 /**
777  * This  function can be used within scan_flattened_dt callback to get
778  * access to properties
779  */
780 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
781                                  unsigned long *size)
782 {
783         unsigned long p = node;
784
785         do {
786                 u32 tag = *((u32 *)p);
787                 u32 sz, noff;
788                 const char *nstr;
789
790                 p += 4;
791                 if (tag == OF_DT_NOP)
792                         continue;
793                 if (tag != OF_DT_PROP)
794                         return NULL;
795
796                 sz = *((u32 *)p);
797                 noff = *((u32 *)(p + 4));
798                 p += 8;
799                 if (initial_boot_params->version < 0x10)
800                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
801
802                 nstr = find_flat_dt_string(noff);
803                 if (nstr == NULL) {
804                         printk(KERN_WARNING "Can't find property index"
805                                " name !\n");
806                         return NULL;
807                 }
808                 if (strcmp(name, nstr) == 0) {
809                         if (size)
810                                 *size = sz;
811                         return (void *)p;
812                 }
813                 p += sz;
814                 p = _ALIGN(p, 4);
815         } while(1);
816 }
817
818 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
819                                        unsigned long align)
820 {
821         void *res;
822
823         *mem = _ALIGN(*mem, align);
824         res = (void *)*mem;
825         *mem += size;
826
827         return res;
828 }
829
830 static unsigned long __init unflatten_dt_node(unsigned long mem,
831                                               unsigned long *p,
832                                               struct device_node *dad,
833                                               struct device_node ***allnextpp,
834                                               unsigned long fpsize)
835 {
836         struct device_node *np;
837         struct property *pp, **prev_pp = NULL;
838         char *pathp;
839         u32 tag;
840         unsigned int l, allocl;
841         int has_name = 0;
842         int new_format = 0;
843
844         tag = *((u32 *)(*p));
845         if (tag != OF_DT_BEGIN_NODE) {
846                 printk("Weird tag at start of node: %x\n", tag);
847                 return mem;
848         }
849         *p += 4;
850         pathp = (char *)*p;
851         l = allocl = strlen(pathp) + 1;
852         *p = _ALIGN(*p + l, 4);
853
854         /* version 0x10 has a more compact unit name here instead of the full
855          * path. we accumulate the full path size using "fpsize", we'll rebuild
856          * it later. We detect this because the first character of the name is
857          * not '/'.
858          */
859         if ((*pathp) != '/') {
860                 new_format = 1;
861                 if (fpsize == 0) {
862                         /* root node: special case. fpsize accounts for path
863                          * plus terminating zero. root node only has '/', so
864                          * fpsize should be 2, but we want to avoid the first
865                          * level nodes to have two '/' so we use fpsize 1 here
866                          */
867                         fpsize = 1;
868                         allocl = 2;
869                 } else {
870                         /* account for '/' and path size minus terminal 0
871                          * already in 'l'
872                          */
873                         fpsize += l;
874                         allocl = fpsize;
875                 }
876         }
877
878
879         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
880                                 __alignof__(struct device_node));
881         if (allnextpp) {
882                 memset(np, 0, sizeof(*np));
883                 np->full_name = ((char*)np) + sizeof(struct device_node);
884                 if (new_format) {
885                         char *p = np->full_name;
886                         /* rebuild full path for new format */
887                         if (dad && dad->parent) {
888                                 strcpy(p, dad->full_name);
889 #ifdef DEBUG
890                                 if ((strlen(p) + l + 1) != allocl) {
891                                         DBG("%s: p: %d, l: %d, a: %d\n",
892                                             pathp, strlen(p), l, allocl);
893                                 }
894 #endif
895                                 p += strlen(p);
896                         }
897                         *(p++) = '/';
898                         memcpy(p, pathp, l);
899                 } else
900                         memcpy(np->full_name, pathp, l);
901                 prev_pp = &np->properties;
902                 **allnextpp = np;
903                 *allnextpp = &np->allnext;
904                 if (dad != NULL) {
905                         np->parent = dad;
906                         /* we temporarily use the next field as `last_child'*/
907                         if (dad->next == 0)
908                                 dad->child = np;
909                         else
910                                 dad->next->sibling = np;
911                         dad->next = np;
912                 }
913                 kref_init(&np->kref);
914         }
915         while(1) {
916                 u32 sz, noff;
917                 char *pname;
918
919                 tag = *((u32 *)(*p));
920                 if (tag == OF_DT_NOP) {
921                         *p += 4;
922                         continue;
923                 }
924                 if (tag != OF_DT_PROP)
925                         break;
926                 *p += 4;
927                 sz = *((u32 *)(*p));
928                 noff = *((u32 *)((*p) + 4));
929                 *p += 8;
930                 if (initial_boot_params->version < 0x10)
931                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
932
933                 pname = find_flat_dt_string(noff);
934                 if (pname == NULL) {
935                         printk("Can't find property name in list !\n");
936                         break;
937                 }
938                 if (strcmp(pname, "name") == 0)
939                         has_name = 1;
940                 l = strlen(pname) + 1;
