2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timex.h>
14 #include <linux/jiffies.h>
15 #include <linux/hrtimer.h>
16 #include <linux/capability.h>
17 #include <asm/div64.h>
18 #include <asm/timex.h>
21 * Timekeeping variables
23 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
24 unsigned long tick_nsec; /* ACTHZ period (nsec) */
25 static u64 tick_length, tick_length_base;
27 #define MAX_TICKADJ 500 /* microsecs */
28 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
29 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
32 * phase-lock loop variables
34 /* TIME_ERROR prevents overwriting the CMOS clock */
35 static int time_state = TIME_OK; /* clock synchronization status */
36 int time_status = STA_UNSYNC; /* clock status bits */
37 static s64 time_offset; /* time adjustment (ns) */
38 static long time_constant = 2; /* pll time constant */
39 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
40 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
41 long time_freq; /* frequency offset (scaled ppm)*/
42 static long time_reftime; /* time at last adjustment (s) */
45 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
46 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
49 static void ntp_update_frequency(void)
51 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
53 second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
54 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
56 tick_length_base = second_length;
58 do_div(second_length, HZ);
59 tick_nsec = second_length >> TICK_LENGTH_SHIFT;
61 do_div(tick_length_base, NTP_INTERVAL_FREQ);
65 * ntp_clear - Clears the NTP state variables
67 * Must be called while holding a write on the xtime_lock
71 time_adjust = 0; /* stop active adjtime() */
72 time_status |= STA_UNSYNC;
73 time_maxerror = NTP_PHASE_LIMIT;
74 time_esterror = NTP_PHASE_LIMIT;
76 ntp_update_frequency();
78 tick_length = tick_length_base;
83 * this routine handles the overflow of the microsecond field
85 * The tricky bits of code to handle the accurate clock support
86 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
87 * They were originally developed for SUN and DEC kernels.
88 * All the kudos should go to Dave for this stuff.
90 void second_overflow(void)
94 /* Bump the maxerror field */
95 time_maxerror += MAXFREQ >> SHIFT_USEC;
96 if (time_maxerror > NTP_PHASE_LIMIT) {
97 time_maxerror = NTP_PHASE_LIMIT;
98 time_status |= STA_UNSYNC;
102 * Leap second processing. If in leap-insert state at the end of the
103 * day, the system clock is set back one second; if in leap-delete
104 * state, the system clock is set ahead one second. The microtime()
105 * routine or external clock driver will insure that reported time is
106 * always monotonic. The ugly divides should be replaced.
108 switch (time_state) {
110 if (time_status & STA_INS)
111 time_state = TIME_INS;
112 else if (time_status & STA_DEL)
113 time_state = TIME_DEL;
116 if (xtime.tv_sec % 86400 == 0) {
118 wall_to_monotonic.tv_sec++;
120 * The timer interpolator will make time change
121 * gradually instead of an immediate jump by one second
123 time_interpolator_update(-NSEC_PER_SEC);
124 time_state = TIME_OOP;
125 printk(KERN_NOTICE "Clock: inserting leap second "
130 if ((xtime.tv_sec + 1) % 86400 == 0) {
132 wall_to_monotonic.tv_sec--;
134 * Use of time interpolator for a gradual change of
137 time_interpolator_update(NSEC_PER_SEC);
138 time_state = TIME_WAIT;
139 printk(KERN_NOTICE "Clock: deleting leap second "
144 time_state = TIME_WAIT;
147 if (!(time_status & (STA_INS | STA_DEL)))
148 time_state = TIME_OK;
152 * Compute the phase adjustment for the next second. The offset is
153 * reduced by a fixed factor times the time constant.
155 tick_length = tick_length_base;
156 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
157 time_offset -= time_adj;
158 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
160 if (unlikely(time_adjust)) {
161 if (time_adjust > MAX_TICKADJ) {
162 time_adjust -= MAX_TICKADJ;
163 tick_length += MAX_TICKADJ_SCALED;
164 } else if (time_adjust < -MAX_TICKADJ) {
165 time_adjust += MAX_TICKADJ;
166 tick_length -= MAX_TICKADJ_SCALED;
168 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
169 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
176 * Return how long ticks are at the moment, that is, how much time
177 * update_wall_time_one_tick will add to xtime next time we call it
178 * (assuming no calls to do_adjtimex in the meantime).
