3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
16 struct spu_context *ctx = spu->ctx;
18 wake_up_all(&ctx->stop_wq);
21 static inline int spu_stopped(struct spu_context *ctx, u32 * stat)
26 *stat = ctx->ops->status_read(ctx);
27 if (ctx->state != SPU_STATE_RUNNABLE)
30 pte_fault = spu->dsisr &
31 (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED);
32 return (!(*stat & SPU_STATUS_RUNNING) || pte_fault || spu->class_0_pending) ?
36 static int spu_setup_isolated(struct spu_context *ctx)
39 u64 __iomem *mfc_cntl;
42 unsigned long timeout;
43 const u32 status_loading = SPU_STATUS_RUNNING
44 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
51 * We need to exclude userspace access to the context.
53 * To protect against memory access we invalidate all ptes
54 * and make sure the pagefault handlers block on the mutex.
56 spu_unmap_mappings(ctx);
58 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
60 /* purge the MFC DMA queue to ensure no spurious accesses before we
61 * enter kernel mode */
62 timeout = jiffies + HZ;
63 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
64 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
65 != MFC_CNTL_PURGE_DMA_COMPLETE) {
66 if (time_after(jiffies, timeout)) {
67 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
75 /* put the SPE in kernel mode to allow access to the loader */
76 sr1 = spu_mfc_sr1_get(ctx->spu);
77 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
78 spu_mfc_sr1_set(ctx->spu, sr1);
80 /* start the loader */
81 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
82 ctx->ops->signal2_write(ctx,
83 (unsigned long)isolated_loader & 0xffffffff);
85 ctx->ops->runcntl_write(ctx,
86 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
89 timeout = jiffies + HZ;
90 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
92 if (time_after(jiffies, timeout)) {
93 printk(KERN_ERR "%s: timeout waiting for loader\n",
101 if (!(status & SPU_STATUS_RUNNING)) {
102 /* If isolated LOAD has failed: run SPU, we will get a stop-and
104 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
105 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
110 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
111 /* This isn't allowed by the CBEA, but check anyway */
112 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
113 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
119 /* Finished accessing the loader. Drop kernel mode */
120 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
121 spu_mfc_sr1_set(ctx->spu, sr1);
127 static int spu_run_init(struct spu_context *ctx, u32 * npc)
129 if (ctx->flags & SPU_CREATE_ISOLATE) {
130 unsigned long runcntl;
132 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
133 int ret = spu_setup_isolated(ctx);
138 /* if userspace has set the runcntrl register (eg, to issue an
139 * isolated exit), we need to re-set it here */
140 runcntl = ctx->ops->runcntl_read(ctx) &
141 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
143 runcntl = SPU_RUNCNTL_RUNNABLE;
144 ctx->ops->runcntl_write(ctx, runcntl);
146 unsigned long mode = SPU_PRIVCNTL_MODE_NORMAL;
147 ctx->ops->npc_write(ctx, *npc);
148 if (test_thread_flag(TIF_SINGLESTEP))
149 mode = SPU_PRIVCNTL_MODE_SINGLE_STEP;
150 out_be64(&ctx->spu->priv2->spu_privcntl_RW, mode);
151 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
157 static int spu_run_fini(struct spu_context *ctx, u32 * npc,
162 *status = ctx->ops->status_read(ctx);
163 *npc = ctx->ops->npc_read(ctx);
166 if (signal_pending(current))
172 static int spu_reacquire_runnable(struct spu_context *ctx, u32 *npc,
177 ret = spu_run_fini(ctx, npc, status);
181 if (*status & (SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_STOPPED_BY_HALT))
184 ret = spu_acquire_runnable(ctx, 0);
188 ret = spu_run_init(ctx, npc);
197 * SPU syscall restarting is tricky because we violate the basic
198 * assumption that the signal handler is running on the interrupted
199 * thread. Here instead, the handler runs on PowerPC user space code,
200 * while the syscall was called from the SPU.
201 * This means we can only do a very rough approximation of POSIX
204 int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
211 case -ERESTARTNOINTR:
213 * Enter the regular syscall restarting for
214 * sys_spu_run, then restart the SPU syscall
220 case -ERESTARTNOHAND:
221 case -ERESTART_RESTARTBLOCK:
223 * Restart block is too hard for now, just return -EINTR
225 * ERESTARTNOHAND comes from sys_pause, we also return
227 * Assume that we need to be restarted ourselves though.
233 printk(KERN_WARNING "%s: unexpected return code %ld\n",
234 __FUNCTION__, *spu_ret);
240 int spu_process_callback(struct spu_context *ctx)
242 struct spu_syscall_block s;
248 /* get syscall block from local store */
249 npc = ctx->ops->npc_read(ctx) & ~3;
250 ls = (void __iomem *)ctx->ops->get_ls(ctx);
251 ls_pointer = in_be32(ls + npc);
252 if (ls_pointer > (LS_SIZE - sizeof(s)))
254 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
256 /* do actual syscall without pinning the spu */
261 if (s.nr_ret < __NR_syscalls) {
263 /* do actual system call from here */
264 spu_ret = spu_sys_callback(&s);
265 if (spu_ret <= -ERESTARTSYS) {
266 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
269 if (ret == -ERESTARTSYS)
273 /* write result, jump over indirect pointer */
274 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
275 ctx->ops->npc_write(ctx, npc);
276 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
280 static inline int spu_process_events(struct spu_context *ctx)
282 struct spu *spu = ctx->spu;
285 if (spu->class_0_pending)
286 ret = spu_irq_class_0_bottom(spu);
287 if (!ret && signal_pending(current))
292 long spufs_run_spu(struct file *file, struct spu_context *ctx,
293 u32 *npc, u32 *event)
298 if (mutex_lock_interruptible(&ctx->run_mutex))
301 ctx->ops->master_start(ctx);
302 ctx->event_return = 0;
305 if (ctx->state == SPU_STATE_SAVED) {
306 __spu_update_sched_info(ctx);
308 ret = spu_activate(ctx, 0);
315 * We have to update the scheduling priority under active_mutex
316 * to protect against find_victim().
318 spu_update_sched_info(ctx);
321 ret = spu_run_init(ctx, npc);
328 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
331 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
332 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
333 ret = spu_process_callback(ctx);
336 status &= ~SPU_STATUS_STOPPED_BY_STOP;
338 ret = spufs_handle_class1(ctx);
342 if (unlikely(ctx->state != SPU_STATE_RUNNABLE)) {
343 ret = spu_reacquire_runnable(ctx, npc, &status);
348 ret = spu_process_events(ctx);
350 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
351 SPU_STATUS_STOPPED_BY_HALT |
352 SPU_STATUS_SINGLE_STEP)));
354 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
355 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100) &&
356 (ctx->state == SPU_STATE_RUNNABLE))
357 ctx->stats.libassist++;
359 ctx->ops->master_stop(ctx);
360 ret = spu_run_fini(ctx, npc, &status);
365 ((ret == -ERESTARTSYS) &&
366 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
367 (status & SPU_STATUS_SINGLE_STEP) ||
368 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
369 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
372 /* Note: we don't need to force_sig SIGTRAP on single-step
373 * since we have TIF_SINGLESTEP set, thus the kernel will do
374 * it upon return from the syscall anyawy
376 if ((status & SPU_STATUS_STOPPED_BY_STOP)
377 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
378 force_sig(SIGTRAP, current);
383 *event = ctx->event_return;
384 mutex_unlock(&ctx->run_mutex);