941                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
942                                         __alignof__(struct property));
943                 if (allnextpp) {
944                         if (strcmp(pname, "linux,phandle") == 0) {
945                                 np->node = *((u32 *)*p);
946                                 if (np->linux_phandle == 0)
947                                         np->linux_phandle = np->node;
948                         }
949                         if (strcmp(pname, "ibm,phandle") == 0)
950                                 np->linux_phandle = *((u32 *)*p);
951                         pp->name = pname;
952                         pp->length = sz;
953                         pp->value = (void *)*p;
954                         *prev_pp = pp;
955                         prev_pp = &pp->next;
956                 }
957                 *p = _ALIGN((*p) + sz, 4);
958         }
959         /* with version 0x10 we may not have the name property, recreate
960          * it here from the unit name if absent
961          */
962         if (!has_name) {
963                 char *p = pathp, *ps = pathp, *pa = NULL;
964                 int sz;
965
966                 while (*p) {
967                         if ((*p) == '@')
968                                 pa = p;
969                         if ((*p) == '/')
970                                 ps = p + 1;
971                         p++;
972                 }
973                 if (pa < ps)
974                         pa = p;
975                 sz = (pa - ps) + 1;
976                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
977                                         __alignof__(struct property));
978                 if (allnextpp) {
979                         pp->name = "name";
980                         pp->length = sz;
981                         pp->value = (unsigned char *)(pp + 1);
982                         *prev_pp = pp;
983                         prev_pp = &pp->next;
984                         memcpy(pp->value, ps, sz - 1);
985                         ((char *)pp->value)[sz - 1] = 0;
986                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
987                 }
988         }
989         if (allnextpp) {
990                 *prev_pp = NULL;
991                 np->name = get_property(np, "name", NULL);
992                 np->type = get_property(np, "device_type", NULL);
993
994                 if (!np->name)
995                         np->name = "<NULL>";
996                 if (!np->type)
997                         np->type = "<NULL>";
998         }
999         while (tag == OF_DT_BEGIN_NODE) {
1000                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1001                 tag = *((u32 *)(*p));
1002         }
1003         if (tag != OF_DT_END_NODE) {
1004                 printk("Weird tag at end of node: %x\n", tag);
1005                 return mem;
1006         }
1007         *p += 4;
1008         return mem;
1009 }
1010
1011
1012 /**
1013  * unflattens the device-tree passed by the firmware, creating the
1014  * tree of struct device_node. It also fills the "name" and "type"
1015  * pointers of the nodes so the normal device-tree walking functions
1016  * can be used (this used to be done by finish_device_tree)
1017  */
1018 void __init unflatten_device_tree(void)
1019 {
1020         unsigned long start, mem, size;
1021         struct device_node **allnextp = &allnodes;
1022         char *p = NULL;
1023         int l = 0;
1024
1025         DBG(" -> unflatten_device_tree()\n");
1026
1027         /* First pass, scan for size */
1028         start = ((unsigned long)initial_boot_params) +
1029                 initial_boot_params->off_dt_struct;
1030         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1031         size = (size | 3) + 1;
1032
1033         DBG("  size is %lx, allocating...\n", size);
1034
1035         /* Allocate memory for the expanded device tree */
1036         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1037         if (!mem) {
1038                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1039                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1040         }
1041         mem = (unsigned long) __va(mem);
1042
1043         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1044
1045         DBG("  unflattening %lx...\n", mem);
1046
1047         /* Second pass, do actual unflattening */
1048         start = ((unsigned long)initial_boot_params) +
1049                 initial_boot_params->off_dt_struct;
1050         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1051         if (*((u32 *)start) != OF_DT_END)
1052                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1053         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1054                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1055                        ((u32 *)mem)[size / 4] );
1056         *allnextp = NULL;
1057
1058         /* Get pointer to OF "/chosen" node for use everywhere */
1059         of_chosen = of_find_node_by_path("/chosen");
1060         if (of_chosen == NULL)
1061                 of_chosen = of_find_node_by_path("/chosen@0");
1062
1063         /* Retreive command line */
1064         if (of_chosen != NULL) {
1065                 p = (char *)get_property(of_chosen, "bootargs", &l);
1066                 if (p != NULL && l > 0)
1067                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1068         }
1069 #ifdef CONFIG_CMDLINE
1070         if (l == 0 || (l == 1 && (*p) == 0))
1071                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1072 #endif /* CONFIG_CMDLINE */
1073
1074         DBG("Command line is: %s\n", cmd_line);
1075
1076         DBG(" <- unflatten_device_tree()\n");
1077 }
1078
1079
1080 static int __init early_init_dt_scan_cpus(unsigned long node,
1081                                           const char *uname, int depth, void *data)
1082 {
1083         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1084         u32 *prop;
1085         unsigned long size = 0;
1086
1087         /* We are scanning "cpu" nodes only */
1088         if (type == NULL || strcmp(type, "cpu") != 0)
1089                 return 0;
1090
1091         boot_cpuid = 0;
1092         boot_cpuid_phys = 0;
1093         if (initial_boot_params && initial_boot_params->version >= 2) {
1094                 /* version 2 of the kexec param format adds the phys cpuid
1095                  * of booted proc.
