x86: fix vmemmap printout check
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
148 {
149         pud_t *pud;
150         pmd_t *pmd;
151         pte_t *pte;
152
153         pud = pud_page + pud_index(vaddr);
154         if (pud_none(*pud)) {
155                 pmd = (pmd_t *) spp_getpage();
156                 pud_populate(&init_mm, pud, pmd);
157                 if (pmd != pmd_offset(pud, 0)) {
158                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
159                                 pmd, pmd_offset(pud, 0));
160                         return;
161                 }
162         }
163         pmd = pmd_offset(pud, vaddr);
164         if (pmd_none(*pmd)) {
165                 pte = (pte_t *) spp_getpage();
166                 pmd_populate_kernel(&init_mm, pmd, pte);
167                 if (pte != pte_offset_kernel(pmd, 0)) {
168                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
169                         return;
170                 }
171         }
172
173         pte = pte_offset_kernel(pmd, vaddr);
174         if (!pte_none(*pte) && pte_val(new_pte) &&
175             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
176                 pte_ERROR(*pte);
177         set_pte(pte, new_pte);
178
179         /*
180          * It's enough to flush this one mapping.
181          * (PGE mappings get flushed as well)
182          */
183         __flush_tlb_one(vaddr);
184 }
185
186 void
187 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
188 {
189         pgd_t *pgd;
190         pud_t *pud_page;
191
192         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
193
194         pgd = pgd_offset_k(vaddr);
195         if (pgd_none(*pgd)) {
196                 printk(KERN_ERR
197                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
198                 return;
199         }
200         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
201         set_pte_vaddr_pud(pud_page, vaddr, pteval);
202 }
203
204 /*
205  * Create large page table mappings for a range of physical addresses.
206  */
207 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
208                                                 pgprot_t prot)
209 {
210         pgd_t *pgd;
211         pud_t *pud;
212         pmd_t *pmd;
213
214         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
215         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
216                 pgd = pgd_offset_k((unsigned long)__va(phys));
217                 if (pgd_none(*pgd)) {
218                         pud = (pud_t *) spp_getpage();
219                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
220                                                 _PAGE_USER));
221                 }
222                 pud = pud_offset(pgd, (unsigned long)__va(phys));
223                 if (pud_none(*pud)) {
224                         pmd = (pmd_t *) spp_getpage();
225                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
226                                                 _PAGE_USER));
227                 }
228                 pmd = pmd_offset(pud, phys);
229                 BUG_ON(!pmd_none(*pmd));
230                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
231         }
232 }
233
234 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
235 {
236         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
237 }
238
239 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
240 {
241         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
242 }
243
244 /*
245  * The head.S code sets up the kernel high mapping:
246  *
247  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
248  *
249  * phys_addr holds the negative offset to the kernel, which is added
250  * to the compile time generated pmds. This results in invalid pmds up
251  * to the point where we hit the physaddr 0 mapping.
252  *
253  * We limit the mappings to the region from _text to _end.  _end is
254  * rounded up to the 2MB boundary. This catches the invalid pmds as
255  * well, as they are located before _text:
256  */
257 void __init cleanup_highmap(void)
258 {
259         unsigned long vaddr = __START_KERNEL_map;
260         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
261         pmd_t *pmd = level2_kernel_pgt;
262         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
263
264         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
265                 if (pmd_none(*pmd))
266                         continue;
267                 if (vaddr < (unsigned long) _text || vaddr > end)
268                         set_pmd(pmd, __pmd(0));
269         }
270 }
271
272 static unsigned long __initdata table_start;
273 static unsigned long __meminitdata table_end;
274 static unsigned long __meminitdata table_top;
275
276 static __meminit void *alloc_low_page(unsigned long *phys)
277 {
278         unsigned long pfn = table_end++;
279         void *adr;
280
281         if (after_bootmem) {
282                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
283                 *phys = __pa(adr);
284
285                 return adr;
286         }
287
288         if (pfn >= table_top)
289                 panic("alloc_low_page: ran out of memory");
290
291         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
292         memset(adr, 0, PAGE_SIZE);
293         *phys  = pfn * PAGE_SIZE;
294         return adr;
295 }
296
297 static __meminit void unmap_low_page(void *adr)
298 {
299         if (after_bootmem)
300                 return;
301
302         early_iounmap(adr, PAGE_SIZE);
303 }
304
305 static void __meminit
306 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
307 {
308         unsigned pages = 0;
309         int i;
310         pte_t *pte = pte_page + pte_index(addr);
311
312         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
313
314                 if (addr >= end) {
315                         if (!after_bootmem) {
316                                 for(; i < PTRS_PER_PTE; i++, pte++)