179 * The return value is in fixed-point nanoseconds shifted by the
180 * specified number of bits to the right of the binary point.
181 * This function has no side-effects.
183 u64 current_tick_length(void)
189 void __attribute__ ((weak)) notify_arch_cmos_timer(void)
194 /* adjtimex mainly allows reading (and writing, if superuser) of
195 * kernel time-keeping variables. used by xntpd.
197 int do_adjtimex(struct timex *txc)
199 long mtemp, save_adjust, rem;
200 s64 freq_adj, temp64;
203 /* In order to modify anything, you gotta be super-user! */
204 if (txc->modes && !capable(CAP_SYS_TIME))
207 /* Now we validate the data before disabling interrupts */
209 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
210 /* singleshot must not be used with any other mode bits */
211 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
214 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
215 /* adjustment Offset limited to +- .512 seconds */
216 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
219 /* if the quartz is off by more than 10% something is VERY wrong ! */
220 if (txc->modes & ADJ_TICK)
221 if (txc->tick < 900000/USER_HZ ||
222 txc->tick > 1100000/USER_HZ)
225 write_seqlock_irq(&xtime_lock);
226 result = time_state; /* mostly `TIME_OK' */
228 /* Save for later - semantics of adjtime is to return old value */
229 save_adjust = time_adjust;
231 #if 0 /* STA_CLOCKERR is never set yet */
232 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
234 /* If there are input parameters, then process them */
237 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
238 time_status = (txc->status & ~STA_RONLY) |
239 (time_status & STA_RONLY);
241 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
242 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
246 time_freq = ((s64)txc->freq * NSEC_PER_USEC)
247 >> (SHIFT_USEC - SHIFT_NSEC);
250 if (txc->modes & ADJ_MAXERROR) {
251 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
255 time_maxerror = txc->maxerror;
258 if (txc->modes & ADJ_ESTERROR) {
259 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
263 time_esterror = txc->esterror;
266 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
267 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
271 time_constant = min(txc->constant + 4, (long)MAXTC);
274 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
275 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
276 /* adjtime() is independent from ntp_adjtime() */
277 time_adjust = txc->offset;
279 else if (time_status & STA_PLL) {
280 time_offset = txc->offset * NSEC_PER_USEC;
283 * Scale the phase adjustment and
284 * clamp to the operating range.
286 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
287 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
290 * Select whether the frequency is to be controlled
291 * and in which mode (PLL or FLL). Clamp to the operating
292 * range. Ugly multiply/divide should be replaced someday.
295 if (time_status & STA_FREQHOLD || time_reftime == 0)
296 time_reftime = xtime.tv_sec;
297 mtemp = xtime.tv_sec - time_reftime;
298 time_reftime = xtime.tv_sec;
300 freq_adj = time_offset * mtemp;
301 freq_adj = shift_right(freq_adj, time_constant * 2 +
302 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
303 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
304 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
305 if (time_offset < 0) {
307 do_div(temp64, mtemp);
310 do_div(temp64, mtemp);
314 freq_adj += time_freq;
315 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
316 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
317 time_offset = div_long_long_rem_signed(time_offset,
320 time_offset <<= SHIFT_UPDATE;
322 } /* txc->modes & ADJ_OFFSET */
323 if (txc->modes & ADJ_TICK)
324 tick_usec = txc->tick;
326 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
327 ntp_update_frequency();
329 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
332 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
333 txc->offset = save_adjust;
335 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
336 NTP_INTERVAL_FREQ / 1000;
337 txc->freq = (time_freq / NSEC_PER_USEC) <<
338 (SHIFT_USEC - SHIFT_NSEC);
339 txc->maxerror = time_maxerror;
340 txc->esterror = time_esterror;
341 txc->status = time_status;
342 txc->constant = time_constant;
344 txc->tolerance = MAXFREQ;
345 txc->tick = tick_usec;
347 /* PPS is not implemented, so these are zero */
356 write_sequnlock_irq(&xtime_lock);
357 do_gettimeofday(&txc->time);
358 notify_arch_cmos_timer();