1096                  */
1097                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1098         } else {
1099                 /* Check if it's the boot-cpu, set it's hw index now */
1100                 if (of_get_flat_dt_prop(node,
1101                                         "linux,boot-cpu", NULL) != NULL) {
1102                         prop = of_get_flat_dt_prop(node, "reg", NULL);
1103                         if (prop != NULL)
1104                                 boot_cpuid_phys = *prop;
1105                 }
1106         }
1107         set_hard_smp_processor_id(0, boot_cpuid_phys);
1108
1109 #ifdef CONFIG_ALTIVEC
1110         /* Check if we have a VMX and eventually update CPU features */
1111         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", &size);
1112         if (prop && (*prop) > 0) {
1113                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1114                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1115         }
1116
1117         /* Same goes for Apple's "altivec" property */
1118         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1119         if (prop) {
1120                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1121                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1122         }
1123 #endif /* CONFIG_ALTIVEC */
1124
1125 #ifdef CONFIG_PPC_PSERIES
1126         /*
1127          * Check for an SMT capable CPU and set the CPU feature. We do
1128          * this by looking at the size of the ibm,ppc-interrupt-server#s
1129          * property
1130          */
1131         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1132                                        &size);
1133         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1134         if (prop && ((size / sizeof(u32)) > 1))
1135                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1136 #endif
1137
1138         return 0;
1139 }
1140
1141 static int __init early_init_dt_scan_chosen(unsigned long node,
1142                                             const char *uname, int depth, void *data)
1143 {
1144         u32 *prop;
1145         unsigned long *lprop;
1146
1147         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1148
1149         if (depth != 1 ||
1150             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1151                 return 0;
1152
1153         /* get platform type */
1154         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1155         if (prop == NULL)
1156                 return 0;
1157 #ifdef CONFIG_PPC_MULTIPLATFORM
1158         _machine = *prop;
1159 #endif
1160
1161 #ifdef CONFIG_PPC64
1162         /* check if iommu is forced on or off */
1163         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1164                 iommu_is_off = 1;
1165         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1166                 iommu_force_on = 1;
1167 #endif
1168
1169         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1170         if (lprop)
1171                 memory_limit = *lprop;
1172
1173 #ifdef CONFIG_PPC64
1174         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1175         if (lprop)
1176                 tce_alloc_start = *lprop;
1177         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1178         if (lprop)
1179                 tce_alloc_end = *lprop;
1180 #endif
1181
1182 #ifdef CONFIG_PPC_RTAS
1183         /* To help early debugging via the front panel, we retreive a minimal
1184          * set of RTAS infos now if available
1185          */
1186         {
1187                 u64 *basep, *entryp;
1188
1189                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1190                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1191                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1192                 if (basep && entryp && prop) {
1193                         rtas.base = *basep;
1194                         rtas.entry = *entryp;
1195                         rtas.size = *prop;
1196                 }
1197         }
1198 #endif /* CONFIG_PPC_RTAS */
1199
1200         /* break now */
1201         return 1;
1202 }
1203
1204 static int __init early_init_dt_scan_root(unsigned long node,
1205                                           const char *uname, int depth, void *data)
1206 {
1207         u32 *prop;
1208
1209         if (depth != 0)
1210                 return 0;
1211
1212         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1213         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1214         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1215
1216         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1217         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1218         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1219         
1220         /* break now */
1221         return 1;
1222 }
1223
1224 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1225 {
1226         cell_t *p = *cellp;
1227         unsigned long r;
1228
1229         /* Ignore more than 2 cells */
1230         while (s > sizeof(unsigned long) / 4) {
1231                 p++;
1232                 s--;
1233         }
1234         r = *p++;
1235 #ifdef CONFIG_PPC64
1236         if (s > 1) {
1237                 r <<= 32;
1238                 r |= *(p++);
1239                 s--;
1240         }
1241 #endif
1242
1243         *cellp = p;
1244         return r;
1245 }
1246
1247
1248 static int __init early_init_dt_scan_memory(unsigned long node,
1249                                             const char *uname, int depth, void *data)
1250 {
1251         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1252         cell_t *reg, *endp;
1253         unsigned long l;
1254
1255         /* We are scanning "memory" nodes only */
1256         if (type == NULL) {
1257                 /*
1258                  * The longtrail doesn't have a device_type on the
1259                  * /memory node, so look for the node called /memory@0.
1260                  */
1261                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1262                         return 0;
1263         } else if (strcmp(type, "memory") != 0)
1264                 return 0;
1265
1266         reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1267         if (reg == NULL)
1268                 return 0;
1269
1270         endp = reg + (l / sizeof(cell_t));
1271
1272         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1273             uname, l, reg[0], reg[1], reg[2], reg[3]);
1274
1275         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1276                 unsigned long base, size;
1277
1278                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1279                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1280
1281                 if (size == 0)
1282                         continue;
1283                 DBG(" - %lx ,  %lx\n", base, size);
1284 #ifdef CONFIG_PPC64
1285                 if (iommu_is_off) {
1286                         if (base >= 0x80000000ul)
1287                                 continue;
1288                         if ((base + size) > 0x80000000ul)
1289                                 size = 0x80000000ul - base;
1290                 }
1291 #endif
1292                 lmb_add(base, size);
1293         }
1294         return 0;
1295 }
1296
1297 static void __init early_reserve_mem(void)
1298 {
1299         unsigned long base, size;
1300         unsigned long *reserve_map;
1301
1302         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1303                                         initial_boot_params->off_mem_rsvmap);
1304         while (1) {
1305                 base = *(reserve_map++);
1306                 size = *(reserve_map++);
1307                 if (size == 0)
1308                         break;
1309                 DBG("reserving: %lx -> %lx\n", base, size);
1310                 lmb_reserve(base, size);
1311         }
1312
1313 #if 0
1314         DBG("memory reserved, lmbs :\n");
1315         lmb_dump_all();
1316 #endif
1317 }
1318
1319 void __init early_init_devtree(void *params)
1320 {
1321         DBG(" -> early_init_devtree()\n");
1322
1323         /* Setup flat device-tree pointer */
1324         initial_boot_params = params;
1325
1326         /* Retrieve various informations from the /chosen node of the
1327          * device-tree, including the platform type, initrd location and
1328          * size, TCE reserve, and more ...