317                                         set_pte(pte, __pte(0));
318                         }
319                         break;
320                 }
321
322                 if (pte_val(*pte))
323                         continue;
324
325                 if (0)
326                         printk("   pte=%p addr=%lx pte=%016lx\n",
327                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
328                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
329                 pages++;
330         }
331         update_page_count(PG_LEVEL_4K, pages);
332 }
333
334 static void __meminit
335 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
336 {
337         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
338
339         phys_pte_init(pte, address, end);
340 }
341
342 static unsigned long __meminit
343 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
344                          unsigned long page_size_mask)
345 {
346         unsigned long pages = 0;
347
348         int i = pmd_index(address);
349
350         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
351                 unsigned long pte_phys;
352                 pmd_t *pmd = pmd_page + pmd_index(address);
353                 pte_t *pte;
354
355                 if (address >= end) {
356                         if (!after_bootmem) {
357                                 for (; i < PTRS_PER_PMD; i++, pmd++)
358                                         set_pmd(pmd, __pmd(0));
359                         }
360                         break;
361                 }
362
363                 if (pmd_val(*pmd)) {
364                         if (!pmd_large(*pmd))
365                                 phys_pte_update(pmd, address, end);
366                         continue;
367                 }
368
369                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
370                         pages++;
371                         set_pte((pte_t *)pmd,
372                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
373                         continue;
374                 }
375
376                 pte = alloc_low_page(&pte_phys);
377                 phys_pte_init(pte, address, end);
378                 unmap_low_page(pte);
379
380                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
381         }
382         update_page_count(PG_LEVEL_2M, pages);
383         return address;
384 }
385
386 static unsigned long __meminit
387 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
388                          unsigned long page_size_mask)
389 {
390         pmd_t *pmd = pmd_offset(pud, 0);
391         unsigned long last_map_addr;
392
393         spin_lock(&init_mm.page_table_lock);
394         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
395         spin_unlock(&init_mm.page_table_lock);
396         __flush_tlb_all();
397         return last_map_addr;
398 }
399
400 static unsigned long __meminit
401 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
402                          unsigned long page_size_mask)
403 {
404         unsigned long pages = 0;
405         unsigned long last_map_addr = end;
406         int i = pud_index(addr);
407
408         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
409                 unsigned long pmd_phys;
410                 pud_t *pud = pud_page + pud_index(addr);
411                 pmd_t *pmd;
412
413                 if (addr >= end)
414                         break;
415
416                 if (!after_bootmem &&
417                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
418                         set_pud(pud, __pud(0));
419                         continue;
420                 }
421
422                 if (pud_val(*pud)) {
423                         if (!pud_large(*pud))
424                                 last_map_addr = phys_pmd_update(pud, addr, end,
425                                                          page_size_mask);
426                         continue;
427                 }
428
429                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
430                         pages++;
431                         set_pte((pte_t *)pud,
432                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
433                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
434                         continue;
435                 }
436
437                 pmd = alloc_low_page(&pmd_phys);
438
439                 spin_lock(&init_mm.page_table_lock);
440                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
441                 unmap_low_page(pmd);
442                 pud_populate(&init_mm, pud, __va(pmd_phys));
443                 spin_unlock(&init_mm.page_table_lock);
444
445         }
446         __flush_tlb_all();
447         update_page_count(PG_LEVEL_1G, pages);
448
449         return last_map_addr;
450 }
451
452 static unsigned long __meminit
453 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
454                  unsigned long page_size_mask)
455 {
456         pud_t *pud;
457
458         pud = (pud_t *)pgd_page_vaddr(*pgd);
459
460         return phys_pud_init(pud, addr, end, page_size_mask);
461 }
462
463 static void __init find_early_table_space(unsigned long end)
464 {
465         unsigned long puds, tables, start;
466
467         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
468         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
469         if (!direct_gbpages) {
470                 unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
471                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
472         }
473         if (!cpu_has_pse) {
474                 unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
475                 tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
476         }
477
478         /*
479          * RED-PEN putting page tables only on node 0 could
480          * cause a hotspot and fill up ZONE_DMA. The page tables
481          * need roughly 0.5KB per GB.