1329          */
1330         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1331
1332         /* Scan memory nodes and rebuild LMBs */
1333         lmb_init();
1334         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1335         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1336         lmb_enforce_memory_limit(memory_limit);
1337         lmb_analyze();
1338         lmb_reserve(0, __pa(klimit));
1339
1340         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1341
1342         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1343         early_reserve_mem();
1344
1345         DBG("Scanning CPUs ...\n");
1346
1347         /* Retreive CPU related informations from the flat tree
1348          * (altivec support, boot CPU ID, ...)
1349          */
1350         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1351
1352         DBG(" <- early_init_devtree()\n");
1353 }
1354
1355 #undef printk
1356
1357 int
1358 prom_n_addr_cells(struct device_node* np)
1359 {
1360         int* ip;
1361         do {
1362                 if (np->parent)
1363                         np = np->parent;
1364                 ip = (int *) get_property(np, "#address-cells", NULL);
1365                 if (ip != NULL)
1366                         return *ip;
1367         } while (np->parent);
1368         /* No #address-cells property for the root node, default to 1 */
1369         return 1;
1370 }
1371
1372 int
1373 prom_n_size_cells(struct device_node* np)
1374 {
1375         int* ip;
1376         do {
1377                 if (np->parent)
1378                         np = np->parent;
1379                 ip = (int *) get_property(np, "#size-cells", NULL);
1380                 if (ip != NULL)
1381                         return *ip;
1382         } while (np->parent);
1383         /* No #size-cells property for the root node, default to 1 */
1384         return 1;
1385 }
1386
1387 /**
1388  * Work out the sense (active-low level / active-high edge)
1389  * of each interrupt from the device tree.
1390  */
1391 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1392 {
1393         struct device_node *np;
1394         int i, j;
1395
1396         /* default to level-triggered */
1397         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1398
1399         for (np = allnodes; np != 0; np = np->allnext) {
1400                 for (j = 0; j < np->n_intrs; j++) {
1401                         i = np->intrs[j].line;
1402                         if (i >= off && i < max)
1403                                 senses[i-off] = np->intrs[j].sense;
1404                 }
1405         }
1406 }
1407
1408 /**
1409  * Construct and return a list of the device_nodes with a given name.
1410  */
1411 struct device_node *find_devices(const char *name)
1412 {
1413         struct device_node *head, **prevp, *np;
1414
1415         prevp = &head;
1416         for (np = allnodes; np != 0; np = np->allnext) {
1417                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1418                         *prevp = np;
1419                         prevp = &np->next;
1420                 }
1421         }
1422         *prevp = NULL;
1423         return head;
1424 }
1425 EXPORT_SYMBOL(find_devices);
1426
1427 /**
1428  * Construct and return a list of the device_nodes with a given type.
1429  */
1430 struct device_node *find_type_devices(const char *type)
1431 {
1432         struct device_node *head, **prevp, *np;
1433
1434         prevp = &head;
1435         for (np = allnodes; np != 0; np = np->allnext) {
1436                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1437                         *prevp = np;
1438                         prevp = &np->next;
1439                 }
1440         }
1441         *prevp = NULL;
1442         return head;
1443 }
1444 EXPORT_SYMBOL(find_type_devices);
1445
1446 /**
1447  * Returns all nodes linked together
1448  */
1449 struct device_node *find_all_nodes(void)
1450 {
1451         struct device_node *head, **prevp, *np;
1452
1453         prevp = &head;
1454         for (np = allnodes; np != 0; np = np->allnext) {
1455                 *prevp = np;
1456                 prevp = &np->next;
1457         }
1458         *prevp = NULL;
1459         return head;
1460 }
1461 EXPORT_SYMBOL(find_all_nodes);
1462
1463 /** Checks if the given "compat" string matches one of the strings in
1464  * the device's "compatible" property
1465  */
1466 int device_is_compatible(struct device_node *device, const char *compat)
1467 {
1468         const char* cp;
1469         int cplen, l;
1470
1471         cp = (char *) get_property(device, "compatible", &cplen);
1472         if (cp == NULL)
1473                 return 0;
1474         while (cplen > 0) {
1475                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1476                         return 1;
1477                 l = strlen(cp) + 1;
1478                 cp += l;
1479                 cplen -= l;
1480         }
1481
1482         return 0;
1483 }
1484 EXPORT_SYMBOL(device_is_compatible);
1485
1486
1487 /**
1488  * Indicates whether the root node has a given value in its
1489  * compatible property.
1490  */
1491 int machine_is_compatible(const char *compat)
1492 {
1493         struct device_node *root;
1494         int rc = 0;
1495
1496         root = of_find_node_by_path("/");
1497         if (root) {
1498                 rc = device_is_compatible(root, compat);
1499                 of_node_put(root);
1500         }
1501         return rc;
1502 }
1503 EXPORT_SYMBOL(machine_is_compatible);
1504
1505 /**
1506  * Construct and return a list of the device_nodes with a given type
1507  * and compatible property.
1508  */
1509 struct device_node *find_compatible_devices(const char *type,
1510                                             const char *compat)
1511 {
1512         struct device_node *head, **prevp, *np;
1513
1514         prevp = &head;
1515         for (np = allnodes; np != 0; np = np->allnext) {
1516                 if (type != NULL
1517                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1518                         continue;
1519                 if (device_is_compatible(np, compat)) {
1520                         *prevp = np;
1521                         prevp = &np->next;
1522                 }
1523         }
1524         *prevp = NULL;
1525         return head;
1526 }
1527 EXPORT_SYMBOL(find_compatible_devices);
1528
1529 /**
1530  * Find the device_node with a given full_name.
1531  */
1532 struct device_node *find_path_device(const char *path)
1533 {
1534         struct device_node *np;
1535
1536         for (np = allnodes; np != 0; np = np->allnext)
1537                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1538                         return np;
1539         return NULL;
1540 }
1541 EXPORT_SYMBOL(find_path_device);
1542
1543 /*******
1544  *
1545  * New implementation of the OF "find" APIs, return a refcounted
1546  * object, call of_node_put() when done.  The device tree and list
1547  * are protected by a rw_lock.
1548  *
1549  * Note that property management will need some locking as well,
1550  * this isn't dealt with yet.
1551  *
1552  *******/
1553
1554 /**
1555  *      of_find_node_by_name - Find a node by its "name" property
1556  *      @from:  The node to start searching from or NULL, the node
1557  *              you pass will not be searched, only the next one
1558  *              will; typically, you pass what the previous call
1559  *              returned. of_node_put() will be called on it
1560  *      @name:  The name string to match against
1561  *
1562  *      Returns a node pointer with refcount incremented, use
1563  *      of_node_put() on it when done.
1564  */
1565 struct device_node *of_find_node_by_name(struct device_node *from,
1566         const char *name)
1567 {
1568         struct device_node *np;
1569
1570         read_lock(&devtree_lock);
1571         np = from ? from->allnext : allnodes;
1572         for (; np != 0; np = np->allnext)
1573                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1574                     && of_node_get(np))
1575                         break;
1576         if (from)
1577                 of_node_put(from);
1578         read_unlock(&devtree_lock);
1579         return np;
1580 }
1581 EXPORT_SYMBOL(of_find_node_by_name);
1582
1583 /**
1584  *      of_find_node_by_type - Find a node by its "device_type" property
1585  *      @from:  The node to start searching from or NULL, the node
1586  *              you pass will not be searched, only the next one
1587  *              will; typically, you pass what the previous call
1588  *              returned. of_node_put() will be called on it
1589  *      @name:  The type string to match against
1590  *
1591  *      Returns a node pointer with refcount incremented, use
1592  *      of_node_put() on it when done.
1593  */
1594 struct device_node *of_find_node_by_type(struct device_node *from,
1595         const char *type)
1596 {
1597         struct device_node *np;
1598
1599         read_lock(&devtree_lock);
1600         np = from ? from->allnext : allnodes;
1601         for (; np != 0; np = np->allnext)
1602                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1603                     && of_node_get(np))
1604                         break;
1605         if (from)
1606                 of_node_put(from);
1607         read_unlock(&devtree_lock);
1608         return np;
1609 }
1610 EXPORT_SYMBOL(of_find_node_by_type);
1611
1612 /**
1613  *      of_find_compatible_node - Find a node based on type and one of the
1614  *                                tokens in its "compatible" property
1615  *      @from:          The node to start searching from or NULL, the node
1616  *                      you pass will not be searched, only the next one
1617  *                      will; typically, you pass what the previous call
1618  *                      returned. of_node_put() will be called on it
1619  *      @type:          The type string to match "device_type" or NULL to ignore
1620  *      @compatible:    The string to match to one of the tokens in the device
1621  *                      "compatible" list.
1622  *
1623  *      Returns a node pointer with refcount incremented, use
1624  *      of_node_put() on it when done.
1625  */
1626 struct device_node *of_find_compatible_node(struct device_node *from,
1627         const char *type, const char *compatible)
1628 {
1629         struct device_node *np;
1630
1631         read_lock(&devtree_lock);
1632         np = from ? from->allnext : allnodes;
1633         for (; np != 0; np = np->allnext) {
1634                 if (type != NULL
1635                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1636                         continue;
1637                 if (device_is_compatible(np, compatible) && of_node_get(np))
1638                         break;
1639         }
1640         if (from)
1641                 of_node_put(from);
1642         read_unlock(&devtree_lock);
1643         return np;
1644 }
1645 EXPORT_SYMBOL(of_find_compatible_node);
1646
1647 /**
1648  *      of_find_node_by_path - Find a node matching a full OF path
1649  *      @path:  The full path to match
1650  *
1651  *      Returns a node pointer with refcount incremented, use
1652  *      of_node_put() on it when done.