482          */
483         start = 0x8000;
484         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
485         if (table_start == -1UL)
486                 panic("Cannot find space for the kernel page tables");
487
488         table_start >>= PAGE_SHIFT;
489         table_end = table_start;
490         table_top = table_start + (tables >> PAGE_SHIFT);
491
492         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
493                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
494 }
495
496 static void __init init_gbpages(void)
497 {
498         if (direct_gbpages && cpu_has_gbpages)
499                 printk(KERN_INFO "Using GB pages for direct mapping\n");
500         else
501                 direct_gbpages = 0;
502 }
503
504 #ifdef CONFIG_MEMTEST
505
506 static void __init memtest(unsigned long start_phys, unsigned long size,
507                                  unsigned pattern)
508 {
509         unsigned long i;
510         unsigned long *start;
511         unsigned long start_bad;
512         unsigned long last_bad;
513         unsigned long val;
514         unsigned long start_phys_aligned;
515         unsigned long count;
516         unsigned long incr;
517
518         switch (pattern) {
519         case 0:
520                 val = 0UL;
521                 break;
522         case 1:
523                 val = -1UL;
524                 break;
525         case 2:
526                 val = 0x5555555555555555UL;
527                 break;
528         case 3:
529                 val = 0xaaaaaaaaaaaaaaaaUL;
530                 break;
531         default:
532                 return;
533         }
534
535         incr = sizeof(unsigned long);
536         start_phys_aligned = ALIGN(start_phys, incr);
537         count = (size - (start_phys_aligned - start_phys))/incr;
538         start = __va(start_phys_aligned);
539         start_bad = 0;
540         last_bad = 0;
541
542         for (i = 0; i < count; i++)
543                 start[i] = val;
544         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
545                 if (*start != val) {
546                         if (start_phys_aligned == last_bad + incr) {
547                                 last_bad += incr;
548                         } else {
549                                 if (start_bad) {
550                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
551                                                 val, start_bad, last_bad + incr);
552                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
553                                 }
554                                 start_bad = last_bad = start_phys_aligned;
555                         }
556                 }
557         }
558         if (start_bad) {
559                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
560                         val, start_bad, last_bad + incr);
561                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
562         }
563
564 }
565
566 /* default is disabled */
567 static int memtest_pattern __initdata;
568
569 static int __init parse_memtest(char *arg)
570 {
571         if (arg)
572                 memtest_pattern = simple_strtoul(arg, NULL, 0);
573         return 0;
574 }
575
576 early_param("memtest", parse_memtest);
577
578 static void __init early_memtest(unsigned long start, unsigned long end)
579 {
580         u64 t_start, t_size;
581         unsigned pattern;
582
583         if (!memtest_pattern)
584                 return;
585
586         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
587         for (pattern = 0; pattern < memtest_pattern; pattern++) {
588                 t_start = start;
589                 t_size = 0;
590                 while (t_start < end) {
591                         t_start = find_e820_area_size(t_start, &t_size, 1);
592
593                         /* done ? */
594                         if (t_start >= end)
595                                 break;
596                         if (t_start + t_size > end)
597                                 t_size = end - t_start;
598
599                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
600                                 (unsigned long long)t_start,
601                                 (unsigned long long)t_start + t_size, pattern);
602
603                         memtest(t_start, t_size, pattern);
604
605                         t_start += t_size;
606                 }
607         }
608         printk(KERN_CONT "\n");
609 }
610 #else
611 static void __init early_memtest(unsigned long start, unsigned long end)
612 {
613 }
614 #endif
615
616 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
617                                                 unsigned long end,
618                                                 unsigned long page_size_mask)
619 {
620
621         unsigned long next, last_map_addr = end;
622
623         start = (unsigned long)__va(start);
624         end = (unsigned long)__va(end);
625
626         for (; start < end; start = next) {
627                 pgd_t *pgd = pgd_offset_k(start);
628                 unsigned long pud_phys;
629                 pud_t *pud;
630
631                 next = start + PGDIR_SIZE;
632                 if (next > end)
633                         next = end;
634
635                 if (pgd_val(*pgd)) {
636                         last_map_addr = phys_pud_update(pgd, __pa(start),
637                                                  __pa(end), page_size_mask);
638                         continue;
639                 }
640
641                 if (after_bootmem)
642                         pud = pud_offset(pgd, start & PGDIR_MASK);
643                 else
644                         pud = alloc_low_page(&pud_phys);
645
646                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
647                                                  page_size_mask);
648                 unmap_low_page(pud);
649                 pgd_populate(&init_mm, pgd_offset_k(start),
650                              __va(pud_phys));
651         }
652
653         return last_map_addr;
654 }
655 /*
656  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
657  * This runs before bootmem is initialized and gets pages directly from
658  * the physical memory. To access them they are temporarily mapped.