1653  */
1654 struct device_node *of_find_node_by_path(const char *path)
1655 {
1656         struct device_node *np = allnodes;
1657
1658         read_lock(&devtree_lock);
1659         for (; np != 0; np = np->allnext) {
1660                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1661                     && of_node_get(np))
1662                         break;
1663         }
1664         read_unlock(&devtree_lock);
1665         return np;
1666 }
1667 EXPORT_SYMBOL(of_find_node_by_path);
1668
1669 /**
1670  *      of_find_node_by_phandle - Find a node given a phandle
1671  *      @handle:        phandle of the node to find
1672  *
1673  *      Returns a node pointer with refcount incremented, use
1674  *      of_node_put() on it when done.
1675  */
1676 struct device_node *of_find_node_by_phandle(phandle handle)
1677 {
1678         struct device_node *np;
1679
1680         read_lock(&devtree_lock);
1681         for (np = allnodes; np != 0; np = np->allnext)
1682                 if (np->linux_phandle == handle)
1683                         break;
1684         if (np)
1685                 of_node_get(np);
1686         read_unlock(&devtree_lock);
1687         return np;
1688 }
1689 EXPORT_SYMBOL(of_find_node_by_phandle);
1690
1691 /**
1692  *      of_find_all_nodes - Get next node in global list
1693  *      @prev:  Previous node or NULL to start iteration
1694  *              of_node_put() will be called on it
1695  *
1696  *      Returns a node pointer with refcount incremented, use
1697  *      of_node_put() on it when done.
1698  */
1699 struct device_node *of_find_all_nodes(struct device_node *prev)
1700 {
1701         struct device_node *np;
1702
1703         read_lock(&devtree_lock);
1704         np = prev ? prev->allnext : allnodes;
1705         for (; np != 0; np = np->allnext)
1706                 if (of_node_get(np))
1707                         break;
1708         if (prev)
1709                 of_node_put(prev);
1710         read_unlock(&devtree_lock);
1711         return np;
1712 }
1713 EXPORT_SYMBOL(of_find_all_nodes);
1714
1715 /**
1716  *      of_get_parent - Get a node's parent if any
1717  *      @node:  Node to get parent
1718  *
1719  *      Returns a node pointer with refcount incremented, use
1720  *      of_node_put() on it when done.
1721  */
1722 struct device_node *of_get_parent(const struct device_node *node)
1723 {
1724         struct device_node *np;
1725
1726         if (!node)
1727                 return NULL;
1728
1729         read_lock(&devtree_lock);
1730         np = of_node_get(node->parent);
1731         read_unlock(&devtree_lock);
1732         return np;
1733 }
1734 EXPORT_SYMBOL(of_get_parent);
1735
1736 /**
1737  *      of_get_next_child - Iterate a node childs
1738  *      @node:  parent node
1739  *      @prev:  previous child of the parent node, or NULL to get first
1740  *
1741  *      Returns a node pointer with refcount incremented, use
1742  *      of_node_put() on it when done.
1743  */
1744 struct device_node *of_get_next_child(const struct device_node *node,
1745         struct device_node *prev)
1746 {
1747         struct device_node *next;
1748
1749         read_lock(&devtree_lock);
1750         next = prev ? prev->sibling : node->child;
1751         for (; next != 0; next = next->sibling)
1752                 if (of_node_get(next))
1753                         break;
1754         if (prev)
1755                 of_node_put(prev);
1756         read_unlock(&devtree_lock);
1757         return next;
1758 }
1759 EXPORT_SYMBOL(of_get_next_child);
1760
1761 /**
1762  *      of_node_get - Increment refcount of a node
1763  *      @node:  Node to inc refcount, NULL is supported to
1764  *              simplify writing of callers
1765  *
1766  *      Returns node.
1767  */
1768 struct device_node *of_node_get(struct device_node *node)
1769 {
1770         if (node)
1771                 kref_get(&node->kref);
1772         return node;
1773 }
1774 EXPORT_SYMBOL(of_node_get);
1775
1776 static inline struct device_node * kref_to_device_node(struct kref *kref)
1777 {
1778         return container_of(kref, struct device_node, kref);
1779 }
1780
1781 /**
1782  *      of_node_release - release a dynamically allocated node
1783  *      @kref:  kref element of the node to be released
1784  *
1785  *      In of_node_put() this function is passed to kref_put()
1786  *      as the destructor.
1787  */
1788 static void of_node_release(struct kref *kref)
1789 {
1790         struct device_node *node = kref_to_device_node(kref);
1791         struct property *prop = node->properties;
1792
1793         if (!OF_IS_DYNAMIC(node))
1794                 return;
1795         while (prop) {
1796                 struct property *next = prop->next;
1797                 kfree(prop->name);
1798                 kfree(prop->value);
1799                 kfree(prop);
1800                 prop = next;
1801         }
1802         kfree(node->intrs);
1803         kfree(node->addrs);
1804         kfree(node->full_name);
1805         kfree(node->data);
1806         kfree(node);
1807 }
1808
1809 /**
1810  *      of_node_put - Decrement refcount of a node
1811  *      @node:  Node to dec refcount, NULL is supported to
1812  *              simplify writing of callers
1813  *
1814  */
1815 void of_node_put(struct device_node *node)
1816 {
1817         if (node)
1818                 kref_put(&node->kref, of_node_release);
1819 }
1820 EXPORT_SYMBOL(of_node_put);
1821
1822 /*
1823  * Plug a device node into the tree and global list.