659  */
660 unsigned long __init_refok init_memory_mapping(unsigned long start,
661                                                unsigned long end)
662 {
663         unsigned long last_map_addr;
664         unsigned long page_size_mask = 0;
665
666         printk(KERN_INFO "init_memory_mapping\n");
667
668         /*
669          * Find space for the kernel direct mapping tables.
670          *
671          * Later we should allocate these tables in the local node of the
672          * memory mapped. Unfortunately this is done currently before the
673          * nodes are discovered.
674          */
675         if (!after_bootmem) {
676                 init_gbpages();
677                 find_early_table_space(end);
678         }
679
680         if (direct_gbpages)
681                 page_size_mask |= 1 << PG_LEVEL_1G;
682         if (cpu_has_pse)
683                 page_size_mask |= 1 << PG_LEVEL_2M;
684
685         last_map_addr = kernel_physical_mapping_init(start, end,
686                                                          page_size_mask);
687
688         if (!after_bootmem)
689                 mmu_cr4_features = read_cr4();
690         __flush_tlb_all();
691
692         if (!after_bootmem && table_end > table_start)
693                 reserve_early(table_start << PAGE_SHIFT,
694                                  table_end << PAGE_SHIFT, "PGTABLE");
695
696         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
697                          last_map_addr, end);
698
699         if (!after_bootmem)
700                 early_memtest(start, end);
701
702         return last_map_addr >> PAGE_SHIFT;
703 }
704
705 #ifndef CONFIG_NUMA
706 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
707 {
708         unsigned long bootmap_size, bootmap;
709
710         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
711         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
712                                  PAGE_SIZE);
713         if (bootmap == -1L)
714                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
715         /* don't touch min_low_pfn */
716         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
717                                          0, end_pfn);
718         e820_register_active_regions(0, start_pfn, end_pfn);
719         free_bootmem_with_active_regions(0, end_pfn);
720         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
721         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
722 }
723
724 void __init paging_init(void)
725 {
726         unsigned long max_zone_pfns[MAX_NR_ZONES];
727
728         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
729         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
730         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
731         max_zone_pfns[ZONE_NORMAL] = max_pfn;
732
733         memory_present(0, 0, max_pfn);
734         sparse_init();
735         free_area_init_nodes(max_zone_pfns);
736 }
737 #endif
738
739 /*
740  * Memory hotplug specific functions
741  */
742 #ifdef CONFIG_MEMORY_HOTPLUG
743 /*
744  * Memory is added always to NORMAL zone. This means you will never get
745  * additional DMA/DMA32 memory.
746  */
747 int arch_add_memory(int nid, u64 start, u64 size)
748 {
749         struct pglist_data *pgdat = NODE_DATA(nid);
750         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
751         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
752         unsigned long nr_pages = size >> PAGE_SHIFT;
753         int ret;
754
755         last_mapped_pfn = init_memory_mapping(start, start + size-1);
756         if (last_mapped_pfn > max_pfn_mapped)
757                 max_pfn_mapped = last_mapped_pfn;
758
759         ret = __add_pages(zone, start_pfn, nr_pages);
760         WARN_ON(1);
761
762         return ret;
763 }
764 EXPORT_SYMBOL_GPL(arch_add_memory);
765
766 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
767 int memory_add_physaddr_to_nid(u64 start)
768 {
769         return 0;
770 }
771 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
772 #endif
773
774 #endif /* CONFIG_MEMORY_HOTPLUG */
775
776 /*
777  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
778  * is valid. The argument is a physical page number.
779  *
780  *
781  * On x86, access has to be given to the first megabyte of ram because that area
782  * contains bios code and data regions used by X and dosemu and similar apps.
783  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
784  * mmio resources as well as potential bios/acpi data regions.