1824  */
1825 void of_attach_node(struct device_node *np)
1826 {
1827         write_lock(&devtree_lock);
1828         np->sibling = np->parent->child;
1829         np->allnext = allnodes;
1830         np->parent->child = np;
1831         allnodes = np;
1832         write_unlock(&devtree_lock);
1833 }
1834
1835 /*
1836  * "Unplug" a node from the device tree.  The caller must hold
1837  * a reference to the node.  The memory associated with the node
1838  * is not freed until its refcount goes to zero.
1839  */
1840 void of_detach_node(const struct device_node *np)
1841 {
1842         struct device_node *parent;
1843
1844         write_lock(&devtree_lock);
1845
1846         parent = np->parent;
1847
1848         if (allnodes == np)
1849                 allnodes = np->allnext;
1850         else {
1851                 struct device_node *prev;
1852                 for (prev = allnodes;
1853                      prev->allnext != np;
1854                      prev = prev->allnext)
1855                         ;
1856                 prev->allnext = np->allnext;
1857         }
1858
1859         if (parent->child == np)
1860                 parent->child = np->sibling;
1861         else {
1862                 struct device_node *prevsib;
1863                 for (prevsib = np->parent->child;
1864                      prevsib->sibling != np;
1865                      prevsib = prevsib->sibling)
1866                         ;
1867                 prevsib->sibling = np->sibling;
1868         }
1869
1870         write_unlock(&devtree_lock);
1871 }
1872
1873 #ifdef CONFIG_PPC_PSERIES
1874 /*
1875  * Fix up the uninitialized fields in a new device node:
1876  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1877  *
1878  * A lot of boot-time code is duplicated here, because functions such
1879  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1880  * slab allocator.
1881  *
1882  * This should probably be split up into smaller chunks.
1883  */
1884
1885 static int of_finish_dynamic_node(struct device_node *node,
1886                                   unsigned long *unused1, int unused2,
1887                                   int unused3, int unused4)
1888 {
1889         struct device_node *parent = of_get_parent(node);
1890         int err = 0;
1891         phandle *ibm_phandle;
1892
1893         node->name = get_property(node, "name", NULL);
1894         node->type = get_property(node, "device_type", NULL);
1895
1896         if (!parent) {
1897                 err = -ENODEV;
1898                 goto out;
1899         }
1900
1901         /* We don't support that function on PowerMac, at least
1902          * not yet
1903          */
1904         if (_machine == PLATFORM_POWERMAC)
1905                 return -ENODEV;
1906
1907         /* fix up new node's linux_phandle field */
1908         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1909                 node->linux_phandle = *ibm_phandle;
1910
1911 out:
1912         of_node_put(parent);
1913         return err;
1914 }
1915
1916 static int prom_reconfig_notifier(struct notifier_block *nb,
1917                                   unsigned long action, void *node)
1918 {
1919         int err;
1920
1921         switch (action) {
1922         case PSERIES_RECONFIG_ADD:
1923                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1924                 if (err < 0) {
1925                         printk(KERN_ERR "finish_node returned %d\n", err);
1926                         err = NOTIFY_BAD;
1927                 }
1928                 break;
1929         default:
1930                 err = NOTIFY_DONE;
1931                 break;
1932         }
1933         return err;
1934 }
1935
1936 static struct notifier_block prom_reconfig_nb = {
1937         .notifier_call = prom_reconfig_notifier,
1938         .priority = 10, /* This one needs to run first */
1939 };
1940
1941 static int __init prom_reconfig_setup(void)
1942 {
1943         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1944 }
1945 __initcall(prom_reconfig_setup);
1946 #endif
1947
1948 /*
1949  * Find a property with a given name for a given node
1950  * and return the value.
1951  */
1952 unsigned char *get_property(struct device_node *np, const char *name,
1953                             int *lenp)
1954 {
1955         struct property *pp;
1956
1957         for (pp = np->properties; pp != 0; pp = pp->next)
1958                 if (strcmp(pp->name, name) == 0) {
1959                         if (lenp != 0)
1960                                 *lenp = pp->length;
1961                         return pp->value;
1962                 }
1963         return NULL;
1964 }
1965 EXPORT_SYMBOL(get_property);
1966
1967 /*
1968  * Add a property to a node
1969  */
1970 int prom_add_property(struct device_node* np, struct property* prop)
1971 {
1972         struct property **next;
1973
1974         prop->next = NULL;      
1975         write_lock(&devtree_lock);
1976         next = &np->properties;
1977         while (*next) {
1978                 if (strcmp(prop->name, (*next)->name) == 0) {
1979                         /* duplicate ! don't insert it */
1980                         write_unlock(&devtree_lock);
1981                         return -1;
1982                 }
1983                 next = &(*next)->next;
1984         }
1985         *next = prop;
1986         write_unlock(&devtree_lock);
1987
1988 #ifdef CONFIG_PROC_DEVICETREE
1989         /* try to add to proc as well if it was initialized */
1990         if (np->pde)
1991                 proc_device_tree_add_prop(np->pde, prop);
1992 #endif /* CONFIG_PROC_DEVICETREE */
1993
1994         return 0;
1995 }
1996
1997 /* I quickly hacked that one, check against spec ! */
1998 static inline unsigned long
1999 bus_space_to_resource_flags(unsigned int bus_space)
2000 {
2001         u8 space = (bus_space >> 24) & 0xf;
2002         if (space == 0)
2003                 space = 0x02;
2004         if (space == 0x02)
2005                 return IORESOURCE_MEM;
2006         else if (space == 0x01)
2007                 return IORESOURCE_IO;
2008         else {
2009                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2010                         bus_space);
2011                 return 0;
2012         }
2013 }
2014
2015 #ifdef CONFIG_PCI
2016 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2017                                                  struct address_range *range)
2018 {
2019         unsigned long mask;
2020         int i;
2021
2022         /* Check this one */
2023         mask = bus_space_to_resource_flags(range->space);
2024         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2025                 if ((pdev->resource[i].flags & mask) == mask &&
2026                         pdev->resource[i].start <= range->address &&
2027                         pdev->resource[i].end > range->address) {
2028                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2029                                         /* Add better message */
2030                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2031                                         return NULL;
2032                                 }
2033                                 break;
2034                         }
2035         }
2036         if (i == DEVICE_COUNT_RESOURCE)
2037                 return NULL;
2038         return &pdev->resource[i];
2039 }
2040
2041 /*
2042  * Request an OF device resource. Currently handles child of PCI devices,
2043  * or other nodes attached to the root node. Ultimately, put some
2044  * link to resources in the OF node.
2045  */
2046 struct resource *request_OF_resource(struct device_node* node, int index,
2047                                      const char* name_postfix)
2048 {
2049         struct pci_dev* pcidev;
2050         u8 pci_bus, pci_devfn;
2051         unsigned long iomask;
2052         struct device_node* nd;
2053         struct resource* parent;
2054         struct resource *res = NULL;
2055         int nlen, plen;
2056
2057         if (index >= node->n_addrs)
2058                 goto fail;
2059
2060         /* Sanity check on bus space */
2061         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2062         if (iomask & IORESOURCE_MEM)
2063                 parent = &iomem_resource;
2064         else if (iomask & IORESOURCE_IO)
2065                 parent = &ioport_resource;
2066         else
2067                 goto fail;
2068
2069         /* Find a PCI parent if any */
2070         nd = node;
2071         pcidev = NULL;
2072         while (nd) {
2073                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2074                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2075                 if (pcidev) break;
2076                 nd = nd->parent;
2077         }
2078         if (pcidev)
2079                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2080         if (!parent) {
2081                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2082                         node->name);
2083                 goto fail;
2084         }
2085
2086         res = __request_region(parent, node->addrs[index].address,
2087                                node->addrs[index].size, NULL);
2088         if (!res)
2089                 goto fail;
2090         nlen = strlen(node->name);
2091         plen = name_postfix ? strlen(name_postfix) : 0;
2092         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2093         if (res->name) {
2094                 strcpy((char *)res->name, node->name);
2095                 if (plen)
2096                         strcpy((char *)res->name+nlen, name_postfix);
2097         }
2098         return res;
2099 fail:
2100         return NULL;
2101 }
2102 EXPORT_SYMBOL(request_OF_resource);
2103
2104 int release_OF_resource(struct device_node *node, int index)
2105 {
2106         struct pci_dev* pcidev;
2107         u8 pci_bus, pci_devfn;
2108         unsigned long iomask, start, end;
2109         struct device_node* nd;
2110         struct resource* parent;
2111         struct resource *res = NULL;
2112
2113         if (index >= node->n_addrs)
2114                 return -EINVAL;
2115
2116         /* Sanity check on bus space */
2117         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2118         if (iomask & IORESOURCE_MEM)
2119                 parent = &iomem_resource;
2120         else if (iomask & IORESOURCE_IO)
2121                 parent = &ioport_resource;
2122         else
2123                 return -EINVAL;
2124
2125         /* Find a PCI parent if any */
2126         nd = node;
2127         pcidev = NULL;
2128         while(nd) {
2129                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2130                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2131                 if (pcidev) break;
2132                 nd = nd->parent;
2133         }
2134         if (pcidev)
2135                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2136         if (!parent) {
2137                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2138                         node->name);
2139                 return -ENODEV;
2140         }
2141
2142         /* Find us in the parent and its childs */
2143         res = parent->child;
2144         start = node->addrs[index].address;
2145         end = start + node->addrs[index].size - 1;
2146         while (res) {
2147                 if (res->start == start && res->end == end &&
2148                     (res->flags & IORESOURCE_BUSY))
2149                         break;
2150                 if (res->start <= start && res->end >= end)
2151                         res = res->child;
2152                 else
2153                         res = res->sibling;
2154         }
2155         if (!res)
2156                 return -ENODEV;
2157
2158         if (res->name) {
2159                 kfree(res->name);
2160                 res->name = NULL;
2161         }
2162         release_resource(res);
2163         kfree(res);
2164
2165         return 0;
2166 }
2167 EXPORT_SYMBOL(release_OF_resource);
2168 #endif /* CONFIG_PCI */