785  */
786 int devmem_is_allowed(unsigned long pagenr)
787 {
788         if (pagenr <= 256)
789                 return 1;
790         if (!page_is_ram(pagenr))
791                 return 1;
792         return 0;
793 }
794
795
796 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
797                          kcore_modules, kcore_vsyscall;
798
799 void __init mem_init(void)
800 {
801         long codesize, reservedpages, datasize, initsize;
802
803         pci_iommu_alloc();
804
805         /* clear_bss() already clear the empty_zero_page */
806
807         reservedpages = 0;
808
809         /* this will put all low memory onto the freelists */
810 #ifdef CONFIG_NUMA
811         totalram_pages = numa_free_all_bootmem();
812 #else
813         totalram_pages = free_all_bootmem();
814 #endif
815         reservedpages = max_pfn - totalram_pages -
816                                         absent_pages_in_range(0, max_pfn);
817         after_bootmem = 1;
818
819         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
820         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
821         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
822
823         /* Register memory areas for /proc/kcore */
824         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
825         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
826                    VMALLOC_END-VMALLOC_START);
827         kclist_add(&kcore_kernel, &_stext, _end - _stext);
828         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
829         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
830                                  VSYSCALL_END - VSYSCALL_START);
831
832         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
833                                 "%ldk reserved, %ldk data, %ldk init)\n",
834                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
835                 max_pfn << (PAGE_SHIFT-10),
836                 codesize >> 10,
837                 reservedpages << (PAGE_SHIFT-10),
838                 datasize >> 10,
839                 initsize >> 10);
840
841         cpa_init();
842 }
843
844 void free_init_pages(char *what, unsigned long begin, unsigned long end)
845 {
846         unsigned long addr = begin;
847
848         if (addr >= end)
849                 return;
850
851         /*
852          * If debugging page accesses then do not free this memory but
853          * mark them not present - any buggy init-section access will
854          * create a kernel page fault:
855          */
856 #ifdef CONFIG_DEBUG_PAGEALLOC
857         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
858                 begin, PAGE_ALIGN(end));
859         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
860 #else
861         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
862
863         for (; addr < end; addr += PAGE_SIZE) {
864                 ClearPageReserved(virt_to_page(addr));
865                 init_page_count(virt_to_page(addr));
866                 memset((void *)(addr & ~(PAGE_SIZE-1)),
867                         POISON_FREE_INITMEM, PAGE_SIZE);
868                 free_page(addr);
869                 totalram_pages++;
870         }
871 #endif
872 }
873
874 void free_initmem(void)
875 {
876         free_init_pages("unused kernel memory",
877                         (unsigned long)(&__init_begin),
878                         (unsigned long)(&__init_end));
879 }
880
881 #ifdef CONFIG_DEBUG_RODATA
882 const int rodata_test_data = 0xC3;
883 EXPORT_SYMBOL_GPL(rodata_test_data);
884
885 void mark_rodata_ro(void)
886 {
887         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
888
889         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
890                (end - start) >> 10);
891         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
892
893         /*
894          * The rodata section (but not the kernel text!) should also be
895          * not-executable.
896          */
897         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
898         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
899
900         rodata_test();
901
902 #ifdef CONFIG_CPA_DEBUG
903         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
904         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
905
906         printk(KERN_INFO "Testing CPA: again\n");
907         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
908 #endif
909 }
910
911 #endif
912
913 #ifdef CONFIG_BLK_DEV_INITRD
914 void free_initrd_mem(unsigned long start, unsigned long end)
915 {
916         free_init_pages("initrd memory", start, end);
917 }
918 #endif
919
920 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
921                                    int flags)
922 {
923 #ifdef CONFIG_NUMA
924         int nid, next_nid;
925         int ret;
926 #endif
927         unsigned long pfn = phys >> PAGE_SHIFT;
928
929         if (pfn >= max_pfn) {
930                 /*
931                  * This can happen with kdump kernels when accessing
932                  * firmware tables:
933                  */
934                 if (pfn < max_pfn_mapped)
935                         return -EFAULT;
936
937                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
938                                 phys, len);
939                 return -EFAULT;
940         }
941
942         /* Should check here against the e820 map to avoid double free */
943 #ifdef CONFIG_NUMA
944         nid = phys_to_nid(phys);
945         next_nid = phys_to_nid(phys + len - 1);
946         if (nid == next_nid)
947                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
948         else
949                 ret = reserve_bootmem(phys, len, flags);
950
951         if (ret != 0)
952                 return ret;
953
954 #else
955         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
956 #endif
957
958         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
959                 dma_reserve += len / PAGE_SIZE;
960                 set_dma_reserve(dma_reserve);
961         }
962
963         return 0;
964 }
965
966 int kern_addr_valid(unsigned long addr)
967 {
968         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
969         pgd_t *pgd;
970         pud_t *pud;
971         pmd_t *pmd;
972         pte_t *pte;
973
974         if (above != 0 && above != -1UL)
975                 return 0;
976
977         pgd = pgd_offset_k(addr);
978         if (pgd_none(*pgd))
979                 return 0;
980
981         pud = pud_offset(pgd, addr);
982         if (pud_none(*pud))
983                 return 0;
984
985         pmd = pmd_offset(pud, addr);
986         if (pmd_none(*pmd))
987                 return 0;
988
989         if (pmd_large(*pmd))
990                 return pfn_valid(pmd_pfn(*pmd));
991
992         pte = pte_offset_kernel(pmd, addr);
993         if (pte_none(*pte))
994                 return 0;
995
996         return pfn_valid(pte_pfn(*pte));
997 }
998
999 /*
1000  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1001  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1002  * not need special handling anymore:
1003  */
1004 static struct vm_area_struct gate_vma = {
1005         .vm_start       = VSYSCALL_START,
1006         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1007         .vm_page_prot   = PAGE_READONLY_EXEC,
1008         .vm_flags       = VM_READ | VM_EXEC
1009 };
1010
1011 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1012 {
1013 #ifdef CONFIG_IA32_EMULATION
1014         if (test_tsk_thread_flag(tsk, TIF_IA32))
1015                 return NULL;
1016 #endif
1017         return &gate_vma;
1018 }
1019
1020 int in_gate_area(struct task_struct *task, unsigned long addr)
1021 {
1022         struct vm_area_struct *vma = get_gate_vma(task);
1023
1024         if (!vma)
1025                 return 0;
1026
1027         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1028 }
1029
1030 /*
1031  * Use this when you have no reliable task/vma, typically from interrupt
1032  * context. It is less reliable than using the task's vma and may give
1033  * false positives:
1034  */
1035 int in_gate_area_no_task(unsigned long addr)
1036 {
1037         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1038 }
1039
1040 const char *arch_vma_name(struct vm_area_struct *vma)
1041 {
1042         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1043                 return "[vdso]";
1044         if (vma == &gate_vma)
1045                 return "[vsyscall]";
1046         return NULL;
1047 }
1048
1049 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1050 /*
1051  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1052  */
1053 static long __meminitdata addr_start, addr_end;
1054 static void __meminitdata *p_start, *p_end;
1055 static int __meminitdata node_start;
1056
1057 int __meminit
1058 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1059 {
1060         unsigned long addr = (unsigned long)start_page;
1061         unsigned long end = (unsigned long)(start_page + size);
1062         unsigned long next;
1063         pgd_t *pgd;
1064         pud_t *pud;
1065         pmd_t *pmd;
1066
1067         for (; addr < end; addr = next) {
1068                 void *p = NULL;
1069
1070                 pgd = vmemmap_pgd_populate(addr, node);
1071                 if (!pgd)
1072                         return -ENOMEM;
1073
1074                 pud = vmemmap_pud_populate(pgd, addr, node);
1075                 if (!pud)
1076                         return -ENOMEM;
1077
1078                 if (!cpu_has_pse) {
1079                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1080                         pmd = vmemmap_pmd_populate(pud, addr, node);
1081
1082                         if (!pmd)
1083                                 return -ENOMEM;
1084
1085                         p = vmemmap_pte_populate(pmd, addr, node);
1086
1087                         if (!p)
1088                                 return -ENOMEM;
1089
1090                         addr_end = addr + PAGE_SIZE;
1091                         p_end = p + PAGE_SIZE;
1092                 } else {
1093                         next = pmd_addr_end(addr, end);
1094
1095                         pmd = pmd_offset(pud, addr);
1096                         if (pmd_none(*pmd)) {
1097                                 pte_t entry;
1098
1099                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1100                                 if (!p)
1101                                         return -ENOMEM;
1102
1103                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1104                                                 PAGE_KERNEL_LARGE);
1105                                 set_pmd(pmd, __pmd(pte_val(entry)));
1106
1107                                 /* check to see if we have contiguous blocks */
1108                                 if (p_end != p || node_start != node) {
1109                                         if (p_start)
1110                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1111                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1112                                         addr_start = addr;
1113                                         node_start = node;
1114                                         p_start = p;
1115                                 }
1116
1117                                 addr_end = addr + PMD_SIZE;
1118                                 p_end = p + PMD_SIZE;
1119                         } else
1120                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1121                 }
1122
1123         }
1124         return 0;
1125 }
1126
1127 void __meminit vmemmap_populate_print_last(void)
1128 {
1129         if (p_start) {
1130                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1131                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1132                 p_start = NULL;
1133                 p_end = NULL;
1134                 node_start = 0;
1135         }
1136 }
1137 #endif